The geometry of Flag manifolds I SRNI 45th School

Olivier Guichard

January 2025

The slides are available at https://irma.math.unistra.fr/~guichard/srni

The linear algebra exercise of the day

Let V be a real vector space of dimension 4n + 2 (n is an integer) equipped with a quadratic form q of signature (2n + 1, 2n + 1). Let E and F be two maximal isotropic subspaces of V. This means that q(v) = 0 for every $v \in E \cup F$ and dim $E = \dim F = 2n + 1$.

There exists thus an element g in the orthogonal group O(V,q) such that g(E) = F (Witt's theorem).

Exercise

If E and F are transverse (that is, if $E \cap F = \{0\}$), then $g \notin SO(q)$ (that is, det(g) = -1).

Lie algebra setting

G a semisimple Lie group ; \mathfrak{g} its Lie algebra. For example, $G = \mathcal{O}(p, p+k)$ is the orthogonal group of a quadratic form q of signature (p, p+k) [p and k are positive integers]. For definiteness we will realize $\mathcal{O}(p, p+k)$ as a subgroup of $\mathrm{GL}_{2p+k}(\mathbf{R})$ and q will be the form

$$q(x_1, \dots, x_{2p+k}) = 2\sum_{i=1}^{p} (-1)^{i+p} x_i x_{2p+k+1-i} - \sum_{i=1}^{k} x_{p+i}^2.$$

K is a maximal compact subgroup of G ; $\mathfrak k$ its Lie algebra. One can take $K=G\cap \mathrm{O}(2p+k).$

A Cartan subspace \mathfrak{a} is a maximal (Abelian) subalgebra orthogonal to \mathfrak{k} with respect to the Killing form.

One can take \mathfrak{a} to be the space of matrices of the form $\operatorname{diag}(\lambda_1, \ldots, \lambda_p, 0, \ldots, 0, -\lambda_p, \ldots, -\lambda_1), \ (\lambda_1, \ldots, \lambda_p) \in \mathbf{R}^p$ Lie algebra setting (continued)

For $\beta \in \mathfrak{a}^*$, set $\mathfrak{g}_{\beta} = \{X \in \mathfrak{g} \mid [A, X] = \beta(A)X, \forall A \in \mathfrak{a}\}$ and $\Sigma = \{\beta \in \mathfrak{a}^* \smallsetminus \{0\} \mid \mathfrak{g}_{\beta} \neq 0\}$. The maps $\varepsilon_i \colon \mathfrak{a} \to \mathbb{R}$ [*i* varies from 1 to *p*] defined by $\varepsilon_i(\operatorname{diag}(\lambda_1, \dots, \lambda_p, 0, \dots, 0, -\lambda_p, \dots, -\lambda_1)) = \lambda_i$ are linear and form a basis of \mathfrak{a}^* . the roots are the $\pm \varepsilon_i \pm \varepsilon_j$ (for i < j) and the $\pm \varepsilon_i$.

Choosing $<_{\mathfrak{a}^*}$ a total linear ordering (the lexicographic order), one defines $\Sigma^+ = \{\alpha \in \Sigma \mid 0 <_{\mathfrak{a}^*} \alpha\}$ the positive roots. Here $\varepsilon_i \pm \varepsilon_j, i < j$ and $+\varepsilon_i$.

Let α belongs to Σ^+ , when there are β, γ in Σ^+ such that $\alpha = \beta + \gamma$, one has $\mathfrak{g}_{\alpha} = [\mathfrak{g}_{\beta}, \mathfrak{g}_{\gamma}]$ and the root α is called *decomposable*, it is called *simple* otherwise. The simple roots are $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$ and $\alpha_p = \varepsilon_p$.

Denote $\Delta \subset \Sigma^+$ the set of simple roots. Every positive root decomposes $\beta = \sum_{\Delta} n_{\alpha} \alpha$ where $n_{\alpha} \ge 0$.

The Weyl group

It is the automorphism group W of $\Sigma \subset \mathfrak{a}^*$. It is the group of signed permutation matrices, isomorphic to $\{\pm 1\}^p \rtimes S_p$. For each α in Σ there is a unique hyperplane reflection contained in W such that $s_{\alpha}(\alpha) = -\alpha$. $s_i = s_{\alpha_i}$, s_p changes the sign of the last coordinate and s_i exchanges the coordinates in the indices i and i + 1.

W is generated by $\{s_{\alpha}\}_{\alpha \in \Delta}$. There is a unique element w_{\max} of W sending Σ^+ to $\Sigma^- = -\Sigma^+ = \Sigma \smallsetminus \Sigma^+$. It is the longest length element. $w_{\max} = -$ Id.

The map $\iota: \alpha \mapsto -w_{\max}(\alpha)$ sends Σ^+ to Σ^+ and Δ to Δ . It is called the *opposition involution*. The opposition involution is trivial.

W is isomorphic to $N_K(\mathfrak{a})/Z_K(\mathfrak{a})$. For w in W, we will sometimes denote \dot{w} a representative of w in $N_K(\mathfrak{a})$.

\mathfrak{sl}_2 -triples, fundamental weights

Those are triples (x, y, h) in \mathfrak{g} such that [x, y] = h, [h, x] = 2xFor example $x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ in $\mathfrak{sl}_2(\mathbf{R})$.

For all α in Δ we will choose an \mathfrak{sl}_2 -triple $(x_\alpha, x_{-\alpha}, h_\alpha)$ with $x_{\pm \alpha} \in \mathfrak{g}_{\pm \alpha}$. If i < p, one can set $x_i = E_{i,i+1} + E_{2p+k-i,2p+k+1-i}$ and $x_{-i} = {}^t x_i$, and $x_p = E_{p,p+1} + E_{p+1,p+k+1}$, $x_{-p} = {}^t x_p$.

The element h_{α} does not depends on the choices. The family $\{h_{\alpha}\}_{\alpha\in\Delta}$ is a basis of \mathfrak{a} . The dual basis $\{\omega_{\alpha}\}_{\alpha\in\Delta}$ of \mathfrak{a}^* is called the *fundamental weights*. $\omega_i = \varepsilon_1 + \cdots + \varepsilon_i$.

Let exp: $\mathfrak{g} \to G$ be the exponential. For every α , one can choose $\dot{s}_{\alpha} = \exp(\pi/2(x_{\alpha} - x_{-\alpha}))$ to represent in $N_K(\mathfrak{a})$ the element s_{α} .

Parabolic subgroups, flag manifolds

- The subspace $\mathfrak{u}_{\Delta} = \sum_{\beta \in \Sigma^+} \mathfrak{g}_{\beta}$ is a nilpotent subalgebra generated by $\bigcup_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$. Similarly $\mathfrak{u}_{\Delta}^{opp} = \sum_{\beta \in \Sigma^+} \mathfrak{g}_{-\beta}$.
- For every $\Theta \subset \Delta$ we let \mathfrak{u}_{Θ} to be the ideal of \mathfrak{u}_{Δ} generated by $\bigcup_{\alpha \in \Theta} \mathfrak{g}_{\alpha}$. One has $\mathfrak{u}_{\Theta} = \sum_{\alpha \in \Sigma^+ \smallsetminus \text{Span}(\Delta \smallsetminus \Theta)} \mathfrak{g}_{\alpha}$. Similarly set $\mathfrak{u}_{\Theta}^{\text{opp}} = \sum_{\alpha \in \Sigma^+ \smallsetminus \text{Span}(\Delta \smallsetminus \Theta)} \mathfrak{g}_{-\alpha}$.
- The standard parabolic subgroups are $P_{\Theta} = N_G(\mathfrak{u}_{\Theta}),$ $P_{\Theta}^{\mathrm{opp}} = N_G(\mathfrak{u}_{\Theta}^{\mathrm{opp}}).$
- The unipotent radical of P_{Θ} (resp. P_{Θ}^{opp}) is $U_{\Theta} = \exp(\mathfrak{u}_{\Theta})$ (resp. $U_{\Theta}^{\text{opp}} = \exp(\mathfrak{u}_{\Theta}^{\text{opp}})$).
- $L_{\Theta} = P_{\Theta} \cap P_{\Theta}^{\text{opp}}$ is called a *Levi factor*. One has $P_{\Theta} = U_{\Theta} \rtimes L_{\Theta}$.
- \mathcal{F}_{Θ} is the space of parabolic groups conjugated to P_{Θ} ; $\mathcal{F}_{\Theta}^{\text{opp}}$ is the space of parabolic groups conjugated to P_{Θ}^{opp} . As P_{Θ}^{opp} is conjugated to P_{Θ} (by \dot{w}_{max}), $\mathcal{F}_{\iota(\Theta)} = \mathcal{F}_{\Theta}^{\text{opp}}$.
- As $P_{\Theta} = N_G(P_{\Theta}), \ \mathcal{F}_{\Theta} \simeq G/P_{\Theta}.$

Parabolic subgroups (continued)

For all $i \leq p$, P_i (resp. P_i^{opp}) is the stabilizer of the (isotropic) *i*-dimensional space generated by the *i* first (resp. last) basis vectors.

 $\mathcal{F}_i = \mathcal{F}_i^{\mathrm{opp}}$ is naturally isomorphic to the space of isotropic i-planes.

More generally, $\mathcal{F}_{i_1 < \cdots < i_{\ell}}$ is the space of partial flags $(E_1 \subset \cdots \subset E_{\ell})$ with dim $E_m = i_m$ and E_{ℓ} isotropic.

A pair (P, Q) of parabolic subgroups is *transverse* if it is conjugated to $(P_{\Theta}, P_{\Theta}^{\text{opp}})$. This is equivalent to $P \cap Q$ being reductive.

Two isotropic *i*-dimensional space E and F in \mathcal{F}_i are transverse if and only if they are ... transverse! that is $E^{\perp_q} \cap F = 0$.

Lemma

The map $\mathfrak{u}_{\Theta}^{\mathrm{opp}} \to \mathcal{F}_{\Theta} \mid X \mapsto \exp(X) \cdot P_{\Theta}$ is one-to-one onto the space of elements transverse to $P_{\Theta}^{\mathrm{opp}}$

Embeddings into projective space

Let $\eta = \sum_{\Delta} k_{\alpha} \omega_{\alpha}$ be a dominant weight and let $\tau : G \to \operatorname{GL}(V)$ be the associated irreducible representation. If $\eta = \omega_i$ take $V = \bigwedge^i \mathbf{R}^{2p+k}$.

We denote by V_{η} the eigenspace of \mathfrak{a} (with respect to τ) relative to the eigenvalue η . This is a line in V. Denote by V_{η}° the \mathfrak{a} -invariant supplementary hyperplane.

Lemma

Let $\Theta = \{ \alpha \in \Delta \mid k_{\alpha} = 0 \}$. Then the stabilizer of V_{η} in G is P_{Θ} , the stabilizer of V_{η}° is P_{Θ}^{opp} .

We can therefore build (one-to-one) maps

$$i_{\Theta} \colon \mathcal{F}_{\Theta} \longrightarrow \mathbb{P}(V) \mid g \cdot P_{\Theta} \longmapsto \tau(g) \cdot V_{\eta}$$
$$i_{\Theta}^{\mathrm{opp}} \colon \mathcal{F}_{\Theta}^{\mathrm{opp}} \longrightarrow \mathbb{P}^{*}(V) \mid g \cdot P_{\Theta}^{\mathrm{opp}} \longmapsto \tau(g) \cdot V_{\eta}^{\circ}$$

Lemma

 $(P,Q) \in \mathcal{F}_{\Theta} \times \mathcal{F}_{\Theta}^{\mathrm{opp}}$ are transverse if and only if $(i_{\Theta}(P), i_{\Theta}^{\mathrm{opp}}(Q)) \in \mathbb{P}(V) \times \mathbb{P}^{*}(V)$ are transverse.