The geometry of Flag manifolds III SRNI 45th School

Olivier Guichard

January 2025

The slides are again available at https://irma.math.unistra.fr/~guichard/srni

The linear algebra exercise of the day

$$\begin{pmatrix} 1 & & & & \\ & \ddots & & tF \\ & & 1 & & \\ & & & 1 & \\ & & & A & & \ddots \\ & & & & & 1 \end{pmatrix}$$

 $t \in \mathbf{R}$, where $A \in M_{\ell,k}(\mathbf{R})$ and where $F \in M_{k,\ell}(\mathbf{R})$ has rank one Exercise

There is a unique $t \in \mathbf{R}$ such that this matrix is singular.

Geometric interpretation:

The first k columns represent an k-plane x, the last ℓ columns represent a ℓ -plane y_t ;

The conclusion says that there is a unique t such that y_t is not tranverse to x.

The main result (I)

Theorem This happens in every flag manifold. $G, \mathcal{F}_{\Theta}, \mathcal{F}_{\Theta}^{\mathrm{opp}}, P_{\Theta}, P_{\Theta}^{\mathrm{opp}}, U_{\Theta}, U_{\Theta}^{\mathrm{opp}}, L_{\Theta}, \mathfrak{p}_{\Theta}, \mathfrak{u}_{\Theta}, \mathfrak{a}, \dots$

$$\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{z}_\mathfrak{k}(\mathfrak{a})\oplus\bigoplus_{lpha\in\Sigma}\mathfrak{g}_lpha$$

 $\mathfrak{a}_L :=$ the centralizer of \mathfrak{l} in \mathfrak{a} ; $\mathfrak{a}_L = \bigcap_{\alpha \in \Delta \smallsetminus \Theta} \ker \alpha$.

Proposition (Kostant, 2010)

The weight decomposition of \mathfrak{u}_{Θ} w.r.t. the action of \mathfrak{a}_L coincides with the decomposition into irreducible L-summands:

$$\mathfrak{u}_{\Theta} = \bigoplus_{\aleph \in P} \mathfrak{u}_{\aleph}, \quad P \subset \mathfrak{a}_L^*, \quad [\mathfrak{u}_{\aleph}, \mathfrak{u}_{\beth}] = \mathfrak{u}_{\aleph+\beth}.$$

Photons

$$\mathfrak{u}_{\Theta} = \bigoplus_{\aleph \in P} \mathfrak{u}_{\aleph}, \quad P \subset \mathfrak{a}_L^*$$

In fact $P = \{\alpha|_{\mathfrak{a}_L}\}_{\alpha \in \Sigma^+ \setminus \text{Span}(\Delta \setminus \Theta)}$; indecomposable weights $P \setminus (P + P)$ naturally identifies with Θ [via $\Theta \to P \mid \alpha \mapsto \alpha|_{\mathfrak{a}_L}$] For every $\alpha \in \Theta$, $\mathfrak{u}_\alpha \supset \mathfrak{u}_\alpha^{\text{high}} = \mathfrak{g}_\alpha$ (w.r.t. the action of \mathfrak{a}) Consider $x_\alpha \in \mathfrak{u}_\alpha^{\text{high}}$ Definition $\Phi_\alpha := \{\exp(tx_\alpha) \cdot P_\Theta^{\text{opp}}\} \subset \mathcal{F}_\Theta^{\text{opp}}$ is the α -photon ; An α -photon is $\Phi = q \cdot \Phi_\alpha$ for some $q \in G$.

Lemma

 Φ_{α} is homogenous under the action of $\mathrm{SL}_2(\mathbf{R})_{\alpha}$ [the subgroup tangent to $\langle x_{\alpha}, x_{-\alpha}, h_{\alpha} \rangle$] and is \simeq to $\mathbb{P}^1(\mathbf{R})$.

Properties of Photons

Lemma

For all $x \in \mathcal{F}_{\Theta}^{\mathrm{opp}}$, so that $T_x \mathcal{F}_{\Theta}^{\mathrm{opp}} \simeq \mathfrak{u}_{\Theta}$ and for all non zero v in this tangent space

- There is Φ such that $x \in \Phi$ and $v \in T_x \Phi \iff v \in L_{\Theta} \cdot \mathfrak{u}_{\alpha}^{high} \subset \mathfrak{u}_{\alpha} \subset \mathfrak{u}_{\Theta} \simeq T_x \mathcal{F}_{\Theta}^{opp}$.
- In this case, there is a unique such Φ .

Remark

 $Z_{\alpha} = \mathbb{P}(L_{\Theta} \cdot x_{\alpha}) \subset \mathbb{P}(\mathfrak{u}_{\alpha}) \text{ is closed}$ $\Rightarrow \text{ the space of } \alpha \text{-photons is closed.}$

Example(s)

 $G = O(p, p + k), \Delta = \{\alpha_1, \dots, \alpha_p\}, \text{ choose } \Theta = \{\alpha_1, \dots, \alpha_{p-1}\}$ Then $\mathcal{F}_{\Theta} = \mathcal{F}_{\Theta}^{\text{opp}} = \{(E_1 \subset \dots \subset E_{p-1}) \mid \dim E_i = i, E_{p-1} \text{ isotropic}\}.$ Fix $x = (E_1, \dots, E_{p-1})$

For every $i , there is a unique <math>\alpha_i$ -photon through $x : \Phi_i = \{(F_1, \dots, F_{p-1}) \in \mathcal{F}_{\Theta} \mid \forall j \neq i, F_j = E_j\}$ The isomorphism with the projective line is concrete: $\Phi_i \to \mathbb{P}(E_{i+1}/E_{i-1}) \mid (F_1, \dots, F_{p-1}) \mapsto F_i/E_{i-1}$

For every isotropic *p*-plane E_p containing E_{p-1} , $\Phi_{p-1} = \{(F_1, \ldots, F_{p-1}) \in \mathcal{F}_{\Theta} \mid \forall j \neq p, F_j = E_j, F_{p-1} \subset E_p\}$ is a α_p -photon through x (and all α_p -photon has this form) $\Phi_{p-1} \to \mathbb{P}(E_p/E_{p-2}) \mid (F_1, \ldots, F_{p-1}) \mapsto F_{p-1}/E_{p-2}$

Photon projection

Define
$$\mathcal{V}_{\Phi} = \{ x \in \mathcal{F}_{\Theta} \mid \exists y \in \Phi, x \pitchfork y \}$$

Theorem

For every x in \mathcal{V}_{Φ} , there is a unique y in Φ such that y is not transverse to x. Set $p_{\Phi}(x) = y$. The map $p_{\Phi} \colon \mathcal{V}_{\Phi} \to \Phi$ has connected fibers.

Proof.

Up to G-action can assume $x = P_{\Theta}, P_{\Theta}^{\text{opp}} \in \Phi$ and $\Phi = \Phi_{\alpha}$. Then one needs to have $y = \dot{s}_{\alpha} \cdot P_{\Theta}^{\text{opp}}$.

Let
$$U = \{\exp(tx_{-\alpha})\} \subset \operatorname{SL}_2(\mathbf{R})_{\alpha}$$
, one "sees" that
 $\mathcal{V}_y = \{z \in \mathcal{F}_{\Theta} \mid z \pitchfork y\} \simeq U \times p_{\Phi_{\alpha}}^{-1}(\dot{s}_{\alpha} \cdot y).$

Example(s) (continued)

 $(E_1, \ldots, E_{p-1}) \in \mathcal{F}_{1,\ldots,p-1}$ [and choose also an isotropic *p*-plane E_p containing E_{p-1} in order to treat the case i = p - 1 on an equal footing]

$$\Phi_{i} = \left\{ (F_{1}, \dots, F_{p-1}) \in \mathcal{F}_{1,\dots,p-1} \mid \forall j \neq i, F_{j} = E_{j}, F_{i} \subset E_{p} \right\}$$
$$\mathcal{V}_{\Phi_{i}} = \left\{ (F_{1}, \dots, F_{p-1}) \in \mathcal{F}_{1,\dots,p-1} \mid \forall j \neq i, F_{j} \pitchfork E_{j} \right\}$$
$$p_{\Phi_{i}} \colon \mathcal{V}_{\Phi_{i}} \to \Phi_{i}$$
$$(F_{1}, \dots, F_{p-1}) \mapsto (\dots, E_{i-1}, E_{i-1} \oplus F_{i}^{\perp} \cap E_{i+1}, E_{i+1}, \dots)$$

The main result (II)

Choose $\eta = \sum_{\alpha \in \Theta} n_{\alpha} \omega_{\alpha} \ (n_{\alpha} \in \mathbf{N})$ so that b^{η} is defined on $\mathcal{O}_{\Theta} \subset \mathcal{F}_{\Theta} \times \mathcal{F}_{\Theta} \times \mathcal{F}_{\Theta}^{\mathrm{opp}} \times \mathcal{F}_{\Theta}^{\mathrm{opp}}$

Fix $\alpha \in \Theta$ and an α -photon Φ .

Theorem Let $x, y \in \Phi$. For all z, w in \mathcal{V}_{Φ} such that $p_{\Phi}(z) = p_{\Phi}(w) \notin \{x, y\}$, then $b^{\eta}(x, y, z, w) = 1$.

Let $x, y \in \Phi$. For all z, w in \mathcal{V}_{Φ} , with $p_{\Phi}(z) \neq y$ and $p_{\Phi}(w) \neq x$, then

$$b^{\eta}(x, y, z, w) = [x, y, p_{\Phi}(z), p_{\Phi}(w)]^{n_{\alpha}}$$