
Chapitre 2 – Modules

§1 Premières définitions

Définition 1. Soit A un anneau et V un groupe abélien. Une structure de A-module sur V
est une application

A× V −→ V ,

notée (a, v) 7→ a · v, avec les propriétés suivantes :
• l’opération est bilinéaire, c’est-à-dire que l’on a

(a+ b) · v = a · v + b · v , a · (v + w) = a · v + a · w ,

pour a, b ∈ A et v, w ∈ V ;
• l’opération est associative, dans le sens où

a · (b · v) = (ab) · v

pour a, b ∈ A et v ∈ V , en écrivant bien sûr ab pour la multiplication dans A ;
• 1 · v = v pour tout v ∈ V .

La première chose à remarquer, et c’est capital, c’est que dans la situation où A est un
corps, noté disons K, dire que V possède une structure de K-module revient exactement
à dire que V est un espace vectoriel sur K. C’est donc quelque chose que vous connaissez
bien ! Le but de ce chapitre, et plus généralement du cours d’algèbre de ce semestre, est de
voir si l’on peut � faire de l’algèbre linéaire � avec d’autres anneaux, qui ne sont pas des
corps. Nous verrons que certaines notions se généralisent bien, mais dans l’ensemble le cas
des corps est très particulier...

Voyons donc d’autres exemples. Pour cela, il sera utile de reformuler un peu la définition
ci-dessus, car elle n’est pas toujours la plus pratique, selon les situations. Rappelons que, au
cours des exercices sur le chapitre précédent, nous avons vu que pour tout groupe abélien V ,
l’ensemble End(V ) des endomorphismes de V est naturellement muni d’une structure d’an-
neau, la multiplication étant la composition ◦, et l’élément neutre de cette multiplication
étant l’identité I.

Lemme 2. Soit V un groupe abélien et A un anneau. Se donner une structure de A-module
sur V revient exactement à se donner un homomorphisme d’anneaux ρ : A −→ End(V ).

Démonstration. Supposons que V est un A-module au sens précédent. Pour chaque a ∈ A,
notons

ρ(a) : V −→ V

v 7→ a · v .
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Ainsi ρ(a) est un élément de End(V ), et a 7→ ρ(a) est un homomorphisme d’anneaux : ces
deux affirmations découlent des propriétés ci-dessus des A-modules (vérifiez-le).

Réciproquement, supposons donné ρ : A −→ End(V ). Pour éviter les lourdeurs, nous
écrirons a 7→ ρa (et non pas ρ(a)). Il suffit alors de poser, pour a ∈ A et v ∈ V :

a · v := ρa(v) .

Vous vérifierez (c’est le même calcul que ci-dessus, mais à l’envers) que (a, v) 7→ a · v est
bien une structure de A-module.

Enfin, il est immédiat que ces deux constructions sont inverses l’une de l’autre.

Exemple 3. Qu’est-ce qu’un Z-module ? Il faut prendre un groupe abélien V , et trouver
un homomorphisme Z −→ End(V ). Or, nous avons vu ça dans les exercices du chapitre
précédent, pour tout anneau A il existe un unique homomorphisme Z −→ A ; ici pour A =
End(V ), il s’agit de n 7→ nI. Donc V est automatiquement un Z-module, de manière unique.
En bref, un Z-module n’est rien d’autre qu’un groupe abélien.

Encore quelques préliminaires avant un autre exemple important.

Définition 4. Soient V et W des A-modules. Une application f : V −→ W est appelée
homomorphisme de A-modules lorsque c’est un homomorphisme de groupes abéliens et
que f(a · v) = a · f(v) pour a ∈ A et v ∈ V . On dit que f est A-linéaire. Lorsque V = W ,
on dit que f est un endomorphisme du A-module V . Enfin, on dit que f est un isomorphisme
de A-modules lorsque c’est un homomorphisme et une bijection.

Comme prévu, dans le cas où A est un corps, vous retrouvez une notion familière.

Lemme 5. Soit V un A-module, et soit EndA(V ) l’ensemble de ses endomorphismes de A-
module. Alors EndA(V ) est un sous-anneau de End(V ). Lorsque A = K est un corps
commutatif, EndK(V ) est même une algèbre sur K.

Démonstration. C’est très simple : il faut prendre f, g ∈ EndA(V ) et écrire que

f ◦ g(a · v) = f(g(a · v)) = f(a · g(v)) = a · f(g(v)) = a · f ◦ g(v) ,

ce qui montre bien que f ◦ g ∈ EndA(V ).
Supposons maintenant que A = K est un corps commutatif (on parle donc d’espaces

vectoriels ici). Écrivons I pour l’identité de V , et pour λ ∈ K écrivons sans surprise λI pour
l’application v 7→ λ · v. L’ensemble des λI avec λ ∈ K est un anneau, et même un sous-
anneau de EndK(V ) (car K est commutatif !) que l’on peut identifier avec K. Ceci donne
bien à EndK(V ) une structure d’algèbre sur K : en effet il faut vérifier que λI ◦ f = f ◦ λI
pour f ∈ EndK(V ), mais cette condition revient exactement à dire que f est K-linéaire.

Tournons-nous vers le cas des algèbres, et commençons par une remarque. Lorsque B est
un sous-anneau de A, tout A-module peut être considéré comme un B-module, si l’on veut :
par exemple un espace vectoriel sur C est aussi un espace vectoriel sur R. Prenons alors un
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corps commutatif K et une algèbre sur K, notée A. Puisque A possède un sous-anneau que
l’on identifie à K, la remarque précédente montre que tout A-module est en particulier un
espace vectoriel sur K. On peut alors énoncer le résultat suivant, qui est la variante pour les
algèbres du lemme 2.

Lemme 6. Soit A une algèbre sur K, et soit V un groupe abélien. Se donner une structure
de A-module sur V revient exactement à se donner une structure de K-espace vectoriel sur V
ainsi qu’un homomorphisme d’algèbres ρ : A −→ EndK(V ).

Démonstration. On vous le laisse à titre d’exercice. C’est une variante de la démonstration
du lemme 2. Attention à une chose : la définition de EndK(V ) dépend bel et bien de la
structure de K-espace vectoriel choisie.

Exemple 7. Qu’est-ce qu’un K[X]-module ? D’après le lemme, il s’agit d’un K-espace vec-
toriel V muni d’un homomorphisme ρ : K[X] −→ EndK(V ). Mais une proposition du cha-
pitre précédent nous dit qu’un tel homomorphisme d’algèbre est de la forme P 7→ P (f),
où f ∈ EndK(A), et qu’il suffit de nous donner f . En bref, un K[X]-module est une
paire (V, f) où V est un espace vectoriel sur K et f : V −→ V est un K-endomorphisme.
Pour être tout-à-fait clair, pour v ∈ V on a

X · v = f(v) .

Pour P ∈ K[X] quelconque, on a alors

P · v = P (f)(v) ;

ces parenthèses sont bien pénibles, mais P (f) est un endomorphisme de V , on peut donc
l’appliquer à v pour obtenir P (f)(v). Voir l’exemple suivant.

Exemple 8. Soyons très concrets, et définissons un R[X]-module. On prend V = R2 (dans
tout ce cours, les éléments de Kn sont vus comme des matrices-colonnes, au fait). Il nous faut
un endomorphisme f : V −→ V . Comme on le sait bien, il doit être de la forme f(v) = Fv,
où F est la matrice de f dans la base canonique ; c’est une matrice 2× 2, et ici Fv désigne
bien le produit matriciel. (Note : la lettre F est plutôt rare pour une matrice, mais dans
ce cours on va essayer, dans la mesure du possible, d’appeler F la matrice de f , puis G la
matrice de g etc.) Pour continuer à être concret, on peut prendre par exemple

F =

(
1 1
0 1

)
.

Si on prend un polynôme, disons P = X3−4, alors la matrice de l’endomorphisme P (f)
est tout simplement P (F ) = F 3 − 4I. De sorte que si l’on prend un vecteur v, on a

P · v = (X3 − 4) · v = (F 3 − 4I)v (= P (f)(v)) .
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Ici

F 3 − 4I =

(
−3 3

0 −3

)
,

donc si on prend disons v =

(
0
1

)
, alors

P · v =

(
3
−3

)
.

Maintenant que nous pouvons penser aux K[X]-modules comme à des paires (V, f),
nous pouvons � traduire � la notion d’homomorphisme :

Lemme 9. Soient (V, f) et (W, g) deux K[X]-modules, et soit φ : V −→W . Alors φ est un
homomorphisme de K[X]-modules si et seulement si φ est K-linéaire et vérifie φ◦ f = g ◦φ.

La situation est comme sur le diagramme suivant :

V
f−−−−→ V

φ

y yφ
W

g−−−−→ W

Démonstration. Si φ est K[X]-linéaire, alors elle est certainement K-linéaire ; et de plus, on
doit avoir pour v ∈ V la relation

φ(X · v) = X · φ(v) .

Mais ici on a X · v = f(v), et pour tout w ∈W on a X · w = g(w), donc finalement

φ(f(v)) = g(φ(v)) ,

comme on le souhaitait.
Pour la réciproque, on suppose que φ est K-linéaire et vérifie φ ◦ f = g ◦ φ, et on

doit montrer pour tout polynôme P ∈ K[X] que φ(P · v) = P · φ(v) pour tout v. C’est
certainement vrai pour P = X, puisque la condition φ(X · v) = X · φ(v) n’est que la
traduction de φ ◦ f = g ◦ φ. Or l’ensemble

R = {P ∈ K[X] | φ(P · v) = P · φ(v)}

est, à l’évidence, un sous-anneau de K[X]. Puisque X ∈ R, on en déduit que R = K[X] en
entier.

Exemple 10. Pour W = V et g = f , la condition est que φ ◦ f = f ◦ φ, c’est-à-dire
que φ et f commutent. Reprenons l’exemple 8. Si Φ est la matrice de φ : V −→ V , alors la
condition pour que φ soit un endomorphisme de (V, f) peut s’écrire ΦF = FΦ. Si

Φ =

(
a b
c d

)
,
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alors en écrivant séparément ΦF et FΦ on voit que la condition équivaut à c = 0 et a = d.
En d’autres termes, nous avons une description de l’anneau EndR[X](V ) des endomorphismes
de (V, f) comme R[X]-module :

EndR[X](V ) =

{(
a b
0 a

)
avec a, b ∈ R

}
.

C’est une algèbre sur R, et comme espace vectoriel réel, elle est de dimension 2.

Nous pouvons maintenant annoncer plus clairement nos intentions dans ce cours. Nous
allons parler de modules tout le long du semestre. Pour chaque résultat ou concept, ou
presque, concernant les A-modules :
• lorsque A est un corps, on retrouvera quelque chose de connu d’algèbre linéaire, et en

général on pourra réduire l’énoncé à quelque chose de beaucoup plus simple ;
• lorsque A = Z, les choses seront immédiatement plus subtiles : on aura besoin des

� vrais � énoncés généralisés, car si on s’attendait à ce que l’algèbre linéaire fonc-
tionne � de la même manière � sur Z, on aurait bien tort, les contre-exemples étant
abondants ;

• lorsque A = K[X], les questions naturelles sur les modules se traduisent en questions
que vous avez déjà un peu étudiées en cours de � réduction des endomorphismes � ;
comme vous le savez, certaines de ces questions sont sophistiquées.

Nous étudierons souvent les A-modules sans hypothèse sur A, mais ce sont les 3 situations
ci-dessus que nous allons systématiquement examiner dans les exemples. Puis, arrivera un
chapitre où l’on montrera que Z et K[X] ne sont pas si différents (ce sont des � anneaux
euclidiens �), et que leurs modules ne sont pas si compliqués, après tout !

La dernière partie du cours va étudier les � G-modules �, où G est un groupe. Ceux-ci
sont très bien compris, et avec la théorie des � caractères � on peut même rendre les choses
très concrètes.

§2 Sous-modules

Dans cette partie, A est un anneau quelconque, et K est un corps commutatif.

Définition 11. Soit V un A-module, et U ⊂ V . On dit que U est un sous-A-module de V
(ou sous-module de V pour faire court) lorsque c’est un sous-groupe de V , et que pour u ∈ U
et a ∈ A on a a · u ∈ U . (En d’autres termes, U est � stable par combinaisons linéaires à
coefficients dans A �.)

Dans ce cas U est lui-même un A-module.

Exemple 12. Pour A = K, on retrouve la notion de sous-espace vectoriel. Pour A = Z,
on retrouve la notion de sous-groupe (abélien). Lorsque A = K[X], et que (V, f) est donc
un K[X]-module, dire que U ⊂ V est un sous-K[X]-module de V signifie exactement
que f(U) ⊂ U , autrement dit que U est stable par f . En écrivant f |U pour la restriction
de f à U , on a bien un K[X]-module (U, f |U ).
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Définition 13. Soient U1 et U2 deux sous-modules de V . La somme U1 + U2 est par
définition

U1 + U2 = {u1 + u2 | u1 ∈ U1, u2 ∈ U2} .

C’est un sous-module de V . On dit que V est la somme directe de U1 et U2, et on écrit V =
U1 ⊕ U2, lorsque V = U1 + U2 et U1 ∩ U2 = {0}.

Avant même de donner des exemples, nous pouvons rappeler le fait suivant, qui vous est
familier dans le cas A = K et qui n’est pas plus compliqué en général :

Lemme 14. Soient U1 et U2 deux sous-modules de V . Alors V = U1 ⊕ U2 est équivalent
au fait que tout v ∈ V peut s’écrire v = u1 + u2 avec ui ∈ Ui, et ceci de manière unique.

Démonstration. Exercice. Comme dans le cas A = K que vous connaissez.

Exemple 15. Pour A = K, on retrouve la notion de somme directe que vous connaissez
depuis longtemps. Regardons un peu A = Z. Prenons V = Z, qui est bien un groupe abélien.
Tout sous-module (= sous-groupe, ici) de Z est de la forme nZ pour un entier n ≥ 0.
Si U1 = nZ et U2 = mZ, avec n et m tous les deux > 0, alors U1 ∩ U2 n’est jamais réduit
à {0}, puisqu’il contient toujours nm 6= 0 par exemple. Donc on ne peut pas écrire V comme
une somme directe, à part si U1 ou U2 est nul. (Dans les exercices nous étudierons U1 +U2

et U1 ∩ U2.)
Enfin, soit (V, f) un K[X]-module, avec V de dimension finie sur K. Supposons que V =

U1 ⊕ U2, où Ui est un sous-K[X]-module. Prenons une base de U1, disons e1, . . . , ed, et
une base de U2, disons ε1, . . . , εr. Alors la réunion e1, . . . , ed, ε1, . . . , εr est une base de V .
Dans cette base, la matrice de f est de la forme(

F1 0
0 F2

)
où F1 est une matrice d× d et F2 est une matrice r × r ; en fait Fi est la matrice de f |Ui .
Autrement dit il existe une base dans laquelle la matrice de f est diagonale par blocks.
Réciproquement, s’il existe une telle base, il est clair que V peut s’exprimer comme une
somme directe.

Définition 16. Un A-module V est dit indécomposable lorsqu’on ne peut pas trouver de
sous-modules U1 et U2, tous les deux non-nuls, tels que V = U1 ⊕ U2.

L’exemple précédent montre que Z, comme Z-module, est indécomposable. Voyons un
autre exemple.

Exemple 17. Revenons à la situation de l’exemple 8, et montrons que V est indécomposable.
Supposons donc que V = U1 ⊕ U2. Comme espace vectoriel sur K, nous savons que V est
de dimension 2 ; si les deux Ui sont non-nuls, on doit donc avoir dimU1 = dimU2 = 1.
Mais alors, tout vecteur non-nul ui ∈ Ui est un vecteur propre de f , puisque f(ui) ∈ Ui =
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Vect(ui). On aurait donc une base u1, u2 de vecteurs propres de f , ou autrement dit, f
serait diagonalisable. Or, rappelons que la matrice de f est(

1 1
0 1

)
,

son polynôme caractèristique est (X − 1)2, la seule valeur propre est 1, et l’espace propre
ker(f − I) est de dimension 1, donc f n’est pas diagonalisable. (Ou encore : avec une seule
valeur propre, si f était diagonalisable, elle serait déjà diagonale, comme on le sait bien.)
Cette contradiction montre que V est indécomposable.

Dans le cas A = K, c’est-à-dire dans le cas des espaces vectoriels, quels sont les modules
indécomposables ? Il y en a très peu, en conséquence de la proposition suivante :

Proposition 18. Soit V un espace vectoriel [de dimension finie pour simplifier], et soit U
un sous-espace de V . Alors il existe un sous-espace U ′ tel que V = U ⊕ U ′.

Ici, et dans le reste de cette partie, nous ferons des hypothèses de dimension finie, qui ne
sont pas nécessaires : le résultat est vrai en toute généralité, mais il faut l’axiome du choix
et diverses choses que nous préférons éviter... On va essayer d’en rester à des résultats que
vous avez vus en L1.

Démonstration. Soit e1, . . . , ed une base de U – il en existe, d’après votre cours d’algèbre
linéaire de L1. On utilise le théorème de la base incomplète, qui nous affirme que l’on peut
trouver des vecteurs ed+1, . . . , en tels que e1, . . . , en est une base de V . Si l’on pose U ′ =
Vect(ed+1, . . . , en), alors il est clair que V = U ⊕ U ′.

Dans cette situation, dès lors que V possède un sous-espace U qui est non-nul, et tel
que U 6= V , alors V = U ⊕U ′ montre que V n’est pas indécomposable. On sent qu’il ne va
pas y avoir beaucoup de modules indécomposables !

Le vocabulaire suivant va être utile :

Définition 19. Un module V non-nul est dit simple lorsque, pour tout sous-module U ⊂ V ,
on a ou bien U = V ou bien U = {0}.

On a donc toujours :

Lemme 20. Si V est un A-module simple, alors V est indécomposable.

Démonstration. En effet, si on a V = U1 ⊕ U2, alors par simplicité de V , on doit avoir ou
bien U1 = V (et donc U2 = {0}) ou bien U1 = {0} (et U2 = V ) ; on voit que U1 et U2 ne
peuvent pas être tous les deux non-nuls, et donc que V est bel et bien indécomposable.

Pour A = K, la situation est complètement sous-contrôle :

Proposition 21. Soit V un espace vectoriel sur K non-nul [de dimension finie pour simplifier].
Alors les trois propriétés ci-dessous sont équivalentes :
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1. V est simple,

2. V est indécomposable,

3. V est de dimension 1.

Démonstration. D’après le dernier lemme, on a toujours (1) =⇒ (2). Supposons (2),
et soit v ∈ V , v 6= 0 et U = Vect(v). D’après la proposition, on peut trouver U ′ tel
que V = U ⊕ U ′. Mais comme V est indécomposable, ceci n’est possible que si U ′ = {0}.
On en déduit que V = U = Vect(v), et en particulier la dimension de V est (1).

Enfin, supposons (3). Un sous-espace U de V doit être de dimension inférieure à 1, donc
soit dimU = 0 et U = {0}, soit dimU = 1 et U = V . On a bien montré (1).

On comprend bien pourquoi, dans vos cours d’algèbre linéaire, on ne vous a pas embêtés
avec les notions de � module indécomposable � et � module simple � ! Mais sur un anneau
quelconque, les choses sont plus délicates.

Exemple 22. Pour A = Z, nous avons vu ci-dessus que V = Z est indécomposable. Mais
il n’est pas simple : pour tout n > 0, le sous-groupe U = nZ est non-nul, et U 6= V (il y a
donc une infinité de sous-modules qui contredisent la simplicité de V ).

Voyons des Z-modules simples. Si p est un entier, alors les sous-groupes de V = Z/pZ
sont en bijection avec les diviseurs de p ; plus précisément, si p = dk, alors U = {v ∈
V | dv = 0} est l’unique sous-groupe de V d’ordre d. Par conséquent, si p est un nombre
premier, alors Z/pZ est un module simple (on dit aussi un groupe simple, ici).

Il y a donc une infinité de modules simples (un pour chaque nombre premier), qui ne
sont pas isomorphes les uns aux autres (alors que dans le cas des corps, les modules simples,
ie les modules de dimension 1, sont bien sûr tous isomorphes les uns aux autres). On verra
plus loin qu’il n’y a pas d’autres Z-modules simples.

Exemple 23. Voyons maintenant le cas de A = K[X]. Retournons encore une fois à
l’exemple 8. Nous venons de voir que ce module est indécomposable. Par contre, il n’est pas
simple : si e1, e2 est la base canonique de V comme R-espace vectoriel, alors U = Vect(e1)
est stable par f , visiblement, donc U est un sous-K[X]-module de V .

Pour produire un exemple de K[X]-module simple, il suffit de prendre V de dimension 1,
avec f donné par une matrice 1×1 (bref un scalaire λ). En effet, un sous-module U d’un tel V
doit être en particulier un sous-espace vectoriel, mais puisque V est alors simple comme K-
module (par la proposition), on a certainement U = V ou U = {0}. En faisant varier λ, on
obtient une collection de modules simples qui ne sont pas isomorphes les uns aux autres.

Plus loin dans ce cours, nous donnerons une classification des Z-modules et des K[X]-
modules (avec un seul théorème !), et nous pourrons alors décrire complètement les indécom-
posables et les simples.

Terminons cette partie avec la définition du produit de deux modules :

Définition 24. Soient V et W deux modules sur A. Alors leur produit cartésien V ×W est
vu comme un A-module avec la structure

a · (v, w) = (a · v, a · w)
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pour a ∈ A, v ∈ V , w ∈ W (et avec la structure naturelle de groupe abélien sur V ×W ).
On l’appelle tout naturellement le produit de V et W .

La notation V ×W va être abusée presque tout de suite (dans ce cours, on va essayer
de faire attention, mais c’est vrai que c’est tentant). En effet, le sous-module

V × {0} = {(v, 0) | v ∈ V }

peut être sans danger identifié à V , et de même on identifie {0}×W à W . Ayant fait ceci,
on voit V et W comme des sous-modules de V ×W , et ils sont alors en somme directe :
V ×W = V ⊕W . Voilà pourquoi on trouve souvent la notation V ⊕W là où il serait plus
juste d’écrire V ×W .

Ajoutons enfin qu’il existe des définitions de la somme directe
⊕

i∈I Ui d’une famille
quelconque de modules Ui indexés par l’ensemble I, ainsi que du produit

∏
i∈I Ui de ces

mêmes modules : nous n’en dirons rien dans ce cours, mais sachez que ces deux constructions
sont bien distinctes. (Alors que pour deux modules, ou même pour un nombre fini de modules,
on vient de voir que confondre produit et somme directe n’est pas dramatique.)

§3 Modules libres

A désigne un anneau, et K est un corps commutatif.

Généralités

Définition 25. Pour tout entier n ≥ 1, on écrit An pour le produit de n copies de A, c’est-
à-dire le produit cartésien formé des n-uplets (a1, . . . , an) avec ai ∈ A ; c’est un A-module
avec

a · (a1, . . . , an) = (aa1, . . . , aan) .

On dit qu’un module V est libre de rang n s’il est isomorphe à An.

Pour n = 1, le module A1 n’est autre que A, vu comme module sur lui-même ( !), en
utilisant la multiplication. On l’appelle parfois le module régulier de A. Il sera parfois utile
de garder la notation A1 pour le module régulier, quand on veut le distinguer de l’anneau A.
Noter que An est le produit de n copies du module A1.

Voici des concepts qui vous sont familiers :

Définition 26. Soit V un A-module, et v1, . . . , vn une famille d’éléments de V .

1. On dit que v1, . . . , vn est une famille génératrice lorsque l’application

An −→ V

(a1, . . . , an) 7→ a1v1 + · · ·+ anvn

est surjective.

2. On dit que v1, . . . , vn est une famille libre lorsque l’application ci-dessus est injective.
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3. On dit que v1, . . . , vn est une base de V lorsque c’est une famille à la fois libre et
génératrice, ou en d’autres termes lorsque l’application ci-dessus est un isomorphisme.

Prenez le temps de bien vérifier que ceci correspond à la façon dont vous avez vu ces
concepts dans le cadre de l’algèbre linéaire. Par exemple, pour le deuxième point, rappelez-
vous bien que l’application que l’on regarde est injective ⇐⇒ son noyau est réduit à {0},
c’est-à-dire si et seulement si la seule façon d’avoir une combinaison linéaire nulle

a1v1 + · · ·+ anvn = 0

est de prendre tous les ai nuls. (L’élément neutre 0 dans le module An est (0, 0, . . . , 0),
évidemment !)

Vérifions que nous comprenons bien ce vocabulaire :

Lemme 27. Soit V un A-module. Alors V est libre de rang n si et seulement s’il possède
une base formée de n éléments.

Démonstration. Si V possède une base avec n éléments, par définition il est isomorphe à An,
donc libre. Pour la réciproque, dans le module An on peut utiliser les éléments

ei = (0, . . . , 0, 1, 0, . . . , 0)

avec le 1 en i-ième position. La famille e1, . . . , en est une base deAn, évidemment. Si φ : An −→
V est un isomorphisme, alors la famille φ(e1), . . . , φ(en) est une base de V .

Définition 28. Un A-module V est dit de type fini lorsqu’il possède une famille génératrice
(finie).

Lorsque A = K, on dit plutôt que V est de dimension finie plutôt que de type fini,
comme vous le savez. Un résultat très fort d’algèbre linéaire est le suivant :

Proposition 29. Tout espace vectoriel de dimension finie possède une base.

Là encore, la vérité est qu’on n’a pas besoin de supposer que l’espace vectoriel est de
dimension finie, mais vous n’avez sans doute pas vu la version plus générale. La moralité est
que sur un corps, tous les modules sont libres.

Comme d’habitude, c’est loin d’être le cas avec les autres anneaux. Avec A = Z, il suffit
de prendre V = Z/2Z, qui ne risque pas d’être libre, c’est-à-dire isomorphe à Zn pour un
certain n, puisqu’il n’est même pas infini ! Et dans la même veine, avec K[X] il suffit de
prendre une paire (V, f) avec V de dimension finie sur K : il n’a alors aucune chance d’être
isomorphe à K[X]n, qui est de dimension infinie sur K.

Idéaux

Puisque nous venons d’introduire le module régulier A1, nous pouvons parler des idéaux,
qui fournissent de bons exemples de modules :
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Définition 30. Les sous-modules de A1 sont appelés les idéaux de A (ou parfois les idéaux
à gauche, pour être plus précis). En clair, un idéal de A est un sous-groupe I ⊂ A ayant la
propriété que, pour a ∈ A et x ∈ I, on a toujours ax ∈ I.

Exemple 31. Fixons x0 ∈ A. Alors on note

(x0) = {ax0 | a ∈ A} ,

l’ensemble des multiples de x0 (à gauche). C’est un idéal de A, et on dit que c’est l’idéal
principal engendré par x0. C’est donc un module de type fini (l’élément x0 est une famille
génératrice à lui tout seul). On le note aussi parfois Ax0 ou, dans le cas où A est commutatif,
x0A.

Exemple 32. Prenons A = Z. Alors chaque sous-groupe (= sous-module = idéal) de Z
est de la forme nZ pour un n ≥ 1 ; c’est donc un idéal principal. Vous savez peut-être que
la même chose est vraie avec A = K[X] : tout idéal de cet anneau est principal, et nous
reviendrons sur ce phénomène dans le chapitre suivant.

Il y a des anneaux qui n’ont pas cette propriété. Par exemple, prenons A = Z[X], et

I = A · 5 +A ·X ;

c’est une somme de deux idéaux principaux, donc en clair

I = {a · 5 + b ·X | a, b ∈ A} .

Alors c’est un exercice facile que de montrer que I n’est pas principal.

Si I et J sont deux idéaux de l’anneau A, alors on peut parler de l’idéal I + J (comme
dans l’exemple précédent d’ailleurs), puisqu’on connait les sommes de sous-modules. Mais
on peut aussi parler de IJ :

Définition 33. Le produit IJ des idéaux I et J est par définition l’idéal engendré par les
éléments de la forme xy avec x ∈ I et y ∈ J , c’est-à-dire que c’est le plus petit idéal qui
contient ces éléments. Plus concrètement, IJ est l’ensemble des éléments de la forme

m∑
k=1

xkyk

où m est un entier, et avec xk ∈ I et yk ∈ J pour k entre 1 et m.

Exemple 34. Si I = (x) et J = (y) sont des idéaux principaux, avec A commutatif, alors
par définition on a IJ = (xy) (vérifiez-le).

Plus généralement, si I est un idéal etM est unA-module quelconque, on peut définir IM ,
et on vous laisse deviner.
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§4 Quotients

Introduction

Nous allons donner la définition du quotient V/U lorsque V est un A-module, et U ⊂ V
un sous-module. Avec V = Z et U = nZ, nous retrouverons bel et bien Z/nZ ! Commençons
par une approche informelle, car la version définitive est un peu technique.

Nous allons voir qu’il y a un homomorphisme surjectif V −→ V/U dont le noyau est
précisément U . Ainsi, les éléments de U ont � disparu � du nouveau module V/U .

Premier exemple informel. Par exemple, supposons que A = K[X] = V , et

U = X3A = { les multiples de X3 }

= {a3X3 + a4X
4 + · · ·+ anX

n | ai ∈ K, n ≥ 3} .
Alors U est bien un sous-module de V (vérifiez-le !). Admettons que le module V/U existe
avec les propriétés ci-dessus, et écrivons P 7→ P pour le morphisme V −→ V/U . Dans ce

cas Xk = 0 pour k ≥ 3 puisque Xk ∈ U dans ce cas. On en déduit que tout élément
de V/U est de la forme

a0 + a1X + · · ·+ anXn = a01 + a1X + a2X2 .

Il semblerait intuitif que V/U soit un espace vectoriel de dimension 3 sur K, avec pour
base 1, X,X2. Nous verrons que c’est effectivement le cas, lorsque nous aurons donné une
définition rigoureuse des quotients. On peut imaginer des situations, dans lesquelles on tra-
vaille avec des polynômes, et où l’on se rend compte que seuls les termes de degré ≤ 2 sont
� importants � pour les calculs que l’on mène ; il peut alors être plus agréable de travailler
dans V/U , qui est de dimension finie, plutôt que dans V .

Deuxième exemple informel. Cette fois-ci, prenons K = R et V = R2. Pour U , prenons
une droite vectorielle quelconque. Comment peut-on espérer construire un module V/U avec
une application linéaire V −→ V/U dont le noyau serait U ? Dans ce cas précis, c’est facile.
On peut prendre un U ′ tel que V = U ⊕ U ′ (cf chapitre précédent). On considère alors la
projection

p : V = U ⊕ U ′ −→ U ′

p(u+ u′) = u′ ,

ce qui a un sens car tout vecteur de V s’écrit de manière unique u+u′ avec u ∈ U , u′ ∈ U ′.
Il est alors immédiat que le noyau de p est bien U . Donc U ′ peut être pris comme modèle
pour V/U , avec l’homomorphisme p : V −→ U ′. Par contre, U ′ n’est pas unique du tout, et
c’est un peu curieux.

Or, il y a une remarque � géométrique � à faire. Faisons un dessin. [à insérer]. On a pris
une droite U ′ arbitraire. Ce qui se voit bien, c’est que chaque droite (affine) parallèle à U
coupe U ′ en un point et un seul ; en fait si u′ ∈ U ′, la droite

u′ + U = {u+ u′ | u ∈ U}
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est parallèle à U , et coupe U ′ en u′. Il y a ainsi une bijection entre les éléments de U ′ et les
droites parallèle à U .

Pour donner une définition de V/U sans avoir à choisir une droite U ′, nous allons
considérer l’ensemble des droites parallèles à U , et mettre une structure d’espace vecto-
riel dessus.

Passons à la version rigoureuse.

Définition des quotients

Dans cette partie, A désigne toujours un anneau, et K un corps commutatif.

Définition 35. Soit V un A-module et U ⊂ V un sous-module. Pour v ∈ V , on note

v + U := {v + u | u ∈ U} .

De plus, on note
V/U := {v + U | v ∈ V } .

(Formellement V/U est un donc un ensemble d’ensembles, chacun de la forme v + U , de
même que ci-dessus on avait vu que V/U , sur un exemple, était identifié avec un ensemble
de droites.)

Enfin, lorsque V et U sont fixés une fois pour toutes, on peut employer la notation

v = v + U .

Avec cette notation
V/U = {v | v ∈ V } .

Lemme 36. Il existe un structure de A-module sur V/U , et une seule, telle que l’application

p : V −→ V/U

définie par p(v) = v est un homomorphisme de A-modules.
De plus, ker(p) = U .

Démonstration. Si X et Y sont des parties de V , définissons

X + Y = {x+ y | x ∈ X, y ∈ Y } .

Examinons ceci dans le cas où X = v + U et Y = w + U . On constate rapidement que

X + Y = (v + U) + (w + U) = (v + w) + U .

Ceci nous donne une opération + sur V/U , et il est immédiat que v +w = v + w. De plus,
puisque p est surjective, il est très simple de vérifier que + donne bien une structure de
groupe abélien sur V/U . Par exemple, admettons que l’on veuille vérifier la commutativité,
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c’est-à-dire que x + y = y + x pour x, y ∈ V/U . Choisissons v ∈ V tel que v = x, et de
même prenons w tel que w = y, alors

x+ y = v + w = v + w = w + v = w + v = y + x .

Nous avons utilisé la commutativité de la loi + sur V . Notons que l’élément neutre est 0 = U .
On fait pareil avec les autres propriétés à vérifier (associativité...). Et sur le même modèle,

on définit, pour a ∈ A et X une partie de V , la partie aX par

aX = {ax | x ∈ X} .

Si X = v + U alors aX = av + U . Ceci nous donne une opération A × V/U −→ V/U
qui complète la structure de A-module (les vérifications étant là encore très simples). On
a av = av, par définition.

L’unicité provient du fait que p est surjective (on vous laisse vérifier ceci).
Nous devons maintenant examiner le noyau de p. Il s’agit des v ∈ V tels que p(v) =

0 = v, ce qui par définition signifie U = v + U . Clairement, ceci arrive si et seulement
si v ∈ U .

Proposition 37. Soit U, V comme ci-dessus et p : V −→ V/U l’application quotient. Soit W
un autre A-module et f : V −→ W un homomorphisme. On suppose que f(u) = 0 pour
tous les u ∈ U .

Alors il existe un unique homomorphisme f : V/U −→ W tel que f = f ◦ p. Ou ce qui
revient au même : pour v ∈ V on a f(v) = f(v).

Démonstration. Soit x ∈ V/U . On peut choisir un v ∈ V tel que x = p(v) = v. Ce v n’est
pas unique, mais par contre, l’élément f(v) ne dépend pas du choix : en effet, si p(v′) =
p(v) = x, alors u = v − v′ ∈ ker(p) = U , donc f(u) = 0 = f(v) − f(v′). On peut donc
poser f(x) = f(v) pour un v quelconque tel que x = p(v), et ceci est bien défini. On
a f(v) = f(p(v)) par définition.

Il faut vérifier que f est un homomorphisme, mais c’est très facile, par exemple si x = v
et y = w alors x+ y = v + w de sorte que

f(x+ y) = f(v + w) = f(v + w) = f(v) + f(w) = f(v) + f(w) = f(x) + f(y) .

Et ainsi de suite.

Corollaire 38. Soit f : V −→W un homomorphisme surjectif entre A-modules, et soit U =
ker f . Alors l’application induite f : V/U −→W est un isomorphisme.

On résume parfois ce corollaire en écrivant

V/ ker f ∼= Im(f) .

Démonstration. Puisque f est surjective, tout w ∈ W est de la forme w = f(v) = f(v),
donc f est surjective. De plus, si x ∈ ker f , alors en prenant v ∈ V tel que x = v on
a f(x) = f(v) = 0, d’où v ∈ U et v = 0 = x. On a bien ker f = {0}, donc f est également
injective.
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Exemple 39. Nous avons promis que pour V = Z et U = nZ on retrouvait Z/nZ comme
on le connâıt. Montrons-le : soit M le groupe abélien que vous avez appelé Z/nZ les
années précédentes ; tout le monde n’a peut-être pas eu la même définition, mais vous nous
accorderez qu’il y a un homomorphisme surjectif f : Z −→ M dont le noyau est nZ. Par le
corollaire, M ∼= Z/nZ, où l’écriture Z/nZ désigne bien la nouvelle notion introduite dans
ce chapitre.

Avant de donner d’autres exemples :

Définition 40. Soit U un sous-module de V , et soit E ⊂ V un sous-ensemble – on ne
suppose pas que E est un sous-module, en général. On dit que U et E sont supplémentaires
lorsque tout v ∈ V peut s’écrire de manière unique v = u+ e avec u ∈ U et e ∈ E.

Bien sûr, si V = U ⊕ U ′, alors E = U ′ est un supplémentaire de U , mais il y a d’autres
exemples. Par exemple, si A = V = Z, U = nZ, et E = {0, 1, 2, . . . , n− 1}.

Lemme 41. Soit U un sous-module de V , et soit E un supplémentaire de U . Alors l’appli-
cation quotient

p : V −→ V/U

donne une bijection entre E et V/U . Si E est un sous-module, alors p est un isomorphisme
de modules ; si A est une algèbre sur K et si E est un K-espace vectoriel, alors p est un
isomorphisme d’espaces vectoriels.

Démonstration. La définition même de � supplémentaire � rend évident le fait que tout x ∈
V/U s’écrit x = p(e) pour un e ∈ E unique. Le reste provient du fait que p est un
homomorphisme de modules, donc sa restriction à E (si E est aussi un module) est encore
un homomorphisme.

Exemple 42. On retrouve bien sûr le fait que

Z/nZ = {0, 1, . . . , n− 1}

(et le fait que les n éléments à droite sont distincts). Voici un autre exemple : prenons A =
K[X] = V , et U = les multiples de X3 comme dans l’introduction. On pose alors E =
Vect(1, X,X2). C’est un sous-espace vectoriel de V , mais pas un sous-module (si on multiplie
un élément de E par X, on ne tombe pas forcément dans E !). Le lemme s’applique, car U
et E sont supplémentaires. Ceci montre que V/U est isomorphe comme espace vectoriel
à E, donc il est bien de dimension 3 avec pour base 1, X,X2.

Quotient d’un anneau par un idéal

Nous venons de voir les quotients de modules. Voyons les quotients dans le monde des
anneaux (dans un autre chapitre, nous verrons les quotients de groupes non-commutatifs).
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Lemme 43. Soit I un idéal de l’anneau A. On suppose que A est commutatif. Alors le A-
module A/I est également un anneau commutatif, et l’application naturelle p : A −→ A/I
est un homomorphisme d’anneaux.

Enfin, si A est une K-algèbre, où K est un corps commutatif, alors A/I aussi, et l’appli-
cation p est un homomorphisme d’algèbres.

Démonstration. Soient x, y ∈ A/I. On choisit a, b ∈ A tels que p(a) = x et p(b) = y ;
montrons que l’élément p(ab) = ab + I ∈ A/I ne dépend pas du choix de a ou b, mais
seulement de x et y.

En effet, si p(a′) = p(a) = x et p(b′) = p(b) = y, alors i = a′ − a ∈ ker(p) = I et de
même j = b′ − b ∈ I. Par suite

a′b′ + I = ab+ (ib′ + aj + ij) + I = ab+ I ,

la dernière égalité provenant du fait que ib′ + aj + ij ∈ I, car I est un idéal, et A est
commutatif (c’est crucial !), donc ib′ = b′i ∈ I.

On peut donc définir xy = ab + I, et ceci a un sens. Ceci donne une multiplication
sur A/I, et p(a)p(b) = p(ab) par définition. On en déduit facilement que A/I est un anneau
commutatif.

La démonstration du � enfin � vous est laissée en exercice.

Exemple 44. On retrouve le fait que Z/nZ est un anneau, ainsi que la formule ab = ab.

Lemme 45. Soit f : A −→ B un homomorphisme d’anneaux, et I un idéal de A tel
que f(I) = {0}. Alors l’application induite f : A/I −→ B est un homomorphisme d’an-
neaux.

De plus, si f est surjective et I = ker f , alors l’isomorphisme A/I ∼= B induit par f est
un isomorphisme d’anneaux.

Démonstration. Exercice.

Dans la suite, nous allons nous concentrer sur un type d’exemple très important : on
prend un corps commutatif K, l’anneau A = K[X], et l’idéal I = (D) principal engendré par
le polynôme non-nul D = a0 + a1X + · · · + adX

d. En tant que A-module, le cas de A/I
est crucial, comme nous le verrons dans le chapitre suivant (en gros : tout K[X]-module
finiment engendré est un produit de modules de la forme K[X]/(D)). En tant qu’anneau, le
cas de A/I sera étudié à la loupe au second semestre.

Posons donc
E = {P ∈ K[X] | deg(P ) < d} .

Comme vous le savez, dans K[X] on peut faire des divisions euclidiennes, c’est-à-dire que
pour tout P ∈ K[X], on peut écrire

P = DQ+R
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avec deg(R) < d, et ceci de manière unique. Ceci revient à dire que (D) et E sont
supplémentaires dans K[X] (pensez-y !). D’après un lemme ci-dessus, on en déduit que A/I
est isomorphe, comme K-espace vectoriel, à E. Plus précisément, en écrivant comme d’ha-
bitude P 7→ P pour l’application A −→ A/I, les éléments 1, X, . . . ,Xd−1 forment une base
de A/I.

Nous allons poser x = X. On a Xk = xk puisque l’application A −→ A/I est un
homomorphisme d’anneaux. Finalement, tout élément de A/I peut s’écrire de manière unique

λ0 + λ1x+ λ2x
2 + · · ·+ λd−1x

d−1 .

Et enfin, pour faire des calculs dans A/I, il suffit de se rappeler que D(x) = 0. En ef-
fet D(x) = D(X), et bien sûr D ∈ (D) donc D = 0. Nous avons tout ce qu’il nous faut
pour travailler dans cet anneau quotient.

Exemple 46. Prenons K = R et D = X2 + 1. Appelons K = R[X]/(X2 + 1). Comme
espace vectoriel sur R, cet anneau est de dimension 2, avec comme base 1, x. De plus, on a
la relation x2 + 1 = 0. En écrivant ça x2 = −1, on peut s’amuser à multiplier z = a + bx
par w = a′ + b′x :

zw = aa′ − bb′ + (ab′ + a′b)x .

Évidemment on se dit qu’on a probablement K ∼= C, et il est très facile de le montrer.
Soit φ : R[X] −→ C l’homomorphisme P 7→ P (i). Alors φ est nul sur l’idéal I = (X2 + 1),
puisque

φ((X2 + 1) · P ) = (i2 + 1)φ(P ) = 0 .

On a donc un homomorphisme de R-algèbres induit φ : R[X]/(X2 + 1) −→ C, qui est
évidemment surjectif, et puisqu’il est R-linéaire entre deux espaces de même dimension,
c’est un isomorphisme (qui envoie x sur i) On a bien K ∼= C.

Au passage, on a même un peu plus. Soit φ− : R[X] −→ C défini par P 7→ P (−i).
Comme ci-dessus, on démontre que φ− est un isomorphisme entre K et C. On voit alors

que φ− ◦ φ
−1

: C −→ C est un automorphisme (de R-algèbres) qui envoie i sur −i. Il s’agit
bien sûr de la conjugaison complexe.

Exemple 47. Essayons avec K = C et D = X2 + 1. On a maintenant X2 + 1 = (X +
i)(X − i), et

1

2i
(X + i)− 1

2i
(X − i) = 1 .

Les idéaux I = (X + i) et J = (X − i) vérifient donc I + J = K[X]. D’après le lemme
chinois (cf les exercices), on a

C[X]/(X2 + 1) ∼= C[X]/(X + i)× C[X]/(X − i) .

Par ailleurs, l’anneau C[X]/(P ), avec P quelconque de degré 1, est une algèbre sur C de
dimension 1 : c’est donc simplement C ! Finalement C[X]/(X2 + 1) ∼= C×C. Ce n’est pas
un corps.
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Exemple 48. Et maintenant, prenons K = Q et D = X2−2. L’anneau K = Q[X]/(X2−2)
est une algèbre de dimension 2 sur Q, avec pour base 1, x, et x2 − 2 = 0, donc x2 = 2. Les
calculs dans K sont du type :

(a+ bx)(a′ + b′x) = aa′ + 2bb′ + (ab′ + a′b)x .

Montrons que K ∼= Q[
√

2] (cf les exercices de la feuille 1 pour la notation). On
note φ± : Q[X] −→ Q[

√
2] l’homomorphisme P 7→ P (±

√
2). Alors φ± vaut 0 sur l’idéal en-

gendré par X2−2, et on a donc un homomorphisme induit φ± : Q[X]/(X2−2) −→ Q[
√

2] ;

ce dernier est surjectif, et en comparant les dimensions, on constate que φ± est un isomor-

phisme. Il envoie x sur ±
√

2.

On note que φ− ◦ φ
−1
+ est un automorphisme de Q[

√
2] qui envoie

√
2 sur −

√
2. Il n’est

pas du tout trivial qu’un tel automorphisme existe !
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