Chapitre 2 — Modules

§1 PREMIERES DEFINITIONS

Définition 1. Soit A un anneau et V' un groupe abélien. Une structure de A-module sur V'
est une application
AxXV —V,

notée (a,v) — a - v, avec les propriétés suivantes :
e |'opération est bilinéaire, c'est-a-dire que I'on a

(a+b)-v=a-v+b-v, a-(vtw)=a-v+a-w,

pour a,b € Aetv,w eV,
e |'opération est associative, dans le sens ol

a-(b-v)=(ab)-v

pour a,b € A et v € V, en écrivant bien siir ab pour la multiplication dans A ;
e 1-v=wpourtoutveV.

La premiére chose a remarquer, et c'est capital, c'est que dans la situation ou A est un
corps, noté disons K, dire que V' possede une structure de K-module revient exactement
a dire que V est un espace vectoriel sur K. C'est donc quelque chose que vous connaissez
bien! Le but de ce chapitre, et plus généralement du cours d'algébre de ce semestre, est de
voir si I'on peut < faire de I'algébre linéaire > avec d'autres anneaux, qui ne sont pas des
corps. Nous verrons que certaines notions se généralisent bien, mais dans |'ensemble le cas
des corps est tres particulier...

Voyons donc d'autres exemples. Pour cela, il sera utile de reformuler un peu la définition
ci-dessus, car elle n'est pas toujours la plus pratique, selon les situations. Rappelons que, au
cours des exercices sur le chapitre précédent, nous avons vu que pour tout groupe abélien V/,
I'ensemble End (V') des endomorphismes de V' est naturellement muni d'une structure d'an-
neau, la multiplication étant la composition o, et I'élément neutre de cette multiplication
étant I'identité 1.

Lemme 2. Soit V un groupe abélien et A un anneau. Se donner une structure de A-module
sur V' revient exactement a se donner un homomorphisme d'anneaux p: A — End(V').

Démonstration. Supposons que V' est un A-module au sens précédent. Pour chaque a € A,
notons

pla): V—V

v—a-v.



Ainsi p(a) est un élément de End(V'), et a — p(a) est un homomorphisme d’anneaux : ces
deux affirmations découlent des propriétés ci-dessus des A-modules (vérifiez-le).

Réciproquement, supposons donné p: A — End(V). Pour éviter les lourdeurs, nous
écrirons a — p, (et non pas p(a)). Il suffit alors de poser, poura € Aetv eV :

a-v:=pg(v).

Vous vérifierez (c'est le méme calcul que ci-dessus, mais a I'envers) que (a,v) — a - v est
bien une structure de A-module.
Enfin, il est immédiat que ces deux constructions sont inverses |'une de I'autre. O

Exemple 3. Qu'est-ce qu'un Z-module? Il faut prendre un groupe abélien V, et trouver
un homomorphisme Z — End(V). Or, nous avons vu ¢a dans les exercices du chapitre
précédent, pour tout anneau A il existe un unique homomorphisme Z — A ; ici pour A =
End(V), il s'agit de n — nl. Donc V est automatiquement un Z-module, de maniére unique.
En bref, un Z-module n’est rien d’autre qu’un groupe abélien.

Encore quelques préliminaires avant un autre exemple important.

Définition 4. Soient V et W des A-modules. Une application f: V — W est appelée
homomorphisme de A-modules lorsque c'est un homomorphisme de groupes abéliens et
que f(a-v) =a- f(v) poura € A et v € V. On dit que f est A-linéaire. Lorsque V =W,
on dit que f est un endomorphisme du A-module V. Enfin, on dit que f est un isomorphisme
de A-modules lorsque c’est un homomorphisme et une bijection.

Comme prévu, dans le cas ou A est un corps, vous retrouvez une notion familiére.

Lemme 5. Soit V un A-module, et soit End (V') I'ensemble de ses endomorphismes de A-
module. Alors End4(V') est un sous-anneau de End(V'). Lorsque A = K est un corps
commutatif, Endg (V') est méme une algébre sur K.

Démonstration. C'est trés simple : il faut prendre f,g € End 4 (V) et écrire que

fogla-v) = f(g9(a-v)) = fla-gv))=a-f(g(v) =a-fogv),

ce qui montre bien que fog € Enda(V).

Supposons maintenant que A = K est un corps commutatif (on parle donc d’espaces
vectoriels ici). Ecrivons I pour l'identité de V, et pour A € K écrivons sans surprise AI pour
I'application v — X - v. L'ensemble des A\l avec A € K est un anneau, et méme un sous-
anneau de Endg (V) (car K est commutatif!) que I'on peut identifier avec K. Ceci donne
bien a Endg (V') une structure d'algebre sur K : en effet il faut vérifier que M o f = fo Al
pour f € Endg(V'), mais cette condition revient exactement a dire que f est K-linéaire. [

Tournons-nous vers le cas des algebres, et commencons par une remarque. Lorsque B est
un sous-anneau de A, tout A-module peut étre considéré comme un B-module, si I'on veut :
par exemple un espace vectoriel sur C est aussi un espace vectoriel sur R. Prenons alors un



corps commutatif K et une algébre sur K, notée A. Puisque A posseéde un sous-anneau que
I'on identifie a K, la remarque précédente montre que tout A-module est en particulier un
espace vectoriel sur K. On peut alors énoncer le résultat suivant, qui est la variante pour les
algebres du lemme 2.

Lemme 6. Soit A une algébre sur K, et soit V un groupe abélien. Se donner une structure
de A-module sur' V' revient exactement a se donner une structure de K-espace vectoriel sur V'
ainsi qu'un homomorphisme d'algébres p: A — Endg (V).

Démonstration. On vous le laisse a titre d'exercice. C'est une variante de la démonstration
du lemme 2. Attention a une chose : la définition de Endg (V') dépend bel et bien de la
structure de K-espace vectoriel choisie. O

Exemple 7. Qu'est-ce qu'un K[X]-module? D’'aprés le lemme, il s’agit d'un K-espace vec-
toriel V' muni d'un homomorphisme p: K[X] — Endg (V). Mais une proposition du cha-
pitre précédent nous dit qu'un tel homomorphisme d’algébre est de la forme P — P(f),
ou f € Endg(A), et qu'il suffit de nous donner f. En bref, un K[X]-module est une
paire (V, f) ol V est un espace vectoriel sur K et f: V. — V est un K-endomorphisme.
Pour &tre tout-a-fait clair, pour v € V on a

X -v=f(v).
Pour P € K[X] quelconque, on a alors
P-v=P(f)(v);

ces parenthéses sont bien pénibles, mais P(f) est un endomorphisme de V', on peut donc
I'appliquer a v pour obtenir P(f)(v). Voir I'exemple suivant.

Exemple 8. Soyons trés concrets, et définissons un R[X]-module. On prend V = R? (dans
tout ce cours, les éléments de K™ sont vus comme des matrices-colonnes, au fait). Il nous faut
un endomorphisme f: V' — V. Comme on le sait bien, il doit étre de la forme f(v) = Fv,
ou F' est la matrice de f dans la base canonique; c'est une matrice 2 x 2, et ici F'v désigne
bien le produit matriciel. (Note : la lettre F' est plut6t rare pour une matrice, mais dans
ce cours on va essayer, dans la mesure du possible, d'appeler F' la matrice de f, puis G la
matrice de g etc.) Pour continuer a &tre concret, on peut prendre par exemple

1 1
F= ( Ll ) .
Si on prend un polynéme, disons P = X3 —4, alors la matrice de I'endomorphisme P(f)

est tout simplement P(F) = F3 — 4. De sorte que si I'on prend un vecteur v, on a

Puv=(X3-4)-v=(F —4)v (=P(f))).



Ici
P8 (=3 3
4 ( 0 -3 /)’

donc si on prend disons v = ( (1) ) alors

pos(2).

Maintenant que nous pouvons penser aux K[X]-modules comme a des paires (V, f),
nous pouvons < traduire > la notion d’"homomorphisme :

Lemme 9. Soient (V, f) et (W, g) deux K[X]-modules, et soit ¢: V. — W. Alors ¢ est un
homomorphisme de K[X]-modules si et seulement si ¢ est K-linéaire et vérifie po f = go ¢.

La situation est comme sur le diagramme suivant :

v L v

s
w—L-w
Démonstration. Si ¢ est K[X]-linéaire, alors elle est certainement K-linéaire; et de plus, on
doit avoir pour v € V' la relation

(X -v) = X - 9(v).
Mais ici on a X - v = f(v), et pour tout w € W on a X - w = g(w), donc finalement

o(f(v)) = 9(6(v)),

comme on le souhaitait.

Pour la réciproque, on suppose que ¢ est K-linéaire et vérifie p o f = g o ¢, et on
doit montrer pour tout polyndme P € K[X] que ¢(P -v) = P - ¢(v) pour tout v. C'est
certainement vrai pour P = X, puisque la condition ¢(X - v) = X - ¢(v) n'est que la
traduction de ¢ o f = go ¢. Or I'ensemble

R={PeK[X]| (P v)=P-¢(v)}

est, a I'évidence, un sous-anneau de K[X]. Puisque X € R, on en déduit que R = K[X] en
entier. O

Exemple 10. Pour W = V et g = f, la condition est que ¢ o f = f o ¢, c'est-a-dire
que ¢ et f commutent. Reprenons I'exemple 8. Si ® est la matrice de ¢: V — V, alors la
condition pour que ¢ soit un endomorphisme de (V, f) peut s'écrire ®F = F®. Si

a b
v=(Ta)



alors en écrivant séparément ®F et F'® on voit que la condition équivaut a c =0 et a = d.
En d'autres termes, nous avons une description de I'anneau Endgx)(V') des endomorphismes
de (V, f) comme R[X]-module :

Endgx|(V) = {( 8 Z ) avec a,b € R} .

C'est une algebre sur R, et comme espace vectoriel réel, elle est de dimension 2.

Nous pouvons maintenant annoncer plus clairement nos intentions dans ce cours. Nous
allons parler de modules tout le long du semestre. Pour chaque résultat ou concept, ou
presque, concernant les A-modules :

e lorsque A est un corps, on retrouvera quelque chose de connu d'algebre linéaire, et en

général on pourra réduire I'énoncé a quelque chose de beaucoup plus simple;

e lorsque A = Z, les choses seront immédiatement plus subtiles : on aura besoin des
< vrais > énoncés généralisés, car si on s'attendait a ce que l'algebre linéaire fonc-
tionne < de la méme maniére > sur 7Z, on aurait bien tort, les contre-exemples étant
abondants;

e lorsque A = K[X], les questions naturelles sur les modules se traduisent en questions
que vous avez déja un peu étudiées en cours de < réduction des endomorphismes > ;
comme vous le savez, certaines de ces questions sont sophistiquées.

Nous étudierons souvent les A-modules sans hypothése sur A, mais ce sont les 3 situations
ci-dessus que nous allons systématiquement examiner dans les exemples. Puis, arrivera un
chapitre ol I'on montrera que Z et K[X] ne sont pas si différents (ce sont des < anneaux
euclidiens »), et que leurs modules ne sont pas si compliqués, aprés tout !

La derniére partie du cours va étudier les < G-modules >, ou G est un groupe. Ceux-ci
sont trés bien compris, et avec la théorie des < caractéres > on peut méme rendre les choses
trés concretes.

82 SOUS-MODULES

Dans cette partie, A est un anneau quelconque, et K est un corps commutatif.

Définition 11. Soit V un A-module, et U C V. On dit que U est un sous-A-module de V
(ou sous-module de V' pour faire court) lorsque c'est un sous-groupe de V, et que pour u € U
eta€ Aonaa-u€U. (Endautres termes, U est < stable par combinaisons linéaires a
coefficients dans A ».)

Dans ce cas U est lui-méme un A-module.

Exemple 12. Pour A = K, on retrouve la notion de sous-espace vectoriel. Pour A = Z,
on retrouve la notion de sous-groupe (abélien). Lorsque A = K[X], et que (V, f) est donc
un K[X]-module, dire que U C V est un sous-K[X]-module de V signifie exactement
que f(U) C U, autrement dit que U est stable par f. En écrivant f|y pour la restriction
de f a U, on a bien un K[X]-module (U, f|v).



Définition 13. Soient U; et Uy deux sous-modules de V. La somme U; + U, est par
définition

Ui+ Us = {u1+u2 | up € Up,ug € UQ}.
C’est un sous-module de V. On dit que V est la somme directe de Uy et Us, et on écrit V =
Uy ® Uy, lorsque V =U; + Uy et Uy NU; = {0}.

Avant méme de donner des exemples, nous pouvons rappeler le fait suivant, qui vous est
familier dans le cas A = K et qui n’est pas plus compliqué en général :

Lemme 14. Soient U; et Us deux sous-modules de V. Alors V. = Uy & U, est équivalent
au fait que tout v € V peut s'écrire v = uy + us avec u; € U;, et ceci de maniére unique.

Démonstration. Exercice. Comme dans le cas A = K que vous connaissez. O

Exemple 15. Pour A = K, on retrouve la notion de somme directe que vous connaissez
depuis longtemps. Regardons un peu A = Z. Prenons V' = Z, qui est bien un groupe abélien.
Tout sous-module (= sous-groupe, ici) de Z est de la forme nZ pour un entier n > 0.
Si Uy = nZ et Uy = mZ, avec n et m tous les deux > 0, alors U; N Uy n'est jamais réduit
a {0}, puisqu'il contient toujours nm # 0 par exemple. Donc on ne peut pas écrire V- comme
une somme directe, a part si U ou Us est nul. (Dans les exercices nous étudierons Uy + Us
et U1 N UQ)

Enfin, soit (V, f) un K[X]-module, avec V' de dimension finie sur K. Supposons que V' =
Uy ® Us, ou U; est un sous-K[X]-module. Prenons une base de Uy, disons ey, ..., ¢eq, et
une base de U, disons €1, ...,&,. Alors la réunion ey, ...,e4,€1,...,&, est une base de V.
Dans cette base, la matrice de f est de la forme

Fr 0

0 Iy
ou F est une matrice d x d et F» est une matrice 7 X 7 ; en fait F; est la matrice de f|y,.
Autrement dit i/ existe une base dans laquelle la matrice de f est diagonale par blocks.

Réciproquement, s'il existe une telle base, il est clair que V' peut s'exprimer comme une
somme directe.

Définition 16. Un A-module V est dit indécomposable lorsqu’'on ne peut pas trouver de
sous-modules U; et Us, tous les deux non-nuls, tels que V = U; & Us.

L'exemple précédent montre que Z, comme Z-module, est indécomposable. Voyons un
autre exemple.

Exemple 17. Revenons 2 la situation de I'exemple 8, et montrons que V' est indécomposable.
Supposons donc que V = U; @ U;. Comme espace vectoriel sur K, nous savons que V' est
de dimension 2; si les deux U; sont non-nuls, on doit donc avoir dimU; = dimU,; = 1.
Mais alors, tout vecteur non-nul u; € U; est un vecteur propre de f, puisque f(u;) € U; =



Vect(u;). On aurait donc une base uq,us de vecteurs propres de f, ou autrement dit, f
serait diagonalisable. Or, rappelons que la matrice de f est

1 1

01)"
son polyndme caracteristique est (X — 1)2, la seule valeur propre est 1, et I'espace propre
ker(f — I) est de dimension 1, donc f n'est pas diagonalisable. (Ou encore : avec une seule

valeur propre, si f était diagonalisable, elle serait déja diagonale, comme on le sait bien.)
Cette contradiction montre que V' est indécomposable.

Dans le cas A = K, c’est-a-dire dans le cas des espaces vectoriels, quels sont les modules
indécomposables? Il y en a trés peu, en conséquence de la proposition suivante :

Proposition 18. Soit V' un espace vectoriel [de dimension finie pour simplifier], et soit U
un sous-espace de V. Alors il existe un sous-espace U’ tel que V =U & U’.

Ici, et dans le reste de cette partie, nous ferons des hypothéses de dimension finie, qui ne
sont pas nécessaires : le résultat est vrai en toute généralité, mais il faut I'axiome du choix
et diverses choses que nous préférons éviter... On va essayer d’en rester a des résultats que
vous avez vus en L1.

Démonstration. Soit e1,...,eq une base de U — il en existe, d'aprés votre cours d'algebre
linéaire de L1. On utilise le théoréme de la base incompléte, qui nous affirme que I'on peut
trouver des vecteurs eqy1, ..., €, tels que e1,..., e, est une base de V. Si I'on pose U’ =
Vect(eqsi,---,en), alors il est clair que V=U @ U". O

Dans cette situation, dés lors que V' possede un sous-espace U qui est non-nul, et tel
que U # V, alors V.= U & U’ montre que V n'est pas indécomposable. On sent qu'il ne va
pas y avoir beaucoup de modules indécomposables !

Le vocabulaire suivant va étre utile :

Définition 19. Un module V' non-nul est dit simple lorsque, pour tout sous-module U C V/,
on a ou bien U =V ou bien U = {0}.

On a donc toujours :
Lemme 20. SiV est un A-module simple, alors V' est indécomposable.

Démonstration. En effet, si on a V. = Uy & Uy, alors par simplicité de V, on doit avoir ou
bien U; = V (et donc Us = {0}) ou bien U; = {0} (et Uz = V'); on voit que U; et Us ne
peuvent pas étre tous les deux non-nuls, et donc que V est bel et bien indécomposable. [

Pour A =K, la situation est complétement sous-contrdle :

Proposition 21. Soit V' un espace vectoriel sur K non-nul [de dimension finie pour simplifier].
Alors les trois propriétés ci-dessous sont équivalentes :



1. V est simple,
2. V est indécomposable,
3. V est de dimension 1.

Démonstration. D'apres le dernier lemme, on a toujours (1) == (2). Supposons (2),
et soit v € V, v # 0 et U = Vect(v). D'apres la proposition, on peut trouver U’ tel
que V =U @ U’. Mais comme V est indécomposable, ceci n'est possible que si U’ = {0}.
On en déduit que V = U = Vect(v), et en particulier la dimension de V" est (1).

Enfin, supposons (3). Un sous-espace U de V doit étre de dimension inférieure a 1, donc
soit dimU =0 et U = {0}, soit dimU =1 et U = V. On a bien montré (1). O

On comprend bien pourquoi, dans vos cours d'algebre linéaire, on ne vous a pas embétés
avec les notions de < module indécomposable > et <« module simple > | Mais sur un anneau
quelconque, les choses sont plus délicates.

Exemple 22. Pour A = Z, nous avons vu ci-dessus que V' = Z est indécomposable. Mais
il n’est pas simple : pour tout n > 0, le sous-groupe U = nZ est non-nul, et U £V (il y a
donc une infinité de sous-modules qui contredisent la simplicité de V).

Voyons des Z-modules simples. Si p est un entier, alors les sous-groupes de V = Z/pZ
sont en bijection avec les diviseurs de p; plus précisément, si p = dk, alors U = {v €
V' | dv = 0} est I'unique sous-groupe de V d'ordre d. Par conséquent, si p est un nombre
premier, alors Z/pZ est un module simple (on dit aussi un groupe simple, ici).

Il 'y a donc une infinité de modules simples (un pour chaque nombre premier), qui ne
sont pas isomorphes les uns aux autres (alors que dans le cas des corps, les modules simples,
ie les modules de dimension 1, sont bien siir tous isomorphes les uns aux autres). On verra
plus loin qu'il n'y a pas d'autres Z-modules simples.

Exemple 23. Voyons maintenant le cas de A = K[X]. Retournons encore une fois a
I'exemple 8. Nous venons de voir que ce module est indécomposable. Par contre, il n'est pas
simple : si e1, es est la base canonique de V' comme R-espace vectoriel, alors U = Vect(e1)
est stable par f, visiblement, donc U est un sous-K[X]-module de V.

Pour produire un exemple de K[X]-module simple, il suffit de prendre V' de dimension 1,
avec f donné par une matrice 1x1 (bref un scalaire A). En effet, un sous-module U d'un tel V
doit étre en particulier un sous-espace vectoriel, mais puisque V est alors simple comme K-
module (par la proposition), on a certainement U =V ou U = {0}. En faisant varier A, on
obtient une collection de modules simples qui ne sont pas isomorphes les uns aux autres.

Plus loin dans ce cours, nous donnerons une classification des Z-modules et des K[X]-
modules (avec un seul théoreme!), et nous pourrons alors décrire complétement les indécom-
posables et les simples.

Terminons cette partie avec la définition du produit de deux modules :

Définition 24. Soient V et W deux modules sur A. Alors leur produit cartésien V' x W est
vu comme un A-module avec la structure

a-(v,w)=(a-v,a- w)



poura € A, v €V, w € W (et avec la structure naturelle de groupe abélien sur V- x W).
On I'appelle tout naturellement le produit de V' et W.

La notation V' x W va &tre abusée presque tout de suite (dans ce cours, on va essayer
de faire attention, mais c'est vrai que c'est tentant). En effet, le sous-module

V x {0} ={(v,0) |veV}

peut étre sans danger identifié 3 V, et de méme on identifie {0} x W a W. Ayant fait ceci,
on voit V et W comme des sous-modules de V' x W, et ils sont alors en somme directe :
V xW =V & W. Voila pourquoi on trouve souvent la notation V @ W |a ol il serait plus
juste d'écrire V- x W,

Ajoutons enfin qu'il existe des définitions de la somme directe @, ; U; d'une famille
quelconque de modules U; indexés par I'ensemble I, ainsi que du produit [],.; U; de ces
mémes modules : nous n'en dirons rien dans ce cours, mais sachez que ces deux constructions
sont bien distinctes. (Alors que pour deux modules, ou méme pour un nombre fini de modules,
on vient de voir que confondre produit et somme directe n'est pas dramatique.)

83 MODULES LIBRES

A désigne un anneau, et K est un corps commutatif.

Généralités
Définition 25. Pour tout entier n > 1, on écrit A™ pour le produit de n copies de A, c'est-
a-dire le produit cartésien formé des n-uplets (a1, ...,a,) avec a; € A; c’est un A-module

avec
a-(a,...,a,) = (aaq,...,aa,).

On dit qu'un module V est libre de rang n s'il est isomorphe a A™.

Pour n = 1, le module A n'est autre que A, vu comme module sur lui-méme (!), en
utilisant la multiplication. On I'appelle parfois le module régulier de A. 1l sera parfois utile
de garder la notation A! pour le module régulier, quand on veut le distinguer de I'anneau A.
Noter que A™ est le produit de n copies du module A'.

Voici des concepts qui vous sont familiers :

Définition 26. Soit V un A-module, et vq,...,v, une famille d’éléments de V.
1. On dit que v1,...,v, est une famille génératrice lorsque I'application
A" —V
(a1,...,an) = a1v1 + - + apvy,

est surjective.

2. On dit que vy, ..., v, est une famille libre lorsque |I'application ci-dessus est injective.



3. On dit que vq,...,v, est une base de V lorsque c'est une famille a la fois libre et
génératrice, ou en d'autres termes lorsque |'application ci-dessus est un isomorphisme.

Prenez le temps de bien vérifier que ceci correspond a la facon dont vous avez vu ces
concepts dans le cadre de I'algébre linéaire. Par exemple, pour le deuxieme point, rappelez-
vous bien que I'application que I'on regarde est injective <= son noyau est réduit a {0},
c’est-a-dire si et seulement si la seule facon d’avoir une combinaison linéaire nulle

av1+ -+ apv, =0

est de prendre tous les a; nuls. (L'élément neutre 0 dans le module A™ est (0,0,...,0),
évidemment !)
Vérifions que nous comprenons bien ce vocabulaire :

Lemme 27. Soit V un A-module. Alors V est libre de rang n si et seulement s'il posséde
une base formée de n éléments.

Démonstration. Si 'V posséde une base avec n éléments, par définition il est isomorphe a A",
donc libre. Pour la réciproque, dans le module A™ on peut utiliser les éléments

e;=(0,...,0,1,0,...,0)

avec le 1 en i-ieéme position. La famille ey, . .. , e, est une base de A™, évidemment. Si ¢: A" —
V est un isomorphisme, alors la famille ¢(e1),. .., ®(en) est une base de V. O

Définition 28. Un A-module V est dit de type fini lorsqu'il posseéde une famille génératrice
(finie).

Lorsque A = K, on dit plutét que V est de dimension finie plutdt que de type fini,
comme vous le savez. Un résultat tres fort d'algebre linéaire est le suivant :

Proposition 29. Tout espace vectoriel de dimension finie posséde une base. O

La encore, la vérité est qu'on n'a pas besoin de supposer que I'espace vectoriel est de
dimension finie, mais vous n'avez sans doute pas vu la version plus générale. La moralité est
que sur un corps, tous les modules sont libres.

Comme d’habitude, c'est loin d'étre le cas avec les autres anneaux. Avec A = Z, il suffit
de prendre V = Z/27, qui ne risque pas d'étre libre, c'est-a-dire isomorphe a Z™ pour un
certain n, puisqu’il n'est méme pas infini! Et dans la méme veine, avec K[X] il suffit de
prendre une paire (V, f) avec V de dimension finie sur K : il n'a alors aucune chance d'étre
isomorphe a K[X]", qui est de dimension infinie sur K.

ldéaux

Puisque nous venons d'introduire le module régulier A', nous pouvons parler des idéaux,
qui fournissent de bons exemples de modules :
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Définition 30. Les sous-modules de A' sont appelés les idéaux de A (ou parfois les idéaux
a gauche, pour &tre plus précis). En clair, un idéal de A est un sous-groupe I C A ayant la
propriété que, pour a € A et x € I, on a toujours ax € I.

Exemple 31. Fixons zy € A. Alors on note
(z0) ={axg | a € A},

I'ensemble des multiples de o (a gauche). C'est un idéal de A, et on dit que c'est /'idéal
principal engendré par xo. C'est donc un module de type fini (I'élément xo est une famille
génératrice a lui tout seul). On le note aussi parfois Az ou, dans le cas ol A est commutatif,
.’17014.

Exemple 32. Prenons A = Z. Alors chaque sous-groupe (= sous-module = idéal) de Z
est de la forme nZ pour un n > 1; c’est donc un idéal principal. Vous savez peut-étre que
la mé&me chose est vraie avec A = K[X] : tout idéal de cet anneau est principal, et nous
reviendrons sur ce phénomeéne dans le chapitre suivant.

[l'y a des anneaux qui n'ont pas cette propriété. Par exemple, prenons A = Z[X], et

I=A-5+A-X,;
c’est une somme de deux idéaux principaux, donc en clair
I={a-54+b-X|abe A}.
Alors c’est un exercice facile que de montrer que I n'est pas principal.

Si I et J sont deux idéaux de I'anneau A, alors on peut parler de I'idéal I + J (comme
dans |'exemple précédent d'ailleurs), puisqu'on connait les sommes de sous-modules. Mais
on peut aussi parler de I.J :

Définition 33. Le produit IJ des idéaux I et J est par définition I'idéal engendré par les
éléments de la forme zy avec x € I et y € J, c'est-a-dire que c'est le plus petit idéal qui
contient ces éléments. Plus concrétement, I.J est I'ensemble des éléments de la forme

m
S i
k=1

ou m est un entier, et avec xy € I et yi € J pour k entre 1 et m.

Exemple 34. Si I = (z) et J = (y) sont des idéaux principaux, avec A commutatif, alors
par définition on a I.J = (xy) (vérifiez-le).

Plus généralement, si I est un idéal et M est un A-module quelconque, on peut définir I M,
et on vous laisse deviner.
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84 QUOTIENTS

Introduction

Nous allons donner la définition du quotient V/U lorsque V est un A-module, et U C V
un sous-module. Avec V' = Z et U = nZ, nous retrouverons bel et bien Z/nZ ! Commengons
par une approche informelle, car la version définitive est un peu technique.

Nous allons voir qu'il y a un homomorphisme surjectif V. — V/U dont le noyau est
précisément U. Ainsi, les éléments de U ont < disparu » du nouveau module V/U.

Premier exemple informel. Par exemple, supposons que A =K[X] =V, et
U= X*A = { les multiples de X? }
={asX? +au X+ +a,X" | a; € K,n>3}.

Alors U est bien un sous-module de V' (vérifiez-le!). Admettons que le module V/U existe
avec les propriétés ci-dessus, et écrivons P+ P pour le morphisme V' — V/U. Dans ce
cas Xk = 0 pour k > 3 puisque X* € U dans ce cas. On en déduit que tout élément
de V/U est de la forme

a0+ a1 X - Ftan X" =apl + a1 X + axX2.

Il semblerait intuitif que V/U soit un espace vectoriel de dimension 3 sur KK, avec pour
base 1, X, X2. Nous verrons que c'est effectivement le cas, lorsque nous aurons donné une
définition rigoureuse des quotients. On peut imaginer des situations, dans lesquelles on tra-
vaille avec des polyndmes, et ol I'on se rend compte que seuls les termes de degré < 2 sont
< importants > pour les calculs que I'on meéne; il peut alors étre plus agréable de travailler
dans V/U, qui est de dimension finie, plutot que dans V.

Deuxieme exemple informel. Cette fois-ci, prenons K = R et V = R2. Pour U, prenons
une droite vectorielle quelconque. Comment peut-on espérer construire un module V/U avec
une application linéaire V' — V/U dont le noyau serait U ? Dans ce cas précis, c'est facile.
On peut prendre un U’ tel que V = U & U’ (cf chapitre précédent). On considére alors la
projection
p:V=UsU —U
plu+tu) =1,

ce qui a un sens car tout vecteur de V s'écrit de maniére unique u+u' avecu € U, v’ € U’.
Il est alors immédiat que le noyau de p est bien U. Donc U’ peut étre pris comme modele
pour V/U, avec I'homomorphisme p: V' — U’. Par contre, U’ n'est pas unique du tout, et
c'est un peu curieux.

Or, il y a une remarque < géométrique > a faire. Faisons un dessin. [a insérer]. On a pris

une droite U’ arbitraire. Ce qui se voit bien, c'est que chaque droite (affine) paralléle 3 U
coupe U’ en un point et un seul; en fait si v’ € U’, la droite

v+ U={u+v |uelU}
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est parallele a U, et coupe U’ en v'. Il y a ainsi une bijection entre les éléments de U’ et les
droites paralléle 3 U.

Pour donner une définition de V/U sans avoir a choisir une droite U’, nous allons
considérer I'ensemble des droites paralléles 3 U, et mettre une structure d'espace vecto-
riel dessus.

Passons a la version rigoureuse.

Définition des quotients

Dans cette partie, A désigne toujours un anneau, et K un corps commutatif.

Définition 35. Soit V un A-module et U C V un sous-module. Pour v € V, on note
v+U:={v+u|ueU}.

De plus, on note
VU ={v+U|veV}.

(Formellement V/U est un donc un ensemble d'ensembles, chacun de la forme v + U, de
méme que ci-dessus on avait vu que V/U, sur un exemple, était identifié avec un ensemble
de droites.)

Enfin, lorsque V' et U sont fixés une fois pour toutes, on peut employer la notation

v=v+U.

Avec cette notation
V/IU={v|veV}.

Lemme 36. I/ existe un structure de A-module sur V/U, et une seule, telle que I'application
p:V—V/U

définie par p(v) =T est un homomorphisme de A-modules.
De plus, ker(p) = U.

Démonstration. Si X et Y sont des parties de V', définissons
X+Y={z+y|lzeX,yeY}.
Examinons ceci dans le cas ot X = v+ U et Y = w + U. On constate rapidement que
X+Y=@w+U)+(w+U)=(v+w)+U.

Ceci nous donne une opération + sur V/U, et il est immédiat que T+ w = v + w. De plus,
puisque p est surjective, il est tres simple de vérifier que + donne bien une structure de
groupe abélien sur V/U. Par exemple, admettons que I'on veuille vérifier la commutativité,
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c'est-a-dire que  +y = y + x pour z,y € V/U. Choisissons v € V tel que T = z, et de
méme prenons w tel que w = y, alors

r+y=rv+wv=vtw=wtv=w+v=y+z.

Nous avons utilisé la commutativité de la loi + sur V. Notons que I'élément neutre est 0 = U.
On fait pareil avec les autres propriétés a vérifier (associativité...). Et sur le méme modele,
on définit, pour a € A et X une partie de V, la partie a X par

aX ={ar |z e X}.

Si X = v+ U alors aX = av + U. Ceci nous donne une opération A x V/U — V/U
qui complete la structure de A-module (les vérifications étant 1a encore trés simples). On
a av = au, par définition.

L'unicité provient du fait que p est surjective (on vous laisse vérifier ceci).

Nous devons maintenant examiner le noyau de p. Il s'agit des v € V tels que p(v) =
0 = w, ce qui par définition signifie U = v + U. Clairement, ceci arrive si et seulement
siveU. O

Proposition 37. Soit U,V comme ci-dessus et p: V. — V /U I'application quotient. Soit W
un autre A-module et f: V. — W un homomorphisme. On suppose que f(u) = 0 pour
tous lesu € U.

Alors il existe un unique homomorphisme f: V/U — W tel que f = f op. Ou ce qui
revient au méme : pour v € V on a f(v) = f(0).

Démonstration. Soit x € V/U. On peut choisir un v € V tel que = = p(v) = . Ce v n'est
pas unique, mais par contre, I'élément f(v) ne dépend pas du choix : en effet, si p(v') =
p(v) = x, alors u = v — v’ € ker(p) = U, donc f(u) =0 = f(v) — f(v'). On peut donc
poser f(x) = f(v) pour un v quelconque tel que = p(v), et ceci est bien défini. On
a f(v) = f(p(v)) par définition.

[l faut vérifier que f est un homomorphisme, mais c’est tres facile, par exemple si x =T
et y =w alors  +y = v + w de sorte que

flaty) =foFw) = flo+w)=f)+ f(w) = f@)+ f@) = fl2) + fy).
Et ainsi de suite. O]

Corollaire 38. Soit f: V. — W un homomorphisme surjectif entre A-modules, et soit U =
ker f. Alors I'application induite f: V/U — W est un isomorphisme.

On résume parfois ce corollaire en écrivant
V/ker f = Im(f).

Démonstration. Puisque f est surjective, tout w € W est de la forme w = f(v) = f(v),
donc f est surjective. De plus, si = € ker f, alors en prenant v € V tel que 2 = ¥ on
af(z)=f(v)=0,dotveUetv=0=z. Ona bien ker f = {0}, donc f est également
injective. O
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Exemple 39. Nous avons promis que pour V = Z et U = nZ on retrouvait Z/nZ comme
on le connait. Montrons-le : soit M le groupe abélien que vous avez appelé Z/nZ les
années précédentes; tout le monde n’a peut-étre pas eu la méme définition, mais vous nous
accorderez qu'il y a un homomorphisme surjectif f: Z — M dont le noyau est nZ. Par le
corollaire, M = Z/nZ, ou I'écriture Z/nZ désigne bien la nouvelle notion introduite dans
ce chapitre.

Avant de donner d'autres exemples :

Définition 40. Soit U un sous-module de V, et soit £ C V un sous-ensemble — on ne
suppose pas que E est un sous-module, en général. On dit que U et E sont supplémentaires
lorsque tout v € V' peut s'écrire de maniere unique v =u+e avecu € U et e € F.

Bien siir, si V = U @ U’, alors E = U’ est un supplémentaire de U, mais il y a d'autres
exemples. Par exemple, si A=V =7, U =nZ, et E={0,1,2,...,n—1}.

Lemme 41. Soit U un sous-module de V', et soit E un supplémentaire de U. Alors I'appli-
cation quotient
p: V—V/U

donne une bijection entre E et V/U. Si E est un sous-module, alors p est un isomorphisme
de modules; si A est une algébre sur K et si E est un K-espace vectoriel, alors p est un
isomorphisme d’espaces vectoriels.

Démonstration. La définition méme de < supplémentaire > rend évident le fait que tout z €
V/U s'écrit x = p(e) pour un e € E unique. Le reste provient du fait que p est un
homomorphisme de modules, donc sa restriction a E (si F est aussi un module) est encore
un homomorphisme. O

Exemple 42. On retrouve bien siir le fait que
Z/nZ ={0,1,...,n—1}

(et le fait que les n éléments a droite sont distincts). Voici un autre exemple : prenons A =
K[X] = V, et U = les multiples de X3 comme dans I'introduction. On pose alors £ =
Vect(1, X, X?). C'est un sous-espace vectoriel de V', mais pas un sous-module (si on multiplie
un élément de E par X, on ne tombe pas forcément dans E'!). Le lemme s'applique, car U
et E sont supplémentaires. Ceci montre que V/U est isomorphe comme espace vectoriel
3 E, donc il est bien de dimension 3 avec pour base 1, X, X2.

Quotient d'un anneau par un idéal

Nous venons de voir les quotients de modules. Voyons les quotients dans le monde des
anneaux (dans un autre chapitre, nous verrons les quotients de groupes non-commutatifs).
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Lemme 43. Soit I un idéal de I'anneau A. On suppose que A est commutatif. Alors le A-
module A/I est également un anneau commutatif, et I'application naturelle p: A — A/I
est un homomorphisme d’anneaux.

Enfin, si A est une K-algébre, ot K est un corps commutatif, alors A/I aussi, et I'appli-
cation p est un homomorphisme d’algébres.

Démonstration. Soient x,y € A/I. On choisit a,b € A tels que p(a) = z et p(b) = y;
montrons que |'élément p(ab) = ab+ I € A/I ne dépend pas du choix de a ou b, mais
seulement de x et y.

En effet, si p(a’) = p(a) = z et p(b') = p(b) =y, alors i = a’ —a € ker(p) = I et de
méme j = b’ — b € I. Par suite

aV+T=ab+ (it +aj+ij) +I1=ab+ 1,

la derniére égalité provenant du fait que @’ + aj +ij € I, car I est un idéal, et A est
commutatif (c'est crucial!), donc i’ = b'i € I.

On peut donc définir zy = ab + I, et ceci a un sens. Ceci donne une multiplication
sur A/I, et p(a)p(b) = p(ab) par définition. On en déduit facilement que A/I est un anneau
commutatif.

La démonstration du < enfin > vous est laissée en exercice. O

Exemple 44. On retrouve le fait que Z/nZ est un anneau, ainsi que la formule ab = ab.

Lemme 45. Soit f: A — B un homomorphisme d’anneaux, et I un idéal de A tel
que f(I) = {0}. Alors I'application induite f: A/I — B est un homomorphisme d'an-
neaux.

De plus, si f est surjective et I = ker f, alors I'isomorphisme A/I = B induit par f est
un isomorphisme d'anneaux.

Démonstration. Exercice. O

Dans la suite, nous allons nous concentrer sur un type d'exemple trés important : on
prend un corps commutatif K, I'anneau A = K[X], et I'idéal I = (D) principal engendré par
le polynéme non-nul D = ag + a1 X + --- + agX?. En tant que A-module, le cas de A/I
est crucial, comme nous le verrons dans le chapitre suivant (en gros : tout K[X]-module
finiment engendré est un produit de modules de la forme K[X]/(D)). En tant qu'anneau, le
cas de A/I sera étudié a la loupe au second semestre.

Posons donc

E ={P e K[X] | deg(P) < d}.

Comme vous le savez, dans K[X] on peut faire des divisions euclidiennes, c'est-a-dire que
pour tout P € K[X], on peut écrire

P=DQ+R
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avec deg(R) < d, et ceci de maniere unique. Ceci revient a dire que (D) et E sont
supplémentaires dans K[X] (pensez-y!). D'aprés un lemme ci-dessus, on en déduit que A/T
est isomorphe, comme K-espace vectoriel, a E. Plus précisément, en écrivant comme d'ha-
bitude P+ P pour I'application A — A/I, les éléments 1, X, ..., X4~1 forment une base
de A/I.

Nous allons poser x+ = X. On a X* = 2% puisque I'application A — A/I est un
homomorphisme d'anneaux. Finalement, tout élément de A/I peut s'écrire de maniére unique

Ao+ Mz + Aoz + -+ Agqz®L.

Et enfin, pour faire des calculs dans A/I, il suffit de se rappeler que D(x) = 0. En ef-
fet D(x) = D(X), et bien stir D € (D) donc D = 0. Nous avons tout ce qu'il nous faut
pour travailler dans cet anneau quotient.

Exemple 46. Prenons K = R et D = X? + 1. Appelons K = R[X]/(X? + 1). Comme
espace vectoriel sur R, cet anneau est de dimension 2, avec comme base 1, x. De plus, on a
la relation 22 4+ 1 = 0. En écrivant ca 2 = —1, on peut s'amuser 3 multiplier z = a + bx
parw=a' +bx:

2w = aa’ —bb' + (ab’ + a'b)z .
Evidemment on se dit qu'on a probablement K = C, et il est tres facile de le montrer.
Soit ¢: R[X] — C I'homomorphisme P — P(i). Alors ¢ est nul sur I'idéal I = (X2 + 1),
puisque

P((X?+1)-P)=(i*+ 1)p(P) =0.

On a donc un homomorphisme de R-algebres induit ¢: R[X]/(X? + 1) — C, qui est
évidemment surjectif, et puisqu’il est R-linéaire entre deux espaces de méme dimension,
c'est un isomorphisme (qui envoie z sur i) On a bien K = C.

Au passage, on a méme un peu plus. Soit ¢_: R[X] — C défini par P — P(—i).
Comme ci-dessus, on démontre que ¢_ est un isomorphisme entre K et C. On voit alors
que ¢_ 0571: C — C est un automorphisme (de R-algébres) qui envoie i sur —i. Il s’agit
bien siir de la conjugaison complexe.

Exemple 47. Essayons avec K = C et D = X2 + 1. On a maintenant X2 + 1 = (X +
i)(X —1), et
l(X+i)f i(X—i) =1.
2 2
Les idéaux I = (X + 1) et J = (X — i) vérifient donc I + J = K[X]. D'aprés le lemme
chinois (cf les exercices), on a
CIX]/(X?+1) = C[X]/(X +i) x C[X]/(X —1).

Par ailleurs, I'anneau C[X]/(P), avec P quelconque de degré 1, est une algebre sur C de
dimension 1 : c'est donc simplement C! Finalement C[X]/(X2 +1) =2 C x C. Ce n'est pas
un corps.
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Exemple 48. Et maintenant, prenons K = Q et D = X2—2. L'anneau K = Q[X]/(X?-2)
est une algebre de dimension 2 sur QQ, avec pour base 1,2, et 22 — 2 = 0, donc 22 = 2. Les
calculs dans K sont du type :

(a+ bx)(a’ +b'x) =aad + 260 + (ab' + a'b)x .

~

Montrons que K = Q[v/2] (cf les exercices de la feuille 1 pour la notation). On
note ¢+ : Q[X] — Q[v/2] I'homomorphisme P~ P(+£+/2). Alors ¢ vaut 0 sur I'idéal en-
gendré par X2 —2, et on a donc un homomorphisme induit ¢ : Q[X]/(X?—2) — Q[v/2];
ce dernier est surjectif, et en comparant les dimensions, on constate que ¢, est un isomor-
phisme. Il envoie = sur +2.

| . . . ,
On note que ¢_ o ¢, est un automorphisme de Q[v/2] qui envoie v/2 sur —/2. Il n'est
pas du tout trivial qu'un tel automorphisme existe !
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