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Abstract

We show that the interior of the convex core of a quasifuchsian
punctured-torus group admits an ideal decomposition (usually an infi-
nite triangulation) which is canonical in two very different senses: in a
combinatorial sense via the pleating invariants, and in a geometric sense
via an Epstein-Penner convex hull construction in Minkowski space.
This result re-proves the Pleating Lamination Theorem for quasifuch-
sian punctured-torus groups, and extends to all punctured-torus groups
if a strong version of the Pleating Lamination Conjecture is true.

0. Introduction

Among Kleinian groups with infinite covolume, quasifuchsian groups, which
are deformations of Fuchsian surface groups, are fundamental examples. It
has been noted [Jø, MSW] that such groups can be analyzed much more
explicitly when the base surface is just a once-punctured torus — the curve
complex is then dual to a planar tree, which simplifies many issues. Punctured-
torus groups (which still retain many features of general quasifuchsian groups)
have thus become a favorite “training ground”: Minsky’s work [Min] on end
invariants is an example. Similarly, Caroline Series [Se] was able to prove
the Pleating Lamination Conjecture for quasifuchsian punctured-torus groups
(general pleating laminations, in contrast, seem to pose tremendous technical
challenges: see [BO] for a partial treatment). In this paper, we prove that the
interior of the convex core of any quasifuchsian punctured-torus group admits
an ideal triangulation (or slightly more general decomposition) which relates
“as nicely as one could possibly hope” both to the intrinsic geometry of the
convex core, and to the combinatorics of its boundary pleatings. This answers
several conjectures made in [ASWY2]. As a byproduct, we get enough control
to re-prove the aforementioned result of [Se].

Let M = H3/Γ be a hyperbolic manifold with one cusp. Akiyoshi and
Sakuma [AS] generalized the Epstein-Penner convex hull construction in Min-
kowski space R3+1 (see [EP]) to show that the interior V of the convex core of
M admits a (unique) decomposition DGeom, canonical in a purely geometric
sense. Roughly speaking, DGeom is defined by considering the convex hull C ⊂
R3+1 of the discrete Γ-orbit of any light-like (i.e. isotropic) vector representing
the cusp, and by projecting the cell decomposition of ∂C back to M (see
Section 9 for more detail).
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2 F. GUÉRITAUD

This decomposition DGeom of V is quite mysterious in general. It seems to
be unknown, for instance, whether DGeom is always locally finite (see [AS]).
However, those top-dimensional cells of DGeom which come from space-like
faces of C are contractible ideal polyhedra and are dual to the vertices of the
Ford-Voronoi domain of M . Other top-dimensional cells of DGeom may be
non-contractible, are not seen in the Ford-Voronoi domain, and will typically
accumulate near ∂V .

For quasifuchsian punctured-torus groups (i.e. geometrically finite discrete
subgroups of Isom+(H3) freely generated by two elements with parabolic com-
mutator), a nice guess can be made at the combinatorics of DGeom. Indeed,
the complex of ideal triangulations of the punctured torus is a tree T , and
the projective classes of the two boundary pleatings of V can be seen as two
points at infinity in T : the unique geodesic in T connecting these two points
will define an explicit combinatorial ideal triangulation DComb of V (see Sec-
tion 1 for details). The triangulation DComb is canonical in a combinatorial
sense, with respect to the pleating data of V . It is natural to ask if DComb can
be straightened out to be made a totally geodesic triangulation of V (without
turning any tetrahedra “inside out”). Our main theorem answers this question
in the affirmative:

Theorem 0.1. If V is the interior of the convex core of a quasifuchsian
punctured-torus group, the ideal triangulation DGeom of V is the totally geo-
desic straightening of DComb.

In fact, aside from DComb and its coarsenings, the author does not know of
any ideal cell decomposition that is invariant under the hyperelliptic involution
(a property which DGeom must enjoy by symmetry).

Thurston and Bonahon [B1] showed how to associate a projective class of
measured laminations, or ending lamination, to a geometrically infinite end
of a hyperbolic manifold. The Ending Lamination Theorem [BCM] roughly
states that the asymptotic geometry of the end is completely described by its
ending lamination. In view of extending Theorem 0.1 to all punctured-torus
groups, it is reasonable to understand ending laminations as infinitely strong
pleatings (see Section 10-D), and to conjecture that the group is determined by
its ending and/or pleating laminations (this is a strong version of the Pleating
Lamination Conjecture). Indeed, our method allows to construct punctured-
torus groups with arbitrary admissible ending and/or pleating laminations, and
these groups satisfy an analogue of Theorem 0.1: the precise statement, with
a full description of DGeom (especially in the case of rational laminations), is
Theorem 10.1 in Section 10. When exactly one of the two ends is geometrically
infinite, the uniqueness of these groups remains an open problem.

The identity DGeom = DComb =: D of Theorem 0.1 (and the existence of
DComb, as realized by positively oriented cells) was Conjecture 8.2 in [ASWY2],
also called the Elliptic-Parabolic-Hyperbolic (EPH) Conjecture. Akiyoshi sub-
sequently established the identity in the case of two infinite ends, in [Ak].
Near a finite end however, the ideal tetrahedra of D flatten at a very quick
rate: the smallest angle of the i-th tetrahedron typically goes to 0 faster than
any geometric sequence (αi)i≥0. In a sense, the difficulty is to show that these
angles nevertheless stay positive for the hyperbolic metric.
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PUNCTURED-TORUS GROUPS 3

The geometric realization of DComb (i.e. the construction of angles for the
tetrahedra) will be fairly explicit: the solution will arise as the maximum of an
explicit concave “volume” functional V over an explicit convex domain. The
domain has infinite dimension, but there are explicit bounds on the contri-
butions to V of the “tail” coordinates (suggesting efficient numerical imple-
mentations). This feature also allows us to show that the Kleinian group is a
continuous function of its pleatings, which is the key to the Pleating Lamina-
tion Theorem (Section 10-E).
Acknowledgements. My thanks go to Makoto Sakuma for having drawn my
attention to the EPH conjecture. I am also deeply indebted to Francis Bona-
hon, Frédéric Paulin, Makoto Sakuma and David Futer for many discussions,
insights, and suggestions.

1. Strategy

The triangulation DGeom can be seen (dually) as a refinement of the Ford-
Voronoi domain of the quasifuchsian punctured-torus group. The latter domain
was described in great detail in [Jø, ASWY1, ASWY2] and [ASWY3]: this
produced a combinatorial description of finitely many tetrahedra of DGeom,
based on a “geometric continuity” argument in the (connected) space of all
quasifuchsian groups. To study all tetrahedra at once, including those not
seen in the Ford-Voronoi domain, the present paper takes a somewhat opposite
approach: first describe geometric shapes for the tetrahedra of the candidate
triangulation DComb, then establish that the gluing of these tetrahedra defines
(the interior of the convex core of) a quasifuchsian group. A computation in
Minkowski space then yields Theorem 0.1 (DComb = DGeom), as a bonus, so
to speak.

Identities of the form DComb = DGeom have been established by specialized
techniques in several related contexts: punctured-torus bundles (by Lackenby
[La]); complements of two-bridge links (see the announcement in [ASWY3])
or of certain arborescent links (see [G2]); totally degenerate punctured-torus
groups [Ak]. The methods of the present paper essentially cover all these cases,
but its true novelty is in dealing with pleating laminations, i.e. with groups
whose limit set is smaller than P1C. We will build on results (and notation)
from [GF].
1-A. Setup. Let S := (R2 r Z2)/Z2 be the once-punctured torus endowed
with its differential structure. Let C be the set of isotopy classes of simple
closed curves in S that are not the loop around the puncture. Let also C′
be the set of isotopy classes of properly embedded lines (running from the
puncture to itself) in S that do not bound a disk.

Consider the maximal abelian cover π : R2 r Z2 → S, and two coprime
integers ξ, η. If ℓ is a line of slope η/ξ in R2 missing (resp. intersecting) Z2,
then π(ℓ r Z2) defines a class γ ∈ C (resp. γ′ ∈ C′). We call η/ξ ∈ P1Q the
slope of γ (resp. γ′). It is well-known that both C and C′ are parametrized by
P1Q = Q ∪ {∞}, via the slope: we have bijections

s : C −̃→ P1Q ; s′ : C′ −̃→ P1Q .

When there is no ambiguity, we will sometimes omit s and identify C with
P1Q.
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4 F. GUÉRITAUD

We will focus primarily on irrational pleating laminations (for rational ones,
see Section 10). Let (α+, β+) and (α−, β−) be elements of R∗2 such that
β+/α+ and β−/α− are distinct irrationals. Define the pleatings λ± : P1Q →
R± by

(1) λ+(η/ξ) =

∣∣∣∣
∣∣∣∣
β+ η
α+ ξ

∣∣∣∣
∣∣∣∣ and λ−(η/ξ) = −

∣∣∣∣
∣∣∣∣
β− η
α− ξ

∣∣∣∣
∣∣∣∣ ,

where the double bars denote the absolute value of the determinant (and ξ,
η are coprime integers). Replacing a pair (α±, β±) by its negative does not
change λ±. Notice that λ− < 0 < λ+ (as functions on P1Q).

In the hyperbolic plane H2 with boundary ∂H2 = P1R, consider the Farey
triangulation (the ideal triangle 01∞ iteratedly reflected in its sides, see e.g.
Section 2 of [Min]). The irrationals β+/α+ and β−/α− belong to ∂H2, and
the oriented (geodesic) line Λ from β−/α− to β+/α+ crosses infinitely many
Farey edges (ei)i∈Z (the choice of e0 is arbitrary). To every pair of consecutive
integers (i− 1, i) is associated a letter, R or L, according to whether ei−1 and
ei share their Right or Left end, with respect to the orientation of Λ (we say
that Λ makes a Right or makes a Left across the Farey triangle between ei−1

and ei). We thus get a bi-infinite word ...RLLLRR... with infinitely many R’s
(resp. L’s) near either end.

Two distinct rationals of P1Q are Farey neighbors exactly when the corre-
sponding elements (properly embedded lines) of C′ are disjoint up to homotopy.
Therefore, each Farey triangle τ defines an ideal triangulation of the punctured
torus S: indeed, the vertices of τ are the slopes of three disjoint (properly em-
bedded) lines of C′, whose union separates S into two ideal triangles. Moreover,
two triangulations of S corresponding to Farey triangles which share an edge
always differ by a diagonal move (see Figure 1). Such a diagonal move must
be seen as a (topological) ideal tetrahedron in S ×R filling the space between
two (topological) pleated surfaces, pleated along the two ideal triangulations.

Figure 1. Left: a diagonal move in S (the puncture is
in the corners), associated to adjacent Farey triangles −1∞0
and 1∞0. Right: how to see the diagonal move as an ideal
tetrahedron, here with truncated vertices (grey).

Our strategy will be to consider triangulated surfaces Si (pleated punctured
tori) corresponding to the Farey triangles living between ei−1 and ei for i rang-
ing over Z, interpolate these surfaces with tetrahedra ∆i corresponding to the
diagonal moves (i.e. to the Farey edges ei themselves), and provide geometric
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PUNCTURED-TORUS GROUPS 5

parameters (dihedral angles) for all these objects, using Rivin’s Maximum Vol-
ume Principle (see [Ri]). Note that the λ± encode the combinatorial gluing
rule between ∆i−1 and ∆i. Also, each Si ⊂ S ×R, being homotopic to a fiber
S × {∗}, comes with a natural marking Si ≃ S (defined up to isotopy).

Theorem 1.1. There exists a cusped, non-complete hyperbolic 3-manifold
V homeomorphic to S × R such that

i – The metric completion V of V is homeomorphic to S×[0, 1] = V ⊔S−∞⊔
S+∞, where S−∞, S+∞ are pleated surfaces whose pleating measures re-
strict to λ− ◦ s and λ+ ◦ s (respectively) on the set C of simple closed
curves, where s is the slope function;

ii – The geometric realizations of the {∆i}i∈Z in V define a totally geodesic
ideal triangulation DComb of V .

Sections 2 to 8 are devoted to producing such a V . The puncture of S
is required to correspond to a cusp of V , so V will be the convex core of a
hyperbolic manifold H3/Γ, where Γ is a quasifuchsian punctured-torus group
(and we say that V has pleating data λ±).

By [Se], or Corollary 10.8 below, the group Γ is determined uniquely up
to conjugacy in Isom(H3) by the λ±. Our construction therefore provides
a decomposition DComb of the interior V of the convex core of an arbitrary
quasifuchsian punctured-torus group Γ with irrational pleating laminations.
The universal cover of V is drawn in Figure 3 of [Th].

Throughout the paper, we will deal with an infinite family of tetrahedra
(∆i)i∈Z, separated by pleated once-punctured tori (Si)i∈Z. By an arbitrary
choice, we have resolved that Si is the surface between ∆i and ∆i−1 — or
equivalently, that ∆i is bounded by the surfaces Si and Si+1. However, the
numbering of the tetrahedra should be seen as the more essential one (see
especially Definition 3.1 below).

1-B. Plan of the paper. In Section 2 (borrowed from [GF]), we describe
the space of possible dihedral angle assignments xi, yi, zi for the {∆i}i∈Z. In
Section 3, we encode λ± into constraints on the xi, yi, zi. In Section 4, we carry
out (constrained) volume maximization. Important asymptotic features of the
solution are analyzed in Section 5. In Section 6, we describe the Euclidean
triangulation of the cusp. In Sections 7 and 8, we show that the pleated
surfaces Si converge in a strong enough sense, so that their limit as i goes to
±∞ describes the (pleated) boundary of the metric completion of V =

⋃
i∈Z

∆i.
At that point, we have constructed (the convex core of) a quasifuchsian group.
The corresponding instance of Theorem 0.1 then follows from a computation,
carried out in Section 9. In Section 10, we provide a similar construction
of punctured-torus groups with rational pleating slopes β±/α± and/or with
infinite ends, and re-prove that (λ+, λ−) are continuous coordinates for the
space of quasifuchsian groups (see [Se]).

2. Dihedral angles

In this section we find positive dihedral angles for the ideal tetrahedra ∆i,
following Section 5 of [GF]. More precisely, we describe the convex space Σ of
positive angle configurations for the ∆i such that:
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• the three dihedral angles near each ideal vertex of ∆i add up to π (this
is true in any ideal tetrahedron of H3);
• the dihedral angles around any edge of V =

⋃
i∈Z

∆i add up to 2π (this is
necessary, though not sufficient, for a hyperbolic structure at the edge);
• the three pleating angles of each pleated punctured torus Si add up to

0 (this is necessary, though not sufficient, to make the puncture p of S
a cusp of V , i.e. make the loop around p lift to a parabolic isometry of
H3).

(The first condition implies that opposite edges in ∆i have the same dihedral
angle.) Later on we shall apply Rivin’s Maximum Volume Principle [Ri] on a
certain convex subset of (the closure of) Σ.

If the tetrahedron ∆i realizes a diagonal move (Figure 1) that kills an edge
ε′ of Si and replaces it with ε, denote by π − wi the interior dihedral angle of
∆i at ε and ε′. Observe that the slope of ε (resp. ε′) is the rational located
opposite the Farey edge ei in the Farey diagram, on the side of β+/α+ (resp
β−/α−).

Thus, the pleating angles of the surface Si living between ∆i−1 and ∆i are

(2) wi−1 , −wi and wi − wi−1 .

Observe the sign convention: the pleated punctured torus embedded in S ×R
receives an upward transverse orientation from R, and the angles we consider
are the dihedral angles above the surface, minus π. Thus, the “new” edge
of ∆i−1, pointing upward, accounts for a positive pleating wi−1, while the
“old” edge of ∆i, pointing downward, accounts for a negative pleating −wi.
This is in accordance with the convention λ− < 0 < λ+ of (1), as we expect
V =

⋃
i∈Z

∆i to be convex. We may write the three numbers (2) in the
associated corners of the Farey triangle corresponding to Si (Figure 2, top),
and repeat the operation for Si+1 (bottom). For notational convenience, we
write (wi−1, wi, wi+1) = (a, b, c).

In the tetrahedron ∆i, let xi (resp. yi) be the interior dihedral angle at the
edge whose slope is given by the right (resp. left) end of the Farey edge ei. Let
zi = π − wi be the third dihedral angle of ∆i. For instance, 2xi (resp. 2yi) is
the difference between the numbers written just below and just above the right
(resp. left) end of ei in Figure 2 (the factor 2 comes from the fact that the two
edges of ∆i with angle xi [resp. yi] are identified). By computing differences
between the pleating angles given in Figure 2 (bottom), we find the following
formulae for xi, yi, zi (depending on the letters, R or L, living just before and
just after the Farey edge ei):

(3)

L L R R L R R L
xi

1
2 (a+ c) 1

2 (−a+ 2b− c) 1
2 (a+ b− c) 1

2 (−a+ b+ c)
yi

1
2 (−a+ 2b− c) 1

2 (a+ c) 1
2 (−a+ b+ c) 1

2 (a+ b− c)
zi π − b π − b π − b π − b

The first of the three conditions defining Σ can be checked immediately; the
other two are true by construction. From (3), the condition for all angles to
be positive is that:
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−wi−wi

wi−1wi−1

wi − wi−1wi − wi−1

eiei

ei−1ei−1

L

L

LL

L

R

R R

RR
aaaa

−b−b−b−b

bbbb

−c−c−c−c c− bc− bc− bc− b
b− ab− ab− ab− a

pp

p′p′

p′′p′′

Figure 2. Bottom: ei is the horizontal edge and (a, b, c) = (wi−1, wi, wi+1).

(4)





For all i ∈ Z one has 0 < wi < π.
If i separates identical letters (first two cases), 2wi > wi+1 + wi−1.
If i separates different letters (last two cases), |wi+1 − wi−1| < wi.

Denote by Σ the non-empty, convex solution set of (4).

3. Bounding the Bending

3-A. A natural constraint on the pleating of Si. Next, we describe a
certain convex subset of Σ. It will be defined by decay conditions on the
{wi}i∈Z near ±∞. These conditions will encode λ±, and are obtained in the
following way. Consider the pleated punctured torus, Si, lying between the
tetrahedra ∆i and ∆i−1. Let ǫ1, ǫ2, ǫ3 be the edges of Si and δ1, δ2, δ3 the
corresponding pleating angles (exterior dihedral angles, counted positively for
salient edges as in (2) above). Recall the set C of (isotopy classes of) simple
closed curves in the punctured torus S. Define the pleating measure λi : C →
R+ of Si by

(5) λi(γ) = δ1ν1(γ) + δ2ν2(γ) + δ3ν3(γ),

where νσ(γ) ∈ N is the intersection number of γ with the edge ǫσ. Denote by
εσ ∈ C the simple closed curve that has the same slope as ǫσ. We shall require
that

λ−(εσ) < λi(εσ) < λ+(εσ)

for each σ ∈ {1, 2, 3}, and the same thing for every pleated punctured torus Si
in the Z-family. (Note: in fact, a similar inequality will follow for all simple
closed curves γ of C [see Lemma 3.5 below], namely, λ− < λi < λ+ as functions
on C. Forcing this “natural” inequality is the whole point of our constraint.)
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8 F. GUÉRITAUD

In other words, denote by η/ξ the (rational) slope of εσ. Observe that
λi(εσ) = δσ′ + δσ′′ = −δσ where {σ, σ′, σ′′} = {1, 2, 3}, because the slopes of
ε1, ε2, ε3 are Farey neighbors. Therefore, by (1), the requirement is that for
every εσ as above,

(6) −
∣∣∣∣
∣∣∣∣
β+ η
α+ ξ

∣∣∣∣
∣∣∣∣ < δσ <

∣∣∣∣
∣∣∣∣
β− η
α− ξ

∣∣∣∣
∣∣∣∣ .

To express (6) in terms of the wi, we need some notation (the δσ are de-
termined by the wi via (2) above). For each Farey edge ei, let q+i (resp. q−i )
be the rational located opposite ei, on the same side of ei as β+/α+ (resp.
β−/α−). For an arbitrary rational p = η/ξ (reduced form), introduce the
slightly abusive notation (abusive in that it depends on the ordered pair (α, β)

rather than just on the real βα ):

(7)
β

α
∧ p :=

∣∣∣∣
∣∣∣∣
β η
α ξ

∣∣∣∣
∣∣∣∣ (absolute value of the determinant).

Then, if l, r are the rationals living at the left and right ends of the Farey edge
ei, one has

(8) (β
+

α+ ∧ l) + (β
+

α+ ∧ r) = β+

α+ ∧ q−i ; (β
−

α−
∧ l) + (β

−

α−
∧ r) = β−

α−
∧ q+i .

Indeed, the || · ||-notation is invariant under PSL2(Z), acting on (H2, ∂H2) by
isometries and on ordered pairs ±(α, β) as a matrix group. Since PSL2(Z) acts
transitively on oriented Farey edges, we are reduced to the case (l, r, q+i , q

−
i ) =

(∞, 0, 1,−1) where β−/α− < 0 < β+/α+, which is straightforward.
Let us now translate Equation (6) in terms of the wi. Let ei−1, ei be two

consecutive Farey edges; p and p′ are the ends of ei−1; p and p′′ are the ends
of ei. One has q+i−1 = p′′ and q−i = p′. In view of (2) and Figure 2 (top),
Equation (6) translates to

−(β
+

α+ ∧ p′′) < wi−1 < β−

α−
∧ p′′

−(β
+

α+ ∧ p′) < −wi < β−

α−
∧ p′

−(β
+

α+ ∧ p) < wi − wi−1 < β−

α−
∧ p

Using the fact that the wi are positive (4), this simplifies to (respectively)

wi−1 < β−

α−
∧ q+i−1

−(β
+

α+ ∧ q−i ) < −wi
−(β

+

α+ ∧ p) < wi − wi−1 < β−

α−
∧ p

Finally, observe that β+

α+ ∧ p = (β
+

α+ ∧ q−i−1) − (β
+

α+ ∧ q−i ) while β−

α−
∧ p =

(β
−

α−
∧ q+i )− (β

−

α−
∧ q+i−1), by Equation (8). Therefore, if we introduce

(9) φ+
i :=

β+

α+
∧ q−i and φ−i :=

β−

α− ∧ q
+
i

then Equation (6) reduces to

(10)
wi < min{φ+

i , φ
−
i }

φ−i−1 − φ−i < wi−1 − wi < φ+
i−1 − φ+

i

}
∀i ∈ Z.
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PUNCTURED-TORUS GROUPS 9

3-B. Study of φ+ and φ−.

Definition 3.1. In 1-A we associated to each i ∈ Z a Farey edge ei living
between two letters of {R,L}. We call i a hinge index, and ∆i a hinge tetra-
hedron, if the two letters are distinct (RL or LR). Non-hinges correspond to
RR or LL.

Lemma 3.2. The following holds concerning the sequences φ+, φ− : Z →
R∗

+.

i – First, φ− is strictly increasing and φ+ is strictly decreasing.
ii – For all i one has 1 < φ−i+1/φ

−
i < 2 and 1 < φ+

i−1/φ
+
i < 2.

iii – If i ∈ Z is non-hinge then φ+
i−1 + φ+

i+1 = 2φ+
i and φ−i−1 + φ−i+1 = 2φ−i .

iv – If i ∈ Z is hinge then φ−i+1 = φ−i + φ−i−1 and φ+
i−1 = φ+

i + φ+
i+1.

v – The sequences φ± are (weakly) convex, i.e. 2φ±i ≤ φ±i−1 + φ±i+1.

vi – If i < j are consecutive hinge indices, then 1 + j−i
2 ≤ { φ+

i

φ+
j

,
φ−

j

φ−

i

} ≤
1 + j − i.

vii – One has lim
+∞

φ+ = lim
−∞

φ− = 0 and lim
−∞

φ+ = lim
+∞

φ− = +∞.

viii – One has lim
−∞

(φ+
i−1 − φ+

i ) = lim
+∞

(φ−i+1 − φ−i ) = +∞.

Remark 3.3. Points iii and iv are just equality cases of the inequalities (4),
which encode positivity of the angles xi, yi, zi.

Proof. We will deal only with φ+: the arguments for φ− are analogous. Let

ei−1 = pri−1 and ei = pri be consecutive Farey edges. We have φ+
i = β+

α+ ∧ri−1

while φ+
i−1 = β+

α+ ∧ ri−1 + β+

α+ ∧ p by Equation (8), hence i.

For ii, we need care only about the upper bound. Just observe that φ+
i−1 =

(β
+

α+ ∧ ri + β+

α+ ∧ p) + β+

α+ ∧ p while φ+
i = β+

α+ ∧ ri + β+

α+ ∧ p.
For iii, assume ei+1 = pri+1 so that φ+

k = β+

α+ ∧ p+ β+

α+ ∧ rk for |i− k| ≤ 1.

For k ∈ {i, i+ 1} the right hand side is β+

α+ ∧ rk−1 , so (φ+
k−1 − φ+

k ) = β+

α+ ∧ p,
which is sufficient.

For iv, assume ei+1 = p′ri. In the notations of Formula (9), we have q−i+1 = p

and q−i = ri−1, the ends of ei−1. This together with Equation (8) yields the
result. Point v follows from iv and ii at hinges indices, and from iii at other
indices. For Point vi, observe that φ+

i = φ+
j +(j− i)φ+

j+1 by iii-iv, and conclude
using ii. Point vii follows from vi, and the presence of infinitely many hinge
indices near either end. Point viii follows from vii, v, and iv. q.e.d.

3-C. Behavior of the pleatings λi : C → R. For any real sequence u ∈ RZ,
define the real sequence ∇u by (∇u)i = ui−1 − ui. Let us summarize the
conditions imposed on w : Z→ R∗

+ (Eq. 4 and 10 above):

(11)





0 < wi < min{φ+
i , φ

−
i , π}

∇φ−i < ∇wi < ∇φ+
i for all i ∈ Z;

|wi+1 − wi−1| < wi if i is a hinge;
wi+1 + wi−1 < 2wi otherwise.

It is a simple exercise to check that wi = tanhφ+
i tanhφ−i , for instance, satisfies

this system (tanh may be replaced by any strictly concave monotonous function
from R+ to [0, 1) with the same 1-jet at 0).
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10 F. GUÉRITAUD

Definition 3.4. If (11’) denotes the system (11) in which all strong in-
equalities have been turned into weak ones, let W ⊂ RZ be the solution space
of (11’).

Suppose (wi)i∈Z ∈ W and recall (5) the corresponding pleating measure
λi : C → R of Si, the pleated punctured torus between the tetrahedra ∆i and
∆i−1.

Lemma 3.5. For any curve γ ∈ C, the sequence (λi(γ))i∈Z is nondecreasing,
with

λ−(γ) ≤ lim
i→−∞

λi(γ) ≤ lim
i→+∞

λi(γ) ≤ λ+(γ).

Proof. First, observe that the triples of pleating angles of Si, Si+1 are always
of the form (A,B,−xi−yi); (A−2xi, B−2yi, xi+yi) given in Figure 3, where
xi (resp. yi) is positive, equal to the interior dihedral angle of the tetrahedron
∆i at the horizontal (resp. vertical) edges of the (square) fundamental domain
of the surface S. The closed curve γ in S traverses that fundamental domain
a number of times, either vertically, or horizontally, or diagonally (cutting off
one of the four corners). The pleating along γ increases by 2yi per vertical
passage, 2xi per horizontal passage, and 0 per diagonal passage, hence the
monotonicity statement. (This argument, or a variant of it, is also valid for
higher-genus surfaces and non-simple closed curves, as long as the tetrahedron
has positive angles.)

−xi−yi xi+yi

A

B

A−2xi

B−2yiγ

Figure 3. The pleatings of the surfaces Si and Si+1 bounding ∆i.

For the bounding, we will focus only on the λ+-side. Consider the slope

σ = η
ξ ∈ P1Q of γ (a reduced fraction); recall the definition λ+(σ) = ||β

+

α+

η
ξ ||

from (1). Consider a large enough index i, such that the Farey edge ei−1

separates σ from β+/α+. Consider the points p, p′, p′′ ∈ P1Q such that

(ei−1, ei) = (pp′, pp′′): the points (σ, p, β
+

α+ , p
′′, p′, σ) are cyclically arranged

in P1R. Observe that the ∧-notation (7) applied at rationals is just the (geo-
metric) intersection number of the corresponding curves. Therefore, using the
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PUNCTURED-TORUS GROUPS 11

angle information given in Figure 2 (top), one has
(12)

λi(γ) = (p ∧ σ)(wi − wi−1)− (p′ ∧ σ)wi + (p′′ ∧ σ)wi−1

= wi(p ∧ σ) +∇wi(p′ ∧ σ) since p′′ ∧ σ = p ∧ σ + p′ ∧ σ
≤ φ+

i (p ∧ σ) +∇φ+
i (p′ ∧ σ)

=
(
β+

α+ ∧ p′
)

(p ∧ σ) +
(
β+

α+ ∧ p
)

(p′ ∧ σ) (∗)

by definition (9) of φ+. The last quantity is β+

α+ ∧ σ (hence the upper bound):
by SL2-invariance of the ∧-notation, it is enough to check this when p = ∞
and p′ = 0 — in that case, β+

α+ and σ = η
ξ have opposite signs, and (∗) does

indeed become |β+ξ|+ |α+η| =
∣∣∣
∣∣∣β

+

α+

η
ξ

∣∣∣
∣∣∣. q.e.d.

4. Hyperbolic volume

The product topology on RZ induces a natural topology on the space W of
Definition 3.4: clearly, W is nonempty, convex, and compact.

If (x, y, z) is a nonnegative triple such that x + y + z = π, let V(x, y, z) be
the hyperbolic volume of an ideal tetrahedron whose interior dihedral angles
are x, y, z. We wish to compute the total hyperbolic volume of all tetrahedra
when w ∈W , i.e.

V(w) :=
∑

i∈Z

V(xi, yi, zi)

where xi, yi, zi are defined from the wi via Table (3). This poses the problem
of well-definedness — the sum of the volumes might diverge. Let us estimate
V : a well-known explicit formula [Mil] gives

(13)

V(x, y, z) = −
∫ x

0

log 2 sin−
∫ y

0

log 2 sin−
∫ z

0

log 2 sin

=

∫ x

0

log
sin(τ + y)

sin τ
dτ (as

∫ π
0

log 2 sin = 0)

≤
∫ x

0

log
τ + y

τ
dτ (by concavity of sin)

= x log
x+ y

x
+ y log

x+ y

y
≤ (x+ y) log 2 (concavity of log).

Lemma 4.1. There exists a universal constant K > 0 such that the sum of
the volumes of the tetrahedra ∆j for j ≥ i (resp. j ≤ i) is at most Kφ+

i (resp.

Kφ−i ).

Proof. We will focus only on the φ+-statement. First, by the computation
above, the volume of the tetrahedron ∆i is at most wi log 2 ≤ φ+

i log 2 (see
Table 3). In view of Lemma 3.2-vi, this implies that the total volume of all
hinge tetrahedra beyond the index i is at most 3φ+

i log 2. For the same reason,
it is sufficient to prove

Sublemma 4.2. There exists a universal constant L > 0 such that if 0 and
N ∈ N are two consecutive hinge indices, then the sum of the volumes of the
tetrahedra ∆1,∆2, . . . ,∆N−1 is at most Lφ+

0 .
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12 F. GUÉRITAUD

Proof. In view of homogeneity in the estimation (13), it is sufficient to
assume φ+

0 = 1 and replace the volume with its estimate. Therefore, let
(wi)0≤i≤N be a concave sequence in [0, 1]: following Table (3), we want to find
a universal upper bound L (not depending on N) for

N−1∑

i=1

wi+1 + wi−1

2
log

2wi
wi+1 + wi−1

+
2wi − wi+1 − wi−1

2
log

2wi
2wi − wi+1 − wi−1

.

If A < B are positive integers, denote by ΣBA the restriction of the above sum
to indices A ≤ i < B. Observe that the general term of ΣBA is bounded by
2e−1, because τ

2 log 2
τ ≤ e−1 for all positive τ . For yet better control, we bound

the first half of the general term of ΣBA by (wi+1+wi−1

2 )( 2wi

wi+1+wi−1
−1), and the

second half, by concavity of log. This produces

ΣBA ≤
B−1∑

i=A

(
2wi − wi+1 − wi−1

2
× wi+1 + wi−1

wi+1 + wi−1

)

+

(
B−1∑

i=A

2wi − wi+1 − wi−1

2

)
log

∑B−1
i=A wi∑B−1

i=A
2wi−wi+1−wi−1

2

= σ log
e
∑B−1
i=A wi
σ

, where σ =
wA − wA−1 + wB−1 − wB

2
.

Denote by M ∈ [[0, N ]] a value of the index i for which wi is maximal. If
A < B ≤M , we have

0 ≤ σ ≤ wA − wA−1

2
≤ 1

2A
≤ 1

(the third inequality follows from concavity of w between 0 and A). Also notice
that f : τ 7→ τ log e

τ is nondecreasing on [0, 1]. We shall apply these facts for

A = 2k−1 and B = min{2k,M}: the previous bound on ΣBA can be rewritten

ΣBA ≤ f(σ) + σ log
(∑B−1

i=A wi

)

≤ f(2−k) + 2−k log 2k−1 = 2−k[1 + (2k − 1) log 2].

The latter numbers (for k ranging over N∗) add up to some universal L′ <
+∞. After a similar argument for the indices M < i < N , we can take
L = 2e−1 + 2L′. q.e.d.

Finally, we can take K = 3L+ 3 log 2. Lemma 4.1 is proved. q.e.d.

Corollary 4.3. The volume functional V : W → R+ is well-defined, con-
tinuous, and concave.

Proof. Well-definedness is the point of Lemma 4.1. Given ε > 0, only
finitely many indices i satisfy min{φ+

i , φ
−
i } > ε/K, and the others contribute

at most 2ε to the volume: hence continuity in the product topology. Concavity
follows from the concavity of the volume of one tetrahedron (parametrized by
its angles): see e.g. Proposition 8 of [GF]. q.e.d.

Therefore, by compactness, there exists a sequence (wi)i∈Z ∈ W which
maximizes the hyperbolic volume V . From this point on, w will denote that
maximizer.
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PUNCTURED-TORUS GROUPS 13

Proposition 4.4. For each j ∈ Z, if xjyjzj = 0 then max{xj , yj, zj} = π.

Proof. Assume the tetrahedron ∆j has exactly one vanishing angle, and
aim for a contradiction. If V(∆t) is the volume of a tetrahedron ∆t having
angles xt, yt, (π − xt − yt) with (xt, yt)t≥0 smooth, x0 = 0 < y0 < π and
dxt/dt|t=0 > 0, then dV(∆t)/dt|t=0 = +∞ (by Formula (13) above).

Let (w′
i)i∈Z be a sequence satisfying all (strict) inequalities of (11) and

define wt := w + t(w′ − w) for 0 ≤ t ≤ 1. Denote by ∆t
i the i-th tetrahedron

determined via (3) by (wti)i∈Z: then the angles of ∆t
j satisfy the hypotheses

above, so

V(wt) = V(∆t
j) +


∑

i6=j
V(∆t

i)




has right derivative +∞ at t = 0 (the second summand is concave and contin-
uous, so it has a well-defined right derivative in R∪{+∞} at 0). Therefore, V
was not maximal at w. q.e.d.

In Section 10 we will need the following consequence of Proposition 4.4:

Proposition 4.5. If j ∈ Z and xjyjzj = 0, then j is a hinge index and
wj = 0.

This is Proposition 13 in [GF]. But in fact much more is true:

Proposition 4.6. All the (strict) inequalities of (11) are true at w.

Proof. If some inequality of (11) involving φ+ fails to be strict, it is easy to
see by induction that w = φ+ near +∞, so all tetrahedra ∆i (for i large enough)
have exactly one vanishing angle (see Remark 3.3): w was not maximal, by
Proposition 4.4. Therefore all inequalities of (11) involving φ± are strict. The
arguments in [GF] (especially Lemma 16 and the argument of Section 9 there)
can then be used to show that all inequalities (11) are strict at w, so w is a
critical point of the volume functional V . q.e.d.

Proposition 4.6 implies that the holonomy representation is trivial, i.e. the
gluing of any finite number of consecutive tetrahedra ∆i defines a complete hy-
perbolic metric with (polyhedral) boundary (the shapes of the ∆i “fit together
correctly” around the edges): see [Ri], [CH] or [GF]. Therefore, the links of
the vertices of the ideal tetrahedra (Euclidean triangles) form a triangulation
of the link of the puncture: the latter is naturally endowed with a Euclidean
structure and its universal cover can be drawn in the plane (Figure 4 — more
on the combinatorics of this triangulation in Section 6; see also [GF]). Denote
by Γ the image of the induced holonomy representation π1(S)→ Isom+(H3).

5. Behavior of (wi)

We want to prove that the pleatings λi (see Section 3) of the pleated punc-
tured tori Si converge (in the weak-* topology, i.e. on any test curve γ ∈ C)
to the pleatings λ± near infinity. For this we must study (wi), and especially
show that the bounds specified by φ± in Equations (11) are almost (but not
quite) achieved. We use the ∇-notation as in Section 3-C.
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14 F. GUÉRITAUD

L

Figure 4. The cusp triangulation is shown, in anticipation,
against the limit set L ⊂ P1C of the quasifuchsian group (a
complicated Jordan curve). The picture extends periodically
to the right and left. Each broken line is the puncture link of
a pleated surface Si; the vertices (whose design artificially sets
the Si apart from each other) are all parabolic fixed points at
which the limit set L becomes pinched. Infinitely many very
flat triangles accumulate along the top and bottom horizon-
tal lines. This picture was generated with Masaaki Wada’s
computer program Opti [Wa].

Lemma 5.1. Recall that ∇φ− < 0 < ∇φ+ (Lemma 3.2). One has

max

{
lim

Z

w

φ+
, lim

Z

∇w
∇φ+

}
= max

{
lim

Z

w

φ−
, lim

Z

−∇w
−∇φ−

}
= 1.

Proof. We focus on the φ+-statement; the φ−-part is analogous. Since w
φ+ <

1, assuming lim w
φ+ < 1 implies sup w

φ+ < 1, and the same holds true for ∇w
∇φ+

(see Equation 11). Therefore, suppose sup w
φ+ ≤ 1− ε and sup ∇w

∇φ+ ≤ 1− ε for

some ε > 0, and aim at a contradiction.
Recall the ordered pair (α+, β+) that helped define φ+. For each µ > 0,

define (αµ, βµ) := (µα+, µβ+). This defines a new pleating function λµ =
µλ+ : C → R+, a new φµ = µφ+ and a new domain Wµ by (11) (the numbers
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PUNCTURED-TORUS GROUPS 15

α− and β− are left unchanged). By definition, W = W 1 and Wµ ⊂ Wµ′

if
and only if µ ≤ µ′. Let (wµi )i∈Z be the maximizer of the volume functional V
on Wµ. By assumption, we have w1 ∈W 1−ε ⊂W 1, so w1 = w1−ε.

Write V (µ) = V(wµ), so that V (1) = V (1 − ε). It is straightforward to

check that for any t ∈ [0, 1], one has (t · wµ + (1 − t) · wµ′

) ∈ W tµ+(1−t)µ′

.
Since the volume of any tetrahedron is a concave function of its angles, this is
enough to imply that V : R+ → R+ is (weakly) concave. By inclusion, V is
also nondecreasing. In fact, V is strictly increasing (which will finish the proof
by contradiction): to prove this, since V is concave, we just need to produce
arbitrarily large values of the volume V at points vµ ∈ Wµ, for large enough
µ. We may assume (up to a translation of indices, see Lemma 3.2, vii – viii)
that φ−0 > π and −∇φ−0 > π. Then, start by defining vµi = min{φµi , φ−i , π}, so
that vµ = π on [[0, N + 1]] for arbitrarily large N . Without loss of generality,
by just taking µ large enough, we may further assume ∇φµ > π on [[0, N + 1]].
Then, each time i ∈ [[1, N ]] is a hinge index, replace vµi by 2π/3: this is allowed
in Wµ, by our assumptions on ∇φ−,∇φµ. The angles of the tetrahedron ∆i

are then all in {π/2, π/3, π/6} (see Table 3). Since there are infinitely many
hinge indices near +∞, the volume can become arbitrarily large: Lemma 5.1
is proved. q.e.d.

Corollary 5.2. In fact,

lim
i→+∞

min

{
wi

φ+
i

,
∇wi
∇φ+

i

}
= lim
i→−∞

min

{
wi−1

φ−i−1

,
−∇wi
−∇φ−i

}
= 1.

Proof. Again, we focus only on φ+. By Lemma 5.1, there exists a subse-
quence (wν(i))i∈N such that wν(i) ∼ φ+

ν(i) or ∇wν(i) ∼ ∇φ+
ν(i). Suppose the

latter is the case. For an arbitrary integer i, let n be the smallest hinge in-
dex larger than or equal to ν(i): observe that φ+

n+1 = ∇φ+
n = ∇φ+

ν(i) by

Lemma 3.2-iii-iv, while wn+1 ≥ ∇wn ≥ ∇wν(i) by the positivity conditions

(11). Therefore, wn+1

φ+
n+1

≥ ∇wν(i)

∇φ+
ν(i)

so up to redefining ν we may assume simply

wν(i) ∼ φ+
ν(i).

Pick ε > 0. Take i such that

(14) wν(i) ≥ (1− ε)φ+
ν(i).

Let n be the smallest hinge index strictly larger than ν(i). If n = ν(i)+1 then

wn ≥ wn−1 −∇φ+
n ≥ (1− ε)φ+

n−1 − φ+
n+1 = φ+

n − εφ+
n−1 ≥ (1− 2ε)φ+

n ;

∇wn = wn−1−wn ≥ (1−ε)φ+
n−1−φ+

n = φ+
n+1−εφ+

n−1 ≥ (1−3ε)φ+
n+1 = (1−3ε)∇φ+

n

where Lemma 3.2 has been used several times. Therefore, min
{
wn

φ+
n

, ∇wn

∇φ+
n

}
≥

1− 3ε.
If n ≥ ν(i) + 2, we can find an index k such that k−ν(i)

n−ν(i) ∈ [ 12 ,
2
3 ]. We will

show that min
{
wk

φ+
k

, ∇wk

∇φ+
k

}
≥ 1− 8ε, which will finish the proof.

• By positivity of w and concavity of w between the points (ν(i), k, n) one has
wk ≥ 1

3wν(i). Therefore,

φ+
k − wk ≤ φ+

ν(i) − wν(i) ≤
(

1

1− ε − 1

)
wν(i) ≤

3ε

1− εwk
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16 F. GUÉRITAUD

(here the first inequality holds because (φ+ − w) is decreasing by Condition
(11), and the second follows from the assumption (14) above). Hence,

wk

φ+
k

≥ 1− ε
1 + 2ε

≥ 1− 3ε.

• Observe that

(1− ε)φ+
ν(i) ≤ wν(i) ≤ wk + (k − ν(i))∇wk ≤ φ+

k + (k − ν(i))∇wk
where the second inequality follows from concavity of w between the points
(ν(i), k − 1, k). It follows that

(k − ν(i))∇wk ≥ φ+
ν(i) − φ+

k − εφ+
ν(i) = (k − ν(i))∇φ+

k − εφ+
ν(i)

hence

∇wk ≥ ∇φ+
k −

ε

k − ν(i)φ
+
ν(i) ≥ ∇φ+

k −
2ε

n− ν(i)φ
+
ν(i).

Since Lemma 3.2-vi gives us φ+
ν(i) ≤ 2(n− ν(i))φ+

n , this yields

∇wk ≥ ∇φ+
k − 4εφ+

n ≥ ∇φ+
k − 8εφ+

n+1 = (1− 8ε)∇φ+
k .

q.e.d.

Corollary 5.3. Recall the pleating λi of the pleated surface Si. For any
simple closed curve γ ∈ C we have lim

i→+∞
λi(γ) = λ+(γ) and lim

i→−∞
λi(γ) =

λ−(γ).

Proof. By Corollary 5.2, the member ratio in the inequality (12) can be
made arbitrarily close to 1. q.e.d.

6. The cusp link

We now aim to investigate the behavior of the pleated surfaces Si as i goes
to ±∞ — or, more precisely, to find two limiting pleated surfaces S±∞ with
pleatings λ± such that V =

⋃
i∈Z

∆i ⊔S+∞ ⊔S−∞ is metrically complete with
locally convex boundary. The difficult part is to prove that the intrinsic moduli
of the Si converge in Teichmüller space. This question will be addressed in the
next section. In this section, we just describe the cusp link, introduce notation
and prove a few inequalities.

As always, we will mainly work near +∞. Define V =
⋃
i∈Z

∆i. We begin
by orienting all the edges of V in a way that will be consistent with the pleating
data (α±, β±) from (1). Namely, denote by E ⊂ P1Q the collection of all the
endpoints of all the Farey edges (ei)i∈Z. For σ ∈ E , let Qσ be the edge of V of
slope σ. Recall that the punctured torus is defined as (R2 rZ2)/Z2. Orienting
Qσ is therefore equivalent to orienting the line Fσ of slope σ in R2. We decide
that the positive half of Fσ should be on the same side of the line R(α−, β−)
as (α+, β+), and orient Qσ accordingly.

Let us now describe the link of the puncture, or cusp triangulation (whose
underlying space is a Euclidean annulus S1×R: we refer to R as the “vertical”
direction). Each tetrahedron ∆i contributes four similar Euclidean triangles at
infinity to the link of the puncture, corresponding to the four ideal vertices of
∆i. The bases of these four triangles form a closed S1-homotopic curve which
is a broken line of four segments, and the triangles point alternatively up and
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PUNCTURED-TORUS GROUPS 17

down from this broken line (see Figure 5). The two upward (resp. downward)
pointing triangles have the same Euclidean size, an effect of the hyperelliptic
involution (rotation of 180◦ around the puncture) which acts isometrically on
V (reversing all edge orientations) and as a horizontal translation on the cusp
link.

Q0Q0Q0

Q0Q0
Q1Q1

Q1

Q1

Q∞Q∞
Q∞

Q∞

(⋆)

: toward (⋆)
: from (⋆)

x
x

x
x y

y
y

y

z

z

z

z

β+

α+

Figure 5. In the left panel, (⋆) marks the cusp. In the right
panel, the cusp is at infinity.

Definition 6.1. If the loop around the cusp has Euclidean length 4, let bi
(resp. b′i) be the length of the base of a downward-pointing (resp. upward-
pointing) triangle contributed by the tetrahedron ∆i, and define χi = b′i/bi
(see e.g. Figure 7).

Figure 5 also shows some additional information, assuming that ei = 0∞
and α+, β+ > 0 (hence β−/α− < 0). Namely, the pleated surfaces Si+1

and Si (above and below ∆i) are pleated along Q0, Q∞, Q1 and Q0, Q∞, Q−1

respectively, and the orientations of the Qσ are as shown in the left panel of
Figure 5 (the orientation of the edge Q−1 is not determined, as it depends on
the position of β−/α− relative to −1). The orientations of the lines to/from
the puncture are also shown in the right panel, at the vertices, with the help
of a color code. Moreover, each segment ǫ of the upper broken line in the right
panel corresponds to an arc about a vertex v of a face f of Si+1 in the left
panel, so ǫ receives the orientation of the edge of f opposite v. If τ is one of
the upward-pointing triangles drawn in the plane C (right panel), consider the
tetrahedron ∆ whose vertices are∞ and those of τ : all edges of ∆, except one,
receive orientations from the construction above, and ∆ is isometric (respecting
these orientations) to ∆i. Finally, notice the labels in the 3 corners of each
triangle in the right panel: the corner of the free vertex is labeled z (the angle
there being zi); the other two corners are labeled x and y accordingly. The
labels x-y-z appear clockwise in each triangle.

The contribution of the tetrahedron ∆i−1 to the cusp triangulation is also
a union of four triangles bounded by two broken lines. Moreover, the upper

PROOF COPY NOT FOR DISTRIBUTION



18 F. GUÉRITAUD

broken line from ∆i−1 is the lower broken line from ∆i, and the orientations
of the lines to/from infinity must agree. Inspection shows that there are only
two possibilities, corresponding to whether the letter living on the surface Si
is R or L: for R, the x-corners of the two 4-triangle families live near a pair of
common vertices C,C′; for L, the same is true of the y-corners (Figure 6).

: to ∞
: from ∞

A A

B B

C CC′ C′C′
b b

c c

(R)(L)

Figure 6. Left and Right transitions. Compare with the right
panel of Figure 5.

Definition 6.2. In a downward-pointing triangle defined by ∆i, the edge
lengths are bi (the basis from Def. 6.1), bi−1, and a third number which we
call ci. In either panel of Figure 6, we thus have b = bi ; c = ci and BC = bi−1,
where the tetrahedron ∆i defines the top four triangles.

Property 6.3. For i large enough, (bi) is increasing and (b′i) is decreasing.

Proof. Let τi (resp. τ ′i) be a downward-pointing (resp. upward-pointing)
triangle defined by the tetrahedron ∆i. For large enough i we have zi =
π −wi > π − φ+

i > π/2, so bi is the longest edge of τi, and b′i the longest edge
of τ ′i . Since bi−1 is an edge of τi and b′i+1 is an edge of τ ′i (Figure 6 or 7), the
conclusion follows. q.e.d.

Property 6.4. We have limi→+∞ χi = 0 (see Definition 6.1).

Proof. We already know that (χi) = (b′i/bi) is ultimately decreasing. It is
therefore enough to show that χi+1/χi−1 ≤ 1/2 for large enough hinge indices
i. Consider Figure 7, where angles labeled z are obtuse (as a rule, we shade a
cusp triangle contributed by ∆i whenever i is a hinge index). Check that

χi+1

χi−1
=
b′i+1

b′i−1

bi−1

bi+1
<
b′i+1

b′i

bi−1

bi
=

sinxi sin yi

sin2 zi
≤ sin2(wi/2)

sin2 wi
<

1

2

(the last two inequalities follow from an easy study of sin, using xi + yi =
π − zi = wi < π/2). As an immediate consequence, we find lim+∞ b′i = 0
and lim+∞ bi = 2. Similarly, lim−∞ b′i = 2 and lim−∞ bi = 0. (Compare with
Figure 4). q.e.d.

Definition 6.5. Let J ⊂ Z be the set of all integers j such that j − 1 is a
hinge index.

Proposition 6.6. If j < l are two large enough consecutive elements of J ,
and k is not in J , then

ck
ck−1

= χk−1 and
cl
cj
≤ χj−2.
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xi
xi

yi
yi

zi

zi

zi+1
zi−1

bi

bi+1

bi−1

b′i

b′i+1

b′i−1

Figure 7. Here the index i is a hinge; the nature of i± 1 is
undetermined.

Proof. Since k − 1 is not a hinge index, bk−1 shares the same end with bk
and with bk−2 (see Figure 8, left) so ck/ck−1 = b′k−1/bk−1 = χk−1.

Since cl is always an edge of τ ′l−1, we have cl ≤ b′l−1, hence

(15)
cl
cj
≤ b′l−1

cj
≤
b′j
cj

=
cj−1

bj−2
≤
b′j−2

bj−2
= χj−2

where the equality in the middle just translates the similarity property of the
“hinge” triangles τj−1, τ

′
j−1 (shaded in Figure 8, right). q.e.d.

cjcj

bj
b′j

cj−1

bj−1
b′j−1

bj−2
b′j−2

ck

ck−1

bk−1
b′k−1

Figure 8. Left: k − 1 is not a hinge. Right: j − 1 is a hinge.

7. Intrinsic convergence of the surfaces Si

7-A. Thickness of the tetrahedra. Consider a tetrahedron ∆i bounded by
the pleated surfaces Si and Si+1. Let Q (resp. Q′) be the pleating edge of Si
(resp. Si+1) not lying in Si ∩ Si+1. Let si be the shortest segment between Q
and Q′, across ∆i.

Definition 7.1. Recall the orientations on the edges of V =
⋃
i∈Z

∆i. Let
ℓi be the complex length of the hyperbolic loxodromy along si sending Q to
Q′, respecting the orientations of Q,Q′ (with −π < Im ℓi ≤ π).

Proposition 7.2. The series (ℓi)i∈Z is absolutely convergent.

Proof. Consider a downward-pointing triangle τ contributed by ∆i. Label
the vertices of τ by A,B,C in such a way that AC = bi, BC = bi−1 and
AB = ci (see Figure 6). Let γi be the hyperbolic loxodromy of complex length
ℓi along the common perpendicular to B∞ and AC, sending B,∞ to A,C (in
that order).
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Sublemma 7.3. Let ℓ = ℓi = ρ + θ
√
−1 be the complex length of γi, with

θ ∈]− π, π]. Then max{ρ, |θ|} ≤ π
√
ci/bi.

Proof. Up to a plane similarity, we may assume A = 1 and C = −1. Also,
for convenience, relabel the edges of ABC by a, b, c. Let L be the fixed line
of γi. The hyperbolic isometry defined by z 7→ f(z) = 2B+1−z

z+1 exchanges the
oriented lines AC and B∞, so it reverses the orientation of L around the center
of the tetrahedron ABC∞. Therefore, γi is given by γi(z) = 2B − f(z). If M

is a matrix of γi, one has
tr2M

4 detM
=

cosh ℓ+ 1

2
. Use M =

(
2B + 1 −1

1 1

)
to

find B = cosh ℓ. Compute

a± c
b

=
|B + 1| ± |B − 1|

2
=

∣∣∣∣cosh2 ℓ

2

∣∣∣∣±
∣∣∣∣sinh2 ℓ

2

∣∣∣∣

= cosh ℓ
2 cosh ℓ

2 ± sinh ℓ
2 sinh ℓ

2 = cosh ℓ±ℓ
2 .

Use cosh(iθ) = cos θ to get cosh(ρ) = a+c
b and cos(θ) = a−c

b . The estimates

Argcosh(y) ≤ 2
√

y−1
2 and Arccos(y) ≤ π

√
1−y
2 , since 1

2

∣∣a±c
b − 1

∣∣ ≤ c
b , finally

yield ρ ≤ 2
√
c/b and |θ| ≤ π

√
c/b, hence Sublemma 7.3. q.e.d.

Since (bi) goes to 2, Proposition 7.2 will follow if the ci go to 0 fast enough
near +∞ (with a similar argument near −∞). Such fast decay is given by
Proposition 6.6: using the fact that (χi) goes to 0, we can bound the ci by
decreasing geometric sequences on intervals of the form [[j, l − 1]] where j < l
are consecutive elements of the set J . q.e.d.

7-B. Teichmüller charts. Let TS be the Teichmüller space of the punctured
torus: for each i ∈ Z we denote by µ(Si) ∈ TS the intrinsic modulus of the
marked surface Si (for the marking Si ≃ S defined before Theorem 1.1). In
order to prove that the µ(Si) converge in TS , let us first introduce appropriate
charts for TS .

Consider a topological ideal triangulation E of the punctured torus S, with
labeled edges ǫ1, ǫ2, ǫ3. Then E defines an isomorphism

hE : P2R∗
+ = (R∗

+){ǫ1,ǫ2,ǫ3}/R∗
+ −̃→ TS .

Namely, given a hyperbolic metric g on S, in order to compute h−1
E (g), straigh-

ten E to an ideal triangulation for g and return the positive projective triple of
Euclidean lengths defined (in the link of the puncture) by the sectors opposite
ǫ1, ǫ2, ǫ3. We consider the hE as charts of TS . We endow P2R∗

+ with the
distance d given by

d([a : b : c], [a′ : b′ : c′]) := min
λ>0

max

{∣∣∣∣log
λa

a′

∣∣∣∣ ,
∣∣∣∣log

λb

b′

∣∣∣∣ ,
∣∣∣∣log

λc

c′

∣∣∣∣
}
.

Also define hE : P2C∗ → TS by hE([a : b : c]) := hE([ |a| : |b| : |c| ]).
In particular, if the pleated punctured torus Si+1, pleated along the ideal

triangulation Ei+1, gives rise in the cusp link to a broken (oriented) line whose
segments have complex coordinates (a, b, c), then

µ(Si+1) = hEi+1([a : b : c]).
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a

b

c

a+ b
b

a+ b
c

a

a+ b
c

Si

Si+1

Figure 9. The complex projective triples associated to Si+1

and Si. These edge orientations do not coincide with those of
Figures 5 and 6.

Moreover, Figure 9 shows two broken lines corresponding respectively to
Si+1 and the previous pleated surface Si. Since the triangles (links of vertices
of ∆i) are similar, the complex coordinates of the segments forming the lower
broken line are functions of (a, b, c), as shown. Therefore, if we define the
substitution formula

Ψ([a : b : c]) :=

([
a+ b :

b

a+ b
c :

a

a+ b
c

])

(which is a birational isomorphism from P2C to itself), then

µ(Si) = hEi
(Ψ([a : b : c])).

Finally, by viewing the diagonal move between triangulations Ei and Ei+1 as
a flat tetrahedron (as in Figure 1), we see that

µ(Si+1) = hEi
(Ψ([ |a| : |b| : |c| ])).

In other words, the restriction ψ of Ψ to P2R∗
+ is the chart map hEi+1 → hEi

,
i.e.

P2R∗
+

ψ←− P2R∗
+

hEi
ց ւ hEi+1

TS
commutes. If there are no hinge indices between i and i+k (bounds included),
it is easy to check that the chart map hEi+k

→ hEi
is, up to a permutation of

the coordinates, the map ψk.

Property 7.4. We have d
(
h−1
Ei
µ(Si), h

−1
Ei
µ(Si+1)

)
= log

|a|+ |b|
|a+ b| .

Proof. The right member is

d

([
|a+ b| :

∣∣∣∣
b

a+ b
c

∣∣∣∣ :

∣∣∣∣
a

a+ b
c

∣∣∣∣
]
,

[
|a|+ |b| : |b|

|a|+ |b| |c| :
|a|

|a|+ |b| |c|
])

.

q.e.d.

It is easy to see that ψ : P2R∗
+ → P2R∗

+ is 3-Lipschitz for d. In fact,

Proposition 7.5. There exists K > 0 such that the n-th iterate ψn is
Kn-bilipschitz for all n > 0.
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Proof. Since

ψ([a : b : c]) =

[
(a+ b)2

c
: b : a

]
and ψ−1([a : b : c]) =

[
c : b :

(c+ b)2

a

]

for all a, b, c > 0, it is enough to check the Lipschitz statement. Set A :=√
a ; C :=

√
c ;

Pn :=
An+1

Cn
+
∑

i,j∈Z

(
j

i− 1

)(
n− i
j − i

)
A2i−n−1Cn−2j for all n ≥ −1

(the sum is really on 0 < i ≤ j ≤ n), so that P0 = A , P−1 = C , P1 = A2+1
C .

We claim that ψn[a : 1 : c] = [P 2
n : 1 : P 2

n−1] for all n ≥ 0. The claim is seen by

induction on n: the only difficult thing is the induction step P 2
n+1 =

(P 2
n+1)2

P 2
n−1

.

First, it is straightforward to check that Pn+1 + Pn−1 = (AC + C
A + 1

AC )Pn
(using the Pascal relation twice). Hence, for all n ≥ 1, one has

(Pn+1Pn−1 − P 2
n)− (PnPn−2 − P 2

n−1)

= Pn−1(Pn+1 + Pn−1)− Pn(Pn + Pn−2)

= (Pn−1Pn − PnPn−1)
(
A
C + C

A + 1
AC

)
= 0.

Therefore Pn+1Pn−1−P 2
n = P1P−1−P 2

0 = 1, which proves the induction step.
Since Pn is a Laurent polynomial in A,C with partial degrees of order n and
positive coefficients, we see that logPn is Ln-bilipschitz in log a, log c for some
universal L. The Proposition follows. q.e.d.

The proof of Proposition 7.5 may seem extremely ad hoc and unsatisfactory.
However, Proposition 7.5 is a special case of a more general phenomenon for
Markoff maps (in the sense of [Bo]), which we describe in [G1].

7-C. Convergence of the moduli.

Proposition 7.6. The moduli (µ(Si))i→±∞ converge in Teichmüller space
TS.

Proof. To prove the +∞-statement, we will fix a large enough index i, and
prove that the series

ηj := d
(
h−1
Ei
µ(Sj), h

−1
Ei
µ(Sj+1)

)
,

defined for j > i, has finite sum.
For j > i, consider a downward-pointing triangle τ contributed by ∆j , with

its edge lengths bj , bj−1 and cj . The angles of τ at the ends of bj are xj and yj .

By Property 7.4, we have d
(
h−1
Ej
µ(Sj), h

−1
Ej
µ(Sj+1)

)
= log

cj+bj−1

bj
. Compute

log
cj + bj−1

bj
≤ cj + bj−1 − bj

bj
=

sinxj + sin yj − sin zj
sin zj

=
2 sin

xj

2 sin
yj

2

cos
xj+yj

2

≤ sinxj sin yj

sin2 zj
sin2 zj =

cjbj−1

b2j
sin2 wj ≤

cj
bj
φ+
j

2

(the inequality at the start of the second line holds for large enough j because

xj +yj = 2wj → 0). Define δj =
cj

bj
φ+
j

2
, and let Mj denote the best bilipschitz

constant for the chart map hEj
→ hEi

. Observe that ηj ≤Mjδj .
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Let j < l be two consecutive elements of J (see Definition 6.5), and k /∈ J
an integer. We shall bound the Mnδn by geometric sequences on intervals of
the form [[j, l − 1]], using Proposition 6.6 as in the proof of Proposition 7.2.
Since ψ is 3-bilipschitz, one clearly has Mk ≤ 3Mk−1. By Proposition 6.6,

Mkδk
Mk−1δk−1

≤ 3
δk
δk−1

≤ 3
ck
ck−1

= 3χk−1

because (φ+
k ) and (1/bk) are decreasing. The right member goes to 0 for large

k.
By Sublemma 7.5, Ml ≤ (l− j)L ·Mj for some universal L, and by Lemma

3.2 (i-iii-iv), φ+
j = φ+

l−1 + (l − j − 1)φ+
l ≥ (l − j)φ+

l . Using Proposition 6.6, it
follows that

Mlδl
Mjδj

≤ (l − j)L · cl
cj

(
φ+
l

φ+
j

)2

≤ Lχj−2

l − j ≤ Lχj−2.

The right member goes to 0 as j goes to infinity, hence Proposition 7.6. q.e.d.

8. Extrinsic convergence of the surfaces Si

8-A. Pleated surfaces. Propositions 7.2 and 7.6, together with Corollary
5.3, are the key ingredients to prove that the metric completion of V =

⋃
i∈Z

∆i

has two boundary components which are pleated punctured tori with pleating
measure λ±. A pleated surface in a hyperbolic 3-manifold M is by definition
a map ϕ : Σ → M (where Σ is a hyperbolic surface) which sends rectifiable
arcs to rectifiable arcs of the same length, and such that through each point
p of Σ runs an open segment sp on which ϕ is totally geodesic. It is known
(see [CEG], 5.1.4) that the direction of sp is unique if and only if p belongs to
a certain geodesic lamination Λ (closed union of disjoint geodesics) in Σ, and
that ϕ is totally geodesic away from Λ.

To wrestle with pleated surfaces, we will use the fact that if ϕ is a locally
convex immersion, and Λ has zero Lebesgue measure, then Λ comes with a
transverse (pleating) measure νΛ. More precisely, νΛ can be defined on any
sufficiently short oriented segment s transverse to Λ in the following way (see
Sections 7 to 9 of [B2]). First, assume (taking universal covers if necessary)
that Σ = H2 and M = H3. Immerse ϕ(H2) into the Poincaré upper half-space
model. Each component of H2 r Λ crossed by s can be extended to a subset A
of H2 bounded by only (one or) two lines of Λ crossed by s. Endow s with a
transverse orientation. The boundary component of A in ∂H3 = P1C on (say)
the positive side of the transverse orientation defines an oriented circle arc or
line segment cA ⊂ ∂H3 = C ∪ {∞}, of angle θA ∈ (−2π, 2π) (the orientation
of cA is induced from s, and we may assume ∞ /∈ cA). If cA is a line segment
or is reduced to a point, we fix θA = 0. The closure of the union of all the cA
forms a rectifiable curve c = c(s) ⊂ C, of length

∑
A length(cA). Then c has a

well-defined regular curvature RC(c), defined as the absolutely convergent sum∑
A θA. But c also has a total curvature TC(c), defined (up to an appropriate

multiple of 2π) as the difference between the arguments of the initial and
final tangent vectors to c. (The appropriate multiple of 2π can be determined
by closing off the embedded arc c with a broken line, and requiring that the
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resulting Jordan curve have total curvature 2π). Then, νΛ(s) is defined as the
singular curvature SC(c) = TC(c)−RC(c). If s is an arbitrarily long segment
of H2 transverse to Λ, we can define νΛ(s) by subdividing s into sufficiently
short segments (s1, . . . , sn) and define SC(c(s)) = νΛ(s) =

∑n
i=1 νΛ(si).

Conversely, if ϕ : H2 → H3 is a pleated immersion and SC(c(s)) is well-
defined and non-negative for all transverse segments s, then ϕ is locally convex
with pleating measure νΛ as above. We refer to [B2] for greater detail.

8-B. Setup. Define the marked hyperbolic once-punctured torus S+∞, en-
dowed with the hyperbolic metric limi→+∞ µ(Si). There exists a unique com-
pact geodesic lamination Λ+

c of slope β+/α+ on S+∞ (namely, Λ+
c is the topo-

logical limit of any sequence of simple closed curves whose slopes converge to
β+/α+). Exactly two lines ℓ, ℓ′ issued from the puncture of S+∞ fail to meet
Λ+
c : define Λ+ = Λ+

c ⊔ ℓ ⊔ ℓ′. Then S+∞ is the disjoint union of Λ+ and the
interiors of two ideal triangles A,A′. The union A ∪A′ ∪ ℓ ∪ ℓ′ is a punctured
ideal bigon.

Recall the ideal tetrahedra ∆i, the space V =
⋃
i∈Z

∆i and the hyperelliptic
involution ι : V → V which reverses all edge orientations. The slopes of the
(oriented) pleating lines of the surface Si (between ∆i−1 and ∆i) are elements
of P1Q projecting to 0, 1,∞ in P1(Z/2Z): accordingly, we call these pleating
lines l0i , l

1
i , l

∞
i . For ∗ ∈ {0, 1,∞}, denote by ω∗

i the unique point of l∗i fixed
under the hyperelliptic involution (the ω∗

i are called Weierstrass points). Let
s∗i be the segment from ω∗

i to ω∗
i+1 (across the tetrahedraon ∆i if ω∗

i 6= ω∗
i+1):

each s∗i is contained in a (pointwise) fixed line Ω∗ of the hyperelliptic involution.
Fix the value of the superscript ∗ (soon we shall omit it). Fix a point ω in H2

and an oriented line l through ω. For each (oriented) surface Si, consider the
oriented, marked universal covering πi : (H2, ω, l) → (Si, ω

∗
i , l

∗
i ) = (Si, ωi, li).

Endow a universal cover Ṽ of V with lifts ω̃i of the ωi connected by lifts of the

segments s∗i = si, and fix a developing map Φ : Ṽ → H3. There is a unique
map hi such that

(16)
(H2, ω, l)

hi−→ (Ṽ , ω̃i)
Φ−→ H3

πi ↓ ↓
Si −→ V

commutes. We will prove that the (developing) pleated immersions

(17) ϕi = Φ ◦ hi : H2 → H3

converge as pleated maps to a pleated immersion ϕ+∞.

8-C. Convergence of the ϕi. By Proposition 7.2, since the segments s∗i = si
all belong to the same fixed line of the hyperelliptic involution, it is already
clear that the restriction of ϕi to l converges to a totally geodesic embedding of
the line l into H3 (the convergence is uniform on all compacts of l). By Ascoli’s
theorem, since the ϕi are 1-Lipschitz, there exists an increasing sequence ν such
that the ϕν(i) converge to a certain map ϕ+∞, uniformly on all compact sets of

H2. In Section 8-E below, ϕ+∞ is shown to be independent of the subsequence
ν: in anticipation, we now abusively write ϕi instead of ϕν(i).

We shall work in the projective tangent bundle E = PTH2, a circle bundle
over H2 in which geodesic laminations naturally live as closed sets. Length
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and angle measurements define a (canonical) complete Riemannian metric on
E . For K ⊂ H2 compact and A,B ⊂ E closed, let KE ⊂ E be the preimage of
K under the natural projection E → H2, and define

dK(A,B) := inf
{
δ > 0 | A ∩KE ⊂ Nδ(B) , B ∩KE ⊂ Nδ(B)

}

where Nδ(X) denotes the set of points within δ of X . Then inf(1, dK) is a
pseudometric, and the set of closed subsets of E is compact for the Hausdorff
metric

dH =
∑

n>0

2−n inf(1, dKn
)

where the Kn are concentric balls of radius n.

Observe that S+∞ also has Weierstrass points ω∗
+∞, belonging to leaves

l∗+∞ of the geodesic lamination Λ+. Fixing the value of ∗ as before, denote by
π+∞ : (H2, ω, l)→ (S+∞, ω∗

+∞, l
∗
+∞) an oriented universal cover.

A consequence of Proposition 7.6 is that the lifts to E of the π−1
i (l0i ∪ l1i ∪ l∞i )

converge for dH to the lift of π−1
+∞(Λ+). We know that U = π−1

+∞(S+∞rΛ+) ⊂
H2 is a disjoint union of (open) ideal triangles, of full Lebesgue measure in H2.
For any connected compact set K ⊂ U , we have K ∩ π−1

i (l0i ∪ l1i ∪ l∞i ) = ∅ for
i large enough, so ϕ+∞ is totally geodesic on K. Therefore, ϕ+∞ is totally
geodesic on each component of U . Since ϕ+∞ is clearly 1-Lipschitz, we can
approximate any segment in H2 r U by segments in U to show that ϕ+∞ is
totally geodesic on each leaf of H2 rU . By Lemma 5.2.8 in [CEG], ϕ+∞ sends
rectifiable segments to rectifiable segments of the same length, and is a pleated
map.

8-D. The map ϕ+∞ is a topological immersion. Define P := π−1
+∞(Λ+),

which contains the pleating locus of ϕ+∞. To prove ϕ+∞ is an immersion, it
is enough to find a short geodesic segment m of H2, through the base point ω,
transverse to P , and prove that ϕ+∞ is an immersion on the union Υ of all
strata (lines and complementary ideal triangles) of P crossed by m (indeed,
π+∞(Υ) = S+∞). Clearly, ϕ+∞ is already an immersion near any point of
H2 rP . At other points, the key fact will be an “equidistribution” property of
the 3 pleating lines of the surface Si, as i goes to +∞. In the next paragraph,
we make this idea precise: a simple closed curve of slope q in Si will meet
the pleating lines of Si in a perfectly balanced (Sturmian) order (as would a
straight Euclidean line of slope q drawn on a Euclidean torus equipped with
the triangulation of Si).

Choose a small µ1 > 0, and pick k ∈ Z large enough so that φ+
k ≤ µ1.

Let q be the rational opposite the Farey edge ek, on the same side as β−/α−,
so that λ+(q) = φ+

k . Let mC
i be the simple closed geodesic of slope q in Si

(equipped with the intrinsic metric): for some superscript ∗ independent of i,
the Weierstrass point ωi = ω∗

i belongs tomC
i . By Proposition 7.6 and Hausdorff

convergence, there exists µ2 > 0 such that for all i > k, the angle between mC
i

and the pleating line li of Si at ωi is at least µ2, and there exists µ3 > 0 such
that the segment mi of mC

i of length 2µ3, centered at ωi, is embedded in Si.
The ends of mi are at distance at least 1

2µ2µ3 from the pleating line li in Si.

Observe that the simple closed curve mC
i meets the pleating edges of Si in a

perfectly equidistributed (Sturmian) order: therefore, the algebraic sum of the
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pleating angles crossed by any given subsegment of mi does not exceed 2µ1.
Finally, let κi be a subsegment of the pleating line li, centered at ωi, of length
2: if µ3 is small enough, any pleating line L met by mi makes an angle at least
1
2µ2 with mi, and comes within 3µ3 of both ends of κi for the intrinsic metric
of Si.

We proceed following Section 8-A. Arrange the developing map Φ : Ṽ → H3

in the upper half-space model so that the {ϕi(ω)}i∈Z lie on the line 0∞ at
heights less than 1, and ϕ+∞(l) is the oriented line from −1 to 1. Consider
lifts m̃i of the arcs mi through the ϕi(ω). By the above (considering lifts of
the κi), if the µ’s are small enough, any pleating line of ϕi(H

2) met by m̃i has
its endpoints within distance 1/2 from 1 and −1 in C (recall ϕi is 1-Lipschitz).
Following Subsection 8-A, let c+1

i (resp. c−1
i ) denote the piecewise smooth

curve in C defined by the transverse segment m̃i of ϕi(H
2) near 1 (resp. −1).

Let σ ⊂ H3 be a subsegment of m̃i across an ideal triangle of ϕi(H
2). Let

σ′ ⊂ C be the circle arc (not reduced to a point) contributed by σ to c±1
i . By

the above, for some universal K1 > 0,

µ2

K1
≤ euclidean length of σ′

hyperbolic length of σ
≤ K1.

In particular, the c±1
i have length at most 2K1µ3. But the regular curvature

radii of c±1
i are at least 1

2 (the corresponding circles come near 1 and −1),

so the total regular curvature of c±1
i is at most 4K1µ3. By the above, the

total singular curvature on any subinterval of c±1
i is at most 2µ1. If the µ’s are

small enough, it follows that all tangent vectors of c±1
i have complex arguments

within [π/4, 3π/4]. As a consequence, if τ ranges over the ideal triangles of
ϕi(H

2) crossed by m̃i, and p : H3 → C is the vertical projection, the different
p(τ) intersect only along their edges: so ϕi(

⋃
τ τ) is an embedded surface

(which we can see, say, as the graph of a function from an open set of C
to R+). Moreover, define the breadth of p(τ) as the length of the segment
p(τ) ∩

√
−1R (of the imaginary axis). Then, for some universal K2 > 0,

breadth of p(τ)

hyperbolic length of τ ∩ m̃i
≥ µ2

K2
.

To conclude concerning ϕ+∞, define a lift mC through ω ∈ H2 of the simple
closed geodesic of slope q in S+∞, and a subsegment m of mC , of length
2µ3, centered at ω. The angle between m and any pleating line of Λ+ it
encounters is at least 1

2µ2. Let I be the (infinite) collection of ideal triangles

of π−1
+∞(S+∞ r Λ+) crossed by m. For τ ∈ I, denote by |τ | the length of

m ∩ τ . By convergence in the Hausdorff metric, ϕ+∞(τ) is approached by

triangles of the ϕi(H
2), of breadth at least |τ |µ2

2K2
: so p(ϕ+∞(τ)) has nonzero

breadth. Injectivity follows: if x, x′ ∈ ⋃τ∈I τ do not belong to the same

stratum of the lamination P = π−1
+∞(Λ+), find τ separating x from x′ to prove

that ϕ+∞(x) 6= ϕ+∞(x′). By vertical projection to C, we see that ϕ+∞(H2) is
topologically immersed in H3.

8-E. Pleating measure of ϕ+∞. These arguments can be extended to prove
that the pleating measure of ϕ+∞, as defined in 8-A, is the limit of the pleating
measures of the ϕi: the rectifiable curves c±1

+∞ ⊂ C defined near ±1 by ϕ+∞
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have lengths ℓ±1, and for any ε > 0, there exists a finite disjoint union of circle
arcs γι in c±1

+∞ whose lengths add up to at least ℓ±1−ε (moreover the direction

of c±1
+∞, like that of c±1

i , is everywhere within π/4 of the vertical axis). The γι
can be approached by (unions of) arcs of the c±1

i , and the regular curvature
not contributed by the γι is bounded by 3ε. It follows that the pleating of ϕ+∞
is the limit of the pleatings of the ϕi (on any transverse arc, and therefore, on
any simple closed curve): that pleating is simply (a lift of) λ+, by Corollary
5.3. By Theorem D of [B2], ϕ+∞ is completely determined by its pleating λ+

and the intrinsic metric of S+∞. In particular, ϕ+∞ = limϕν(i) is independent
of the original subsequence ν, and the ϕi converge to a pleated map whose
pleating is given by λ±, as i goes to ±∞.

8-F. Completeness. The construction of 8-D further allows us to embed the

universal cover Ṽ of V =
⋃
i∈Z

∆i into a (topological) manifold with boundary

Ṽ∂ , as follows. For each x ∈ H2, consider a neighborhoodUx of x such that ϕ+∞
is an embedding on Ux. Then ϕ+∞(Ux), which has a well-defined transverse
(“outward”) orientation, splits a small ball Bx centered at ϕ+∞(x) into two
(topological) hemispheres, which we can call “inner” and “outer”, referring
to the transverse orientation. The inner hemispheres Hx, for x ranging over
H2, can be patched together to obtain a manifold with boundary H . Without
loss of generality, the balls Bx can be chosen small enough so that, by the
construction of Section 8-D, each Hx r ϕ+∞(Ux) is identified with a subset of

Ṽ , embedded in H3. Then, H can further be patched to Ṽ . Since each Hx is

homeomorphic to R2×R+, the space Ṽ∂ = Ṽ ∪H is a (possibly non-complete)
topological manifold with boundary.

Proposition 8.1. The action of the fundamental group Γ of the punctured

torus S on Ṽ extends to a properly discontinuous action on Ṽ∂ .

Proof. Consider the representation ρ : Γ → Isom+(H3) given by the devel-
oping map Φ from (16), and the representations ρn : Γ→ Isom+(H2) which sat-
isfy ϕn◦ρn(g) = ρ(g)◦ϕn for all g ∈ Γ. By Lemma 7.6, the ρn converge to some
ρ+∞. Convergence of the ϕn immediately implies ϕ+∞ ◦ρ+∞(g) = ρ(g)◦ϕ+∞.
Therefore, the hemispheres Hx can be chosen in an equivariant fashion, and

the action of Γ on Ṽ∂ is well-defined. The action is already properly discon-

tinuous at every point x of Ṽ (namely, as g ranges over Γ, the gx do not
accumulate at x). But if Γ acts without fixed points and by isometries on
a locally compact metric space X , the set of x ∈ X such that the action is
properly discontinuous at x is open (obviously) and closed: if gnx → x for
some sequence (gn) of Γ r {1} and U is a compact neighborhood of x, then
U contains a ball of radius ε centered at x, and whenever d(x, x′) ≤ ε/2, the
gnx

′ accumulate at some point of U , so the action is not totally discontinuous

at x′. The Proposition follows by connectedness of Ṽ∂ . q.e.d.

As a consequence, the space V∂ := Ṽ∂/Γ is a (topological) manifold with bound-
ary, containing V =

⋃
i∈Z

∆i; and ∂V∂ consists of two pleated punctured tori

(intrinsically isometric to S+∞ and another surface S−∞), with pleatings λ+

and λ−.

Proposition 8.2. The manifold with boundary V∂ is complete.
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Proof. Consider the metric completion V ⊃ V∂ and assume the inclusion is
strict. Define a continuous function f : V∂ → R>0 by f(x) = d(x, V r V∂). By
assumption, inf(f) = 0.

Consider the immersion of Ṽ∂ into the upper half-space model of H3 obtained

by sending a lift of the cusp to infinity (Figures 4 and 5-6). The image of ∂Ṽ∂
contains, in particular, vertical half-planes (interrupted at some height above

C). Therefore, any geodesic of Ṽ∂ starting high enough above C is defined for

all times t ≤ 1 (unless it hits ∂Ṽ∂). As a result, if H ⊂ V∂ denotes a small
enough open horoball neighborhood of the cusp, we have f ≥ 1 on H .

For i ∈ Z, consider the compact set Ki := Si r H in V∂ . There exists a
ball B of H2 centered at the base point ω, with radius independent of i, such
that Ki ⊂ πi(B): by convergence of (ϕi), the πi(B) converge metrically to a
compact subset K ′ of ∂V∂ , on which f is positive. Therefore f is bounded away
from 0 on some neighborhood U of K ′ in V∂ , and Ki ⊂ U for large enough i.
So f is bounded away from 0 on

⋃
i∈Z

Ki, and therefore on
⋃
i∈Z

Si.
However, assume γ(t) is a rectifiable 1-Lipschitz arc of V∂ , defined for t < M ,

with no limit at M . For any ε > 0, the restriction γ|[M−ε,M) meets V∂ r ∂V∂
(because ∂V∂ = S+∞ ⊔ S−∞ is complete), but then γ|[M−ε,M) must meet ∆i

for an unbounded set of indices i (any finite union of tetrahedra is complete).
Therefore, we can find a sequence tn →M such that γ(tn) ∈

⋃
i∈Z

Si. Clearly,
f(γ(tn)) ≤M − tn which goes to 0: a contradiction. So V∂ is complete. q.e.d.

8-G. A quasifuchsian punctured-torus group. The end of the argument
is now quite standard: recall the complete manifold with locally convex bound-

ary Ṽ∂ , which is a universal cover of V = V∂ . Given distinct points x, x′ ∈ Ṽ∂ ,
consider a shortest possible path γ from x to x′. If γ has an interior point in

∂Ṽ∂ , by local convexity, we must have γ ⊂ ∂Ṽ∂ , and γ is a geodesic segment

of ∂Ṽ∂ . If not, γ is (the closure of) a geodesic segment of Ṽ . At any rate, the

extended developing map Φ : Ṽ∂ → H3 is an embedding (it sends γ to a seg-
ment with distinct endpoints) and has a closed convex image C, endowed with
a properly discontinuous action of the fundamental group Γ of S (Proposition
8.1). The action extends properly discontinuously to H3 (this can be seen
by projecting any point of H3 to C). The manifold H3/Γ contains V ≃ C/Γ,
which has the desired boundary pleatings λ±. Clearly, C is the smallest closed,
convex set containing all parabolic fixed points of Γ; therefore V is the convex
core, and Γ is quasifuchsian, with pleating data λ±. Theorem 1.1 is proved.

9. Application: the EPH theorem

Let us quickly recall the correspondence between the horoballs of H3 and the
vectors in the positive isotropic (light) cone of Minkowski space R3+1. Endow
R4 with the Lorentzian product 〈(x, y, z, t)|(x′, y′, z′, t′)〉 := xx′+yy′+zz′−tt′.
Define

X := {v = (x, y, z, t) ∈ R4 | t > 0 and 〈v|v〉 = −1}.
Then 〈.|.〉 restricts to a Riemannian metric on X and there is an isometry
X ≃ H3, with Isom+(X) a component of SO3,1(R). This isometry takes
hyperbolic planes in H3 to intersections of X with (linear) hyperplanes. We
will identify the point (x, y, z, t) of X with the point at Euclidean height 1

t+z
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above the complex number x+iy
t+z in the Poincaré upper half-space model. Under

this convention, the closed horoball Hd,ζ of Euclidean diameter d centered
at ζ = ξ + iη ∈ C in the upper half-space model is identified with the set
{v ∈ X | 〈v|vd,ζ〉 ≥ −1}, where vd,ζ = 1

d(2ξ, 2η, 1− |ζ|2, 1+ |ζ|2). We therefore
identify Hd,ζ with the point vd,ζ of the light cone. Similarly, the closed horoball
Hh,∞ of points at Euclidean height no less than h in the half-space model
corresponds to {v ∈ X | 〈v|vh,∞〉 ≥ −1} where vh,∞ = (0, 0,−h, h), so we
identify Hh,∞ with vh,∞.

Consider the following objects: a complete oriented hyperbolic 3-manifold
M with one cusp, a horoball neighborhood H of the cusp, a universal covering
π : H3 → M , and the group Γ ⊂ Isom+(H3) of deck transformations of π.
Then H lifts to a family of horoballs (Hi)i∈I in H3, corresponding to a family
of isotropic vectors (vi)i∈I in Minkowski space. The closed (linear) convex
hull C of {vi}i∈I is Γ-invariant, and its boundary ∂C comes with a natural

decomposition D̃ into polyhedral facets. Let V be the interior of the convex
core of M . In [AS], Akiyoshi and Sakuma extended the Epstein-Penner convex

hull construction to prove that D̃ defines an H-independent decomposition
DGeom of V into ideal hyperbolic polyhedra, typically tetrahedra, allowing for
a few clearly defined types of degeneracies. In [ASWY2], with Wada and
Yamashita, they also conjectured

Theorem 9.1. If M is quasifuchsian, homeomorphic to the product of the
punctured torus with the real line, and has irrational pleating laminations of
slopes β+/α+ and β−/α−, the decomposition DGeom of V is combinatorially
the triangulation {∆i}i∈Z defined in Section 1.

Proof. It is known (see [Se] or Corollary 10.8 below) that quasifuchsian
punctured-torus groups are fully determined by their measured pleating lam-
inations. It follows that the manifold constructed in Sections 1-8, with the
same pleating data as M , is isometric to M . Recall the triangulated space

Ṽ ⊂ H3 of (16), which is a universal cover of the union
⋃
i∈Z

∆i of all tetrahe-
dra ∆i. Given a horoball neighborhood H of the cusp of M , consider its lifts
(Hi)i∈I in H3 and the corresponding isotropic vectors (vi)i∈I in Minkowski

space R4. Then each tetrahedron ∆ of Ṽ has its vertices at the centers of four
horoballs H1, . . . , H4: we introduce the convex hull τ∆ of v1, . . . , v4, and define
D :=

⋃
∆ τ∆. The central projection to the hyperboloid X with respect to

the origin sends τ∆ homeomorphically to the lift of ∆ in X , so the interiors of
the τ∆ are pairwise disjoint, and each τ∆ comes with a transverse “upward”
orientation −→u (given by any vector of τ∆, i.e. with head in τ∆ and foot at the
origin). The theorem claims exactly that D ⊂ ∂C as polyhedral complexes
(the inclusion is expected to be strict, since ∂C also contains faces projecting,
say, to the boundary of the convex core — they are analyzed in detail in [AS]).

Suppose the codimension-1 complex D ⊂ R4 is locally convex, with −→u
pointing inward and nonzero bending angles. We can then prove D ⊂ ∂C: for
any subset Y of a real vector space, define IY := {ty |t ≥ 1, y ∈ Y }. Since
the interior of the convex core is convex, ID is a convex set (for any non-
collinear x, y ⊂ ID, the 2-dimensional quadrant P = R+x + R+y intersects

the hyperboloid X along a hyperbolic segment of the universal cover Ṽ of the
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convex core, and P ∩ ID is convex by local convexity of D: so the segment
[x, y] is in ID). Moreover, ID contains all the isotropic vectors {vi}i∈I , so
its closure ID contains their convex hull C. Conversely, D is clearly included
in C and it is easy to check that IC ⊂ C (because I{vi} ⊂ C for all i, see
[AS]). So ID ⊂ C and, by closedness, ID = C. Clearly, D ⊂ ∂ID because
no two points of D are collinear. So D ⊂ ∂C as sets, and hence as polyhedral
complexes because the bending angles of D are nonzero. So we only need to
prove

Lemma 9.2. The codimension-1 simplicial complex D ⊂ R4 is locally con-
vex (−→u pointing inward).

Proof — Consider adjacent ideal tetrahedra ∆,∆′ in H3 which are lifts from
tetrahedra ∆i−1,∆i of the manifold. We must prove that the dihedral angle
in R4 between τ∆ and τ∆′ points “downward”. We will assume that the letter
between i − 1 and i is an L belonging to a subword RLnR of Ω. In the link
of the cusp, the pleated surface Si between ∆i−1 and ∆i contributes a broken
line (−1, ζ, ζ′, 1) in C together with its iterated images under u 7→ u± 2, as in
Figure 10 (we assume that the vertices −1, 1 both belong to the base segments
of the Euclidean triangles just below and just above the broken line, in the
sense of Figure 5). We use the notation

ζ + 1 = −→a = a eiA

ζ′ − ζ =
−→
b = b eiB

1− ζ′ = −→c = c eiC

(so farA,B,C are only defined modulo 2π). Above this broken line in the upper
half-space model lives a lift of Si, containing the ideal triangles (−1, ζ,∞, ) and
(ζ,∞, ζ′) and (∞, ζ′, 1), which admits as a deck transformation

f : u 7→ 1 +
(ζ + 1)(ζ′ − 1)

u+ 1
,

because f maps the first of the above mentioned triangles to the last (respecting
the order of the vertices). Therefore, f(H1,∞) = H|ζ+1||ζ′−1|,1 = Hac,1. Note
that a and c are the lengths of the segments of the broken line adjacent to the
vertex 1. Similarly, the following horoballs are all images of one another by
deck transformations:

H1,∞ ; Hac,−1 ; Hab,ζ ; Hbc,ζ′ ; Hac,1 .

If ζ = ξ + η
√
−1 and ζ′ = ξ′ + η′

√
−1, the corresponding isotropic vectors in

Minkowski space are respectively

(18)

v∞ = ( 0, 0, −1, 1 )
v−1 = 1

ac ( −2, 0, 0, 2 )
vζ = 1

ab ( 2ξ, 2η, 1− |ζ|2, 1 + |ζ|2 )
vζ′ = 1

bc ( 2ξ′, 2η′, 1− |ζ′|2, 1 + |ζ′|2 )
v1 = 1

ac ( 2, 0, 0, 2 ).

Observe that the hyperplane through 0, vζ, vζ′ , v∞ separates v1 from v−1

because the hyperbolic plane through the ideal points ζ, ζ′,∞ ∈ P1C separates
the ideal points 1 and −1. Also, observe that the imaginary parts η, η′ of ζ, ζ′
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(−1)
(1)

(ζ)

(ζ′)

−→a
−→
b

−→c

−→
dǫ

−→
dǫ′

xi

yi

π − wi
xi−1

yi−1

π − wi−1

Figure 10. Adjacent tetrahedra ∆i−1,∆i (cusp view).

satisfy η > η′ because the Euclidean triangles −1ζ′ζ and 1ζζ′ are counterclock-
wise oriented.

To prove that the dihedral angle at the codimension-2 face projecting to
(ζζ′∞) is convex, it is enough to show that if Pvζ +Qvζ′ +Rv∞ = λv1 + (1−
λ)v−1 (for some 0 < λ < 1) then P + Q + R > 1 (moreover, this will in fact
take care of all codimension-2 faces of the simplicial complex D). One easily
finds the unique solution

P =
−bη′

c(η − η′) ; Q =
bη

a(η − η′) ; R =
η(1 − |ζ′|2)− η′(1− |ζ|2)

ac(η − η′)
hence

P+Q+R = 1+
Z

ac(η − η′) where Z = bcη−abη′+η(1−|ζ′|2)−η′(1−|ζ|2)+ac(η′−η).

So it is enough to prove that Z > 0. Endow C ≃ R2 with the usual scalar

product “•” and observe that 1−|ζ|2 = −→a •(−→b +−→c ) and 1−|ζ′|2 = (−→a +
−→
b )•−→c .

Hence

Z = η(bc+
−→
b • −→c )− η′(ab+−→a • −→b ) + (η′ − η)(ac−−→a • −→c )

= abc

[
η

a
(1 + cos(B − C))− η′

c
(1 + cos(A−B)) +

η′ − η
b

(1− cos(A− C))

]

= abc[sinA(1 + cos(B−C)) + sinC(1 + cos(A−B)) + sinB(1− cos(A−C))]

= 4abc sin
A+ C

2
cos

A−B
2

cos
B − C

2
.

by standard trigonometric formulae. Observe that the last expression is a well-
defined function of A,B,C ∈ R/2πZ (although each factor is defined only up
to sign). Next, however, we shall carefully pick representatives of A,B,C in
R.

Observation 9.3. There exists a unique triple of representatives (A,B,C) ∈
R3 such that {A,B,C} ⊂ J where J is an open interval of length less than
π, containing 0. (Indeed, the broken line (. . . ,−1, ζ, ζ′, 1, . . . ) invariant under
u 7→ u±2 has no self-intersection, and this fact is equivalent to the existence of
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an open half-plane H containing the vectors −→a ,−→b ,−→c : the observation follows

since −→a +
−→
b +−→c = 2 belongs to H).

We pick the representatives A,B,C ∈ R given by Observation 9.3, and do
the same for the broken line contributed by each surface Si for i ∈ Z (each
broken line, being included in an infinite horizontal strip, can be oriented from
the −∞ to +∞, so each edge ǫ of the cusp link inherits an orientation, as

in Figure 10: we write its complex coordinate
−→
dǫ = dǫ e

Dǫ). By Observation
9.3, all the complex arguments Dǫ are in (−π, π). But since 0 ≤ w ≤ π, the
existence of the interval J also implies (in the notation of Figure 10):

A = B + wi−1 and C = B + wi

hence B = inf J and B ∈ (−π, 0). It follows that B + xi ∈ (−π, π), hence
(writing ǫ = [ζ, 1] and ǫ′ = [−1, ζ′] as in Figure 10):

Dǫ = B + xi and similarly Dǫ′ = B + xi−1.

In other words (by transitivity), for any two edges ǫ1, ǫ2 of the cusp link, the
difference of arguments Dǫ1 − Dǫ2 ∈ R can be read off “naively” as a linear
combination of the {wi}i∈Z, with no multiple of 2π added.

Now that all arguments are fixed in the real interval (−π, π), we can see
that cos A−B

2 = cos(wi−1/2) and cos B−C
2 = cos(wi/2) are positive. So to

prove Z > 0 it remains to see that 0 < A + C < 2π. This in turn follows
from a small variant of Lemma 16 in [GF], which we prove now (it implies an
empirical observation of Jørgensen which was Conjecture 8.6 in [ASWY2]).

Proposition 9.4. With the above notation, one has 0 < A+ C < 2π.

−→a
−→c

(−→a = a eiA−→c = c eiC

)

−1 1

ζ−1

ζ0

ζ1

ζn−1

ζn

ζn+1

ξ0

ξn

ξn+1

Figure 11. Cusp view: a subword RLnR, bounded by
hinge indices 0 and n (grey).

Consider the full subword RLnR, with the broken line (−1, ζ, ζ′, 1) corre-
sponding to some L. There is in fact a sequence of points (ζ0, ζ1, . . . , ζn) in C

such that the broken line corresponding to the j-th letter L is (−1, ζj, ζj−1, 1)
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for all 1 ≤ j ≤ n. The broken line corresponding to the initial (resp. final) R
is (−1, ζ0, ζ−1, 1) for some ζ−1 (resp. (−1, ζn+1, ζn, 1) for some ζn+1). There
exists 1 ≤ k ≤ n such that (ζ, ζ′) = (ζk, ζk−1).

Set ξj := ζj + 2 for all j. By construction, the rays issued from 1 through
ζ−1, ζ0, . . . , ζn−1, ζn, ξn+1, ξn, . . . , ξ1, ξ0, ζ−1 (in that cyclic order) divide C clock-
wise into angular sectors whose measures are less than π and add up to 2π
(these 2n+ 4 rays realize the link of the vertex 1 in the cusp triangulation, see
Figure 11). Comparing the angles at 1 and at −1, and denoting segments ǫ of
the cusp link by their endpoints (and their complex arguments by Dǫ), we see
immediately that D−1ζk+1

−D−1ζk
= Dζk1 −Dζk−11. Therefore,

(19) A+ C = D−1ζk
+Dζk−11 = D−1ζk+1

+Dζk1 = · · · = D−1ζj
+Dζj−11

(for all 0 ≤ j ≤ n+1). Since the triangles ζ0ζ−11 and ξ01ζ−1 are counterclock-
wise oriented (and ξ0 = ζ0 + 2), we have Im(ζ−1) < Im(1) i.e. Im(ζ−1) < 0.
Similarly, ζn1ξn+1 and ξnξn+11 are counterclockwise oriented, so Im(ξn+1) > 0.
So there exists 0 ≤ j ≤ n+1 such that Im(ζj−1) < 0 and Im(ζj) ≥ 0. This im-
plies D−1ζj

∈ (0, π) and Dζj−11 ∈ [0, π). By (19), this implies A+C ∈ (0, 2π).
Theorem 9.1 is proved. q.e.d.

In [GF], we studied punctured-torus bundles over the circle by indexing the
tetrahedra ∆i in Z/mZ (instead of Z): note that the proof of Theorem 9.1
applies without alteration to that context.

10. Generalizations

In this section, we extend all the previous results to punctured-torus groups
with rational pleatings and/or infinite ends. By an admissible lamination λ,
we mean any of the following objects:

• An ordered pair (up to sign) λ = ±(α, β) ∈ R∗2/± such that β/α is
irrational;
• An ordered pair λ = ±(θα, θβ) where α, β ∈ Z are coprime and 0 < θ < π

(we call θ the weight of λ and write |λ| = θ);
• An ordered pair λ = ±(πα, πβ) where α, β ∈ Z are coprime (we call π

the weight of λ and write |λ| = π);
• A real projective class λ = {(µα, µβ) | µ 6= 0} where β/α is irrational.

The slope of the admissible lamination is the number s(λ) = β/α ∈ P1R.
Each end ω of a punctured-torus group can be associated a unique (ending or
pleating) admissible lamination: the four cases above correspond respectively
to ω being

• Finite, with irrational pleating lamination;
• Finite, with rational pleating lamination and pleating angle θ;
• Finite, with a rational ending lamination (an accidental cusp);
• Infinite, with an irrational ending lamination (see [B1] and Section 3 of

[Min] for a definition).

Theorem 10.1. Let λ+, λ− be admissible laminations of distinct slopes.
There exists a punctured-torus group Γ with ending and/or pleating laminations
λ±, and the interior V of the convex core of H3/Γ has an ideal decomposition
D = DComb into polyhedral cells (of positive volume) whose combinatorics are
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given by λ± in the following sense: if Λ is the line from s(λ−) to s(λ+) across
the Farey diagram in H2, then

i – If s(λ+) and s(λ−) are irrational, D consists of ideal tetrahedra (∆i)i∈Z

in natural bijection with the Farey edges crossed by Λ, as in Section 1.
ii – If only s(λ+) is rational and |λ+| < π, then D has one ideal tetrahe-

dron per Farey edge crossed by D, and one cell T whose interior is
non-contractible, homeomorphic to a solid torus: ∂1 = ∂T ∩ ∂V is a
punctured torus pleated along a simple closed curve of slope s(λ+), and
∂2 = ∂T r ∂V is a punctured torus pleated along the ideal triangulation
associated to the Farey triangle with vertex s(λ+) crossed by Λ. Finally,
∂1 ∩ ∂2 is a line from the puncture to itself of slope s(λ+). See the left
panel of Figure 12.

iii – If only s(λ+) is rational and |λ+| = π, all the statements of the previous
case apply, except that ∂1 = ∂T ∩ ∂V becomes a thrice-punctured sphere
(the simple closed curve of slope s(λ+) has been “pinched” to become a
cusp): see the right panel of Figure 12.

iv – If only s(λ−) is rational, the situation is similar to the two previous
cases, exchanging λ− and λ+.

v – If s(λ+), s(λ−) are rationals but not Farey neighbors, the situation is
again similar, with two solid torus cells T+ and T−.

vi – If s(λ+), s(λ−) are Farey neighbors, D only consists of two solid tori T+

and T− as above, glued along a punctured torus S pleated along only two
lines from the cusp to itself, of slopes s(λ+) and s(λ−).

Moreover, D agrees with the geometrically canonical decomposition DGeom of
V given by the Epstein-Penner convex hull construction.

Note that the combinatorics of DGeom does not depend on the nature (finite
or infinite) of the ends of H3/Γ. At this point, we have treated the case of two
irrational pleatings (finite ends). We proceed to prove the remaining cases of
Theorem 10.1.

(θ < π) (θ = π)

∂1 ∩ ∂2
∂1 ∩ ∂2

Figure 12. Toric cells: the exterior dihedral angle θ is the
weight |λ±|. Shaded faces are identified, as well as edges car-
rying identical arrows.

10-A. One rational pleating. We focus on the case of two finite ends, with
only β+/α+ rational. We can choose to end the word Ω ∈ {R,L}Z with an
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infinite suffix LRR...R... (or of RLL...L...: that is an arbitrary choice) and
proceed from Section 1 onward. We shall assume that i = 0 is the greatest
hinge index. Sections 2 through 3-A are unchanged: the sequence (wi) is just
concave (thus convergent and non-decreasing) on N. In Subsection 3-B, we
find that the sequence (φ+

i ) is constant on N, equal to some positive real.
By (9), this real is the weight θ of the rational lamination λ+, so we assume
θ < π. Section 4 goes through essentially unchanged: by the computation of
Sublemma 4.2 (and with the same notation), the sum of the volumes of all
tetrahedra ∆i for i ≥ 2n is at most

∑

k>n

Σ2k

2k−1 ≤
∑

k>n

2−k[1 + (2k − 1) log 2] = O(2−n/2).

Therefore the volume functional V is bounded, continuous for the product
topology, and concave. We can find a maximizer w of V , and it still satisfies
Propositions 4.4 and 4.5: in particular, all tetrahedra ∆i for i > 0 have positive
angles.

Something new is required in Section 5: we must prove that limi→+∞ wi = θ.
The {wi}i≥2 contribute only to the angles of the {∆i}i≥1, which are positive:
so the volume V is critical with respect to each wi for i ≥ 2. By Sublemma 6 of
[GF], it follows that the cusp triangles of the {∆i}i≥1 fit together correctly and
can be drawn in the Euclidean plane C. More precisely, there exists a sequence
of complex numbers (ζi)i≥0 such that for all i ≥ 1, the triangles contributed
by ∆i have vertices at (−1, ζi, ζi−1) and (1, ζi, ζi+1) (Figure 13, left). These
triangles being similar, we have (ζi + 1)(ζi+1 − 1) = (ζi−1 + 1)(ζi − 1) = ... =
(ζ0 + 1)(ζ1 − 1), hence

ζi+1 =
ζi + κ

ζi + 1
=: ϕ(ζi)

for some complex number κ 6= 1 independent of i. Observe that the complex
length ℓ of the hyperbolic isometry (extending) ϕ satisfies cosh ℓ = 1+κ

1−κ . In the
end, ϕ will be a lift of the loop along the rational pleating line of the convex
core.

Proposition 10.2. The number κ lies in the real interval (0, 1).

Proof. Let Zi be the (u 7→u±2)-invariant broken line (. . . ,−1, ζi−1, ζi, 1, . . . )
contributed by the pleated surface Si. First, κ is real: if not, the ζi have a limit
in C r R (a square root of κ), so wi −wi−1 (the angle of Zi at 1) cannot go to
0. If κ < 0, then ϕ is a pure rotation: the ζi all belong to a circle of the lower
half-plane, which also contradicts wi −wi−1 → 0. If κ > 1, then ϕ is a gliding
axial symmetry of H3: the ζi go to ±√κ and belong alternatively to the upper
and lower half-plane, so Zi has self-intersection for large i. If κ = 0, then ϕ
is a parabolic transformation fixing 0: the ζi go to 0 along a circle tangent to

R, and one can see that wi = ζ̂iζi+11 goes to π > lim+∞ φ+ = θ. The only
remaining possibility is κ ∈ (0, 1), where ϕ is a pure translation. q.e.d.

Thus, the ζi lie on a circle arc C of the lower half-plane which meets the real
line at ±√κ, and lim+∞ ζi =

√
κ. We denote by θ∗ the angle between C and

the segment [−√κ,√κ] (more precisely, the angle between their half-tangents
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at
√
κ). It is easy to see that

θ∗ = lim
i→+∞

wi

(see Figure 13). Hence, θ∗ ≤ θ.

−1

1

1−√κ √
κ

C ζ0

ζ1

ζ2

f(ζ0)

f(ζ1)

f(ζ2)

0 ρ

Figure 13. All marked angles (grey) are π − θ∗, and ζj+1 =

ϕ(ζj) =
ζj+κ
ζj+1 .

Proposition 10.3. One has θ∗ = θ.

Proof. First, it is easy to check that any data 0 ≤ w0 < w1 < θ∗ < π
smoothly determines a unique pair of complex numbers ζ0, ζ1 such that:

i – the broken line Z1 = (. . . ,−1, ζ0, ζ1, 1, . . . ) has angles (w0,−w1, w1−w0)
as in (2) above;

ii – the number κ such that ζ1 = ζ0+κ
ζ0+1 lies in (0, 1);

iii – the circle through ζ0 and ζ1 centered on the imaginary axis intersects the
real axis at an angle θ∗.

These ζ0, ζ1 in turn define all {ζj}j≥2 via ζj+1 = ϕ(ζj) =
ζj+κ
ζj+1 , and

we can read off the angle wj = ̂1ζj+1ζj ≤ θ∗ and construct the associated
ideal tetrahedron ∆j . In what follows, we investigate the shape of the space
U :=

⋃
j≥1 ∆j , whose boundary (the punctured torus S1) has pleating angles

(w0,−w1, w1 − w0) (see (2) above).

Define f(ζ) := ζ+
√
κ

ζ−√
κ
, so that f(ϕ(ζ)) = ρf(ζ) where ρ := 1+

√
κ

1−√
κ
. The hyper-

bolic convex hull of (∞, 1, ζj , ζj+1) is isometric to the tetrahedron ∆j : pushing
forward by f , we obtain a tetrahedron ∆′

j , isometric to ∆j , with vertices

(1, ρ, ρjf(ζ0), ρ
j+1f(ζ0)) (Figure 13, right). Moreover, all the f(ζj) = ρjf(ζ0)

lie on the half-line ei(π−θ
∗)R+. By reasoning in a fundamental domain of the

loxodromy Φ : u 7→ ρu, it is then easy to see that U has the same volume as
D := D1∪D2, where D1, D2 are ideal tetrahedra of vertices (∞, f(ζ1), 1, ρ) and
(∞, f(ζ1), 1, f(ζ0)) respectively. Moreover, Φ identifies the faces (∞, 1, f(ζ0))
and (∞, ρ, f(ζ1)) of D, so that D/Φ is a manifold with polyhedral boundary,
homeomorphic to a solid torus, with interior dihedral angles

(π − w1, π + w0,
w1 − w0

2
,
w1 − w0

2
, π − θ∗).
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The edge of D/Φ with dihedral angle π − θ∗ is a simple closed curve of length
log ρ, toward which D1, D2 spiral. A picture of D/Φ is obtained by replacing
θ with θ∗ in the left panel of Figure 12.

Using the smooth dependence on θ∗ (and fixing w0, w1), the Schläfli volume
formula then gives ∂V(D/Φ)/∂θ∗ = 1

2 log ρ > 0: so D/Φ (and therefore U)
has largest volume when θ∗ is largest. Regard the {wj}j≤1 as fixed, and
the {wj}j≥2 as unknowns: then (w2, w3, . . . ) is clearly the solution to the
maximization problem for the volume of U (with fixed pleating angles on S1).
Therefore, the wi will choose the largest possible limit θ∗ at +∞, namely
θ∗ = θ. q.e.d.

The above proof does more than determining lim+∞wj : as in Sections 5-8, it
gives a full description of U =

⋃
j≥1 ∆j and of its boundary (whose pleating on

the outer side turns out to be λ+). Here is, however, an important observation:

Observation 10.4. Proposition 9.4 above, “A + C > 0”, does not hold
for the family of pleated surfaces (Si)i≥0. Instead, we have A + C = 0. This

simply means that
−−−→−1, ζi and

−−−−→
ζi+1, 1 make opposite angles with the real line.

Indeed, (ζi + 1)(1− ζi+1) = 1− κ2 is a positive real.

We can now establish

Proposition 10.5. All the (strict) inequalities of (11) are true.

Proof. This is Proposition 4.6 (in the new context where β+/α+ is rational).
The proof is the same, with the following caveat: in ruling out wj = 0 for j
hinge, we call upon [GF] (especially Lemma 16 and the argument of Section 9
there). The strategy is to assume wj = 0, and then perturb w to a well-chosen
wε so as to make the volume increase: ∂V/∂ε > 0. The latter inequality holds
essentially because the inequality of Proposition 9.4 (“A + C > 0”) is true,
both in the Rn-word preceding j and in the Lm-word following j. (Note: in
Section 9 of [GF], the inequality “A+C > 0” is formulated in terms of lengths
and takes the guise “Q < P +T ”.) More exactly, ∂V/∂ε will be positive when
at least one of the two instances of “A+C ≥ 0” is strict. But it is always strict,
except in a single case (the infinite suffix LRR...R...): so we can conclude.
q.e.d.

As a result, all the tetrahedra ∆i have positive angles and fit together cor-
rectly: Sections 5-8 carry through for the λ−-end, and

⋃
i∈Z

∆i is the interior of
the convex core of a quasifuchsian punctured-torus group, with the prescribed
pleatings λ±.

The results of Section 9 extend readily: the only modification is that tetra-
hedra (∆i)i≥0 lift to a family of coplanar cells in Minkowski space, because the
key inequality of Proposition 9.4 has become an equality. Therefore the geo-
metrically canonical decomposition of the interior of the convex core contains
the non-contractible cell D/Φ (Figure 12, left).

10-B. Two rational pleatings. When both β+/α+ and β−/α− are rational,
the encoding word Ω ∈ {R,L}Z can be chosen with an infinite prefix ...R...RRL
and an infinite suffix LRR...R... We apply the same argument as above to both
ends simultaneously. Again, Proposition 10.5 holds because no hinge index j
belongs both to the prefix and to the suffix.
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If the rational pleating slopes s(λ±) are not Farey neighbors, we can convert
the prefix to ...LLR and/or the suffix to RLL..., obtaining different triangula-
tions of (the interior of) the convex core of the same quasifuchsian group.

If s(λ+), s(λ−) are Farey neighbors, then Ω = ...RRLRR... (observe that
prefix and suffix overlap, so the two word conversions do not commute). If
the indices i before and after the central L are 0 and 1, we obtain w0 = w1

by applying Observation 10.4 to prefix and suffix. In other words, the points
a, b, c in Figure 14 (left) are collinear. It is therefore possible to triangulate
the same convex core according to a word Ω = ...LLLRRR..., provided that
we allow the hinge tetrahedron ∆0 to become flat (black in Figure 14, right).
In any case, the sequence (wi)i∈Z maximizes the total volume.

...RRLRR... ...LLLRRR...

a

b

c

Figure 14. Two triangulations seen against the same limit
set.

10-C. Pinching. The case where one (or both) of the pleatings λ± has weight
π is a straightforward limit case of Subsections 10-A and 10-B (the term “pinch-
ing” refers to the fact that the pleating curve becomes shorter and shorter, and
eventually turns into a cusp as the pleating angle reaches π).

Suppose |λ+| = π (note that the conditions of (11) involving φ+ become
vacuous, because φ+ ≥ π). Subsection 10-A carries through with θ = π and
κ = 0. The circle arc C of Figure 13 becomes a full circle, tangent to R at
0. The analysis of Proposition 10.3 (existence and uniqueness of ζ0, ζ1 ∈ C)
extends smoothly to θ∗ = π. One then finds that the tetrahedron with vertices
(∞, 1, ζj , ζj+1) is sent by f : u 7→ 1/u to a tetrahedron ∆′

j of H3, isometric to

∆j , with vertices (0, 1, τ + j, τ + j+1) for a certain τ ∈ C independent of j (in
the right panel of Figure 13, the grey bounding rays are replaced by parallel
lines). It is straightforward to check that

⋃
j≥1 ∆j is the solid torus pictured

in Figure 12 (right), and the Schläfli formula again implies that θ∗ = π realizes
the maximum volume.

After Proposition 10.3, the argument is unchanged.

10-D. Infinite ends. By [Min], quasifuchsian groups are dense in the set of
all discrete, faithful, type-preserving representations of π1(S) → Isom+(H3).
In fact, a geometrically infinite end of such a representation comes with an
ending lamination, namely an irrational projective measured lamination which
should be thought of as an “infinitely strong pleating”. In this section we will
assume β+/α+ /∈ P1Q and consider wT , the solution of the volume maximiza-
tion problem for (φ−, Tφ+), where T > 0 (namely, w is subject to conditions
(11), where φ+ is replaced by Tφ+; and Table (3) still expresses xi, yi, zi).

In a discrete, type-preserving representation of a surface group, each com-
pact measured lamination λ on the surface receives a length, which can be
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computed by measuring the (weighted) lengths of weighted curves converging
to λ. It is known [Br] that the lengths of the pleating laminations of a quasi-
fuchsian group are bounded by a constant depending only on the underlying
surface (here the punctured torus). By Thurston’s double limit theorem (The-
orems 4.1 and 6.3 of [Th]; see also [Ot]), the space of discrete, type-preserving
representations in which two fixed measured laminations have length bounded
by a given constant is compact. Therefore, up to taking a subsequence, the
groups ΓT corresponding to wT converge algebraically to a certain Γ. By Theo-
rem A of [Min], H3/Γ is homeomorphic to S×R and must have an infinite end
(otherwise, Γ would be quasifuchsian and the volumes would stay bounded).

Proposition 10.6. The λ−-end of H3/Γ is finite, with pleating lamination
λ−. The λ+-end is infinite, and its ending lamination is the projective class
of λ+.

Proof. By [B2] (Theorem D), the space of type-preserving representations
of the abstract group Γ is smoothly (in fact, holomorphically) parametrized by
the data (τ, ω) of a point τ of Teichmüller space T , and a transverse R/2πZ-
valued cocycle relative to a fixed topological lamination µ (such cocycles include
pleating measures as special cases). Taking for µ the support of λ−, we see that
the moduli of the λ−-boundaries of the convex cores of the ΓT must converge in
T . Therefore, H3/Γ contains a locally convex pleated surface H with pleating
λ−, which must be a boundary component of the convex core (∂H contains all
parabolic fixed points).

The λ+-end of H3/Γ must therefore be infinite. The parabolic fixed points
of the limit group Γ determine a version of Figure 4 (a Euclidean cusp link),
and therefore a family of non-negative angle assignments for the tetrahedra
∆i. By algebraic convergence, the wT converge to w in the product topology.
For any i ≤ j, the total volume of ∆i−1,∆i, . . . ,∆j ,∆j+1 is maximal with
respect to wi, . . . , wj : in particular, Propositions 4.4 and 4.5 are still true.
The techniques of [GF] (Lemma 16 and Section 9 there) show that all ∆i have
positive angles, and Proposition 9.4, hence also Lemma 9.2, still hold: {∆i}i∈Z

is the geometrically canonical decomposition of H3/Γ. In particular, the family
of all edges of all tetrahedra {∆i}i≥0 forms a sequence of laminations which
exits H3/Γ: therefore the projective class of λ+ is the end invariant. q.e.d.

The case of two infinite ends is already treated in [Ak]. Theorem 10.1 is
proved.

10-E. The Pleating Lamination Theorem for punctured-torus groups.

Proposition 10.7. The group Γ constructed at the end of Section 4 is
continuously parametrized by (λ+, λ−).

Proof. Our first observation is that if β+/α+ is rational, the initial choice
of infinite prefix/suffix in Subsection 10-A does not change the resulting group
Γ: it just induces different triangulations of the toric piece of Figure 12, whose
deformation space is still the same.

Define the open set

U := R2 r
⋃

m,n∈Z

[π,+∞) · {(m,n)}
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(note that 0 /∈ U). An admissible pleating lamination λ can be identified with
an element ±(α, β) of U/±. Suppose (α+

n , β
+
n ) → (α+, β+) and (α−

n , β
−
n ) →

(α−, β−) in U , and define the oriented line Λn from β−
n /α

−
n to β+

n /α
+
n across

the Farey diagram. Also define the associated functions φ±,n as in (9), domains
Wn as in Definition 3.4, and solutions (wni )i∈Z to the volume maximization
problem over Wn. If β+/α+ is rational, we may assume (up to restricting
to two subsequences) that the (α+

n , β
+
n ) converge to (α+, β+) in the clockwise

direction for the natural orientation of P1R. We also make a similar assumption
for β−/α−.

A priori, the sequences (wni )i∈Z are defined only up to a shift of the index i.
However, we can choose these shifts in a consistent way: there exists a Farey
edge e which is crossed by all the lines Λn for n large enough, so we decide
that wn0 always lives on e (namely, en0 = e). By compactness of [0, π]Z, some
subsequence of (wn)n∈N converges to some w∗ in the product topology. It is
enough to show that w∗ = w: indeed, the group Γ is completely determined
by the shapes of a finite number of tetrahedra ∆i.

The main observation is that the words Ωn ∈ {R,L}Z converge pointwise to
Ω, and φ±,n → φ± (pointwise in RZ), by definition (9). Therefore, w∗ belongs
to the space W , hence the volume inequality V(w∗) ≤ V(w). Since maxW V
is achieved at a unique point (the volume is a strictly concave function), it is
enough to prove the reverse inequality. We proceed by contradiction.

Suppose V(w∗) < V(w). There exist integers m < 0 < M such that the
tetrahedra {∆i}m<i<M defined by w have total volume larger than V(w∗). If
we can extend (wi)m≤i≤M to a sequence (vi)i∈Z of Wn for large enough n, we
will obtain a contradiction.

By Corollary 5.2, we can assume wm

φ−

m

> wm+1

φ−

m+1

and wM

φ−

M

> wM−1

φ−

M−1

. Since w

satisfies (11) (strong inequalities), for n large enough, the restricted sequence
(wm, . . . , wM ) satisfies the corresponding inequalities defining Wn, by conver-
gence of the φ±,n. Pick such a large n and define

vi :=





φ−,ni
wm

φ−,n
m

if i ≤ m ;

wi if m ≤ i ≤M ;

φ+,n
i

wM

φ+,n

M

if M ≤ i .

If n is large enough, it is straightforward to check that (vi)i∈Z belongs to Wn.
q.e.d.

Corollary 10.8. (C. Series) A quasifuchsian punctured-torus group Γ is
determined up to conjugacy in Isom(H3) by its pleating measures λ±.

Proof. We will use the well-known fact that the space QF of quasifuchsian,
non-fuchsian (punctured-torus) groups is a connected real manifold of dimen-
sion 4. Recall the open set U from the proof of Proposition 10.7, and consider
the map

f : U × U −→ QF
defined by the construction of the group Γ (end of Section 4). We know that f
is well-defined and injective (Theorem 1.1), and continuous (Proposition 10.7).
Since U2 has dimension 4, the theorem of domain invariance states that the
image Im(f) is open. It remains to show that Im(f) is closed.
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Consider pairs (λ+
n , λ

−
n ) such that the corresponding groups Γn = f(λ+

n , λ
−
n )

converge to some Γ in QF . The function which to a group associates its pleat-
ings is continuous (see [KS]), so the λ±n converge to some λ± in U . Proposition
10.7 then implies that Γ = f(λ+, λ−). q.e.d.

Theorem 0.1 now follows from Theorem 10.1.
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