The geometry of Flag manifolds II SRNI 45th School

Olivier Guichard

January 2025

The slides are still available at https://irma.math.unistra.fr/~guichard/srni

The linear algebra exercise of the day

Let $V = \text{Sym}^{d-1} \mathbb{R}^2 \simeq \mathbb{R}_{d-1}[X, Y]$ be the space of homogenous polynomials in 2 variables.

V has a natural basis
$$e_i = Y^{i-1}X^{d-i}$$
 $(i = 1, \dots, d)$.

V and V^{*} bear a natural action of $SL_2(\mathbf{R})$.

Exercise

$$t \mapsto \left\langle \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \cdot e_1^*, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot e_1 \right\rangle$$
 is a non zero multiple of $t \mapsto t^d$.

The cross-ratio on the projective line, the collar lemma

The cross-ratio on the projective line $\mathbb{P}^1(\mathbf{R}) = \mathbf{R} \cup \{\infty\}$ is defined by the formula $[x, y, X, Y] = \frac{X - x}{X - y} \frac{Y - y}{Y - x}$ The normalization is so that $[\infty, 0, 1, t] = t$. This means that [x, y, X, Y] belongs to [0, 1] if Y is between y and X, $[x, y, X, Y] \ge 1$ if Y is between X and x, etc.

Let M be a complete hyperbolic surface. Let α , β be intersecting geodesics on M and $\ell(\alpha)$, $\ell(\beta)$ their lengths.

Theorem (Collar lemma)

$$\frac{1}{\exp(\ell(\alpha))} + \frac{1}{\exp(\ell(\beta))} \le 1.$$

Collar lemma (the proof)

[Two nice drawings should go here]

Let A and B in $SL_2(\mathbf{R})$ be the holonomies of α and β respectively. Those are diagonalizable and thus admit attracting a^+, b^+ and repelling a^-, b^- fixed points in $\mathbb{P}^1(\mathbf{R})$.

The relation between the length and the cross-ratio is the following $\exp(\ell(\alpha)) = [a^+, a^-, x, A(x)]$

Magical relation $[a^-, b^+, a^+, A(b^+)] + [a^-, a^+, b^+, A(b^+)] = 1.$

One has $[a^-, a^+, b^+, A(b^+)] = \exp(-\ell(\beta)).$

$$\begin{split} [a^-, b^+, a^+, A(b^+)] &= [a^-, b^-, a^+, A(b^+)][b^-, b^+, a^+, A(b^+)] \\ &\geq [b^-, b^+, a^+, B(a^+)][b^-, b^+, B(a^+), A(b^+)] \\ &\geq [b^-, b^+, a^+, B(a^+)] = \exp(-\ell(\beta)) \end{split}$$

Projective cross-ratios

V a real vector space On $\mathcal{O}_V = \{(x, y, X, Y) \in \mathbb{P}(V)^2 \times \mathbb{P}^*(V)^2 \mid X \pitchfork y \text{ and } Y \pitchfork x\},\$ we define

$$b_V(x, y, X, Y) = \frac{\langle \dot{X}, \dot{x} \rangle}{\langle \dot{X}, \dot{y} \rangle} \frac{\langle \dot{Y}, \dot{y} \rangle}{\langle \dot{Y}, \dot{x} \rangle}$$

Cocycle relations $b_V(x, y, X, Y)b_V(y, z, X, Y) = b_V(x, z, X, Y)$

For a loxodromic element $A \in \operatorname{GL}(V)$, $b_V(a^+, a^-, X, A \cdot X) = \lambda_{\max}(A) / \lambda_{\min}(A)$

Symplectic interpretation

Let ω^V be the natural symplectic form on $V \times V^* = T^*V$. The map $\mu \colon V \times V^* \to \mathbf{R} \mid (v, \varphi) \mapsto \langle \varphi, v \rangle$ is a moment for the \mathbf{R}^* -action $\lambda \cdot (v, \varphi) = (\lambda v, \lambda^{-1} \varphi)$.

The symplectic reduction $\mu^{-1}(1)/\mathbf{R}^*$ carries a symplectic form ω and is isomorphic to $\mathcal{U}_V = \{(x, X) \in \mathbb{P}(V) \times \mathbb{P}^*(V) \mid X \pitchfork x\}.$

Proposition

Let $f: [0,1]^2 \to \mathcal{U}_V$ be a C^1 map such that, $\forall t \in [0,1]$, $f(0,t) = (x,*), f(1,t) = (y,*) \text{ and } \forall s \in [0,1], f(s,0) = (*,X),$ f(s,1) = (*,Y), then

$$b_V(x, y, X, Y) = \exp\left(\int_{[0,1]^2} f^*\omega\right)$$

Constructing cross-ratio on flag manifolds

Let G, Θ, P_{Θ} , etc. as in lecture 1. Suppose that $\tau: G \to \operatorname{GL}(V)$ is a (continuous) representation such that there exists a one-to-one τ -equivariant map

$$i_{\Theta} \colon \mathcal{F}_{\Theta} \longrightarrow \mathbb{P}(V)$$

Proposition

Then there is $i_{\Theta}^{\text{opp}} \colon \mathcal{F}_{\Theta}^{\text{opp}} \longrightarrow \mathbb{P}^*(V)$ (one-to-one, equivariant) with the property that $P \pitchfork Q \Rightarrow i_{\Theta}(P) \pitchfork i_{\Theta}^{\text{opp}}(Q)$.

Define

$$\mathcal{O}_{\Theta} = \left\{ (x, y, X, Y) \in (\mathcal{F}_{\Theta})^2 \times (\mathcal{F}_{\Theta}^{\mathrm{opp}})^2 \mid X \pitchfork y \text{ and } Y \pitchfork x \right\}$$
$$b_{\tau}(x, y, X, Y) = b_V \big(i_{\Theta}(x), i_{\Theta}(y), i_{\Theta}^{\mathrm{opp}}(X), i_{\Theta}^{\mathrm{opp}}(Y) \big).$$

Remembering some decompositions

$$\begin{split} \mathfrak{g} &= \mathfrak{a} \oplus \mathfrak{z}_{\mathfrak{k}}(\mathfrak{a}) \oplus \bigoplus_{\alpha \in \Sigma} \mathfrak{g}_{\alpha} \\ \mathfrak{p}_{\Delta} &= \mathfrak{a} \oplus \mathfrak{z}_{\mathfrak{k}}(\mathfrak{a}) \oplus \left(\bigoplus_{\alpha \in \Sigma^{+}} \mathfrak{g}_{\alpha} \right) \\ \mathfrak{p}_{\Theta} &= \left(\bigoplus_{\alpha \in \Sigma^{+} \cap \operatorname{Span}(\Delta \smallsetminus \Theta)} \mathfrak{g}_{-\alpha} \right) \oplus \left(\mathfrak{a} \oplus \mathfrak{z}_{\mathfrak{k}}(\mathfrak{a}) \oplus \bigoplus_{\alpha \in \Sigma^{+}} \mathfrak{g}_{\alpha} \right) \end{split}$$

Let $\tau \colon G \to \operatorname{GL}(V), i_{\Theta} \colon \mathcal{F}_{\Theta} \to \mathbb{P}(V)$ as above.

The line $L = i_{\Theta}(P_{\Theta})$ is P_{Θ} -invariant $\Rightarrow L$ is an eigenline for the action of \mathfrak{a} , is cancelled by \mathfrak{u}_{Δ} and also by $\bigcup_{\alpha \in \Theta} \mathfrak{g}_{-\alpha}$.

The subspace $W = \langle \tau(G) \cdot L \rangle$ is an irreducible representation of G with highest weight space L. Can (and will) assume V = W.

Continuing the analysis of V

 $V = \bigoplus_{\kappa \in P(V)} V_{\kappa}, P(V) \subset \sum_{\Delta} \mathbf{Z} \omega_{\alpha}$, denote η the weight such that $L = V_{\eta}$. Then $\eta \in \sum_{\Delta} \mathbf{N} \omega_{\alpha}$ and uniquely determines V.

$$V_{\eta}$$
 invariant by $\mathfrak{g}_{-\alpha} \Leftrightarrow \eta(h_{\alpha}) = 0.$

One then get $\eta \in \sum \alpha \in \Theta \mathbf{N}^* \omega_{\alpha}$

The hyperplane $V_{\eta}^{\circ} = \sum_{\kappa \in P(V) \setminus \{\eta\}} V_{\kappa}$ is tranverse to V_{η} and is P_{Θ}^{opp} -stable.

The maps

$$i_{\Theta} \colon \mathcal{F}_{\Theta} \longrightarrow \mathbb{P}(V) \mid g \cdot P_{\Theta} \longmapsto \tau(g) \cdot V_{\eta}$$
$$i_{\Theta}^{\mathrm{opp}} \colon \mathcal{F}_{\Theta}^{\mathrm{opp}} \longrightarrow \mathbb{P}^{*}(V) \mid g \cdot P_{\Theta}^{\mathrm{opp}} \longmapsto \tau(g) \cdot V_{\eta}^{\circ}$$

satisfy all the wanted properties.

Denote $b^{\eta}(x, y, X, Y) = b_V (i_{\Theta}(x), i_{\Theta}(y), i_{\Theta}^{\text{opp}}(X), i_{\Theta}^{\text{opp}}(Y))$

Naturality properties

Lemma One has $b^{\eta_1+\eta_2} = b^{\eta_1}b^{\eta_2}, \ b^{k\eta} = (b^{\eta})^k.$

Proof: The map $\mathbb{P}(V) \times \mathbb{P}(W) \longrightarrow \mathbb{P}(V \otimes W)$ sends $b_V b_W$ to $b_{V \otimes W}$

Symplectic interpretation (bis)

There is a symplectic form ω^{η} on $\mathcal{U}_{\Theta} \subset \mathcal{F}_{\Theta} \times \mathcal{F}_{\Theta}^{\mathrm{opp}}$ such that

Proposition

Let $f: [0,1]^2 \to \mathcal{U}_{\Theta}$ be a C^1 map such that, $\forall t \in [0,1]$, $f(0,t) = (x,*), f(1,t) = (y,*) \text{ and } \forall s \in [0,1], f(s,0) = (*,X),$ f(s,1) = (*,Y), then

$$b^{\eta}(x, y, X, Y) = \exp\left(\int_{[0,1]^2} f^* \omega^{\eta}\right)$$

The tangent space at a point (x, X) to \mathcal{U}_{Θ} identifies with $\mathfrak{u}_{\Theta}^{\mathrm{opp}} \times \mathfrak{u}_{\Theta}$.

The formula is

$$\omega^{\eta}((v_1, v_2), (w_1, w_2)) = \eta([v_1, w_2] - [v_2, w_1]).$$