
FORMAL MARKOFF MAPS ARE POSITIVE

FRANÇOIS GUÉRITAUD

Abstract. This note defines a family of Laurent polynomials indexed in P1Q
which generalize the Markoff numbers and relate to the character variety of
the one-cusped torus. We describe which monomials appear in each polyno-
mial and prove all the coefficients are positive integers. We also conjecture a
generalization of that positivity result.

1. introduction

The Laurent phenomenon is the property of certain inductively defined sequences
of rational functions to take only Laurent polynomials for their values. Fomin
and Zelevinsky, who christened the phenomenon, have accounted for its surprising
ubiquity in commutative algebra by their “caterpillar lemma” in [4]. In all instances
studied in that article, they also noticed that the polynomial coefficients seem to be
positive integers, and conjectured that this is indeed the case in general. Positivity
can be shown only in a very few cases, e.g. through combinatorial interpretations of
the coefficients as in [7], where the coefficients count certain colorings of particular
graphs. This subject is related to deep algebraic questions and to the topic of
cluster algebras.

In this article, we deal with one of the simplest instances of the Laurent phe-
nomenon — included, in particular, in [7]. The novelty here is that we do not only
show that the Laurent polynomials that arise have positive integer coefficients, but
also say exactly which monomials appear. Our methods are rather pedestrian. The
rational fractions (in three variables) that we will be interested in are the coor-
dinates in V = (C(X,Y, Z))3 of the images of the point (X,Y, Z) under repeated
applications of the map

V → V

ψ : (a, b, c) 7→
(

a2+b2

c
, b, a

)

and of permutations of the three coordinates of V . To explain why this family of
rational fractions is indexed in P1Q, the remainder of this Introduction gives some
geometric background.

In [2], Bowditch defined Markoff maps as an appealing way of analyzing the
length spectrum of the set C of simple closed geodesics on a hyperbolic one-cusped
torus S = H2/Γ (homeomorphic to (R2 − Z2)/Z2). By fixing a covering H2 → S,
we can define the holonomy representation ρ : π1(S) → Isom+(H2) = PSL2(R).
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Bowditch noted that C stands in natural bijection with P1Q = Q ∪ {∞} via the
slope function

σ : C −̃→ P1Q ,

and associated (bijectively) to each c ∈ C a complementary region Rc of an infinite
trivalent tree T properly embedded in the hyperbolic plane H2. This tree T is dual
to the Farey triangulation of H2 (see Section 2 for definitions): namely, Rc is the
complementary region of T whose closure in the compact disc H2 ∪ P1R contains
the ideal point σ(c) ∈ P1Q ⊂ P1R. If R is the collection of all the regions Rc, the
Markoff map

Φ : R −→ R

associates to Rc the trace of an element of SL2(R) representing c (here we choose a
lift to SL2(R) of the holonomy representation π1(S) → PSL2(R); note that π1(S) is
free). The definition of Φ extends to Kleinian representations ρ : π1(S) → SL2(C),
and Bowditch studied in particular the relationship between “ Φ being proper” and
“ρ being quasifuchsian”. Markoff maps also provide new proofs and generalizations
of McShane’s identity [2, 1], and their intriguing analytic properties have not yet
been fully explored. See also [6, 8, 9, 10].

Of course, a Markoff map Φ is a very redundant object. It is in fact enough to
know Φ(Rc) for three mutually adjacent regions Rc to reconstruct Φ completely.
For instance, denote by Rs the region Rσ−1(s) for s ∈ P1Q, and consider

(1) Φ(R0) = X ; Φ(R∞) = Y ; Φ(R−1) = Z.

Then, every Φ(Rs) can be given by an explicit formula fs(X,Y, Z). There is in
fact a non-trivial algebraic relationship between X,Y, Z, so many very different
formulas for fs exist. In [5], we were led to look for expressions of fs as a Laurent
polynomial of degree 1 in X,Y, Z:

(2) fs =
∑

α,β∈Z

Fs(α, β)
X1+α Y 1+β

Z1+α+β
∈ Z

[
X±1, Y ±1, Z±1

]

In Section 2, we show that such an expression exists, and that furthermore the
integer Fs(α, β) equals 0 unless (α, β) satisfies a natural parity condition. Our
main theorem is

Theorem 1. The Laurent polynomial fs has only positive coefficients. Moreover,
all monomials in the Newton polygon of fs which satisfy the parity condition have
nonzero coefficients.

(Recall that the Newton polygon of a Laurent polynomial P =
∑
aν1...νn

Xν1

1 . . .Xνn
n

in n variables is the convex hull in Rn of the points (ν1, . . . , νn) ∈ Zn for which
aν1...νn

6= 0.) In fact, we describe the Newton polygon of fs completely (see (4)
below). Some examples are shown in Figure 3 page 11. The numbers fs(1, 1, 1) (or
more generally fs(a, b, c) where (a, b, c) is a Markoff triple) are the usual Markoff
numbers from Diophantine approximation theory [3].

The positivity of the coefficients Fs(α, β) is already less than trivial when s is a
fairly simple rational of P1Q, say an integer (that case was used in Section 7 of [5],
to establish a certain convergence property in the Teichmüller space of the cusped
torus).

Theorem 1 is proved in Section 3 for positive rationals s. The remaining cases
(s < −1 and −1 < s < 0) will follow by a symmetry argument outlined in Section
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4. Section 5 describes a conjectural generalization, already given in [4], of Theorem
1, in order to give a taste of the power of the Laurent phenomenon.

2. The functions fs are Laurent polynomials

Let S = (R2 − Z2)/Z2 be the one-cusped (or once-punctured) torus and π :
R2 − Z2 → S the natural projection. Denote by C the set of isotopy classes of
simple closed curves in S that are not the loop around the cusp. If p, q are coprime
integers and ℓ is a line in R2 of slope s = q/p missing Z2, then π(ℓ) defines an
element c of C. We call s ∈ P1Q the slope of c, and write σ(c) = s. It is well-known
that σ establishes a bijection C→̃P1Q. The curve of slope s is denoted by cs.

Consider the hyperbolic plane H2 with its natural boundary ∂H2 = P1R. When-
ever two curves c, c′ ∈ C have (minimal) intersecion number 1, we connect the
rationals σ(c) and σ(c′) of P1R by a line in H2. The result is the Farey triangu-
lation of H2 into infinitely many ideal Farey triangles. It is well-known that the
triples of vertices of Farey triangles are exactly those triples of rationals that can
be written (

q0
p0

,
q0 + q1
p0 + p1

,
q1
p1

)
where

∣∣∣∣
(
q0 q1
p0 p1

)∣∣∣∣ = ±1

(we agree that ∞ = ±1
0 ). Geometrically, the Farey triangulation is generated by

reflecting the triangle 1∞0 in its sides ad infinitum.
Choose a point p ∈ S. Let τ be the trace operator on SL2(R), and fix a repre-

sentation ρ : π1(S, p) → SL2(R) such that if γ ∈ π1(S, p) is in the conjugacy class of
the loop around the puncture, then τ ◦ρ(γ) = −2 (we say that ρ is type-preserving).

Proposition 2. The trace τ induces a function, also noted τ , on C ≃ P1Q. If
s, s0, s1, s

′ are distinct elements of P1Q such that s0s1s and s0s1s
′ are Farey tri-

angles, then τ(s) and τ(s′) are the roots of the polynomial X2 − τ(s0)τ(s1)X +
τ(s0)

2 + τ(s1)
2.

Proof. For completeness we include a short proof of this well-known fact (see e.g.
Section 1 of [2]). Defining τ on C is straightforward, since each curve in C determines
a conjugacy class (together with its inverse) in the image of ρ. We will further omit
the slope bijection σ : C → P1Q and simply consider τ as defined on P1Q.

The modular group SL2(Z) acts naturally on the cusped torus S while preserving
the isotopy class of the loop around the cusp. The induced action on C coincides
(via σ) with the Möbius action on P1Q ⊂ ∂H2, which extends to an action on the
Farey triangulation of H2 that is transitive on the set of all Farey edges s0s1.

Endow the two curves cs0
, cs1

∈ C with orientations and arrange cs0
and cs1

in
S so that they intersect only at the basepoint p ∈ S. Then cs0

, cs1
define elements

gs0
, gs1

of π1(S, p).
Observation: [gs0

, gs1
] determines a simple loop around the puncture, and there-

fore has trace −2. The curves cs and cs′ determine the conjugacy classes of gs0
gs1

and gs0
g−1

s1
(not necessarily in that order, depending on the chosen orientations).

This observation can be checked easily when (s0, s1) = (0,∞) (hence {s, s′} =
{1,−1}). The general case follows because the curves in C which have intersection
number 1 with cs0

and cs1
are always exactly cs and cs′ , and the SL2(Z)-action

(transitive on Farey edges s0s1) respects the intersection numbers and the loop
around the cusp.
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Recall the following trace relations, valid for all a, b ∈ SL2(R):

τ(ab) + τ(ab−1) = τ(a)τ(b)

τ(ab)τ(ab−1) = τ2(a) + τ2(b) − 2 − τ([a, b]).

Setting a = gs0
, b = gs1

, the Proposition follows. �

In the notation above, we now define fs := τ(s) for all s ∈ P1Q. Dual to the
Farey triangulation is an infinite 3-valent tree in H2 whose complementary regions
Rs stand in bijection with the Farey vertices s ∈ P1Q. The Markoff map Φ is
therefore defined by Φ(Rs) = fs. By Proposition 2, the variables

(X,Y, Z) = (f0, f∞, f−1)

of (1) satisfy the Markoff equation

X2 + Y 2 + Z2 = XY Z.

(This equation defines the character variety, or variety of type-preserving repre-
sentations.) Moreover, Proposition 2 implies that if (A,B,C,D) = (fs′ , fs0

, fs1
, fs)

and A,B,C are known (for example in terms ofX,Y, Z), then we can always recover
D by either one of the formulas

D = BC −A or D = (B2 + C2)/A.

In fact, these relations allow us to define fs (and therefore Φ) inductively for all
s ∈ P1Q, in terms of X,Y, Z. In order to make each fs = Φ(Rs) a homogeneous
Laurent polynomial of degree 1 in X,Y, Z, we tweak the first induction relation
above and use

(3) fs = fs0
fs1

X2 + Y 2 + Z2

XY Z
− fs′

where s, s0, s1, s
′ are as in Proposition 2. For example, f1 = X2+Y 2

Z
. For all

s ∈ P1Q, denote by [s] the unique element of {0,−1,∞} such that s and [s] project
to the same point of P1(Z/2Z). In particular, f[s] is one of the variables X,Y, Z.

Proposition 3. If fs is defined inductively for all s ∈ P1Q using (3), then fs is a
Laurent polynomial in X,Y, Z. Moreover there is a finitely supported “coefficient”
function Fs : Z2 → Z such that

fs =


 ∑

α,β∈Z

Fs(α, β)
X1+α Y 1+β

Z1+α+β


 ∈ f[s] · Z

[
X±2, Y ±2, Z±2

]
.

Proof. From (3), by induction, fs is a homogeneous Laurent polynomial of degree
1. The claim on the parity of the degrees also follows by induction from (3), because
{f[s0], f[s1], f[s]} = {X,Y, Z} = {f[s0], f[s1], f[s′]} holds whenever s, s0, s1, s

′ are as
in Proposition 2. �

(Section 5 will expose a generalization of our “tweaking” operation (3), and a
conjecture extending Theorem 1.) We now prove Theorem 1 for positive rational
numbers s.
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3. A family of domains and functions

Define Q = Q≥0 ∪ {∞}. Any point s of Q can be written in a unique way

s =
q

p
with p, q ∈ N coprime

(we agree that ∞ = 1
0 ). For such s ∈ Q, define

(4) Js :=





(α, β) ∈ Z2

∣∣∣∣∣∣∣∣

α ≡ q ; β ≡ p [2]
α ≥ −q ; β ≥ −p
α+ β ≤ p+ q − 2
pα+ qβ ≥ 0




.

It will turn out (Lemmas 8–9) that Fs is supported exactly on Js. Observe that
J0 = {(0,−1)} and J∞ = {(−1, 0)} and J1 = {(−1, 1); (1,−1)}. Further, define

• Zs = (q, p) + 2Z2 so that Js ⊂ Zs ;
• P s

i = (q + 2i,−p) ∈ Zs for all i ∈ Z ;
• Qs

j = (−q, p+ 2j) ∈ Zs for all j ∈ Z ;

• ϕs(α, β) = pα+ qβ ;
• Λ = {(0, 0); (0, 2); (2, 0)} ;
• nΛ = Λ + · · · + Λ = {(2i, 2j) ∈ 2N2|i+ j ≤ n} for all n ∈ N ;
• If U is a subset of Zs, then 〈U〉s denotes the intersection with Zs of the

convex hull of U in R2.

(We will freely use the notation “A + B” for the setwise sum of two subsets of a
module or vector space).

Qs
q−1 = (−q, p+ 2q − 2)

Qs
0 = (−q, p)

P s
0 = (q,−p) P s

p−1 = (2p+ q − 2,−p)

β

α T1

T0

xs

Qs
0

Qs
q−1

P s
p−1P s

0

Js

Figure 1. The domain Js. The points xs, T0, T1 of Z2 (right) will
be defined in Lemma 7.

Lemma 4. For all s = q
p

in Q, one has P s
p−1, Q

s
q−1 ∈ Js and

Js =
〈
{P s

i | 0 ≤ i < p} ∪ {Qs
j | 0 ≤ j < q}

〉
s
.

Proof. Having checked the two cases s = 0,∞ separately (one of the families
{P s

i }, {Qs
j} is then empty, so the second statement does not imply the first), as-

sume p, q ≥ 1 and focus on the second statement. Observe that P s
p−1, P

s
0 , Q

s
0, Q

s
q−1

are (in that order) the extremal points of a convex quadrilateral (or triangle, or
segment, when p = 1 and/or q = 1), as shown in Figure 1 (left). The sides of the
quadrilateral correspond to the four inequalities defining Js, hence the result. �
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Corollary 5. For all s = q
p

in Q and n in N, one has

Js + nΛ =
〈
{P s

i |0 ≤ i < p+ n} ∪ {Qs
j |0 ≤ j < q + n}

〉
s

Js + Λ ⊃ [P s
0 + pΛ] ∪ [Qs

0 + qΛ].

Proof. Again, check the cases s = 0,∞ separately. If p, q ≥ 1, the first statement
follows easily from Lemma 4 (which covers the case n = 0), and the second follows
from the first (with n = 1) by observing that P s

0 + pΛ and Qs
0 + qΛ are the convex

hulls of points of Js + Λ: for instance,

P s
0 + pΛ =

〈{
P s

0 ;P s
p ; (q, p)

}〉
s

=

〈{
P s

0 ;P s
p ;
qP s

p + pQs
q

q + p

}〉

s

.

�

We now redefine the coefficient functions Fs(·, ·) of Proposition 3 from a slightly
altered point of view. Let F be the Z-module of functions F : Z2 → Z having finite
support. We can define a convolution law on F by F ∗G(u) =

∑
x+y=u F (x)G(y).

This convolution law mimics products of Laurent polynomials:
∑

α,β

F (α, β)X1+αY 1+β

Z1+α+β ·
∑

α,β

G(α, β)X1+αY 1+β

Z1+α+β = XY
Z

∑

α,β

F ∗G(α, β)X1+αY 1+β

Z1+α+β .

Also, denoting by 1lU the characteristic function of a set U , define the following
elements of F :

Fs = 1lJs
for s ∈ {0, 1,∞} .

It is straightforward to check that the identity of Proposition 3 holds for these
F0, F1, F∞. Finally, for s ∈ Q r {0, 1,∞}, we shall define Fs in an inductive way.
In H2 endowed with the Farey triangulation, consider the line Ls connecting s to
the midpoint

√
−1 of the line 0∞. Denote by s0, s1 the ends of the first Farey

edge encountered by Ls (closest to s). We call s0 and s1 the parents of s. Up to
exchanging indices, we may assume that the parents of s1 are s0 and another point
s′ ∈ Q (we agree that the parents of 1 are 0 and ∞). See Figure 2. In particular,
one has

(5)
(p, q) = (p1, q1) + (p0, q0)

(p′, q′) = (p1, q1) − (p0, q0)

}
for (s, s′, s0, s1) = ( q

p
, q′

p′
, q0

p0
, q1

p1
) .

Definition 6. For each configuration (s, s′, s0, s1) as above, we set

(6) Fs := (Fs0
∗ Fs1

∗ 1lΛ) − Fs′ where Λ = {(0, 0); (0, 2); (2, 0)}.

Since the dual of the Farey triangulation is a tree, this definition is easily seen
to be self–consistent. Clearly, Fs is in F . It is easy to check that (6) is just a
reformulation of (3), so (6) agrees with our first definition (Prop. 3) of Fs (the

convolution factor 1lΛ corresponds to the multiplication factor X2+Y 2+Z2

XY Z
of (3)).

The following three Lemmas (numbered 7-8-9) are intended to prove that Fs is
supported on Js and Fs(Js) ⊂ Z>0, for all s ∈ Q. The reader is invited to read their
three statements first (the three proofs could be written as one vast simultaneous
induction on s for the simultaneous three statements).
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Lemma 7. For each configuration (s, s′, s0, s1) as above where s ∈ Q r {0, 1,∞},
the set Js′ r Js consists of a unique (extremal) point xs of Js′ , and

Js0
+ Js1

+ Λ = Js ⊔ {xs}

Remark: if s ∈ Q r {0,∞}, following Lemma 4, we call “extremal” the points
P s

0 , P
s
p−1, Q

s
0, Q

s
q−1 of Js (with possible repeats). If s ∈ {0,∞}, then Js is reduced

to an (extremal) point P s
p−1 = Qs

q−1.

Proof. Let (α, β) be an element of Js′ . By (5) one has Zs′ = Zs so (α, β) satisfies
the congruence conditions of (4). Still by (5), one has p′ ≤ p and q′ ≤ q so the
first three inequalities of (4) are also satisfied at (α, β). For the fourth inequality,
consider the linear form ϕs(α, β) = pα + qβ. Clearly, ϕs(Zs) ⊂ 2Z. Furthermore,
observe

ϕs(P
s′

i ) = pq′ − qp′ + 2ip

ϕs(Q
s′

j ) = qp′ − pq′ + 2jq

pq′ − qp′ = 2(p0q1 − p1q0) = ±2 (s0, s1 Farey neighbors).

Thus, if p′ = 0 (resp. q′ = 0), taking for xs the only point Qs′

0 (resp. P s′

0 ) of Js′

yields ϕs(xs) = −2. If p′q′ > 0, we find that exactly one point xs among {P s′

0 , Q
s′

0 }
satisfies ϕs(xs) = −2 while ϕs(x) ≥ 0 at all other extremal points x of Js′ . It
follows that on Js′ − {xs} one has ϕs > −2 i.e. ϕs ≥ 0. Hence the first statement.

Let us now prove the second statement. For (y0, y1, λ) ∈ Js0
× Js1

× Λ, it is
again straightforward to check that (α, β) = y0 + y1 + λ satisfies the congruence
conditions and the first three inequalities of (4). For the fourth, compute

ϕs(P
s0

i ) = p1q0 − p0q1 + 2ip ϕs(P
s1

i ) = p0q1 − p1q0 + 2ip
ϕs(Q

s0

j ) = p0q1 − p1q0 + 2jq ϕs(Q
s1

j ) = p1q0 − p0q1 + 2jq.

Again, observe that p0q1 − p1q0 = ±1. The same argument as above (involving
this time extremal points of Js0

, Js1
instead of Js′) shows that ϕs takes the value

−1 at exactly one point y0 ∈ {P s0

0 , Qs0

0 } (resp. y1 ∈ {P s1

0 , Qs1

0 }) and ϕs ≥ 1 holds
on Js0

− {y0} (resp. Js1
− {y1}). Moreover, yk belongs to Jsk

for k ∈ {0, 1} (this
is immediate from Lemma 4, unless pkqk = 0 where we need to check separately).
The following table summarizes the two possible cases for y0, y1, xs.

(7)

p0q1 − p1q0 y0 y1 xs

Case 1 −1 Qs0

0 P s1

0 P s′

0

Case 2 1 P s0

0 Qs1

0 Qs′

0

0 0s0 s0s1 s1s ss′ s′

Case 2Case 1

Figure 2. Possible relative positions of s, s0, s1, s
′.
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Using Relations (5) and the definitions of P s
i and Qs

j , one checks immediately
that y0 + y1 = xs in both cases. Since ϕs is linear, xs turns out to be the only
point of Js0

+ Js1
+ Λ where ϕs < 0. This gives one inclusion of the equality to be

proved.
For the other inclusion, Js ⊔ {xs} ⊂ Js0

+ Js1
+ Λ, we shall restrict to Case 1

above (Case 2 is similar). By Table (7), since Qs0

0 and P s1

0 belong to Js0
and Js1

,
one has q0, p1 > 0. In view of Corollary 5, it is sufficient to prove that

(8) Js ⊔ {xs} ⊂ (Js0
+ P s1

0 + p1Λ) ∪ (Js1
+Qs0

0 + q0Λ).

Still by Corollary 5, since P s1

0 + Zs0
= Zs, one has

Js0
+ P s1

0 + p1Λ =
〈
P s1

0 +
(
{P s0

i |0 ≤ i < p0 + p1} ∪ {Qs0

j |0 ≤ j < q0 + p1}
)〉

s

=
〈
{P s

i |0 ≤ i < p} ∪ {Qs0

0 + P s1

0 , Qs0

q0+p1−1 + P s1

0 }
〉

s

= 〈{P s
i |0 ≤ i < p} ∪ {xs, T0}〉s

where T0 = (q − 2q0, p+ 2(q0 − 1)).

(To write the second line, we replaced the collection of the Qs0

j by its extremal

terms: this is justified because q0 + p1 > 0). Note that the points {P s
i |0 ≤ i < p}

are exactly the P s
i arising in the convex–hull definition of Js in Lemma 4. Also note

that T0 has the same abscissa as xs = (q′,−p′) and lies on the edge E = Qs
q−1P

s
p−1

of Js (see Figure 1, right).
Similarly,

Js1
+Qs0

0 + q0Λ =
〈
{Qs

j|0 ≤ j < q} ∪ {xs, T1}
〉

s

where T1 = (q + 2(p1 − 1), p− 2p1).

Here, T1 has the same ordinate as xs.
We just captured all the P s

i , Q
s
j which according to Lemma 4 define Js (Figure

1, right). To finish proving that Js∪xs is contained in the union of the (discretized)
polygonsA := 〈{P s

i |0 ≤ i < p} ∪ {xs, T0}〉s andB :=
〈
{Qs

j |0 ≤ j < q} ∪ {xs, T1}
〉
s
,

just observe that the points Qs
q−1, T0, T1, P

s
p−1 lie in that order on the edge E =

Qs
q−1P

s
p−1 of Js, while the edge P s

0Q
s
0 of Js (defined by “ϕs = 0”) separates xs from

E. Therefore A contains all points of Js right of the vertical line through xs, while
B contains all points of Js above the horizontal line through xs; and every point of
Js satisfies at least one of these two conditions. See the right panel of Figure 1. �

Lemma 8. The function Fs is supported on a subset of Js for all s ∈ Q, and if c
is an extremal point of Js, then Fs(c) = 1.

Proof. We prove both facts by simultaneous induction. They hold for s ∈ {0, 1,∞}
so assume they hold for s0, s1, s

′ and let us prove them for s. By (6), Fs is supported
on (Js0

+ Js1
+ Λ) ∪ Js′ = Js ∪ {xs}, with xs defined as in Lemma 7. Recall the

linear form ϕs from the proof of Lemma 7: over Js0
, Js1

,Λ, the form ϕs achieves
its respective minima only at the extremal points y0, y1, 0; therefore xs is realized
in Js0

+Js1
+Λ only as y0 + y1 +(0, 0). Hence, by induction, Fs0

∗Fs1
∗ 1lΛ(xs) = 1.

But xs is also an extremal point of Js′ , so by induction (6) yields Fs(xs) = 0: the
function Fs is supported within Js.

Next, observe that the extremal point P s
p−1 of Js maximizes the first coordinate

(a similar statement is true for Js0
, Js1

, Js′). Since P s
p−1 = P s0

p0−1+P
s1

p1−1+(2, 0), one

has by induction Fs0
∗Fs1

∗1lΛ(P s
p−1) = 1. Also, P s

p−1 does not belong to Js′ because
all (α, β) in Js′ satisfy α+β ≤ p′+ q′−2 < p+ q−2. By (6), we find Fs(P

s
p−1) = 1.
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Similarly, Fs(Q
s
q−1) = 1. Consider one of the (at most two) remaining extremal

points of Js, say P s
0 . Without loss of generality, one has p ≥ 2 (otherwise, the

point has already been treated as P s
p−1). One cannot have {p0, p1} = {0, p} lest

|p0q1 − p1q0| ≥ p > 1 (recall s0, s1 are Farey neighbors). Therefore p0, p1 ≥ 1.
Observe that the points P s

0 , P
s0

0 , P s1

0 are the minimizers over Js, Js0
, Js1

of the
form (α, β) 7→ β + εα, for very small positive ε. Since P s

0 = P s0

0 + P s1

0 + (0, 0),
we find that Fs0

∗ Fs1
∗ 1lΛ(P s

0 ) = 1. Finally, P s
0 cannot belong to Js′ because

of its second coordinate, −p < −p′. By (6), this yields Fs(P
s
0 ) = 1. Similarly,

Fs(Q
s
0) = 1. �

Lemma 9. For all s ∈ Q one has Fs(Js) ⊂ Z>0. If s /∈ {0,∞} then

1lJs
· sup

{
1l{P

s0
0

} ∗ Fs1
, 1l{P

s1
0

} ∗ Fs0
,

1l{Q
s0
0

} ∗ Fs1
, 1l{Q

s1
0

} ∗ Fs0

}
≤ Fs.

Remark 10. By Corollary 5 and Lemma 7, each function in the curly bracket is
supported within Js ⊔ {xs} (because e.g. P s0

0 ∈ Js0
+ Λ while Fs1

is supported
within Js1

). In other words, the factor 1lJs
in front of the curly bracket can be

replaced by 1lZs−{xs} without altering the strength of the statement.

Proof. Again, both facts are proved by simultaneous induction. They hold for
s ∈ {0, 1,∞}; assume they hold for s0, s1, s

′; let us prove them for s. Recall
our convention that the parents of s1 are s0 and s′ (so in particular, s1 6= 0,∞).

We saw in the course of proving Lemma 7 that xs is either P s0

0 + Qs1

0 = Qs′

0 or

Qs0

0 +P s1

0 = P s′

0 . On the other hand, xs1
is either P s0

0 +Qs′

0 or Qs0

0 + P s′

0 . In fact,
using (5) and the generic characterization ϕσ(xσ) = −2 (for all σ ∈ P1Q), it is easy
to check that

(9)
xs1

= P s0

0 +Qs′

0 ⇐⇒ q0p
′ − p0q

′ = −1 ⇐⇒ xs = Qs′

0 ;

xs1
= Qs0

0 + P s′

0 ⇐⇒ p0q
′ − q0p

′ = −1 ⇐⇒ xs = P s′

0 .

Define in general Gs = Fs ∗ 1lΛ. Lemma 8 easily yields Gσ(P σ
0 ) = Gσ(Qσ

0 ) = 1 for
all σ ∈ Q (this should again be checked separately for σ = 0,∞). By Lemma 7 and
the induction hypothesis, we have Fs0

∗ Fs1
∗ 1lΛ > 0 on Js. Moreover, by (6),

Fs + Fs′ = Fs0
∗ Fs1

∗ 1lΛ

=
∑

λ∈(Js0
+Λ)

Gs0
(λ) · 1l{λ} ∗ Fs1

=
[(

1l{P
s0
0

} + 1l{Q
s0
0

}

)
∗ Fs1

]
+

∑

λ∈(Js0
+Λ)

λ6=P
s0
0

,Q
s0
0

Gs0
(λ) · 1l{λ} ∗ Fs1

.

Thus, if we prove

(10) 1l{P
s0
0

} ∗ Fs1
(x) ≥ Fs′(x) ; 1l{Q

s0
0

} ∗ Fs1
(x) ≥ Fs′(x) for all x 6= xs ,

then we will have at once Fs > 0 on Js (because Fs +Fs′ ≥ 2Fs′ and Fs′(Js′ ) > 0),

and also Fs ≥ sup
{
1l{P

s0
0

} ∗ Fs1
, 1l{Q

s0
0

} ∗ Fs1

}
on Js. That is half of Lemma 9.

Using the relation P s0

0 = −Qs0

0 6= 0 and the identities 1l{ξ} ∗ 1l{η} = 1l{ξ+η} and
1l{ξ} ∗ f(x+ ξ) = f(x), Equation (10) is equivalent to

Fs1
(y) ≥ 1l{Q

s0
0

} ∗ Fs′(y) if y 6= xs +Qs0

0(11)

Fs1
(y) ≥ 1l{P

s0
0

} ∗ Fs′ (y) if y 6= xs + P s0

0 .(12)
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For y 6= xs1
, both inequalities are already true by induction (s0, s

′ are the parents
of s1). For y = xs1

, in view of (9), two cases may arise:

• If xs = P s′

0 then xs1
= xs + Qs0

0 so (11) is true, and (12) need only be
checked at y = xs1

. One has Fs1
(xs1

) = 0 and

1l{P
s0
0

} ∗ Fs′(xs1
) = Fs′(xs1

− P s0

0 ) = Fs′(P s′

0 + 2Qs0

0 ).

However, (5) yields ϕs′(P s′

0 +2Qs0

0 ) = 2(p0q
′−q0p′) = −2; hence, the point

(P s′

0 + 2Qs0

0 ) does not belong to Js′ and 1l{P
s0
0

} ∗ Fs′ (xs1
) = 0.

• Similarly, if xs = Qs′

0 then (12) is true, and for (11) one need only check

1l{Q
s0
0

} ∗Fs′(xs1
) = Fs′(Qs′

0 +2P s0

0 ) = 0 because ϕs′(Qs′

0 +2P s0

0 ) = −2 < 0.

It remains to prove Fs ≥ sup
{

1l{P
s1
0

} ∗ Fs0
, 1l{Q

s1
0

} ∗ Fs0

}
on Js. It is enough to

make sure that the contents of the brackets are even lower than the lower bounds
on Fs we just established, i.e. to show that

(13) 1l{P
s1
0

} ∗ Fs0
≤ 1l{P

s0
0

} ∗ Fs1
; 1l{Q

s1
0

} ∗ Fs0
≤ 1l{Q

s0
0

} ∗ Fs1
on Zs − {xs}.

We focus only on the first inequality (the second is similar). It is equivalent, by the
same method as above, to:

1l{P s′

0
} ∗ Fs0

(y) ≤ Fs1
(y) if y 6= xs +Qs0

0

(we used P s′

0 = P s1

0 + Qs0

0 , a consequence of (5)). But that inequality is true (by
induction) as long as y 6= xs1

. Again, in view of (9), two cases may arise at y = xs1
:

• If xs = P s′

0 then xs1
= xs +Qs0

0 and there is nothing to do;

• If xs = Qs′

0 we only need check the inequality above at y = xs1
. On one

hand, Fs1
(xs1

) = 0; on the other,

1l{P s′

0
} ∗ Fs0

(xs1
) = Fs0

(xs1
− P s′

0 ) = Fs0
(P s0

0 + 2Qs′

0 )

but, by (5), ϕs0
(P s0

0 + 2Qs′

0 ) = 2(q0p
′ − p0q

′) = −2 < 0 so the point

(P s0

0 + 2Qs′

0 ) does not belong to Js0
and 1l{P s′

0
} ∗ Fs0

(xs1
) = 0.

Theorem 1 is proved for all s ∈ Q. �

4. Formal Markoff map

Figure 3 shows the domains Js and the values of Fs for some of the simplest
rationals s ∈ Q. In each case, the points x of the affine lattice Zs have been
identified with the cells of a honeycomb, carrying the numbers Fs(x). Empty cells
carry 0, by convention. Coordinates have been tilted so that the edge P s

0Q
s
0 of Js

is always at the top of Js, rather than the bottom left as in Figure 1. The left edge
of Js consists of p cells (the P s

i ); the right edge, of q cells (the Qs
j). The single cells

to the bottom left and bottom right of the “root” (dark spot) correspond to the
exceptional cases s = 0 and s = ∞. The single cell above the root corresponds to
s = −1; the meaning of that convention, already apparent from the Introduction,
will be re-emphasized in a moment. Observe the 1′s in the corners of each Js, just
as in Lemma 8. It is an easy exercise (left to the reader) to prove by induction that
the bottom, left, and right edges of each Js (for s ∈ Q r {0,∞}) always carry full
lines of the Pascal triangle: if v = (2,−2) then

Fs(P
s
i ) =

(
p− 1
i

)
; Fs(Q

s
j) =

(
q − 1
j

)
; Fs(Q

s
q−1 + kv) =

(
p+ q − 1

k

)
.
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3

51

1104 135

108 122

12

Figure 3. The universal (formal) Markoff map. The integers
Fs(·, ·) inside each “bag” add up to a Markoff number.

Notice the arrangement of the various Js in the complement U of a planar 3-
valent tree: this tree should be seen as the dual of the Farey triangulation of
H2, so each connected component Rs of U corresponds to a horosphere centered
at a rational point s. Each configuration s, s0, s1, s

′ as in the previous section
corresponds in fact to a pair of edge-adjacent components Rs0

, Rs1
of U , together

with their two common neighbors Rs, Rs′ . Since Formula (6) is symmetric in s, s′,
one may apply it backwards to define Fs for all s in P1Q (not just Q). This was
(very) partially done in Figure 3 by showing J−1 = {(−1,−1)} just above the root.
However, the full picture would exhibit a 6-fold dihedral symmetry around the root
(dark spot), so only one sixth of the tree is explored to some depth in Figure 3.
This 6-fold symmetry is also the reason why honeycombs were used instead of, say,
square cells. As an exercise, the reader may prove the following formulas for the
symmetry (true for all s ∈ P1Q) by induction on the tree:

F 1
s
(α, β) = Fs(β, α) ; F−1−s(α, β) = Fs(−2 − α− β, β)
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(The Möbius transformations acting on the index s permute the rationals −1, 0,∞
while the affine transformations acting on the argument (α, β) permute the associ-
ated singletons J−1, J0, J∞, as well as the elements of −Λ ⊂ Z2).

5. Conjectural generalization

The Markoff polynomial M = X2 + Y 2 + Z2 −XY Z encountered in Section 2
has degree 2 in each variable. This is why any solution (X,Y, Z) of the equation
M = 0 defines many other solutions: by considering M as a polynomial of degree
2 in, say, the variable X , we can always replace X by the conjugate root. Thus,
the free product G of three copies of Z/2Z acts naturally on the variety M = 0
by isomorphisms. An analogous statement holds true if we replace M by any
polynomial of degree 2 in all its variable (allowing for such monomials asX2Y 2ZT ),
and allow for actions by birational isomorphisms.

In this section, we conjecture a generalization of Theorem 1 to all N -variable
polynomials M which are monic of degree 2 in each variable. Namely, we show that
certain expressions for the action of G are Laurent polynomials (as in Proposition
3), and conjecture that the coefficients are positive. The coefficients of M will be
considered as variables themselves (noted AI below), so we work in an algebraic
closure K of the the field of rational fractions over C in the independent formal
variables AI . (Alternatively, fix any complex values for the AI and take K = C.)

Let N ≥ 2 be an integer, and denote by [[N ]] the set of integers {1, 2, . . . , N}.
For each I ⊂ [[N ]], fix a formal parameter AI . Consider the Markoff-type equation
in N variables X1 . . . , XN :

(14)

N∑

i=1

X2
i +

∑

I⊂[[N ]]

AI

∏

i∈I

Xi = 0 .

Let V ⊂ KN be the variety defined by (14). For each k ∈ [[N ]] and each point

(x1, . . . , xN ) of V ∩ K∗N , define

(15)

Ek(x1, . . . , xN ) := (x1, . . . , xk−1, xk, xk+1, . . . , xn)

where xk =


∑

i6=k

x2
i +

∑

I⊂[[N ]]−{k}

AI

∏

i∈I

xi



/

xk .

Then Ek defines a birational Z/2Z-action on V : indeed, xkxk is the product of the
roots of (14), seen as a monic degree 2 polynomial in the k-th variable. By letting
k range over [[N ]], we obtain a birational action on V by the free product G of N
copies of Z/2Z.

Observe that the variable A[[N ]] is absent from the definition (15) of each gener-

ator Ek: therefore, G acts on each “level manifold” of KN defined by

(16) B(x1, . . . , xN ) :=




N∑

i=1

x2
i +

∑

I([[N ]]

AI

∏

i∈I

xi



/

N∏

i=1

xi = constant ∈ K

(indeed, B(x1, . . . , xN ) is just the value of A[[N ]] for which a given point (x1, . . . , xN )
will satisfy (14), when all the {AI}I([[N ]] are given). In particular, B(x1, . . . , xN )

is invariant under the action of Ek on KN : therefore, the expression given in (15)
for Ek extends to a birational involution of KN respecting B. Henceforward, we
consider G as acting on KN by birational isomorphisms.
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Proposition 11. For each g in G and x = (x1, . . . , xN ) in KN , the coordinates
of g · x are polynomials in the variables {x±1

i }i∈[[N ]] and {AI}I([[N ]] with integer
coefficients depending only on g.

Proof. We work by induction in G, using the generators Ek. When g is the identity
of G, we are done. Suppose the proposition is true for g, so that g · (x1, . . . , xN ) =
(y1, . . . , yN ) where each yj is a polynomial in the {x±1

i }i∈[[N ]] and {AI}I([[N ]] with
integer coefficients. We must prove that the coordinates of

Ek(y1, . . . , yN) = (y1, . . . , yk, . . . , yN )

are polynomials as well, where yk is given as in (15). We saw that the left member
B(x1, . . . , xN ) of (16) is (formally) Ek-invariant for each k ∈ [[N ]]; therefore we
must have B(x1, . . . , xN ) = B(y1, . . . , yN). Using (15), note that

yk =


∑

i6=k

y2
i +

∑

I⊂[[N ]]−{k}

AI

∏

i∈I

yi



/

yk

=




(
B(y1, . . . , yN )

N∏

i=1

yi

)
− y2

k −
∑

I([[N ]]

k∈I

AI

∏

i∈I

yi




/
yk

= B(x1, . . . , xN )


 ∏

i∈[[N ]]−{k}

yi


− yk −

∑

I([[N ]]

k∈I

AI

∏

i∈I−{k}

yi .

Using the formula (16) for B(x1, . . . , xN ), the last expression is clearly a polynomial
in the variables {x±1

i }i∈[[N ]] and {AI}I([[N ]] with integer coefficients. This is a direct
analogue of (3). �

Conjecture 12. Trusting computerized experiments, we conjecture that these inte-
gers are positive. Theorem 1 corresponds to N = 3 under the specialization AI ≡ 0:

for example, E1(x, y, z) = (y2+z2

x
, y, z).
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