
AN ELEMENTARY APPROACH TO DESSINS D’ENFANTS AND
THE GROTHENDIECK-TEICHMÜLLER GROUP
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Abstract. We give an account of the theory of dessins d’enfants which is both
elementary and self-contained. We describe the equivalence of many categories
(graphs embedded nicely on surfaces, finite sets with certain permutations,
certain field extensions, and some classes of algebraic curves), some of which are
naturally endowed with an action of the absolute Galois group of the rational
field. We prove that the action is faithful. Eventually we prove that Gal(Q/Q)

embeds into the Grothendieck-Teichmüller group ĜT 0 introduced by Drinfeld.
There are explicit approximations of ĜT 0 by finite groups, and we hope to
encourage computations in this area.

Our treatment includes a result which has not appeared in the literature
yet: the action of Gal(Q/Q) on the subset of regular dessins – that is, those
exhibiting maximal symmetry – is also faithful.
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Introduction

The story of dessins d’enfants (children’s drawings) is best told in two episodes.
The first side of the story is a surprising unification of different-looking theories:

graphs embedded nicely on surfaces, finite sets with certain permutations, certain
field extensions, and some classes of algebraic curves (some over C, some over Q), all
turn out to define equivalent categories. This result follows from powerful and yet
very classical theorems, mostly from the 19th century, such as the correspondence
between Riemann surfaces and their fields of meromorphic functions (of course
known to Riemann himself), or the basic properties of the fundamental group (dat-
ing back to Poincaré).

One of our goals with the present paper is to give an account of this theory that
sticks to elementary methods, as we believe it should. (For example we shall never
need to appeal to “Weil’s rigidity criterion”, as is most often done in the literature on
the subject; note that it is also possible, in fact, to read most of this paper without
any knowledge of algebraic curves.) Our development is moreover as self-contained
as is reasonable: that is, while this paper is not the place to develop the theory
of Riemann surfaces, Galois extensions or covering spaces from scratch – we shall
refer to basic textbooks for these – we give complete arguments from there. Also,
we have striven to state the results in terms of actual equivalences of categories, a
slick language which unfortunately is not always employed in the usual sources.

The term dessins d’enfants was coined by Grothendieck in [Gro97], in which a
vast programme was laid out, giving the theory a new thrust which is the second side
of the story we wish to tell. In a nutshell, some of the categories mentioned above
naturally carry an action of Gal(Q/Q), the absolute Galois group of the rational
field. This group therefore acts on the set of isomorphism classes of objects in any
of the equivalent categories; in particular one can define an action of the absolute
Galois group on graphs embedded on surfaces. In this situation however, the nature
of the Galois action is really very mysterious - it is hoped that, by studying it, light
may be shed on the structure of Gal(Q/Q). It is the opportunity to bring some
kind of basic, visual geometry to bear in the study of the absolute Galois group
that makes dessins d’enfants – embedded graphs – so attractive.

In this paper we explain carefully, again relying only on elementary methods, how
one defines the action, and how one proves that it is faithful. This last property
is clearly crucial if we are to have any hope of studying Gal(Q/Q) by considering
graphs. We devote some space to the search for invariants of dessins belonging to
the same Galois orbit, a major objective in the field.

When a group acts faithfully on something, we can usually obtain an embedding
of it in some automorphism group. In our case, this leads to the Grothendieck-
Teichmüller group ĜT , first introduced by Drinfeld in [Dri90], and proved to con-
tain Gal(Q/Q) by Ihara in [Iha94]. While trying to describe Ihara’s proof in any
detail would carry us beyond the scope of this paper, we present a complete, el-
ementary argument establishing that Gal(Q/Q) embeds into the slightly larger
group ĜT 0 also defined by Drinfeld. In fact we work with a group GT isomorphic
to ĜT 0, and which is an inverse limit

GT = lim
n
GT (n) ;

here GT (n) is a certain subgroup of Out(Hn) for an explicitly defined finite
group Hn. So describing Hn and GT (n) for some n large enough gives rough
information about Gal(Q/Q) – and it is possible to do so in finite time.

In turn, we shall see that understanding Hn amounts, in a sense, to understand-
ing all finite groups generated by two elements, whose order is less than n. We land
back on our feet: from the first part of this paper, those groups are in one to one
correspondence with some embedded graphs, called regular, exhibiting maximal
symmetry. The classification of “regular maps”, as they are sometimes called, is a
classical topic which is still alive today.

? ? ?

Let us add a few informal comments of historical nature, not written by an
expert in the history of mathematics.

The origin of the subjet is the study of “maps”, a word meaning graphs embed-
ded on surfaces in a certain way, the complement of the graph being a disjoint
union of topological discs which may be reminiscent of countries on a map of the
world. Attention has focused quickly on “regular maps”, that is, those for which the
automorphism group is as large as possible. For example, “maps” are mentioned
in the 1957 book [CM57] by Coxeter and Moser, and older references can certainly
be found. The 1978 paper [JS78] by Jones and Singerman has gained a lot of pop-
ularity; it gave the field stronger foundations, and already established bijections
between “maps” and combinatorial objects such as permutations on the one hand,
and also with compact Riemann surfaces, and thus complex algebraic curves, on
the other hand. For a recent survey on the classification of “maps”, see [Š13].

Then came the Esquisse d’un programme [Gro97], written by Grothendieck be-
tween 1972 and 1984. Dessins can be seen as algebraic curves over C with some
extra structure (a morphism to P1 with ramification above 0, 1 or ∞ only), and
Grothendieck knew that such a curve must be defined over Q. Since then, this
remark has been known as “the obvious part of Belyi’s theorem” by people working
in the field, even though it is not universally recognized as obvious, and has little
to do with Belyi (one of the first complete and rigorous proofs is probably that by
Wolfart [Wol97]). However, Grothendieck was very impressed by the simplicity and
strength of a result by Belyi [Bel79] stating that, conversely, any algebraic curve
defined over Q can be equipped with a morphism as above (which is nowadays
called a Belyi map, while it has become common to speak of Belyi’s theorem to
mean the equivalence of definability of Q on the one hand, and the possibility of
finding a Belyi map on the other hand). Thus the theory of dessins encompasses all
curves over Q, and Grothendieck pointed out that this simple fact implied that the
action of Gal(Q/Q) on dessins must be faithful. The esquisse included many more
ideas which will not be discussed here. For a playful exposition of many examples
of the Galois action on dessins, see [LZ04].

Later, in 1990, Drinfeld defined ĜT in [Dri90] and studied its action on braided
categories, but did not relate it explicitly to Gal(Q/Q) although the motivation for
the definition came from the esquisse. It was Ihara in 1994 [Iha94] who proved the
existence of an embedding of Gal(Q/Q) into ĜT ; it is interesting to note that, if
dessins d’enfants were the original idea for Ihara’s proof, they are a little hidden
behind the technicalities.

The Grothendieck-Teichmüller group has since been the object of much research,
quite often using the tools of quantum algebra in the spirit of Drinfeld’s original
approach. See also [Fre] by Fresse, which establishes an interpretation of ĜT in
terms of operads.

? ? ?

Here is an outline of the paper. In section 1, we introduce cell complexes, that is,
spaces obtained by glueing discs to bipartite graphs; when the result is a topological
surface, we have a dessin. In the same section we explain that dessins are entirely
determined by two permutations. In section 2, we quote celebrated, classical results
that establish a number of equivalences of categories between that of dessins and
many others, mentioned above. In section 3 we study the regularity condition in
detail. The Galois action is introduced in section 4, where we also present some
concrete calculations. We show that the action is faithful. Finally in section 5 we
prove that Gal(Q/Q) embeds into the group GT described above.

In the course of this final proof, we obtain seemingly for free the following re-
finement: the action of Gal(Q/Q) on regular dessins is also faithful. This fact
follows mostly from a 1980 result by Jarden [Jar80] (together with known material
on dessins), and it is surprising that it has not been mentioned in the literature
yet. While this work was in its last stages, I have learned from Gareth Jones that
the preprint [JZGD] by Andrei Jaikin-Zapirain and Gabino Gonzalez-Diez contains
generalizations of Jarden’s theorem while the faithfulness of the Galois action on
regular dessins is explicitly mentioned as a consequence (together with more pre-
cise statements). Also in [BCG], a preprint by Ingrid Bauer, Fabrizio Catanese and
Fritz Grunewald, one finds the result stated.
Acknowledgements. Nick Gill and Ian Short have followed the development of this
paper from the very early stages, and I have benefited greatly from their advice. I
also want to thank Gareth Jones for kind words about this work as it was reaching
completion. Further corrections have been made based on comments by Olivier
Guichard and Pierre de la Harpe, for which I am grateful.
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1. Dessins

In this section we describe the first category of interest to us, which is that of
graphs embedded on surfaces in a particularly nice way. These have been called
sometimes “maps” in the literature, a term which one should avoid if possible given
the other meaning of the word “map” in mathematics. We call them dessins.

The reader may be surprised by the number of pages devoted to this first topic,
and the level of details that we go into. Would it not suffice to say that the objects
we study are graphs embedded on surfaces, whose complement is a union of open
discs, perhaps with just a couple of technical conditions? (A topologist would say
“a CW-complex structure on a surface”.)

This would not be appropriate, for several reasons. First and foremost, we aim
at proving certain equivalences of categories, eventually (see next section). With
the above definition, whether one takes as morphisms all continuous maps between
surfaces, or restricts attention to the “cellular” ones, in any case there are simply
too many morphisms taken into account (see for example [JS78]). Below, we get
things just right.

Another reason is that we already present two categories in this section, not just
one: dessins are intimately related to finite sets endowed with certain permutations.
The two categories are equivalent and indeed so close that we encourage the reader
to always think of these two simultaneously; we take the time to build the intuition
for this.

Note also that our treatment is very general, including non-orientable dessins as
well as dessins on surfaces with boundary.

Finally, the material below is so elementary that it was possible to describe it
with absolutely no reference to textbooks, an opportunity we took. We think of
the objects defined in this section as the most down-to-earth of the paper, while
the other categories to be introduced later are here to shed light on dessins.

1.1. Bipartite graphs. We start with the definition of bipartite graphs, or bi-
graphs for short, which are essentially graphs made of black and white vertices,
such that the edges only connect vertices of different colours. More formally, a
bigraph consists of

• a set B, the elements of which we call the black vertices,
• a set W , the elements of which we call the white vertices,
• a set D, the elements of which we call the darts,
• two maps B : D −→ B and W : D −→W .

In most examples all of the above sets will be finite, but in general we only
specify a local finiteness condition, as follows. The degree of w ∈W is the number
of darts d such that W (d) = w; the degree of b ∈ B is the number of darts d such
that B(d) = b. We require that all degrees be finite.

For example, the following picture will help us describe a bigraph.
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Here B = {b1, b2}, while W = {w1, w2, w3} and D = {d1, d2, d3, d4}. The
maps B and W satisfy, for example, B(d1) = b1 and W (d1) = w2. Note that
bigraphs according to this definition are naturally labeled, even though we will
often suppress the names of the vertices and darts in the pictures.

The notion of morphism of bigraphs is the obvious one: a morphism between G =
(B,W,D,B,W ) and G ′ = (B′,W ′, D′,B′,W ′) is given by three maps B → B′,
W → W ′ and ∆: D → D′ which are compatible with the maps B,W ,B′,W ′.
Isomorphisms are invertible morphisms, unsurprisingly. (Pedantically, one could
define an unlabeled bigraph to be an isomorphism class of bigraphs.)

To a bigraph G we may associate a topological space |G |, by attaching intervals
to discrete points according to the maps B and W ; in the above example, and in
all others, it will look just like the picture. To this end, take for each d ∈ D a
copy Id of the unit interval [0, 1] with its usual topology. Then consider

Y =
∐
d∈D

Id

with the disjoint union topology, and

X = Y
∐

B
∐

W .

(Here B and W are given the discrete topology.) On X there is an equivalence
relation corresponding to the identifications imposed by the maps B and W . In
other words, the equivalence class [b] of b ∈ B is such that [b]∩Id = {0} if B(d) = b
and [b] ∩ Id = ∅ otherwise, while [b] ∩ B = {b} and [b] ∩W = ∅; the description of
the equivalence class [w] when w ∈ W is analogous, with [w] ∩ Id = {1} precisely
when W (d) = w. All the other equivalence classes are singletons. The space |G | is
the set of equivalence classes, with the quotient topology. Clearly, an isomorphism
of graphs induces a homeomorphism between their topological realizations.

Finally, we point out that usual graphs (the reader may pick their favorite defi-
nition) can be seen as bigraphs by “inserting a white vertex inside each edge”. We
will not formalize this here, although it is very easy. In what follows we officially
define a graph to be a bigraph in which all white vertices have degree precisely 2;
a pair of darts with a common white vertex form an edge. The next picture, on
which you see four edges, summarizes this.
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1.2. Cell complexes. Suppose a bigraph G is given. A loop on G is a sequence of
darts describing a closed path on G alternating between black and white vertices.
More precisely, a loop is a tuple

(d1, d2, . . . , d2n) ∈ D2n

such that W (d2i+1) = W (d2i+2) and B(d2i+2) = B(d2i+3), for 0 ≤ i ≤ n − 1,
where d2n+1 is to be understood as d1. We think of this loop as starting and ending
with the black vertex B(d1), and visiting along the way the points W (d2), B(d3),
W (d4), B(d5), W (d6), . . . (It is a little surprising to adopt such a convention, that
loops always start at a black vertex, but it does simplify what follows.)

For example, consider the following square:
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On this bigraph we have a loop (d1, d2, d3, d4) for example. Note that (d1, d2, d2, d1)
is also a loop, as well as (d1, d1).

Loops on G form a set L(G ). We have reached the definition of a cell complex
(or 2-cell complex, for emphasis). This consists of

• a bigraph G ,
• a set F , the elements of which we call the faces,
• a map ∂ : F → L(G ), called the boundary map.

The definition of morphisms between cell complexes will wait a little.
A cell complex C also has a topological realization |C |: briefly, one attaches

closed discs to the space |G | using the specified boundary maps. In more details,
for each f ∈ F we pick a copy Df of the unit disc

D = {z ∈ C : |z| ≤ 1} .
Consider then

Z0 =
∐
f∈F

Df

and
Z = |G |

∐
Z0 .

We define |C | to be the following identification space of Z, with the quotient topol-
ogy. Fix f ∈ F and let ∂f = (d1, d2, . . . , d2n). We put ω = e

2iπ
2n ∈ Df . The

discussion will be easier to understand with a picture:
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The letters d1, . . . , d6 are simply here to indicate the intended glueing. Let I = [0, 1]
and consider the homeomorphism

hi : I −→ [ω2i, ω2i+1] ,

where [ω2i, ω2i+1] denotes the circular arc from ω2i to ω2i+1, defined by hi(t) =
ω2i+t. We shall combine it with the continuous map

gi : I −→ |G |
which is obtained as the identification I = Id2i+1

followed by the canonical
map Id2i+1 → |G | (see the definition of |G |). We can now request, for all t ∈ I, the
identification of gi(t) and hi(t), these being both points of Z.

Similarly there is an identification of the arc [ω2i, ω2i−1] with the image of Id2i .
We prescribe no more identifications, and this completes the definition of |C |.

Example 1.1 – Let us return to the square as above. We add one face f , with ∂f =
(d1, d2, d3, d4). We obtain a complex C such that |C | is homeomorphic to the
square [0, 1]× [0, 1], and which we represent as follows:

bc

bcb

b

d1

d2

d3

d4 ⋆ f

We shall often place a ? inside the faces, even when they are not labeled, to remind
the reader to mentally fill in a disc. The reader is invited to contemplate how the
complex obtained by taking, say, ∂f = (d2, d1, d4, d3) instead, produces indeed a
homeomorphic realization. These two complexes ought to be isomorphic, when we
have defined what isomorphisms are.

Example 1.2 – This example will be of more importance later than is immediately
apparent. Let B,W,D and F all have one element, say b, w, d and f respectively;
and let ∂f = (d, d). Then |C | is homeomorphic to the sphere S2.

This example shows why we used discs rather than polygons: we may very well
have to deal with digons.

Example 1.3 – It is possible to convey a great deal of information by pictures
alone, and with this example we explore such shorthands. Consider for example:
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Here we use integers to label the darts. We can see this picture as depicting a
cell complex with two faces, having boundary (2, 3) and (5, 6) respectively. Should
we choose to do so, there would be little ambiguity in informing the reader that
we mean for there to be a third face “on the outside”, hoping that the bound-
ary (1, 1, 2, 3, 4, 4, 5, 6) (or equivalent) will be understood. The centre of that face
is placed “at infinity”, that is, we think of the plane as the sphere S2 with a point
removed via stereographic projection, and that point is the missing ?. Of course
with these three faces, one has |C | homeomorphic to S2.

Suppose we were to draw the following picture, and specify that there is a third
face “at infinity” (or “on the outside”):

b

bc

bc bc⋆ ⋆bc

This is probably enough information for the reader to understand which cell complex
we mean. (It has the same underlying bigraph as the previous one, but the cell
complexes are not isomorphic). The topological realization, again a sphere, is
represented below.

Example 1.4 – It is harder to draw pictures in the following case. Take B =
{b1, b2, b3} andW = {w1, w2, w3}, and add darts so that G is “the complete bipartite
graph on 3 + 3 vertices” : that is, place a dart between each bi and each wj ,
for 1 ≤ i, j ≤ 3. Since there are no multiple darts between any two vertices in this
bigraph, we can designate a dart by its endpoints; we may also describe a loop by
simply giving the list of vertices that it visits. With this convention, we add four
faces:

f1 through b1, w2, b3, w3, b2, w1,

f2 through b1, w2, b2, w3,

f3 through b2, w2, b3, w1,

f4 through b1, w3, b3, w1 .

(Each of these returns to its starting point in the end.) The topological realiza-
tion |C | is homeomorphic to the projective plane RP 2. We will show this with a
picture:
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Here we see RP 2 as the unit disc D with z identified with −z whenever |z| = 1;
we caution that the dotted arcs, indicating the boundary of the unit circle, are not
darts.

Here are some very basic properties of the geometric realization.

Proposition 1.5 – (1) The space |C | is connected if and only if |G | is.
(2) The space |C | is compact if and only if the complex is finite (ie B, W , D

and F are all finite).

Proof. (1) It is quite easy to prove this directly, after showing that each path on |C |
is homotopic to one lying on |G |. The reader who has recognized that the space
|C | is, by definition, the realization of a CW-complex, whose 1-skeleton is |G |, will
see the result as a consequence of the cellular approximation theorem ([Bre97],
Theorem 11.4).

(2) By construction there is a quotient map

q : K = Y
∐

B
∐

W
∐

Z0 −→ |C | ,

where the notation is as above. Clearly K is compact if the complex is finite,
so q(K) = |C | must be compact, too, and we have proved that the condition is
sufficient.

To see that it is necessary as well, one can argue that the map q is proper, or
else use elementary arguments as follows. We show that the faces must be finite in
number when |C | is compact, and the reader will do similarly with the vertices and
darts.

For each f ∈ F , consider the open set Uf ⊂ K whose complement is the union
of the closed discs of radius 1

2 in all the discs Df ′ for f ′ 6= f (this complement is
closed by definition of the disjoint union topology). By definition of the quotient
topology q(Uf ) is open in |C |, and the various open sets q(Uf ) form a cover of |C |
(each q(Uf ) is obtained by removing a closed disc from each face of |C | but one).
By compactness, finitely many of them will cover the space, and so finitely many
of the open sets Uf will cover K. It follows that F is finite. �

1.3. Morphisms between cell complexes; triangulations. Let us start with
a provisional definition: a naive morphism between C = (G , F, ∂) and C ′ =
(G ′, F ′, ∂′) is given by a morphism G → G ′ together with a map Φ: F → F ′

such that ∂′Φ(f) = ∆(∂f) for f ∈ F ; here the map ∆: D → D′ has been extended
to the set L(G ) in the obvious way. With this definition, it is clear that naive
morphisms induce continuous maps between the topological realizations.

However this definition does not allow enough morphisms. Let us examine this.

Example 1.6 – We return to example 1.1, so we consider the cell complex C
depicted below:
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d3

d4 ⋆ f

Here ∂f = (d1, d2, d3, d4). Now form a complex C ′ by changing only ∂ to ∂′,
with ∂′f = (d2, d1, d4, d3). There is indeed a naive isomorphism between C and C ′,
given by “the reflection in the line joining the white vertices”.

However, suppose now that we equip C with two faces f1 and f2 (leaving the
bigraph unchanged) with ∂f1 = (d1, d2, d3, d4) = ∂f2; then |C | is the sphere S2. On
the other hand consider C ′ having the same bigraph, and two faces satisfying ∂f ′1 =
(d1, d2, d3, d4) and ∂f ′2 = (d2, d1, d3, d4). Then it is readily checked that there is no
naive isomorphism between C and C ′.

This is disappointing, as we would like to see these two as essentially “the same”
complexes. More generally we would like to think of the boundaries of the faces in
a cell complex as not having a distinguished (black) starting point, and not having
a particular direction.

The following better definition will be sufficient in many situations. A lax
morphism between C = (G , F, ∂) and C ′ = (G ′, F ′, ∂′) is given by a mor-
phism G → G ′ together with a map Φ: F → F ′ with the following property.
If f ∈ F with ∂f = (d1, . . . , d2n), and if ∂′Φ(f) = (d′1, . . . , d

′
2m), then

∆ ({d1, . . . , d2n}) = {d′1, . . . , d′2m} ,
where ∆ is the map D → D′. So naive morphisms are lax morphisms, but not
conversely.

Example 1.7 – Resuming the notation of the last example, the identity on G
and the bijection F → F ′, f1 7→ f ′1, f2 7→ f ′2, together define a lax isomorphism
between C and C ′.

It is not immediate how lax morphisms can be used to induce continuous maps.
Moreover, the following phenomenon must be observed.

Example 1.8 – We build a bigraph G with only one black vertex, one white ver-
tex, and two darts d1 and d2 between them; |G | is a circle. Turn this into a cell
complex C by adding one face f with ∂f = (d1, d2, d1, d2). The topological realiza-
tion |C | is obtained by taking a copy of the unit disc D, and identifying z and −z
when |z| = 1: in other words, |C | is the real projective plane RP 2.

Now consider the map z 7→ −z, from D to itself, and factor it through RP 2; it
gives a self-homeomorphism of |C |. The latter cannot possibly be induced by a lax
morphism, for it is the identity on |G |: to define a corresponding lax isomorphism
we would have to define the self maps of B,W and F to be the identity. Assuming
that we had chosen a procedure to get a continuous map from a lax morphism,
surely the identity would induce the identity.

However the said self-homeomorphism of RP 2 is simple enough that we would
like to see it corresponding to an isomorphism of C .

Our troubles seem to arise when repeated darts show up in the boundary of a
single face. We solve the problem by subdividing the faces, obtaining the canonical
triangulation of our objects.

Let C be a cell complex. We may triangulate the faces of |C | by adding a
point in the interior of each face (think of the point marked ? in the pictures),
and connecting it to the vertices on the boundary. More precisely, for each face f ,
with ∂f = (d1, . . . , d2n), we identify 2n subspaces of |C |, each homeomorphic to a
triangle, as the images under the canonical quotient map of the sectors obtained on
the unit disc in the fashion described on the picture below for n = 3. We denote
them tfi with 1 ≤ i ≤ 2n.
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(As before the labels di indicate the intended gluing, while the sector bearing the
name tfi will map to that subspace under the quotient map.) The space |C | is thus
triangulated, yet it is not necessarily (the realization of) a simplicial complex, as
distinct triangles may have the same set of vertices, as in example 1.2. This same
example exhibits another relevant pathology, namely that the disc corresponding to
a face might well map to something which is not homeomorphic to a disc anymore
(viz. the sphere), while the triangles actually cut the space |C | into “easy” pieces.
It also has particularly nice combinatorial properties.

We write T for the set of all triangles in the complex. We think of T as an index-
ing set, much like B, W , D or F . One can choose to adopt a more combinatorial
approach, letting tf1 , . . ., t

f
2n be (distinct) symbols attached to the face f whose

boundary is (d1, . . . , d2n), with T the set of all symbols. There is a map D : T → D

which associates tfi with D(tfi ) = di, there is also a map F : T → F with F (tfi ) = f .
We will gradually use more and more geometric terms when referring to the trian-
gles, but it is always possible to translate them into combinatorial relations.

Each t ∈ T has vertices which we may call •, ◦ and ? unambiguously. Its sides
will be called •−◦, ?−• and ?−◦. Each t also has a neighbouring triangle obtained
by reflecting in the ?−• side; call it a(t). Likewise, we may reflect in the ?−◦ side
and obtain a neighbouring triangle, which we call c(t). In other words, T comes
equipped with two permutations a and c, of order two and having no fixed points.
(In particular if T is finite it has even cardinality.) The notation a, c is standard,
and there is a third permutation b coming up soon. Later we will write ta and tc
instead of a(t) and c(t), see remark 1.15.

Example 1.9 – In example 1.2, there are two triangles, say T = {1, 2}, and a = c =
the transposition (12).

Example 1.10 – Let us consider the second complex from example 1.3, that is let
us have a look at
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Let us first assume that there is no “outside face”, so let the the triangles be num-
bered from 1 to 6. The permutation a is then

a = (14)(23)(56) ,

while
c = (12)(34)(56) .

If one adds a face at infinity, there are six new triangles, and the permutations a
and c change accordingly. We leave this as an exercise.

We have at long last arrived at the official definition of a morphism between C =
(G , F, ∂) and C ′ = (G ′, F ′, ∂′). We define this to be given by a morphism G → G ′

(thus including a map ∆: D → D′) and a map Θ: T → T ′ which
(1) verifies that for each triangle t, one has D ′(Θ(t)) = ∆(D(t)),
(2) is compatible with the permutations a and c, that is Θ(a(t)) = a(Θ(t))

and Θ(c(t)) = c(Θ(t)).
It is immediate that morphisms induce continuous maps between the topological
realizations. These continuous maps restrict to homeomorphisms between the tri-
angles.

Should this definition appear too complicated, we hasten to add:

Lemma 1.11 – Let C be a cell complex such that, for each face f with ∂f =
(d1, . . . , d2n), the darts d1, . . . , d2n are distinct. Let C ′ be another cell complex with
the same property. Then any lax morphism between C and C ′ defines a unique
morphism, characterized by the property that F (Θ(t)) = Φ(F (t)) for every trian-
gle t.

(Recall that lax morphisms have a map Φ between the sets of faces, and mor-
phisms have a map Θ between the sets of triangles.)

Many cell complexes in practice satisfy the property stated in the lemma, and
for these we specify morphisms by giving maps B → B′, W → W ′, D → D′,
and F → F ′.

Proof. Any triangle t in C is now entirely determined by the face F (t) and the
dart D(t); the same can be said of triangles in C ′. So Θ(t) must be defined as
the only triangle t′ such that F (t′) and D(t′) are appropriate (in symbols F (t′) =
Φ(F (t)) and D(t′) = ∆(D(t))). The definition of lax morphisms guarantees the
existence of t′.

That Θ is compatible with a and c is automatic here. Indeed a(t) is the only
triangle such that F (a(t)) = F (t) and such that D(a(t)) has the same black vertex
as D(t). An analogous property is true of both Θ(a(t)) and a(Θ(t)), which must
be equal. Likewise for c. �

Example 1.12 – We come back to example 1.8. The face f is divided into 4 trian-
gles, say t1, t2, t3, t4. We can define a self-isomorphism of C by Θ(ti) = ti+2 (indices
mod 4), and everything else the identity. The induced continuous map |C | → |C | is
the one we were after (once some identification of |C | with RP 2 is made and fixed).

We are certainly not claiming that any continuous map |C | → |C ′|, or even any
homeomorphism, will be induced by a morphism C → C ′. For a silly example,
think of the map z 7→ |z|z from the unit disc D to itself, which moves points a
little closer to the origin; it is easy to imagine a cell complex C with |C | ∼= D such
that no self-isomorphism can induce that homeomorphism. In fact, whenever a
self-homeomorphism of |C | leaves the triangles stable, then the best approximation
of it which we can produce with an automorphism of C is the identity.

However, the equivalence of categories below will show that we have “enough”
morphisms, in a sense.

1.4. Surfaces. Here we adress a natural question: under what conditions on C
is |C | a surface (topological manifold of dimension 2), or a surface-with-boundary?

A condition springing to mind is that each dart should be on the boundary of
precisely two faces (one or two faces for surfaces-with-boundary). However this will
not suffice, as we may well end up with “two discs touching at their centres”, that
is, a portion of |C | might look like this:
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(On this picture you are meant to see a little bit of six faces, three at the top and
three at the bottom, all touching at the black vertex; each visible dart is on the
boundary of precisely two faces, yet |C | is not a manifold near the black vertex.)

This is the only pathology that can really occur. To formulate the condition
on C , here is some terminology. We say that a dart d is on the boundary of the
face f if, of course, d shows up in the tuple ∂f ; since d may appear several times
in ∂f , we define its multiplicity with respect to f accordingly. We say that two
darts d and d′ appear consecutively in f if ∂f contains either the sequence d, d′
or d′, d. In this case d and d′ have an endpoint in common; conversely if they do
have a common point, say a black one, then they appear consecutively in f if and
only if there are triangles t and t′ with F (t) = F (t′) = f such that d = D(t),
d′ = D(t′), and t, t′ are the image of one another under the permutation a (the
symmetry in the ?− • side). Use c if the common point is white.

Now let us fix a vertex, say a black one b ∈ B. It may be surprising at first
that the condition that follows is in terms of graphs; but it is the quickest way to
phrase things. We take B−1(b), the set of darts whose black vertex is b, as the set
of vertices of a graph Cb, and called the connectivity graph at b. We place an edge
between d and d′ whenever they appear consecutively in some face f . Note that
this may create loops in Cb as d = d′ is not ruled out.

We note that Cb has finitely many vertices. If we assume that the darts in C are
on the boundary of no more than two faces, counting multiplicities, then it follows
that each vertex in Cb is connected to at most two others (corresponding to the
images under a of the two triangles, at most, which may have the dart as a side).
Thus when Cb is connected, it is either a straight path or a circle.

There is a similar discussion involving a graph Cw for a white vertex w ∈W .
Here is an example of complex with the connectivity graphs drawn in red:
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Proposition 1.13 – Let C be a complex. Then |C | is a topological surface if and
only if the following conditions are met:

(1) each vertex has positive degree,
(2) each dart is on the boundary of precisely two faces, counting multiplicities,
(3) all the connectivity graphs are connected.
Necessary and sufficient conditions for |C | to be a surface-with-boundary are

obtained by replacing (2) with the condition that each dart is on the boundary of
either one or two faces, counting multiplicities.

This should be obvious at this point, and is left as an exercise.
We have reached the most important definition in this section. A dessin is a

complex C such that |C | is a surface (possibly with boundary). Whenever S is
a topological surface, a dessin on S is a cell complex C together with a specified
homeomorphism h : |C | −→ S. Several examples of dessins on the sphere have
been given.

Dessins have been called hypermaps and dessins d’enfants in the literature. When
all the white vertices have degree precisely two, we call a dessin clean. Clean dessins
are sometimes called maps in the literature.

1.5. More permutations. Let C be a dessin. Each triangle t ∈ T determines a
dart d = D(t), and d belongs to one or two triangles (exactly two when |C | has no
boundary). We may thus define a permutation b of T by requiring

b(t) =

{
t if no other triangle has d as a side ,
t′ if t′ has d as a side and t′ 6= t .

Theorem 1.14 – Let T be a finite set endowed with three permutations a, b, c, each
of order two, such that a and c have no fixed points. Then there exists a dessin C ,
unique up to unique isomorphism, such that T and a, b, c can be identified with the
set of triangles of C with the permutations described above.

Later we will rephrase this as an equivalence of categories (with the proof below
containing all that is necessary).

Remark 1.15. It is time for us to adopt a convention about groups of permutations.
If X is any set, and S(X) is the set of permutations of X, there are (at least)
two naturals ways of turning S(X) into a group. When σ, τ ∈ S(X), we choose
to define στ to be the permutation x 7→ τ(σ(x)). Accordingly, we will write xσ
instead of σ(x), so as to obtain the formula xστ = (xσ)τ .

With this convention the group S(X) acts on X on the right. This will simplify
the discussion later when we bring in covering spaces (personal preference is also
involved here).

Proof. Let G be the group of permutations of T generated by a, b, and c, let Gab
be the subgroup generated by a and b alone, and similarly define Gbc, Gac, Ga, Gb
and Gc. Now put

B = T/Gab , W = T/Gbc , D = T/Gb , F = T/Gac .

The maps B : D → B and W : D → W are taken to be the obvious ones, and we
already have a bigraph G . It remains to define the boundary map ∂ : F → L(G ) in
order to define a cell complex.

So let f ∈ F , and let t ∈ T represent f (the different choices we can make for t
will all lead to isomorphic complexes). Consider the elements t, tc, tca, tcac, tcaca,
. . ., alternating between a and c. Since T is finite, there can be only finitely many
distinct points created by this process. Using the fact that a and c are of order
two, and without fixed points, it is a simple exercise to check that the following list
exhausts the orbit of t under Gac:

t, tc, tca, . . . , tcac···acacac .

(There is an even number of elements, and the last one ends with a c.) We then
let ∂f = (d1, . . . , d2n), where d1, d2, . . . is the Gb-orbit of t, tc, . . .

We have thus defined a cell complex C out of T together with a, b and c. It is
a matter of checking the definitions to verify that T can be identified with the set
of triangles of C , in a way that is compatible with all the structure – in particular,
the map T → T/Gb is the map D which to a triangle t associates the unique dart
which is a side of t, and from the fact that b has order two we see that C satisfies
condition (2) of proposition 1.13 (while (1) is obvious).

Let us examine condition (3). Any two darts in C having the same black endpoint
in B can be represented mod Gb respectively by t and tw where w is a word in a
and b. As we read the letters of w from left to right and think of the successive
darts obtained from t, each occurrence of a replaces a dart with a consecutive one,
by definition; occurrences of b do not change the dart. So Cb is connected, and C
is a dessin.

The uniqueness statement, to which we turn, is almost tautological given our defi-
nition of morphisms. Suppose C and C ′ are dessins with sets of triangles written TC

and TC ′ , such that there are equivariant bijections ι : TC → T and ι′ : TC ′ → T .
Then Θ = (ι′)−1 ◦ ι is an equivariant bijection between TC and TC ′ . Since B, W
and D can be identified with certain orbits within TC , and similarly with B′, W ′
and D′, the maps B → B′,W →W ′ and D → D′ must and can be defined as being
induced from Θ. Hence there is a unique isomorphism between C and C ′. �

We have learned something in the course of this proof:

Corollary 1.16 (of the proof of theorem 1.14) – Let C and C ′ be dessins.
Then a morphism C → C ′ defines, and is uniquely defined by, a map Θ: T → T ′

which is compatible with the permutations a, b and c.

Proof. By definition a morphism furnishes a map Θ: T → T ′ which is compatible
with a and c, and satisfies an extra condition of compatibility with D ; however
given the definition of b, this condition is equivalent to the equivariance of T with
respect to b.

Conversely if we only have Θ, equivariant with respect to all three of a, b, c,
we can complete it to a fully fledged morphism C → C ′ as in the last proof,
identifying B, W and D with certain orbits in T . �

The group G introduced in the proof will be called the full cartographic group
of C (below we will define another group called the cartographic group).

Lemma 1.17 – Let C be a compact dessin. Then |C | is connected if and only if the
full cartographic group acts transitively on the set of triangles.

Proof. Let T1, T2, . . . be the orbits of G in T , and let Xi ⊂ |C | be the union of the
triangles in Ti. Each Xi is compact as a finite union of compact triangles, hence Xi

is closed in |C |. Also, |C | is the union of the Xi’s, since a dessin does not have
isolated vertices (condition (1) above).

Thus we merely have to prove that the Xi’s are disjoint. However when two
triangles intersect, they do so along an edge, and then an element of G takes one
to the other. �

1.6. Orientations.

Proposition 1.18 – Let C be a compact, connected dessin. Then the surface |C |
is orientable if and only if it is possible to assign a colour to each triangle, black or
white, in such a way that two triangles having a side in common are never of the
same colour.

Proof. We give a proof in the case when there is no boundary, leaving the general
case as an exercise. We use some standard results in topology, first and foremost:
|C | is orientable if and only if

H2(|C | ,Z) 6= 0 .

To compute this group we use cellular homology. More precisely, we exploit the
CW-complex structure on |C | for which the two-cells are the triangles (of course
this space also has a CW-complex in which the two-cells are the faces, but this is
not relevant here). Recall from an earlier remark that simplicial homology is not
directly applicable.

We need to orient the triangles, and thus declare that the positive orientation
is ? − • − ◦; likewise, we decide to orient the 1-cells in such a fashion that ? − •,
• − ◦ and ◦ − ? are oriented from the first named 0-cell to the second. Writing ∂
for the boundary in cellular homology, we have then

(*) ∂t = [?− •] + [• − ◦] + [◦ − ?] ,
in notation which we hope is suggestive.

So let us assume that there is a 2-chain

(**) σ =
∑
t∈T

ntt 6= 0 ,

where nt ∈ Z, such that ∂σ = 0. Suppose t is such that nt 6= 0. From (*), we know
the coefficients of the neighbours of t in σ, namely

nta = ntb = ntc = −nt .
Since the full cartographic group acts transitively on T by the last lemma, it follows
that for each t′ ∈ T , the coefficient nt′ is determined by nt, and in fact nt′ = ±nt.

Now let triangles t′ such that nt′ > 0 be black, and let the others be white. We
have coloured the triangles as requested. The converse is no more difficult: given
the colours, let nt = 1 if t is black and −1 otherwise. Then the 2-chain defined by
(**) is non-zero and has zero boundary, so the homology is non-zero. �

When |C | is orientable, we will call an orientation of C a colouring as above; there
are precisely two orientations on a connected, orientable dessin. An isomorphism
will be said to preserve orientations when it sends black triangles to black triangles.
Note the following:

Lemma 1.19 – A morphism C → C ′, where C and C ′ are oriented dessins, pre-
serves the orientations if and only if Θ sends black triangles to black triangles, and
white triangles to white triangles.

1.7. More permutations. Suppose that C is a dessin, and suppose that the sur-
face |C | is oriented, and has no boundary. Then each dart is the intersection of
precisely two triangles, one black and one white. The next remark is worth stating
as a lemma for emphasis:

Lemma 1.20 – When C is oriented, without boundary, there is a bijection between
the darts and black triangles.

Of course there is also a bijection between the darts and the white triangles, on
which we comment below.

Now consider the permutations σ = ab, α = bc and φ = ca. Each preserves the
subset of T comprised by the black triangles, so we may see σ, α and φ as permu-
tation of D. It is immediate that they satisfy σαφ = 1, the identity permutation.

Let us draw a little picture to get a geometric understanding of these permuta-
tions. We adopt the following convention: when we draw a portion of an oriented
dessin, we represent the black triangles in such a way that going from ? to • to ◦
rotates us counterclockwise. (If we arrange this for one black triangle, and the
portion of the dessin really is planar, that is embeds into the plane, then all black
triangles will have this property).
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(Recall our convention on permutations as per remark 1.15.)
On this picture, we see that our intuition for σ should be that it takes a dart

to the next one in the rotation around its black vertex, going counterclockwise.
Likewise α is interpreted as the rotation around the white vertex of the dart. As
for φ, seen as a permutation of T , it takes a black triangle to the next one on
the same face, going counterclockwise. This can be made into more than just an
intuition: if ∂f = (d1, . . . , d2n), and if tfi is black, then φ(di) = di+2. Note that if
the triangle tfi is white, then φ takes it to tfi−2. In particular if one changes the
orientation of the dessin, the rotation φ changes direction, as do σ and α.

This is also reflected algebraically in the relation b−1σb = σ−1 (which translates
the fact that a2 = 1): conjugating by b amounts to swapping the roles of the black
and white triangles (or to identifying D with the white triangles instead of the
blacks), and that turns σ into σ−1. This relation is important in the proof of the
following.

Theorem 1.21 – Let D be a finite set endowed with three permutations σ, α, φ
such that σαφ = 1. Then there exists a dessin C , oriented and without boundary,
unique up to unique orientation-preserving isomorphism, such that D and σ, α, φ
can be identified with the set of darts of C with the permutations described above.

Proof. Let T = D × {±1}. We extend σ to a permutation σ̄ on T by the formula

σ̄(d, ε) = (σε(d), ε) ,

and likewise α induces ᾱ on T by

ᾱ(d, ε) = (αε(d), ε) .

We also define a permutation b of T by

b(d, ε) = (d,−ε) .
Putting a = σ̄b and c = ᾱb, it is immediate that a and c are of order 2 and have
no fixed points.

By theorem 1.14, the set T together with a, b and c defines a dessin C . Since b
has no fixed points, C has no boundary. Calling the triangles in D × {1} black,
and those in D × {−1} white, we see that C is naturally oriented.

The remaining statements are straightforward to prove. �

Remark 1.22. We point out that one may prove theorem 1.21 without appealing to
theorem 1.14 first: one can identify B, resp W , resp F , with the cycles of σ, resp.
α, resp φ, and proceed from there. We leave this to the reader.

In particular, we may identify the topological surface |C | easily: since it is com-
pact, orientable, and without boundary, it is determined by its genus or its Euler
characteristic. The latter is

χ(|C |) = nσ + nα − n+ nφ ,

where n is the cardinality of D (the number of darts), while nσ, resp. nα, resp. nφ
is the number of cycles of σ, resp. α, resp. φ.

Note that the group of permutations of D generated by σ, α and φ is called the
cartographic group of C , or sometimes the monodromy group.

1.8. Categories. Next we promote theorems 1.14 and 1.21 to equivalence of cat-
egories. We write Dessins for the category whose objects are compact, oriented
dessins without boundary, and whose morphisms are the orientation-preserving
maps of cell complexes. Also, UDessins will be the category whose objects are
compact dessins without boundary (possibly on non-orientable surfaces), and whose
morphisms are all morphisms of cell complexes.

We leave to the reader the task of proving the next theorem based on theo-
rem 1.14 and corollary 1.16, as well as theorem 1.21.

Theorem 1.23 – Consider the category Setsa,b,c whose objects are the finite sets T
equipped with three distinguished permutations a, b, c, each of order two and hav-
ing no fixed points, and whose arrows are the equivariant maps. Then the assig-
ment C → T extends to an equivalence of categories between UDessins and Setsa,b,c.

Likewise, consider the category Setsσ,α,φ whose objects are the finite sets D
equipped with three distinguished permutations σ, α, φ satisfying σαφ = 1, and
whose arrows are the equivariant maps. Then the assigment C → D extends to an
equivalence of categories between Dessins and Setsσ,α,φ.

If one removes the requirement that b have no fixed point, in the first part, one
obtains a category equivalent to that of compact dessins possibly with boundary.

1.9. The isomorphism classes. It is very easy for us now to describe the set of
isomorphism classes of dessins. There are different approaches in the literature and
we try to give several points of view.

Proposition 1.24 – (1) A dessin C in Dessins determines, and can be re-
constructed from, an integer n, a subgroup G of Sn, and two distinguished
generators σ and α for G. Two sets of data (n,G, σ, α) and (n′, G′, σ′, α′)
determine isomorphic dessins if and only if n = n′ and there is a conjuga-
tion in Sn taking σ to σ′ and α to α′ (and in particular G to G′).

(2) The set of isomorphism classes of connected dessins in Dessins is in bijec-
tion with the set of conjugacy classes of subgroups of finite index in the free
group on two generators 〈σ, α〉.

(3) Any connected dessin in Dessins determines, and can reconstructed from, a
finite group G with two distinguished generators σ and α, and a subgroup H
such that the intersection of all the conjugates of H in G is trivial. We
obtain isomorphic dessins from (G, σ, α,H) and (G′, σ′, α′, H ′) if and only
if there is an isomorphism G → G′ taking σ to σ′, α to α′, and H to a
conjugate of H ′.

Proof. At this point this is very easy. (1) is left as an exercise. Here are some
indications with (2): A connected object amounts to a finite set X with a transitive,
right action of 〈σ, α〉, so X must be isomorphic to K\〈σ, α〉, where an isomorphism
is obtained by choosing a base-point in X (whose stabilizer is K); different choices
lead to conjugate subgroups. (2) follows easily.

We turn to (3). It is clear that a connected object X is isomorphic to H\G
where G is the cartographic group and H is the stabilizer of some point; elements
in the intersection of all conjugates of H stabilize all the points of X, and so must
be trivial since G is by definition a subgroup of S(X). Conversely any object of
the form H\G, with the actions of σ and α by multiplication on the right, can be
seen in Setsσ,α,φ; it is connected since σ and α generate G; and its cartographic
group must be G itself given the condition on H. What is more, there is a canonical
map f : 〈σ, α〉 → G sending σ and α to the elements with the same name in G, and
the inverse image K = f−1(H) is the subgroup corresponding to the dessin as in
(2), while the intersection N of all the conjugates of K is the kernel of f . Thus we
deduce the rest of (3) from (2). �

In §3 we shall come back to these questions (see §3.2 in particular). For the
moment let us add that it is common, in the literature, to pay special attention to
certain dessins for which some condition on the order of σ, α and φ is prescribed.
For example, those interested in clean dessins very often require α2 = 1. Assuming
that we are interested in the dessins for which, in addition, the order of σ divides
a fixed integer k, and that of φ divides `, then the objects are in bijection with the
conjugacy classes of subgroups of finite index in

Tk,` = 〈σ, α, φ : σk = α2 = φ` = 1, σαφ = 1〉 ,
usually called a triangle group. (We point out that, in doing so, we include more
than the clean dessins, for α may have fixed points.)

The variant in the unoriented case is as follows.

Proposition 1.25 – Consider the group 〈a, b, c : a2 = b2 = c2 = 1〉 = C2 ∗
C2 ∗ C2, the free product of three copies of the group of order 2. The isomorphism
classes of connected objects in UDessins are in bijection with the conjugacy classes
of subgroups H of C2 ∗ C2 ∗ C2 having finite index, and with the property that no
conjugate of H contains any of a, b, c.

Note that the last condition rephrases the fact that the actions of a, b and c
on H\C2 ∗ C2 ∗ C2 (on the right) have no fixed points.



2. Various categories equivalent to Dessins

We proceed to describe a number of categories which are equivalent to the cat-
egory Dessins of dessins – the word dessin will henceforth mean compact, oriented
dessin without boundary. These should be familiar to the reader, and there will be
little need for long descriptions of the objects and morphisms.

As for proving the equivalences, it will be a matter of quoting celebrated results:
the equivalence between covering spaces and sets with an action of the fundamen-
tal group, the equivalence between Riemann surfaces and their fields of meromor-
phic functions, the equivalence between algebraic curves and their fields of rational
functions. . . as well as some elementary Galois theory, which we have taken from
Völklein’s book [Völ96]. There is a little work left for us, but we hope to convince
the reader that the theory up to here is relatively easy – given the classics! What
makes all this quite deep is the combination of strong theorems in many different
branches of mathematics.

2.1. Ramified covers. Let S and R be compact topological surfaces. A
map p : S → R is a ramified cover if there exists for each s ∈ S a couple of charts,
centered around s and p(s) respectively, in which the map p becomes z 7→ ze for
some integer e ≥ 1 called the ramification index at s (this index at s is well-defined,
for p cannot look like z 7→ ze

′
for e′ 6= e in other charts, as can be seen by examining

how-many-to-1 the map is).
Examples are provided by complex surfaces: if S and R have complex structures,

and if p is analytic (holomorphic), then it is a basic result from complex analysis
that p must be a ramified cover in the above sense (as long as it is not constant on
any connected component of S). However we postpone all complex analysis for a
while.

Instead, we can obtain examples (and in fact all examples) by the following
considerations. The set of s ∈ S such that the ramification index e is > 1 is visibly
discrete in S and closed, so it is finite by compactness. Its image in R under p is
called the ramification set and written Rr. It follows that the restriction

p : S r f−1(Rr) −→ RrRr

is a finite covering in the traditional sense. Now, it is a classical result that one can
go the other way around: namely, start with a compact topological surface R, let Rr
denote a finite subset of R, and let p : U −→ RrRr denote a finite covering map;
then one can construct a compact surface S together with a ramified cover p̄ : S → R
such that U identifies with p̄−1(R r Rr) and p identifies with the restriction of p̄.
The ramification set of p̄ is then contained in Rr. See §5 of [Völ96] for all the details
in the case R = P1 (the general case is no different).

Thus when the ramification set is constrained once and for all to be a subset of
a given finite set Rr, ramified covers are in one-one correspondence with covering
maps. To make this more precise, let us consider two ramified covers p : S → R
and p′ : S′ → R both having a ramification set contained in Rr, and let us define a
morphism between them to be a continuous map h : S → S′ such that p′ ◦ h = p.
Morphisms, of covering maps above RrRr are defined similarly. We may state:

Theorem 2.1 – The category of finite coverings of R r Rr is equivalent to the
category of ramified covers of R with ramification set included in Rr.

Now let us quote a well-known result from algebraic topology:

Theorem 2.2 – Assume that R is connected, and pick a base point ∗ ∈ RrRr. The
category of coverings of RrRr is equivalent to the category of right π1(RrRr, ∗)-
sets. The functor giving the equivalence sends p : U → R r Rr to the fibre p−1(∗)
with the monodromy action.

We shall now specialize to R = P1 = S2 and Rr = {0, 1,∞}. With the base
point ∗ = 1

2 (say), one has π1(P1 r {0, 1,∞}, ∗) = 〈σ, α〉, the free group on the
two distinguished generators σ and α; these are respectively the homotopy classes
of the loops t 7→ 1

2e
2iπt and t 7→ 1 − 1

2e
2iπt. The category of finite, right π1(P1 r

{0, 1,∞}, ∗)-sets is precisely the category Setsσ,α,φ already mentioned.
The following result combines theorem 1.23 from the previous section, theo-

rem 2.1 above, as well as theorem 2.2:

Theorem 2.3 – The category Dessins of oriented, compact dessins without bound-
ary is equivalent to the category Cov(P1) of ramified covers of P1 having ramification
set included in {0, 1,∞}.

2.2. Geometric intuition. There are shorter paths between dessins and ramified
covers of the sphere, that do not go via permutations. Here we comment on this
approach.

First, let us examine the following portion of an oriented dessin:

b

bc bc

⋆

Consider the identification space obtained from this by gluing the two white
vertices into one, and the four visible edges in pairs accordingly. The result is a
sphere; more precisely, we can canonically find a homeomorphism with S2 sending •
to 0 and ◦ to 1, while ? is sent to∞. Doing this for all pairs (t, ta), where t is black,
yields a single map |C | → S2. The latter is the ramified cover corresponding to C
in the equivalence of categories above.

We will not prove this last claim in detail, nor will we rely on it in the sequel.
On the other hand, we do examine the reverse construction more closely. In fact
let us state:

Proposition 2.4 – Let C correspond to p : S → P1 in the above equivalence of
categories. Then |C | ∼= S, under a homeomorphism taking |G | to the inverse im-
age p−1([0, 1]).

For the proof it will be convenient to have a modest lemma at our disposal. It
gives conditions under which a ramified cover p : S → R, which must be locally of
the form z 7→ ze, can be shown to be of this form over some given open set. We
will write

D = {z ∈ C : |z| ≤ 1}
as before, while

Ḋ = {z ∈ C : |z| < 1} ,
and

Ḋ′ = Ḋ r {0} .

Lemma 2.5 – Let p : S → R be a ramified cover between compact surfaces. Let x ∈
Rr, and let U be an open neighbourhood of x. We assume that U is homeomorphic
to a disc, and that U ∩Rr = {x}.

Then each connected component V of p−1(U) contains one and only one point
of the fibre p−1(x). Moreover, each V is itself homeomorphic to a disc and there is
a commutative diagram

Ḋ
∼=−−−−→ V

z 7→ze
y yp
Ḋ

∼=−−−−→ U

Proof. Let us start with the connected components of p−1(U r {x}). Let us form
the pullback square

E
∼=−−−−→ p−1(U r {x})

π

y yp
Ḋ′

∼=−−−−→ U r {x}
The map π is a covering map. The connected coverings of Ḋ′ are known of course:
if W is a connected component of E, then it can be identified with Ḋ′ itself,
with π(z) = ze.

If V is as in the statement of the lemma, then it is a surface, so it remains
connected after removing finitely many points. It follows that

V 7→W = V r p−1(x)

is well-defined, and clearly injective, from the set of connected components
of p−1(U) to the set of connected components of p−1(U r {x}).

Let us prove that V 7→ W is surjective, so let W be a component. Let Kn be
the closure in S of

{z ∈W = Ḋ′ : |z| ≤ 1

n
} .

Since S is compact, there must be a point s ∈ S belonging to all the closed sub-
sets Kn, for all n ≥ 1. It follows that p(s) = x. The point s must belong to some
component V ; and by definition s is in the closure of W , so V ∩W 6= ∅. Thus the
component V r p−1(x) must be W .

We have established a bijection between the V ’s and the W ’s, and in passing we
have proved that each V contains at least an s such that p(s) = x. Let us show
that it cannot contain two distinct such points s and s′. For this it is convenient
to use the following fact from covering space theory: given a covering c : X → Y
with X and Y both path-connected, there is no open subset Ω of X, other than X
itself, such that the restriction c : Ω→ Y is a covering of Y . From this, we conclude
that if Ω and Ω′ are open subsets of Ḋ′, such that the restriction of π to both of
them yields a covering map, over the same pointed disc Y , then Ω and Ω′ must be
both equal to X = π−1(Y ). If now s, s′ ∈ V satisfy p(s) = p(s′) = x, using the
fact that p is a ramified cover we see that all the neighbourhoods of s and s′ must
intersect, so s = s′.

So we have a homeomorphism

h : W = Ḋ′ −→ V r {s}
and we extend it to a map h̄ : Ḋ → V by putting h̄(0) = s. We see that this
extension of h is again continuous, for example by using that a neighbourhood of s
in V mapping onto a disc around x must correspond, under the bijection h, to a
disc around 0, by the above “fact”. This shows also that h̄ is an open map, so it is
a homeomorphism. �

Proof of proposition 2.4. Let us start with p : S −→ P1, a ramified cover with ram-
ification in {0, 1,∞}, and let us build some dessin C . We will then prove that it
is the dessin corresponding to p in our equivalence of categories, so this proof will
provide a more explicit construction.

So let B = p−1(0), W = p−1(1). There is no ramification along (0, 1), and this
space is simply-connected, so p−1((0, 1)) is a disjoint union of copies of (0, 1); we
let D denote the set of connected components of p−1((0, 1)).

For each b ∈ B we can find a neighbourhood U of b and a neighbourhood V
of 0 ∈ P1, both carrying charts onto discs, within which p looks like the map z 7→ ze.
Pick ε such that [0, ε) ⊂ V ; then the open set U with p−1([0, ε)) ∩ U drawn on
it looks like a disc with straight line segments connecting the centre to the e-th
roots of unity. Taking ε small enough for all b ∈ B at once, p−1([0, ε)) falls into
connected components looking like stars and in bijection with B. As a result,
each d ∈ D determines a unique b ∈ B, corresponding to the unique component
that it intersects. This is B(d); define W (d) similarly.

We have defined a bigraph G , and it is clear that |G | can be identified with the
inverse image p−1([0, 1]). We turn it into a cell complex now. Let F = p−1(∞). We
apply the previous lemma to P1r[0, 1], which is an open subset in P1 homeomorphic
to a disc and containing only one ramification point, namely ∞. By the lemma,
we know that p−1(P1 r [0, 1]) is a disjoint union of open discs, each containing just
one element of F . We need to be a little more precise in order to define ∂f .

We consider the map h : D → P1 constructed in two steps as follows. First,
let D → D/∼ be the quotient map that identifies z and z̄ if and only if |z| = 1;
then, choose a homeomorphism D/∼→ P1, satisfying 1 7→ 0, −1 7→ 1, 0 7→ ∞,
and sending both circular arcs from 1 to −1 in D to [0, 1]. We think of h as the
map D → |C | in example 1.2. In D, we think of 1 as a black vertex, of −1 as a
white vertex, of the circular arcs just mentioned as darts, and of the two half-discs
separated by the real axis as black and white triangles.

bc b⋆

Let D1 = D r {1,−1, 0} and in fact define Dn = D r {ω : ω2n = 1} ∪ {0}. We
emphasize that Dn contains numbers of modulus 1. There is a covering map Dn →
D1 given by z 7→ zn. Since D1 retracts onto a circle, its fundamental group is Z,
and we see that any connected covering of finite degree n must actually be of this
form.

Now let S′ → P1 r {0, 1,∞} be the covering defined by p. Let us construct a
pull-back square

E
θ−−−−→ S′

q

y yp
D1 h−−−−→ P1 r {0, 1,∞}

Here E → D1 is a finite covering map, so each connected component of E can be
identified with Dn for some n, while the map q becomes z 7→ zn. These components
are in bijection with F , so we write Dnf for f ∈ F .

If ω is a 2n-th root of unity, the circular arc (ωi, ωi+1) ⊂ Dnf is mapped onto
a dart by the map θ : E → S′. This defines, for each face f , a sequence of darts
which is ∂f . This completes our construction of a cell complex from a ramified
cover of P1. Note that θ : Dnf → S′ can be extended to a map D→ S, clearly, and
it follows easily that |C | is homeomorphic to S itself, or in other words that C is a
dessin on S.

It remains to prove that C is the dessin corresponding to the ramified cover p
in the equivalence of categories at hand. For this we compare the induced actions.
To C are attached two permutations σ and α of the set D of darts. Note that D
is here in bijection with the fibre p−1( 1

2 ), and taking 1
2 as base point we have the

monodromy action of π1(P1 r {0, 1,∞}) = 〈σ′, α′〉, defining the permutations σ′
and α′. We must prove that σ = σ′ and α = α′. Here σ′ and α′ are the classes of
the loops defined above (where we used the notation σ and α in anticipation).

We will now use the fact (of which we say more after the proof) that S can be
endowed with a unique smooth structure and orientation, such that p : S → P1 is
smooth and orientation-preserving. We use this first to obtain, for each dart, a
smooth parametrization γ : [0, 1]→ S such that p ◦ γ is the identity of [0, 1]. Each
dart belongs to two triangles, and it now makes sense to talk about the triangle on
the left of the dart as we travel along γ. Colour it black. We will prove that this is
a colouring of the type considered in §1.6.

Pick b ∈ B, and a centered chart Ḋ→ U onto a neighbourhood U of b, such that
the map p when pulled-back to Ḋ is z 7→ ze. The monodromy action of π1(Ḋ′) on
the cover Ḋ′ → Ḋ′ given by z 7→ ze is generated by the counterclockwise rotation of
angle 2π

e . Now it is possible for us to insist that the chart Ḋ → U be orientation-
preserving, so “counterclockwise” can be safely interpreted on S as well as Ḋ. Let us
draw a picture of U with p−1([0, 1))∩U on it, together with the triangles, for e = 4.

b

The complement of the star-like subset of U given by p−1([0, 1)) falls into con-
nected components, each contained in a face; so two darts obtained by a rotation
of angle 2π

e are on the boundary of the same face, and must be consecutive. The
symmetry a, that is the symmetry in the ?−• side, is now clearly seen to exchange
a black triangle with a white one. What is more, calling b as usual the symmetry
in the darts, the permutation σ = ab sends a black triangle to its image under
the rotation already mentioned. This is also the effect of the monodromy action,
and σ = σ′.

Reasoning in the same fashion with white vertices, we see that c, the symmetry
in the ? − ◦ side, also exchanges triangles of different colours. So the colouring
indeed has the property that neighbouring triangles are never of the same colour.
That α = α′ is observed similarly. This concludes the proof. �

Example 2.6 (Duality) – The geometric intuition gained with this proposition
and its proof may clarify some arguments. Let C be a dessin, whose sets of trian-
gles and darts will be written T and D, so that C defines the object (D,σ, α, φ)
in Setsσ,α,φ. Now let p : S −→ P1 correspond to C . What is the dessin correspond-
ing to 1/p ? And what is the object in Setsσ,α,φ ?

Let us use the notation C ′, T ′ and D′. We can think of C and C ′ as being drawn
on the same surface S. Zeroes of 1/p are poles of p and vice-versa, so black vertices
are exchanged with face centres, while the white vertices remain in place. In fact,
the most convenient property to observe is that C and C ′ have exactly the same
triangles, as subspaces of S, and we identify T = T ′. The ?− ◦ sides are promoted
to darts.

The symmetries of T which we have called a, b and c become, for C ′, the symme-
tries a′ = a, b′ = c and c′ = b (simply look at the definitions and exchange ? and •
throughout). It follows that σ = ab becomes σ′ = a′b′ = ac = φ−1 and similarly
one obtains α′ = α−1 and φ′ = σ−1.

One must be careful, however. The object in Setsσ,α,φ defined by 1/p, which we
are after, is hidden behind one more twist. The black triangles in T for C are those
mapping to the upper half plane under p; the white triangles for C are the black
ones for C ′ as a result. Identifying darts and black triangles, we see T as the disjoint
union of D and D′. While it is the case that C ′ corresponds to (D′, φ−1, α−1, σ−1)
in Setsσ,α,φ, this notation is confusing since we tend to think of φ−1 as a map
defined on either T or D, when in fact it is the induced map on D′ which is
considered here (in fact we should write something like φ−1|D′). It is clearer to use
for example the map b′ : D → D′ and transport the permutations to D, which is
simply a conjugation. As already observed, this “change of orientation” amounts to
taking inverses for σ′ and α′.

The conclusion is that replacing p by 1/p takes the object (D,σ, α, φ) to the
object (D,φ, α, α−1σα).

Example 2.7 (Change of colours) – As an exercise, the reader will complete
the following outline. If C is represented by p : S → P1, with corresponding ob-
ject (D,σ, α, φ), then 1 − p : S → P1 corresponds to (D,α, σ, αφα−1). Indeed, C
and C ′ have the same triangles, as subsets of S, and the black triangles for C
are precisely the white ones for C ′ and vice-versa; the vertices of C ′ are those
of C with the colours exchanged, while the face centres remain in place. (Infor-
mally C ′ is just that: the same as C with the colours exchanged.) So c′ = a, b′ = b
and a′ = c, and σ′ = cαc−1, α′ = bσb−1, as maps of T . As maps of D, using the
bijection b : D → D′ to transport the maps induced on D′, we end up with the
permutations announced.

2.3. Complex structures. When p : S → R is a ramified cover, and R is equipped
with a complex structure, there is a unique complex structure on S such that p is
complex analytic ([DD79], 6.1.10). Any morphism between S and S′, over R, is
then itself complex analytic. Conversely if S and R both have complex structures,
an analytic map S → R is a ramified cover as soon as it is not constant on any
connected component of S.

We may state yet another equivalence of categories. Recall that an analytic
map S → P1 is called a meromorphic function on S.

Theorem 2.8 – The category Dessins is equivalent to the category Belyi of compact
Riemann surfaces with a meromorphic function whose ramification set is contained
in {0, 1,∞}.

(The arrows considered are the maps above P1.) A pair (S, p) with p : S → P1

meromorphic, not ramified outside of {0, 1,∞}, is often called a Belyi pair, while p
is called a Belyi map.

Example 2.9 – Let us illustrate the results up to now with dessins on the sphere,
so let C be such that |C | is homeomorphic to S2. By the above, C corresponds to
a Riemann surface S equipped with a Belyi map p : S → P1.

By proposition 2.4, S is itself topologically a sphere. The uniformization theorem
states that there is a complex isomorphism θ : P1 −→ S, so we may as well replace S
with P1 equipped with F = p ◦ θ. Then (P1, F ) is a Belyi pair isomorphic to (S, p).

Now F : P1 → P1, which is complex analytic and not constant, must be given
by a rational fraction, as is classical. The bigraph G can be realized as the inverse
image F−1([0, 1]) where F : P1 −→ P1 is a rational fraction.

Let us take this opportunity to explain the terminology dessins d’enfants (chil-
dren’s drawings), and stress again some remarkable features. By drawing a simple
picture, we may as in example 1.3 give enough information to describe a cell com-
plex C . Very often it is evident that |C | is a sphere, as we have seen in this example.
What the theory predicts is that we can find a rational fraction F such that the
drawing may be recovered as F−1([0, 1]). This works with pretty much any pla-
nar, connected drawing that you can think of, and gives these drawings a rigidified
shape.

To be more precise, the fraction F is unique up to an isomorphism of P1, that is,
up to precomposing with a Moebius transformation. This allows for rotation and
stretching, but still some features will remain unchanged. For example the darts
around a given vertex will all have the same angle 2π

e between them, since F looks
like z 7→ ze in conformal charts.

2.4. Fields of meromorphic functions. When S is a compact, connected Rie-
mann surface, one can consider all the meromorphic functions on S, comprising a
field M (S). When S is not assumed connected, the meromorphic functions form
an étale algebra, still written M (S): in this paper an étale algebra is simply a
direct sum of fields, here corresponding to the connected components of S. In what
follows we shall almost always have to deal with an étale algebra over K where K
is some field, by which we mean an étale algebra which is also a K-algebra, and
which is finite-dimensional over K. (In the literature étale algebras have to satisfy
a separability condition, but we work in characteristic 0 throughout the paper.)

If now p : S → R is a ramified cover between compact surfaces, we may speak
of its degree, as the degree of the corresponding covering p−1(R r Rr) → R r Rr.
The following is given in §6.2.4 in [DD79].

Theorem 2.10 – Fix a compact, connected Riemann surface R. The category of
compact Riemann surfaces S with a ramified cover S → R is anti-equivalent to the
category of étale algebras over M (R). The equivalence is given by S 7→ M (S),
and the degree of S → R is equal to the dimension of M (S) as a vector space
over M (R).

(Here and elsewhere, “anti-equivalent” means “equivalent to the opposite cate-
gory”.)

Taking R = P1, we get a glimpse of yet another category that could be equivalent
to Dessins. However to pursue this, we need to translate the condition about the
ramification into a statement about étale algebras (lest we should end up with a
half-baked category, consisting of algebras such that the corresponding surface has
a certain topological property; that would not be satisfactory). For this we reword
§2.2.1 of [Völ96].

Recall that M (P1) = C(x), where x is the identity of P1. So let us start with
any field k at all, and consider a finite, Galois extention L of k(x). We shall say
that L/k(x) is not ramified at 0 when it embeds into the extension k((x))/k(x),
where as usual k((x)) is the field of formal power series in x. In this paper we
will not enter into the subtleties of the field k((x)), nor will we discuss the reasons
why this definition makes sense. We chiefly want to mention that there is a simple
algebraic statement corresponding to the topological notion of ramification, quoting
the results we need.

Now take any s ∈ k. From L we construct Ls = L⊗k(x) k(x), where we see k(x)
as an algebra over k(x) via the map k(x)→ k(x) which sends x to x+ s; concretely
if we pick a primitive element y for L/k(x), so that L ∼= k(x)[y]/(P ), then Ls
is k(x)[y]/(Ps) where Ps is the result of applying x 7→ x+ s to the coefficients of P .
When Ls/k(x) is not ramified at 0, we say that L/k(x) is not ramified at s.

Finally, using the map k(x) → k(x) which sends x to x−1, we get an exten-
sion L∞/k(x), proceeding as above. When the latter is not ramified at 0, we say
that L/k(x) is not ramified at ∞.

When the conditions above are not satisfied, for s ∈ k ∪ {∞}, we will of course
say that L does ramify at s (or is ramified at s). That the topological and algebraic
definitions of ramification actually agree is the essence of the next lemma.

Lemma 2.11 – Let p : S → P1 be a ramified cover, with S connected, and assume
that the corresponding extension M (S)/C(x) is Galois. Then for any s ∈ P1,
the ramification set P1

r contains s if and only if M (S)/C(x) ramifies at s in the
algebraic sense.

In particular, the ramification set in contained in {0, 1,∞} if and only if the
extension M (S)/C(x) does not ramify at s whenever s 6∈ {0, 1,∞}.

This is the addendum to theorem 5.9 in [Völ96]. Now we need to get rid of
the extra hypothesis that M (S)/C(x) be Galois (a case not considered in [Völ96],
strictly speaking). Algebraically, we say that an extension L/k(x) does not ramify
at s when its Galois closure L̃/k(x) does not. To see that, with this definition, the
last lemma generalizes to all ramified covers, we need to prove the following.

Lemma 2.12 – Let p : S → P1 be a ramified cover, where S is connected. Let p̃ : S̃ →
P1 be the ramified cover such that M (S̃)/C(x) is the Galois closure of M (S)/C(x).
Then the ramification sets for S and S̃ are equal.

Proof. We have C(x) ⊂ M (S) ⊂ M (S̃), so we also have a factorization of p̃
as S̃ → S → P1. From this it is clear that, if p̃ is not ramified at s ∈ P1, then
neither is p.

The crux of the proof of the reverse inclusion is the fact that covering maps have
Galois closures, usually called regular covers. The following argument anticipates
the material of the next section, though it should be understandable now.

Let P1
r be the ramification set for p, and let U = p−1(P1rP1

r), so that U → P1rP1
r

is a finite covering map. Now let Ũ → P1rP1
r be the corresponding regular covering

map. Here “regular” can be taken to mean that this cover has as many automor-
phisms as its degree; and Ũ is minimal with respect to this property, among the
covers factoring through U . The existence of Ũ is standard in covering space theory,
and should become very clear in the next section. Note that, if U corresponds to
the subgroup H of π1(P1 r P1

r), then Ũ corresponds to the intersection of all the
conjugates of H.

As above, we can construct a Riemann surface S′ from Ũ , and the latter does
not ramify outside of P1

r. To prove the lemma, it is sufficient to show that S′ can
be identified with S̃.

However from basic Galois theory we see that M (S′)/C(x) must be Galois since
it possesses as many automorphisms as its degree, and by minimality it must be
the Galois closure of M (S)/C(x). So S′ and S̃ are isomorphic covers of P1. �

Finally, an étale algebra over k(x) will be said not to ramify at s when it is a
direct sum of field extensions, none of which ramifies at s. This clearly corresponds
to the topological situation when k = C, and we have established the following.

Theorem 2.13 – The category Dessins is anti-equivalent to the cate-
gory Etale(C(x)) of finite, étale algebras over C(x) that are not ramified outside
of {0, 1,∞}, in the algebraic sense.

2.5. Extensions of Q(x). Let L/C(x) be a finite, Galois extension, and let n =
[L : C(x)]. We shall say that it is defined over Q when there is a subfield Lrat
of L, containing Q(x) and Galois over it, such that [Lrat : Q(x)] = n. This is
equivalent to requiring the existence of Lrat containing Q̄(x) and Galois over it such
that L ∼= Lrat ⊗Q C. That these two conditions are equivalent follows (essentially)
from (a) of lemma 3.1 in [Völ96]: more precisely this states that, when the condition
on dimensions holds, there is a primitive element y for L/C(x) whose minimal
polynomial has coefficients in Q(x), and y is also a primitive element for Lrat/Q̄(x).

Item (d) of the same lemma reads:

Lemma 2.14 – When L is defined over Q, the subfield Lrat is unique.

This relies on the fact that Q is algebraically closed, and would not be true
with Q and C replaced by arbitrary fields.

There is also an existence statement, which is theorem 7.9 in [Völ96]:

Theorem 2.15 – If L/C(x) is a finite, Galois extension which does not ramify
at s ∈ C unless s ∈ Q ∪ {∞}, then it is defined over Q.

We need to say a word about extensions which are not assumed to be Galois
over C(x). For this we now quote (b) of the same lemma 3.1 in [Völ96]:

Lemma 2.16 – When L/C(x) is finite, Galois, and defined over Q̄, there is an
isomorphism Gal(L/C(x)) ∼= Gal(Lrat/Q(x)) induced by restriction.

So from the Galois correspondence, we see that fields between C(x) and L, Galois
or not over C(x), are in bijection with fields between Q̄(x) and Lrat. If K/C(x)
is any finite extension, not ramified outside of {0, 1,∞}, we see by the above that
its Galois closure L/C(x) is defined over Q, and thus there is a unique field Krat,
between Q(x) and Lrat, such that K ∼= Krat ⊗Q C.

Putting together the material in this section, we get:

Theorem 2.17 – The category Dessins is anti-equivalent to the cate-
gory Etale(Q(x)) of finite, étale extensions of Q(x) that are not ramified outside
of {0, 1,∞}, in the algebraic sense.

The functor giving the equivalence with the previous category is the tensor prod-
uct −⊗Q C. Theorem 2.15 shows that it is essentially surjective; proving that it is
fully faithful is an argument similar to the proof of lemma 2.16 above.

2.6. Algebraic curves. Strictly speaking, the following material is not needed to
understand the rest of the paper, and to reach our goal of describing the action
of Gal(Q/Q) on dessins. Moreover, we expect the majority of our readers to fit
one of two profiles: those who know about algebraic curves and have immediately
translated the above statements about fields into statements about curves; and
those who do not know about algebraic curves and do not wish to know. Never-
theless, in the sequel we shall occasionally (though rarely) find it easier to make a
point in the language of curves.

Let K be an algebraically closed field, which in the sequel will always be either C
or Q. A curve C overK will be, for us, an algebraic, smooth, complete curve overK.
We do not assume curves to be irreducible, though smoothness implies that a curve
is a disjoint union of irreducible curves.

We shall not recall the definition of the above terms, nor the definition of mor-
phisms between curves. We also require the reader to be (a little) familiar with
the functor of points of a curve C, which is a functor from K-algebras to sets that
we write L 7→ C(L). There is a bijection between the set of morphisms C → C ′

between two curves on the one hand, and the set of natural transformations be-
tween their functors of points on the other hand; in particular if C and C ′ have
isomorphic functors of points, they must be isomorphic. For example, the first
projective space P1 is a curve for which P1(L) is the set of lines in L2 when L
is a field. (This holds for any base field K; note that we have already used the
notation P1 for P1(C), the Riemann sphere. We also use below the notation Pn(L)
for the set of lines in Ln+1, as is perfectly standard (though Pn is certainly not a
curve for n ≥ 2)).

In concrete terms, given a connected curve C it is always possible to find an
integer n and homogeneous polynomials Pi(z0, . . . , zn) (for 1 ≤ i ≤ m) with the
following property: for each field L containing K, we can describe C(L) as the
subset of those points [z0 : · · · : zn] in the projective space Pn(L) satisfying

(*) Pi(z0, . . . , zn) = 0 (1 ≤ i ≤ m) .

Thus one may (and should) think of curves as subsets of Pn defined by homogeneous
polynomial equations. When K is algebraically closed, as is the case for us, one
can in fact show that C is entirely determined by the single subset C(K) together
with its embedding in Pn(K).

We illustrate this with the so-called rational functions on C, which by definition
are the morphisms C → P1 with the exclusion of the “constant morphism which
is identically ∞”. When C(K) is presented as above as a subset of Pn(K), these
functions can alternatively be described in terms of maps of sets C(K)→ K ∪{∞}
of the following particular form: take P and Q, two homogeneous polynomials
in n + 1 variables, of the same degree, assume that Q does not vanish identically
on C(K), assume that P andQ do not vanish simultaneously on C(K), and consider
the map on C(K) sending z to P (z)/Q(z) if Q(z) 6= 0, and to ∞ otherwise. (In
other words z is sent to [P (z) : Q(z)] in P1(K) = K ∪ {∞}.)

The rational functions on the connected curve C comprise a field M (C) (an étale
algebra when C is not connected). We use the same letter as we did for meromorphic
functions, which is justified by the following arguments. Assume that K = C.
Then our hypotheses guarantee that S = C(C) is naturally a Riemann surface.
In fact if we choose polynomial equations as above, then S appears as a complex
submanifold of Pn(C). It follows that the rational functions on C, from their
description as functions on S, are meromorphic. However, a non-trivial but classical
result asserts the converse : all meromorphic functions on S are in fact rational
functions ([GH94], chap. 1, §3). Thus M (S) = M (C). When K = Q, it still makes
sense to talk about the Riemann surface S = C(C), and then M (S) = M (C)⊗QC.
For example M (P1) = K(x), when we see P1 as a curve over any field K.

The following theorem is classical.

Theorem 2.18 – The category of connected curves over K, in which constant
morphisms are excluded, is anti-equivalent to the category of fields of transcendence
degree 1 over K, the equivalence being given by C 7→M (C).

From this we have immediately a new category equivalent to Dessins, by re-
stricting attention to the fields showing up in theorem 2.13 or theorem 2.17. Let
us define a morphism C → P1 to be ramified at s ∈ K ∪ {∞} if and only if the
corresponding extension of fields M (C)/K(x) ramifies at s; this may sound like
cheating, but expressing properties of a morphism in terms of the effect on the
fields of rational functions seems to be in the spirit of algebraic geometry. It is then
clear that:

Theorem 2.19 – The category Dessins is equivalent to the category of curves C,
defined over C, equipped with a morphism C → P1 which does not ramify outside
of {0, 1,∞}. Here the morphisms taken into account are those over P1.

Likewise, Dessins is equivalent to the category of curves defined over Q with a
map C → P1 having the same ramification property.

(Note that we have used the same notation P1 for an object which is sometimes
seen as a curve over C, sometimes as a curve over Q, sometimes as a Riemann
surface.)

As a side remark, we note that these equivalences of categories imply in particular
the well-known fact that “Riemann surfaces are algebraic”. For if we start with S, a
Riemann surface, and consider the field M (S), then by theorem 2.18 there must be
a curve C over C such that M (C) = M (S) (where on the left hand side M means
“rational functions”, and on the right hand side it means “meromorphic functions”).
However, we have seen that M (C) = M (C(C)) (with the same convention), and
the fact that M (S) and M (C(C)) can be identified implies that S and C(C) are
isomorphic (theorem 2.10). Briefly, any Riemann surface S can be cut out by
polynomial equations in projective space.

Likewise, the above theorems show that if S has a Belyi map, then there is a
curve over Q such that S is isomorphic to C(C). This is usually expressed by saying
that S is “defined over Q”, or is an “arithmetic surface”. The converse is discussed
in the next section.

2.7. Belyi’s theorem. When considering a dessin C , we define a curve C over Q.
Is it the case that all curves over Q are obtained in this way? Given C, it is of
course enough to find a Belyi map, that is a morphism C → P1 with ramification
in {0, 1,∞}: the above equivalences then guarantee that C corresponds to some C .
In turn, Belyi has proved precisely this existence statement:

Theorem 2.20 (Belyi) – Any curve C over Q possesses a Belyi map.

The proof given by Belyi in [Bel79], and reproduced in many places, is very
elegant and elementary. It starts with any morphism F : C → P1, and modifies it
ingeniously to obtain another one with appropriate ramification.



3. Regularity

From now on, it will be convenient to use the word dessin to refer to an object in
any of the equivalent categories at our disposal (especially when we want to think
of it simultaneously as a cell complex and a field, for example).

In this section we study regular dessins. These could have been called “Galois”
instead of “regular”, since the interpretation in the realm of field extensions is pre-
cisely the Galois condition, but we want to avoid the confusion with the Galois
group Gal(Q/Q) which will become a major player in the sequel.

3.1. Definition of regularity. An object in Dessins has a degree given by the
number of darts. In the other categories equivalent to Dessins, this translates
in various ways. In Setsσ,α,φ, it is the cardinality of the set having the three
permutations on it. In the categories of étale algebras over C(x) or Q(x), it is the
dimension of the algebra as a vector space over C(x) or Q(x) respectively. In the
category of finite coverings of P1 r {0, 1,∞}, it is the cardinality of any fibre.

There is also a notion of connectedness in these categories. A dessin C is con-
nected when |C | is connected, which happens precisely when the corresponding
étale algebras are actually fields, or when the cartographic group acts transitively
(cf lemma 1.17).

In this section we shall focus on the automorphism groups of connected dessins.
We are free to conduct the arguments in any category, and most of the time we
prefer Setsσ,α,φ. However, note the following at once.

Lemma 3.1 – The automorphism group of a connected dessin is a finite group, of
order no greater than the degree.

Proof. This is obvious in Etale(Q(x)): in fact for any finite-dimensional extension
of fields L/K, basic Galois theory tells us that the automorphism group of the
extension has order no greater than [L : K].

A proof in Setsσ,α,φ will be immediate from lemma 3.3 below. �

A dessin will be called regular when it is connected and the order of its auto-
morphism group equals its degree.

In terms of field extensions for example, then L/C(x) is regular if and only
if it is Galois (in the elementary sense, ie normal and separable). In terms of a
covering U → P1 r {0, 1,∞}, with U is connected, then it is regular if and only if
it is isomorphic to the cover U → U/G where G is the automorphism group (this
agrees with the use of the term “regular” in covering space theory, of course).

Remark 3.2. The reader needs to pay special attention to the following convention.
When X is a dessin and h, k ∈ Aut(X), we write hk for the composition of k
followed by h; that is hk(x) = h(k(x)), at least when we are willing to make sense
of x ∈ X (for example inDessins this will mean that x is in fact a triangle). In other
words, we are letting Aut(X) act on X on the left. While this will be very familiar
to topologists, for whom it is common to see the “group of deck transformations” of
a covering map act on the left and the “monodromy group” act on the right, other
readers may be puzzled to see that we have treated the category of sets differently
when we took the convention described in remark 1.15.

To justify this, let us spoil the surprise of the next paragraphs, and announce
the main result at once: in Setsσ,α,φ, a regular dessin is precisely a group G with
two distinguished generators σ and α; the monodromy group is G itself, acting on
the right by translations, while the automorphism group is again G itself, acting
on the left by translations.

If we had taken different conventions, we would have ended up with one of these
actions involving inverses, in a way which is definitely unnatural.

3.2. Sets with permutations. We explore the definition of regularity in the con-
text of Setsσ,α,φ, where it is very easy to express.

Let X be a set of cardinality n, with three permutations σ, α, φ satisfying σαφ =
1. Let G denote the cartographic group; recall that by definition, it is generated
by σ and α as a subgroup of S(X) ∼= Sn, acting on X on the right. We assume
that G acts transitively (so the corresponding dessin is connected).

We choose a base-point ∗ ∈ X. The map g 7→ ∗g identifiesH\G withX, whereH
is the stabilizer of ∗. This is an isomorphism in Setsσ,α,φ, with G acting on H\G
by right translations. As we shall insist below that the choice of base-point is
somewhat significant, we shall keep the notation X and not always work directly
with H\G.

Since the morphisms in Setsσ,α,φ are special maps of sets, we can relate Aut(X)
and S(X), where the automorphism group is taken inSetsσ,α,φ, and S(X) as always
is the group of all permutations ofX. More precisely, any h ∈ Aut(X) can be seen as
an element of S(X), still written h, and there is a homomorphism Aut(X)→ S(X)
given by h 7→ h−1; our left-right conventions force us to take inverses to get a
homomorphism. (In other words, Aut(X) is naturally a subgroup of S(X)op, the
group S(X) with the opposite composition law.) As announced, the conventions
will eventually lead to a result without inverses.

Lemma 3.3 – Let X,G,H be as above. We have the following two descriptions
of Aut(X).

(1) Let N(H) be the normalizer of H in G. Then for each g ∈ N(H), the
map H\G→ H\G given by [x] 7→ [gx] is in Aut(H\G). This construction
induces an isomorphism Aut(X) ∼= N(H)/H.

(2) The map Aut(X) → S(X) is an isomorphism onto the centralizer of G
in S(X).

Proof. (1) The notation [x] is for the class of x in H\G, of course. To see that [gx]
is well-defined, let h ∈ H, then ghx = ghg−1gx so [ghx] = [gx]. The map clearly
commutes with the right action of G, and so is an automorphism, with inverse given
by [x] 7→ [g−1x].

Conversely, any automorphism h is determined by h([1]), which we call [g], and
we must have h([x]) = h([1]x) = [g]x = [gx] for any x; the fact that h is well-defined
implies that g ∈ N(H). So there is a surjective map N(H) → Aut(H\G) whose
kernel is clearly H.

(2) An automorphism of X, by its very definition, is a self-bijection of X com-
muting with the action of G; so this second point is obvious. �

We also note the following.

Lemma 3.4 – Aut(X) acts freely on X.

Proof. If h(x) = x for some x ∈ X, then h(xg) = h(x)g = xg so xg is also fixed
by h, for any g ∈ G. By assumption G acts transitively, hence the lemma. �

Proposition 3.5 – The following are equivalent.
(1) Aut(X) acts transitively on X.
(2) G acts freely on X.
(3) H is normal in G.
(4) H is trivial.
(5) G and Aut(X) are isomorphic.
(6) G and Aut(X) are both of order n.
(7) X is regular.

Proof. That (1) implies (2) is almost the argument we used for the last lemma,
only with the roles of Aut(X) and G interchanged. Condition (2) implies (4) by
definition and hence (3); when we have (3) we have N(H)/H = G/H, and the
description of the action of N(H)/H on H\G makes it clear that (1) holds.

Condition (4) implies N(H)/H ∼= G, so we have (5); we also have (6) since X
(whose cardinality is n) can be identified with G acting on itself on the right.
Conversely if we have (6), given that the cardinality of X is n = |G|/|H| we deduce
(4).

Finally (7), by definition, means that Aut(X) has order n, so it is implied by
(6). Conversely, since this group acts freely on X, having cardinality n, it is clear
that (7) implies that the action is also transitive, which is (1). �

Corollary 3.6 (of the proof) – Let X be a regular object in Setsσ,α,φ with
cartographic group G. Then X can be identified with G itself with its action on
itself on the right by translations. The automorphism group Aut(X) can also be
identified with G, acting on X = G on the left by translations.

Conversely any finite group G with two distinguished generators σ and α defines
a regular object in this way.

Proof. There remains the (very easy) converse to prove. If we start with G, a finite
group generated by σ and α, we can let it act on itself on the right by translations,
thus defining an object in Setsσ,α,φ. The cartographic group is easily seen to be
isomorphic to G (in fact this is the traditional Cayley embedding of G into the
symmetric group S(G)). The action of the cartographic group is, as a result, free
and transitive, so the object is regular. �

However, some care must be taken. The identifications above are not canonical,
but depend on the choice of base-point. Also, the actions of g ∈ G on X, given
by right and left multiplications, are very different-looking maps of the set X. We
want to make these points crystal-clear. The letter d below is used for “dart”.

Proposition 3.7 – Suppose that X is regular. Then for each d ∈ X there is an
isomorphism

ιd : G −→ Aut(X) .

The automorphism ιd(g) is the unique one taking d to dg.
Changing d to d′ amounts to conjugating, in Aut(X), by the unique automor-

phism taking d to d′.

Proof. This is merely a reformulation of the discussion above, and we only need to
check some details. We take ∗ = d as base-point. The map ιd is clearly well-defined,
and we check that it is a homomorphism: ιd(gh)(d) = dgh = (dg)h = ιd(g)(d)h =
ιd(g)(dh) = ιd(g)ιd(h)(d), so the automorphisms ιd(gh) and ιd(g)ιd(h) agree at d,
hence everywhere by transitivity of the action of G. �

Example 3.8 – Consider the dessin on the sphere given by the tetrahedron, as
follows:
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Here we have numbered the darts, for convenience (the faces, on the other hand,
are implicit). There are many ways to see that this is a regular dessin. For example,
one may find enough rotations to take any one dart to any other one, and apply
criterion (1) of proposition 3.5. Or, we could write the permutations

σ = (123)(456)(789)(10, 11, 12) , α = (14)(2, 10)(37)(59)(6, 11)(8, 12) ,

and compute the order of the group generated by σ and α, which is 12 (a computer
does that for you immediately). Then appeal to criterion (6) of the same proposi-
tion. Finally, one could also determine the automorphism group of this dessin, and
find that it has order 12. This is the very definition of regularity.

Take d = 1 as base point, and write ι for ι1. What is ι(σ)? This is the automor-
phism taking 1 to 2, which is the rotation around the black vertex adjacent to 1
and 2. The permutation of the darts induced by ι(σ) is

(123)(4, 10, 7)(6, 12, 9)(11, 8, 5) .

We see that σ and ι(σ) are not to be confused. Likewise, ι(α) is the rotation
taking 1 to 4, and the induced permutation is

(14)(8, 12)(2, 5)(3, 6)(10, 9)(11, 7) .

3.3. The distinguished triples. From proposition 3.7, we see that each choice
of dart in a regular dessin C defines three elements of Aut(C ), namely σ̃ = ιd(σ),
α̃ = ιd(α), and φ̃ = ιd(φ). These are generators of Aut(C ), and they satisfy σ̃α̃φ̃ =
1. Changing d to another dart conjugates all three generators simultaneously. Any
such triple, obtained for a choice of d, will be called a distinguished triple for C .

Lemma 3.9 – If d and d′ are darts with a common black vertex, then ιd(σ) =
ιd′(σ). Similarly if they have a common white vertex then ιd(α) = ιd′(α). Finally
if the black triangles corresponding to d and d′ respectively lie in the same face,
then ιd(φ) = ιd′(φ).

Proof. We treat the first case, for which d′ = dσ
k

for some k. Write σ̃ = ιd(σ).
Since dσ

k

= σ̃k(d), we see that ιd′(σ) = σ̃kσ̃σ̃−k = σ̃. �

Thus the notation σ̃ makes senses unambiguously when it is understood that
the possible base-darts are incident to a given black vertex. Similarly for the other
types of points. We can now fully understand the fixed points of automorphisms:

Proposition 3.10 – Let h ∈ Aut(C ), where C is regular. Suppose that the induced
homeomorphism |C | → |C | has a fixed point. Suppose also that h is not the identity.
Then the fixed point is a vertex or the centre of a face; moreover there exists an
integer k such that, for any choice of dart d incident with the fixed point, we can
write h = σ̃k, α̃k or φ̃k, according to the type of fixed point, •, ◦ or ?.

In particular, the subgroup of Aut(C ) comprised of the automorphisms fixing a
given point of type • is cyclic, generated by σ̃ = ιd(σ) where we have chosen any
dart incident with the fixed point. Likewise for the other types of fixed point.

(In this statement we have abused the language slightly, by saying that a dart is
“incident” to the centre of a face if the corresponding black triangle belongs to that
face.)

Proof. Let t be a triangle containing the fixed point. Note that h(t) 6= t: otherwise
by regularity we would have h = identity. We have t ∩ h(t) 6= ∅ though, and
as the triangle h(t) is of the same colour as t, unlike its neighbours, we conclude
that t ∩ h(t) is a single vertex of t, and the latter is our fixed point.

Say it is a black vertex. Let d be the dart on t. Then h(d) is a dart with the same
black vertex as d, so h(d) = dσ

k

for some integer k. In other words h = ιd(σ
k). �

Thus we have a canonical generator for each of these subgroups. Here we point
out, and this will matter in the sequel, that the generator σ̃ agrees with what
Völklein calls the “distinguished generator” in Proposition 4.23 of [Völ96]. This
follows from unwinding all the definitions.

The following result is used very often in the literature on regular “maps”.

Proposition 3.11 – Let C be a dessin, with cartographic group G, and the dis-
tinguished elements σ, α, φ ∈ G. Similarly, let C ′, G′, σ′, α′, φ′ be of the same kind.
Assume that C and C ′ are both regular. Then the following conditions are equiva-
lent:

(1) C and C ′ are isomorphic,
(2) there is an isomorphism G→ G′ taking σ to σ′, α to α′ and φ to φ′,
(3) there is an isomorphism Aut(C ) → Aut(C ′) taking a distinguished triple

to a distinguished triple.

Proof. That (1) implies (2) is obvious, and holds without any regularity assump-
tion. Since there are isomorphisms G ∼= Aut(C ) and G′ ∼= Aut(C ′) taking the dis-
tinguished permutations in the cartographic group to a distinguished triple (though
none of this is canonical), we see that (2) implies (3).

Finally, if we work in Setsσ,α,φ, we can identify C with the group Aut(C ) en-
dowed with the three elements σ̃, α̃, φ̃ acting by multiplication on the right, where
we have picked some distinguished triple σ̃, α̃, φ̃. Thus (3) clearly implies (1). �

The equivalence of (1) and (3), together with corollary 3.6, reduces the classifi-
cation of regular dessins to that of finite groups with two distinguished generators
(or three distinguished generators whose product is 1). We state this separately as
an echo to proposition 1.24. Recall that dessins are implicitly compact, oriented
and without boundary here.

Proposition 3.12 – (1) A regular dessin determines, and can be reconstructed
from, a finite group G with two distinguished generators σ and α. We obtain
isomorphic dessins from (G, σ, α) and (G′, σ′, α′) if and only if there is an
isomorphism G→ G′ taking σ to σ′ and α to α′.

(2) The set of isomorphism classes of regular dessins is in bijection with the
normal subgroups of the free group on two generators. More precisely, if a
connected dessin corresponds to the conjugacy class of the subgroup K as
in proposition 1.24, then it is regular if and only if K is normal.

Proof. We have already established (1). As for the first statement in (2), we only
need to remark that the groups mentioned in (1) are precisely the groups of the
form G = 〈σ, α〉/N for some normal subgroup N in the free group F2 = 〈σ, α〉, and
that an isomorphism of the type specified in (1) between G = F2/N and G′ = F2/N

′

exists if and only if N = N ′.
We turn to the last statement. If a connected dessin corresponds to K, then it

is isomorphic to X = K\〈σ, α〉 in Setsσ,α,φ. The action of 〈σ, α〉 on X yields a
homomorphism f : 〈σ, α〉 → S(X) whose image is the cartographic group G, and
whose kernel is the intersection N of all the conjugates of K, so G ∼= 〈σ, α〉/N .
Let H be the stabilizer in G of a point in X. Then f−1(H) is the stabilizer of that
same point in 〈σ, α〉, so it is a conjugate of K. Now, X is regular if and only if H is
trivial, which happens precisely when f−1(H) = N , which in turn occurs precisely
when K is normal. �

3.4. Regular closure & Galois correspondence. In the discussion that follows,
we restrict our attention to connected dessins.

When C and C ′ are two dessins, we call C ′ an intermediate dessin of C when
there exists a morphism C → C ′. To appreciate the term “intermediate”, it is best to
move to categories other than Dessins. In Cov(P1), if C corresponds to p : S → P1

and C ′ corresponds to p′ : S′ → P1, then C ′ is an intermediate dessin of C when
there is a factorization of p as

p : S
f−→ S′

p′−→ P1 ,

for some map f ; so |C ′| = S′ is intermediate between |C | = S and P1, if you will.
In Etale(Q(x)), the towers Q(x) ⊂ L′ ⊂ L provide examples where L′/Q(x) is an
intermediate dessin of L/Q(x), and all examples are isomorphic to one of this kind.

Of course the word “intermediate” is borrowed from field/Galois theory, where
the ideas for the next paragraphs come from. Let us point out one more character-
ization.

Lemma 3.13 – Let C and C ′ correspond to the conjugacy classes of the subgroups H
and H ′ of 〈σ, α〉 respectively, as in proposition 1.24. Then C ′ is an intermediate
dessin of C if and only if some conjugate of H ′ contains H.

So H ′ is intermediate between H and the free group 〈σ, α〉.

Proof. The object inSetsσ,α,φ corresponding toH (and also to C ) isX = H\〈σ, α〉,
and likewise for H ′ we can take X ′ = H ′\〈σ, α〉; there is a map X → X ′ if and
only if the stabilizer of some point in X is contained in the stabilizer of some point
in X ′, hence the lemma. �

Lemma 3.14 – Let C be a connected dessin. There exists a regular dessin C̃ such
that C is an intermediate dessin of C̃ . Moreover, we can arrange for C̃ to be mini-
mal in the following sense: if C is an intermediate dessin of any regular dessin C ′,
then C̃ is itself an intermediate dessin of C ′. Such a minimal C̃ is unique up to
isomorphism.

Finally, the cartographic group of C is isomorphic to Aut(C̃ ).

We call C̃ the regular closure of C .

Proof. Leaving the last statement aside, in Etale(Q(x)), this is a basic result from
Galois theory. Alternatively, we can rely on proposition 1.24 and the previous
lemma: if C corresponds to the conjugacy class of H, then clearly the object corre-
sponding to N , the intersection of all conjugates of H, suits our purpose. As for the
last statement, that the cartographic group of H\〈σ, α〉 is isomorphic to 〈σ, α〉/N
was already observed during the proof of proposition 3.12 (and is obvious any-
way). �

The fundamental theorem of Galois theory applied in Etale(Q(x)), or some ele-
mentary considerations with the subgroups of 〈σ, α〉, imply:

Proposition 3.15 – Let C be a regular dessin. There is a bijection between the
set of isomorphism classes of intermediate dessins of C on the one hand, and the
conjugacy classes of subgroups of Aut(C ) on the other hand. Normal subgroups
corresponds to regular, intermediate dessins.

The concepts of this section are, as usual, very easily illustrated within Setsσ,α,φ.
A connected object is of the form H\G, as we have seen, where G has two distin-
guished generators σ and α. The regular closure is the object G, with its right
action on itself, seen in Setsσ,α,φ. Of course there is the natural map G → H\G.
Conversely any X with a surjective, equivariant map G → X (that is, any con-
nected, intermediate object of G) must be of the form H\G, clearly. From this we
see that whenever C is regular, its intermediate dessins might called its quotient
dessins instead.



4. The action of Gal(Q/Q)

In this section we show how each element λ ∈ Gal(Q/Q) defines a self-equivalence
of Dessins, or any of the other categories equivalent to it. Writing λC for the
object obtained by applying this functor to the dessin C , we show that there is an
isomorphism between λµC and λ(µC ), so Gal(Q/Q) acts on the set of isomorphism
classes of dessins.

The definition of the action is in fact given in Etale(Q(x)), where it is most
natural. The difficulty in understanding it in Dessins has much to do with the
zig-zag of equivalences that one has to go through. For example, the functor from
Riemann surfaces to fields is straightforward, and given by the “field of meromorphic
functions” construction, but the inverse functor is more mysterious.

We study carefully the genus 0 case, and include a detailed description of a
procedure to find a Belyi map associated to a planar dessin – which is, so far, an
indispensable step to study the action. We say just enough about the genus 1 case
to establish that the action is faithful.

We then proceed to study the features which are common to C and λC , for
example the fact that the surfaces |C | and

∣∣λC ∣∣ are homeomorphic (so that the
action modifies dessins on a given topological surface). Ultimately one would hope
to know enough of these “invariant” features to predict the orbit of a given dessin
under Gal(Q/Q) without having to compute Belyi maps, but this remains an open
problem.

4.1. The action. Let λ : Q → Q be an element of Gal(Q/Q). We extend it to a
map Q(x) → Q(x) which fixes x, and use the same letter λ to denote it. In this
situation the tensor product operation

−⊗λ Q(x)

defines a functor from Etale(Q(x)) to itself. In more details, if L/Q(x) is an étale
algebra, one considers

λL = L⊗λ Q(x) .

The notation suggests that we see Q(x) as a module over itself via the map λ. We
turn λL into an algebra over Q(x) using the map t 7→ 1⊗ t.

To describe this in more concrete terms, as well as verify that λL is an étale
algebra over Q(x) whenever L is, it is enough to consider field extensions, since
the operation clearly commutes with direct sums. So if L ∼= Q(x)[y]/(P ) is a
field extension of Q(x), with P ∈ Q(x)[y] an irreducible polynomial, then λL ∼=
Q(x)[y]/(λP ), where λP is what you get when the (extented) map λ is applied to
the coefficients of P . Clearly λP is again irreducible (if it could be factored as a
product, the same could be said of P by applying λ−1). Therefore λL is again a field
extension of Q(x), and coming back to the general case, we do conclude that λL is
an étale algebra whenever L is. What is more, the ramification condition satisfied
by the objects of Etale(Q(x)) is obviously preserved.

Let µ ∈ Gal(Q/Q). Note that y ⊗ s⊗ t 7→ y ⊗ µ(s)t yields an isomorphism
µ
(
λL
)

= L⊗λ Q(x)⊗µ Q(x) −→ L⊗µλ Q(x) = µλL .

As a result, the group Gal(Q/Q) acts (on the left) on the set of isomorphism
classes of objects in Etale(Q(x)), or in any category equivalent to it. We state this
separately in Dessins.

Theorem 4.1 – The absolute Galois group Gal(Q/Q) acts on the set of isomor-
phism classes of compact, oriented dessins without boundaries.

4.2. Examples in genus 0; practical computations. We expand now on exam-
ple 2.9. Let C be a dessin on the sphere. We have seen that we can find a rational
fraction F such that F : P1 → P1 is the ramified cover corresponding to C .

In terms of fields of meromorphic functions, we have the injection C(x)→ C(z)
mapping x to F (z); here x and z both denote the identity of P1, but we use
different letters in order to distinguish between the source and target of F . The
extension of fields corresponding to C , as per theorem 2.13, is C(z)/C(F (z)). We
will write x = F (z) for simplicity, thus seeing the injection above as an inclusion.
If F = P/Q, note that P (z)− xQ(z) = 0, illustrating that z is algebraic over C(x).

Suppose that we had managed to find an F as above whose coefficients are in Q.
Then z is algebraic over Q(x), and in this case C(z)rat can be taken to be Q(z). We
have identified the extension Q(z)/Q(x) corresponding to C as in theorem 2.17.

Now that theorem and the discussion preceding it do not, as stated, claim that F
can always be found with coefficients in Q: we merely now that some primitive
element y can be found with minimal polynomial having its coefficients in Q. The
stronger statement is equivalent to C(z)rat being purely transcendental over Q, as
can be seen easily. Many readers will no doubt be aware of abstract reasons why
this must in fact always be the case; we will now propose an elementary proof
which, quite importantly, also indicates how to find F explicitly in practice. The
Galois action will be brought in as we go along.

Let us first discuss the number of candidates for F . Any two rational fractions
corresponding to C must differ by an isomorphism in the category of Belyi pairs;
that is, any such fraction is of the form F (φ(z)) where F is one fixed solution
and φ : P1 → P1 is some isomorphism. Of course φ must be a Moebius transfor-
mation, φ(z) = (az + b)/(cz + d). Let us call a Belyi map F : P1 → P1 normalized
when F (0) = 0, F (1) = 1 and F (∞) =∞.

Lemma 4.2 – Let C be a dessin on the sphere. There are finitely many normalized
fractions corresponding to C .

Proof. The group of Moebius transformations acts simply transitively on triples of
points, so we can arrange for there to be at least one normalized Belyi fraction,
say F , corresponding to C . Other candidates will be of the form F ◦ φ where φ is
a Moebius transformation, so φ(0) must be a root of F and φ(1) must be a root
of F − 1, while φ(∞) must be a pole of F . Since φ is determined by these three
values, there are only finitely many possibilities. �

We shall eventually prove that any normalized fraction has its coefficients in Q.
Our strategy for finding a fraction F : P1 → P1 which is a Belyi map is to pay

attention to the associated fraction

A =
F ′

F (F − 1)
.

Proposition 4.3 – Let F be a Belyi fraction such that F (∞) = ∞, and let A be
as above. Then the following holds.

(1) The partial fraction decomposition of A is of the form

A =
∑
i

mi

z − wi
−
∑
i

ni
z − bi

,

where the ni’s and the mi’s are positive integers, the bi’s are the roots of F ,
and the wi’s are the roots of F − 1. In fact ni is the degree of the black
vertex bi, and mi is the degree of the white vertex wi.

(2) One can recover F from A as:
1

F
= 1−

∏
i(z − wi)mi∏
i(z − bi)ni

.

(3) The fraction A can be written in reduced form

A = λ

∏
i(z − fi)ri−1∏

i(z − bi)
∏
i(z − wi)

,

where the fi’s are the poles of F (other than ∞), and ri is the multiplicity
of fi as a pole of F . In fact ri is the number of black triangles inside the
face corresponding to fi.

Conversely, let A be any rational fraction of the form given in (3), with the
numbers fi, bi, wi distinct. Assume that A has a partial fraction decomposition of
the form given in (1); define F by (2); and finally assume that the fi’s are poles
of F . Then F is a Belyi map, A = F ′/(F (F − 1)), and we are in the previous
situation.

We submit a proof below. For the moment, let us see how we can use this
proposition to establish the results announced above. So assume C is a given
dessin on the sphere, and we are looking for a corresponding normalized Belyi
map F : P1 → P1. We look for the fraction A instead, and our “unknowns” are
the fi’s, the bi’s, the wi’s, and λ, cf (3). Of course we now the numbers ri from
counting the black triangles on C , just as we now the number of black vertices,
white vertices, and faces, giving the number of bi’s, wi’s, and fi’s (keeping in mind
the pole at ∞ already accounted for).

Now comparing (3) and (1) we must have

(*) λ

∏
i(z − fi)ri−1∏

i(z − bi)
∏
i(z − wi)

=
∑
i

mi

z − wi
−
∑
i

ni
z − bi

where the integers ni and mi are all known, since they are the degrees of the black
and white vertices respectively, and again these can be read from C .

Further, the fi’s must be poles of F , which is related to A by (2). Thus we must
have

(**)
∏
i

(fj − wi)mi =
∏
i

(fj − bi)ni ,

for all j. We also want F to be normalized so we pick indices i0 and j0 and throw
in the equations

(***) bi0 = 0 , wj0 = 1 .

Finally we want our unknowns to be distinct. The usual trick to express this as an
equality rather than an inequality is to take an extra unknown η and to require

(****) η(b1 − b2)(f1 − f2) · · · = 1 ,

where in the dots we have hidden all the required differences.

Lemma 4.4 – The system of polynomials equations given by (*), (**), (***) and
(****) has finitely many solutions in C. These solutions are all in Q.

Proof. By the proposition, each solution defines a normalized Belyi map, and thus
a dessin on the sphere. Define an equivalence relation on the set of solutions,
by declaring two solutions to be equivalent when the corresponding dessins are
isomorphic. By lemma 4.2, there are finitely many solutions in an equivalence
class. However there must be finitely many classes as well, since for each n there
can be only a finite number of dessins on n darts, clearly, and for all the solutions
we have n =

∑
i ni darts.

It is a classical fact from either algebraic geometry, or the theory of Gröbner
bases, that a system of polynomial equations with coefficients in a field K, having
finitely many solutions in an algebraically closed field containing K, has in fact
all its solutions in the algebraic closure of K. Here the equations have coefficients
in Q. �

We may state, as a summary of the discussion:

Proposition 4.5 – A dessin C on the sphere defines, and is defined by, a ratio-
nal fraction F with coefficients in Q which is also a Belyi map. The dessin λC
corresponds to the fraction λC obtained by applying λ to the coefficients of F .

Example 4.6 – Suppose C is the following dessin on the sphere:

b

bc

bc

bc bc bb bcb0
b1 b2w0

w1

w2

w3

w4

Let us find a fraction F corresponding to C by the method just described. Note
that, whenever the dessin is really a planar tree, one can greatly improve the effi-
ciency of the computations, as will be explained below, but we want to illustrate
the general case.

We point out that the letters bi and wi above are used to label the sets B
and W , and the same letters will be used in the equations which we are about
to write down. A tricky aspect is that, in the equations, there is really nothing
to distinguish between, say, w2, w3, and w4; and we expect more solutions to our
system of equations than the one we want. We shall see that some solutions will
actually give a different dessin.

Here there is just one face, so F will have just the one pole at ∞; in other
words F will be a polynomial. As for A, it is of the form

A =
λ

(z − b0)(z − b1)(z − b2)(z − w0)(z − w1)(z − w2)(z − w2)(z − w4)
.

The first equations are obtained by comparing this with the expression

A = − 4

z − b0
− 1

z − b1
− 2

z − b2
+

2

z − w0
+

2

z − w1
+

1

z − w2
+

1

z − w3
+

1

z − w4
.

There are no fi’s so no extra condition, apart from the one expressing that the
unknowns are distinct:

η(b0 − b1) · · · (b2 − w3) · · · = 1 ,

where we do not write down the 28 terms. Finally, for F to be normalized, we add

b0 = 0 , w0 = 1 .

At this point we know that there must be a finite set of solutions. This is
confirmed by entering all the polynomial equations into a computer, which produces
exactly 8 solutions (using Groebner bases). For each solution, we can also ask the
computer to plot (an approximation to) the set F−1([0, 1]).

1 2 3 4

5 6 7 8
It seems that 5 and 6 look like our original dessin C , while the other six are

certainly not isomorphic to C (even the underlying bigraphs are not isomorphic to
that of C ). Let us have a closer look at 5 and 6:

We see precisely what is going on: we have imposed the condition w0 = 1, but in
the equations there was nothing to distinguish the two white vertices of degree two,
and they can really both play the role of w0. These two solutions give isomorphic
dessins, though: one diagram is obtained from the other by applying a rotation of
angle π, that is z 7→ −z, and the two fractions are of the form F (z) and F (−z)
respectively. This could be confirmed by calculations, though we will spare the
tedious verifications.

The other solutions all come in pairs, for the same reason. Let us have a closer
look at 1, 3, 5, 7:

1 3

5 7
Here 1 and 3 present the same bicolored tree; 1, 5 and 7 are non-isomorphic

bicolored trees. However 1 and 3 are not isomorphic dessins – or rather, they are
not isomorphic as oriented dessins, as an isomorphism between the two would have
to change the orientation.

Let σ, α and φ be the three permutations corresponding to C . Now suppose
we were to look for a dessin C ′ with permutations σ′, α′ and φ′ such that σ′ is
conjugated to σ within S7 (there are 7 darts here), and likewise for α′ and α,
and φ′ and φ. Then we would write down the same equations, which only relied on
the cycle types of the permutations. Thus C ′ would show up among the solutions,
and conversely. So we have an interpretation of this family of four dessins.

Let us have a look at the Galois action. Here is the number b1 in the cases 1, 3,
5, 7:

1

32

(
−2i

√
5i
√

7− 7
√

7 + 3i
√

2
√

7 + 7
√

2

)√
2 ,

1

32

(
2

√
5i
√

7 + 7
√

7− 3i
√

2
√

7 + 7
√

2

)√
2 ,

− 1

72

(√
8
√

3
√

7 + 63
√

3
√

7− 21
√

3 + 12
√

7

)√
3 ,

1

72

(√
−8
√

3
√

7 + 63
√

3
√

7 + 21
√

3 + 12
√

7

)√
3 .

One can check that the minimal polynomial for b1 in case 1 has degree 4, and
that the four distinct values for b1 in cases 1, 2, 3, 4 all have the same minimal
polynomial (these are questions easily answered by a computer). Thus they are the
four roots of this polynomial, which are in the same Gal(Q/Q)-orbit. On the other
hand, in cases 5, 6, 7, 8 the values for b1 have another minimal polynomial (and
they have the same one), so Gal(Q/Q) cannot take solution 1 to any of the solutions
5, 6, 7, 8. In the end we see that the four solutions 1, 2, 3, 4 are in the same Galois
orbit, in particular 1 and 3 are in the same orbit. A similar argument shows that
5 and 7 also belong to the same orbit. However these orbits are different.

Understanding the action of the absolute Galois group of Q on (isomorphism
classes of) dessins will be a major theme in the rest of this paper.

Remark 4.7. Let us comment of efficiency issues. A seemingly anecdotal trick,
whose influence on the computation is surprising, consists in grouping the vertices
of the same colour and the same degree. In the last example, we would “group
together” w2, w3 and w4, and write

(z − w2)(z − w3)(z − w4) = z3 + uz2 + vz + s .

All subsequent computations are done with the unknowns u, v and s instead of w2,
w3 and w4, thus reducing the degree of the equations.

More significant is the alternative approach at our disposal when the dessin is
a planar tree. Then F is a polynomial (if we arrange for the only pole to be ∞),
and F ′ divides F (F − 1), so F (F − 1) = PF ′, where everything in sight is a
polynomial.

Coming back to the last example, we would write

F = cz4(z − b1)(z − b2)2

(incorporating b0 = 0) and

F − 1 = c(z − 1)2(z − w1)2(z3 + uz2 + vz + s) ,

the unknowns being now c, b1, b2, w1, u, v and s. In the very particular case at hand,
there is already a finite number of solutions to the polynomial equations resulting
from the comparison of the expressions for F and F − 1. In general though, the
very easy next step is to compute the remainder in the long division of F (F − 1)
by F ′, say in Q(c, b1, b2, w1, u, v, s)[z]. Since F and F ′ both have c as the leading
coefficient, it is clear that the result will have coefficients in Q[c, b1, b2, w1, u, v, s].
These coefficients must be zero, and these are the equations to consider.

Proceeding in this way is, based on a handful of examples, several orders of
magnitude faster than with the general method.

We conclude with a proof of proposition 4.3.

Proof. Let F be as in the proposition, let A = F ′/F (F − 1), and let us write the
partial fraction decomposition of A over C:

A =
∑
α,r,k

α

(z − r)k
.

Now we integrate; we do this formally, though it can be made rigorous by restrict-
ing z to lie in a certain interval of real numbers. Note that essentially we are solving
the differential equation F (F − 1) = A−1F ′. On the one hand:∫

F ′(z)dz

F (z)(F (z)− 1)
=

∫
dF

F (F − 1)
=

∫ (
−1

F
+

1

F − 1

)
dF = log(

F − 1

F
) ,

up to a constant. On the other hand this must be equal to∑
α,r,k>1

α

(1− k)(z − r)k−1
+
∑
α,r

α log(z − r) ,

up to a constant. Thus the exponential of this last expression is a rational fraction,
from which it follows that the first sum above must be zero. In other words, k = 1
in all the nonzero terms of the partial fraction decomposition of A. Moreover, for
the same reason all α’s must be integers. In the end

A =
∑
α,r

α

z − r
,

and
F − 1

F
= c

∏
α,r

(z − r)α .

We rewrite this
1

F
= 1− c

∏
α,r

(z − r)α .

Examination of this expression establishes (1) and (2) simultaneously. Indeed
F (∞) = ∞ implies c = 1 (and

∑
α = 0). Likewise, the roots of F are the

numbers r’s such that α < 0, and the roots of F − 1 are the r’s such that α > 0.
The multiplicities are interpreted as degrees of vertices, as already discussed (we
see that

∑
α = 0 amounts to

∑
mi =

∑
ni, and as a matter a fact these two sums

are equal to the number n of darts, each dart joining a back vertex and a white
one). Let us now use the notation bi, wi, ni and mi.

We have shown that
A = λ

B∏
i(z − bi)(z − wi)

where B is a monic polynomial. It remains, in order to prove (3), to find the roots
of B together with their multiplicities, knowing that B does not vanish at any bi
or any wi.

For this write F = P/Q with P,Q coprime polynomials, so that

A =
P ′Q+ PQ′

P (P −Q)
.

If fi is a root of Q, with multiplicity ri, then it is a root of P ′Q + PQ′ with
multiplicity ri − 1. Also, it is not a root of P (P − Q), so in the end fi is a root
of B of multiplicity ri − 1.

Finally, from the expression A = F ′/F (F − 1) we know that the roots of A are
to be found among the roots of F ′ and the poles of F (F −1), that is the roots of Q.
So a root of A which is not a root of Q would have to be a root of F ′. Now we use
the fact that F is a Belyi map: a root of F ′ is taken by F to 0 or 1, so it is among
the bi’s and the wi’s. These are not roots of B, as observed, so we have proved (3).

Now we turn to the converse, so we let A have the form in (3), we suppose that
(1) holds and define F by (2). From the arguments above it is clear that A =
F ′/F (F − 1).

Is F a Belyi map? For z0 satisfying F ′(z0) = 0, we need to examine whether the
value F (z0) is among 0, 1,∞. Suppose F (z0) is neither 0 nor 1. Then it is not a
root of F (F − 1), so it is a root of A. If we throw in the assumption that the roots
of A are poles of F , it follows that F (z0) =∞. �

4.3. Examples in genus 1; faithfulness of the action. Let us briefly discuss
the Galois action in the language of curves, as in §2.6. A dessin defines a curve C,
which can be taken to be defined by homogeneous polynomial equations Pi = 0
in projective space, where Pi has coefficients in Q. Also C comes equiped with
a map F : C → P1, or equivalently F ∈ M (C), and F can be written as a quo-
tient F = P/Q where P and Q are homogeneous polynomials of the same degree,
again with coefficients in Q. Conversely such a curve, assuming that F does not
ramify except possibly at 0, 1 or ∞, defines a dessin.

It is then easy to show (though we shall not do it here) that λC corresponds to
the curve λC obtained by applying λ to the coefficients of each Pi; it comes with
a Belyi map, namely λF , which we again obtain by applying λ to the coefficients
of F . (Note in particular that λC, as a curve without mention of a Belyi map, is
obtained from λ and C alone, and F does not enter the picture.)

We illustrate this with dessins in degree 1. An elliptic curve is a curve C given
in P2 by a “Weierstrass equation”, that is, one of the form

y2z − x3 − axz2 − bz3 = 0 .

Assuming we work over Q or C, the surface C(C) is then a torus. One can show
conversely that whenever C(C) has genus 1, the curve is an elliptic curve.

The equation is of course not uniquely determined by the curve. However one
can prove that

j = 1728(4a)3/16(4a3 + 27b2)

depends only on C up to isomorphism. (The notation is standard, with 1728
emphasized.) What is more, over an algebraically closed field we have a converse:
the number j determines C up to isomorphism. Further, each number j ∈ K
actually corresponds to an elliptic curve over K. These are all classical results, see
for example [Sil09].

Now we see that, in obvious notation, j(λC) = λj(C), with the following conse-
quence. Given λ ∈ Gal(Q/Q) which is not the identity, there is certainly a num-
ber j ∈ Q such that λj 6= j. Considering the (unique) curve C such that j(C) = j,
we can use Belyi’s theorem to make sure that it possesses a Belyi map F (it really
does not matter which, for our purposes), producing at least one dessin C . It fol-
lows that λC is not isomorphic to C , and we see that the action of Gal(Q/Q) on
dessins is faithful.

As it happens, one can show that the action is faithful even when restricted
to genus 0, and even to plane trees. What is more, the argument is easy and
elementary, see the paper by Schneps [Sch94], who ascribes the result to Lenstra.

We note for the record:

Theorem 4.8 – The action of Gal(Q/Q) on dessins is faithful. In fact, the action
on plane trees is faithful, as is the action on dessins of genus 1.

In this statement it is implicit that the image of a plane tree under the Galois
action is another plane tree. Theorem 4.11 below proves this, and more.

4.4. Invariants. We would like to find common features to the dessins C and λC ,
assumed connected for simplicity. First and foremost, if L/Q(x) corresponds to C ,
one must observe that there is the following commutative diagram:

Q(x)
λ−−−−→ Q(x)y y

L = L⊗id Q(x)
y⊗s7→y⊗λ(s)−−−−−−−−−→ L⊗λ Q(x) = λL .

Here both horizontal arrows are isomorphisms of fields (but the bottom one is not an
isomorphism of Q(x)-extensions, of course). It follows that there is an isomorphism

λ∗ : Gal(L/Q(x)) −→ Gal(λL/Q(x)) ,

obtained by conjugating by the bottom isomorphism (this is the approach taken
in [Völ96]). Alternatively, the existence of a homomorphism λ∗ between these
groups is guaranteed by the functoriality of the Galois action; while the fact that λ∗
is a bijection is established by noting that its inverse is (λ−1)∗. The two definitions
of λ∗ agree, as is readily seen.

For the record, we note:

Lemma 4.9 – If C is regular, so is λC .

Proof. It is clear that C and λC have the same degree, and their automorphism
groups are isomorphic under λ∗, so the lemma is obvious. �

Using curves, we can guess a property of λ∗ which is essential (a rigorous argu-
ment will be given next). Let C be a curve in projective space corresponding to C .
It is a consequence of the material in §2 that C(C) is homeomorphic to |C |. The
automorphism σ̃ must then correspond to a self-map C → C, and the latter must
fix a black vertex by proposition 3.10. This black vertex has its coordinates (in
projective space) lying in Q.

Now, this map σ̃ : C → C is a map of curves over Q, and so is given, at least
locally, by rational fractions with coefficients in Q. Applying λ∗ amounts to ap-
plying λ to these coefficients. Thus we get a map λ∗(σ̃) : λC → λC, and clearly
it also has a fixed point. By proposition 3.10 again, we see that λ∗(σ̃) must be a
power of the distinguished generator σ̃λ (in suggestive notation). Likewise for λ∗(α̃)

and λ∗(φ̃).
With a little faith, one may hope that the map C → C, having a fixed point,

looks like z 7→ ζz in local coordinates, where ζ is some root of unity. If so, the
power of σ̃λ could be found by examining the effect of λ on roots of unity, and we
may hope that it is the same power for σ̃, α̃ and φ̃.

Exactly this is true. The result even has an easy and elementary proof, that
goes via fields.

Proposition 4.10 (Branch cycle argument) – Assume that C is regular, and
let σ̃, α̃ and φ̃ be a distinguished triple for Gal(L/Q(x)) ∼= Aut(C ). Let n be the
degree of C , let ζn = e

2iπ
n , and let m be such that

λ−1(ζn) = ζmn .

Finally, let σ̃λ, α̃λ and φ̃λ be a distinguished triple for Gal(λL/Q(x)).
Then λ∗(σ̃m) is conjugated to σ̃λ, while λ∗(α̃m) is conjugated to α̃λ and λ∗(φ̃m)

is conjugated to φ̃λ.

Proof. This is lemma 2.8 in [Völ96], where it is called “Fried’s branch cycle argu-
ment”. The following comments may be helpful. In loc. cit., this is stated using
the “conjugacy classes associated with 0, 1,∞”; in the addendum to theorem 5.9,
these are identified with the “topological conjugacy classes associated with 0, 1,∞”;
and we have already observed (after proposition 3.10) that they are the conjugacy
classes of σ̃, α̃, φ̃. �

We should pause to compare this with proposition 3.11, which states that a
regular dessin, up to isomorphism, is nothing other than a finite group G with two
distinguished generators σ, α (and φ = (σα)−1 is often introduced to clarify some
formulae). Let us see the map λ∗ as an identification (that is, we pretend that it
is the identity). Then the action of λ on (G, σ, α) produces the same group, with
two new generators, which are of the form gσmg−1 and hαmh−1; moreover, if we
call these σλ and αλ respectively, then φλ = (σλαλ)−1 is conjugated to φm.

Of course, not all random choices of g, h,m will conversely produce new genera-
tors for G by the above formulae. And not all recipes for producing new generators
out of old will come from the action of a λ ∈ Gal(Q/Q). Also note that, if g = h
and m = 1, that is if we simply conjugate the original generators, we get an object
isomorphic to the original dessin – more generally when there is an automorphism
of G taking σ to σλ and α to αλ, then λC ∼= C .

One further remark. InSetsσ,α,φ, the regular dessin C is modeled by the setX =

Aut(C ) with the distinguished triple σ̃, α̃, φ̃ acting by right multiplication; similarly
for λC . Now, if we simply look at X, and its counterpart λX, in the category of
sets-with-an-action-of-a-group, that is if we forget the specific generators at our
disposal, then X and λX become impossible to tell apart, by the discussion above.

We expand on this idea in the next theorem, where we make no assumption of
regularity.

Theorem 4.11 – Let C be a compact, connected, oriented dessin without boundary,
and let λ ∈ Gal(Q/Q).

(1) C and λC have the same degree n.
(2) It is possible to number the darts of C and λC in such a way that these two

dessins have precisely the same cartographic group G ⊂ Sn.
(3) Let m be such that λ−1(ζN ) = ζmN , where N is the order of G and ζN = e

2iπ
N .

Then within G, the generator σλ is conjugated to σm, while αλ is conjugated
to αm and φλ is conjugated to φm.

(4) Within Sn, the generator σλ is conjugated to σ, while αλ is conjugated to α
and φλ is conjugated to φ.

(5) C and C ′ have the same number of black vertices of a given degree, white
vertices of a given degree, and faces of a given degree.

(6) The automorphism groups of C and λC are isomorphic.
(7) The surfaces |C | and

∣∣λC ∣∣ are homeomorphic.

There is an ingredient in the proof that will be used again later, so we isolate it:

Lemma 4.12 – Let C be a regular dessin, and let C ′ be the intermediate dessin
corresponding to the subgroup H of Aut(C ). Then λC is regular, and λC ′ is its
intermediate dessin corresponding to the subgroup λ∗(H).

Proof. This is purely formal, given that the action of λ is via a self-equivalence of
the category Etale(Q(x)) which preserve degrees (this is the first point of the propo-
sition, and it is obvious!). Clearly regular objects must be preserved. If K/Q(x) is
an intermediate extension of L/Q(x) corresponding to H, then the elements of H
are automorphisms of L fixing K, so the elements of λ∗(H) are automorphisms
of λL fixing λK. Comparing degrees we see that λ∗(H) is precisely the subgroup
corresponding to λK. �

Proof of the theorem. We need a bit of notation. Let C̃ be the regular cover of C .
Let us pick a dart d of C as a base-dart. This defines an isomorphism between the
cartographic group G and Aut(C̃ ), under which σ is identified with σ̃, and likewise
for α and φ. Finally, let H be the stabilizer of the dart d, so that in Setsσ,α,φ our
dessin is the object H\G. The subgroup H of G corresponds to C in the “Galois
correspondence” for C̃ .

By the lemma, λC̃ is the regular closure of λC , and the latter corresponds to
the subgroup λ∗(H). Therefore in Setsσ,α,φ we can represent λC by λ∗(H)\λ∗(G).
In the category of G-sets, this is isomorphic to H\G via λ∗. If we use the bijec-
tion H\G→ λ∗(H)\λ∗(G) in order to number the elements of λ∗(H)\λ∗(G), then
we have arranged things so that the cartographic groups for C and λC coïncide as
subgroups of Sn.

This proves (1) and (2). Point (3) is a reformulation of the previous proposition.
To establish (4), we note that m is prime to the order N of G, and in particular it
is prime to the order of σ. In this situation σm has the same cycle-type as σ and
is therefore conjugated to σ within Sn. Likewise for α and φ. Those cycle-types
describe the combinatorial elements refered to in (5).

Point (6) follows since the automorphism groups of C and λC are both isomor-
phic to the centralizer of G in Sn.

Finally, point (7) is obtained by comparing Euler characteristics, as in re-
mark 1.22. �

Example 4.13 – We return to example 4.6. While looking for an explicit Belyi
map, we found four candidates, falling into two Galois orbits. Let us represent
them again, with a numbering of the darts.
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D

α = (45)(67)

α = (35)(17)

α = (17)(45)

α = (27)(35)

In all four cases one has σ = (1234)(56), while α is given on the pictures. The
following facts are obtained by asking GAP: in cases A and B, the group generated
by σ and α is the alternating group A7 (of order 2520); in cases C and D, we get a
group isomorphic to PSL3(F2) (of order 168). This prevents A and B from being
in the same orbit as C or D, by the theorem, and suggests that A and B form one
orbit, C and D another. We have seen earlier that this is in fact the case.

Note that the cartographic groups for A and B are actually the same subgroups
of S7, and likewise for C and D. The theorem asserts that this can always be ar-
ranged, though it does not really provide an easy way of making sure that a num-
bering will be correct. With random numberings of the darts, it is a consequence
of the theorem that the cartographic groups will be conjugated. In general the
conjugation will not preserve the distinguished generators, unless the two dessins
under consideration are isomorphic, cf theorem 1.24.



5. Towards the Grothendieck-Teichmüller group

In this section we define certain finite groups Hn for n ≥ 1, and prove that there
is an injection

Gal(Q/Q) −→ lim
n
Out(Hn) .

We further prove that the image lies in a certain subgroup, which we call GT and
call the coarse Grothendieck-Teichmüller group. The group GT is an inverse limit
of finite groups, and one can compute approximations for it in finite time.

Beside these elementary considerations, we shall also use the language of profinite
groups, which has several virtues. It will show that our constructions are indepen-
dent of certain choices which seem arbitrary; it will help us relate our construction
to the traditional literature on the subject; and it will be indispensable to prove a
refinement of theorem 4.8: the action of Gal(Q/Q) on the set of regular dessins is
also faithful.

5.1. The finite groups Hn. Let F2 denote the free group on two generators,
written σ and α. We encourage the reader to think of F2 simultaneously as 〈σ, α〉
and 〈σ, α, φ | σαφ = 1〉.

For any group G we shall employ the notation G(n) to denote the intersection of
all normal subgroups of G whose index is ≤ n. We define then Hn = F2/F

(n)
2 . It

is easily seen that Hn is a finite group; moreover the intersection of all the normal
subgroups of Hn of index ≤ n is trivial, that is H(n)

n = {1}.
In fact Hn is universal among the groups sharing these properties, as the follow-

ing proposition makes precise (it is extracted from [Völ96], see §7.1). The proof is
essentially trivial.

Proposition 5.1 – (1) For any finite group G of order ≤ n and g1, g2 ∈ G,
there is a homomorphism Hn → G sending σ to g1 and α to g2.

(2) If g1, g2 are generators of a group G having the property that G(n) = {1},
then there is a surjective map Hn → G sending σ to g1 and α to g2.

(3) If h1, h2 are generators of Hn, there is an automorphism of Hn sending σ
to h1 and α to h2.

(Here we have written σ and α for the images in Hn of the generators of F2.)
In particular, there is a surjective map Hn+1 → Hn. The kernel of this map

is H(n)
n+1, which is characteristic ; it follows that we also have maps Aut(Hn+1) →

Aut(Hn) as well as Out(Hn+1)→ Out(Hn).
Here is a concrete construction of Hn. Consider all triples (G, x, y) where G

is a finite group of order ≤ n and x, y are generators for G, and consider two
triples (G, x, y) and (G′, x′, y′) to be isomorphic when there is an isomorphism G→
G′ taking x to x′ and y to y′. Next, pick representatives for the isomorphism classes,
say (G1, x1, y1), . . . , (GN , xN , yN ). By the material above, this is equivalent to
classifying all the regular dessins on no more than n darts. Consider then

U = G1 × · · · ×GN ,
and its two elements σ = (x1, . . . , xN ) and α = (y1, . . . , yN ). The subgroup K of U
generated by σ and α is then isomorphic to Hn. Indeed, if G is any group gener-
ated by two elements g1, g2 satisfying G(n) = {1}, by considering the projections
from G to its quotients of order ≤ n we obtain an injection of G into U ; under this
injection g1, resp. g2, maps to an element similar to σ, resp. α, except that some
entries are replaced by 1’s, for those indices i such that Gi is not a quotient of G.
As a result there is a projection K → G sending σ to g1 and α to g2. Since K
satisfies the “universal” property (2) of proposition 5.1, just like Hn does, these two
groups must be isomorphic.

The finite groupsHn will play a major role in what follows. Variants are possible:
other collections of quotients of F2 could have been chosen, and we comment on
this in §5.5. We shall presently use the language of profinite groups, which allows
a reformulation which is plainly independent of choices. Yet, in the sequel where
elementary methods are preferred, and whenever we attempt a computation in finite
time, the emphasis is on Hn or the analogous finite groups. The use of profinite
groups is necessary, however, to prove theorem 5.7.

Lemma 5.2 – The inverse limit limnHn is isomorphic to F̂2, the profinite comple-
tion of F2.

Proof. By definition the profinite completion is

F̂2 = limF2/N

where the inverse limit is over all normal subgroups N of finite index. Each such N
contains some F (n)

2 for n large enough, so the collection of subgroups F (n)
2 is “final”

in the inverse limit, implying the result. �

Lemma 5.3 – There is an isomorphism Out(F̂2) ∼= limnOut(Hn).

Note that Out(F̂2) is, by definition, Autc(F̂2)/Inn(F̂2) where Autc(F̂2) is the
group of continuous automorphisms of F̂2. The proof will give a description
of Autc(F̂2) as an inverse limit of finite groups.

Proof. We will need the fact that normal subgroups of finite index in F2 are in
bijection with open, normal subgroups of F̂2 (which are automatically closed and
of finite index), under the closure operation N 7→ N̄ : in fact the quotient map F2 →
F2/N extends to a map F̂2 → F2/N whose kernel is N̄ . It follows easily that N̄1 ∩
N̄2 = N1 ∩N2, where Ni has finite index in F2. In particular, the closure of F (n)

2

in F̂2, which is the kernel of F̂2 → Hn, is preserved by all continuous automorphisms
– we call it characteristic.

We proceed with the proof. Using the previous lemma we identify F̂2

and limnHn. There is a natural map

lim
n
Aut(Hn) −→ Autc(lim

n
Hn) ,

and since the kernel of F̂2 → Hn is characteristic there is also a map going the
other way:

Autc(F̂2) −→ lim
n
Aut(Hn) .

These two maps are easily seen to be inverses to one another.
Next we show that the corresponding map

π : lim
n
Aut(Hn) −→ lim

n
Out(Hn)

is surjective. This can be done as follows. Suppose that a representative γ̃n ∈
Aut(Hn) of γn ∈ Out(Hn) has been chosen. Pick any representative γ̃n+1 of γn+1.
It may not be the case that γ̃n+1 maps to γ̃n under the map Aut(Hn+1)→ Aut(Hn),
but the two differ by an inner automorphism of Hn; since Hn+1 → Hn is surjective,
we can compose γ̃n+1 with an inner automorphism of Hn+1 to compensate for this.
This defines (γ̃n)n≥1 ∈ limnAut(Hn) by induction, and shows that π is surjective.

To study the kernel of π, we rely on a deep theorem of Jarden [Jar80], which
states that any automorphism of F̂2 which fixes all the open, normal subgroups is
in fact inner. An element β ∈ ker(π) must satisfy this assumption: indeed each
open, normal subgroup of F̂2 is the closure N̄ of a normal subgroup N of finite
index in F2, and each such subgroup contains some F (n)

2 for some n large enough,
so if β induces an inner automorphism of Hn it must fix N̄ . We conclude that the
kernel of π is Inn(F̂2), and the lemma follows. �

5.2. A group containing Gal(Q/Q). We make use of the axiom of choice, and
select an algebraic closure Ω of Q(x).

The finite group Hn with its two generators gives a regular dessin, and so
also an extension of fields Ln/Q(x) which is in Etale(Q(x)); it is Galois with
Gal(Ln/Q(x)) ∼= Hn. Now we may choose Ln to be a subfield of Ω. What is
more, Ln is then unique: for suppose we had L′n ⊂ Ω such that there is an isomor-
phism of field extensions Ln → L′n, then we would simply appeal to the fact that
any map Ln → Ω has its values in Ln, from basic Galois theory. In the same vein,
we point out that if L/Q(x) is any extension which is isomorphic to Ln/Q(x), then
any two isomorphisms Ln → L differ by an element of Gal(Ln/Q(x)). From now
on we identify once and for all Hn and Gal(Ln/Q(x)).

Now let λ ∈ Gal(Q/Q). We have seen that λLn is again regular (just like Ln is),
and that it corresponds to a choice of two new generators σλ and αλ ofHn. However
by (3) of proposition 5.1 there is an automorphism Hn → Hn such that σ 7→ σλ
and α 7→ αλ, and so Ln and λLn are isomorphic. In other words there exists
an isomorphism ι : Ln → λLn of extensions of Q(x), which is defined up to pre-
composition by an element of Gal(Ln/Q(x)) = Hn.

Given h ∈ Hn, we may consider now the following diagram, which does not
commute.

Ln
ι−−−−→ λLn

h

y yλ∗(h)
Ln

ι−−−−→ λLn .

The map ι−1◦λ∗(h)◦ι depends on the choice of ι, and more precisely it is defined up
to conjugation by an element ofHn. As a result the automorphism h 7→ ι−1◦λ∗(h)◦ι
of Hn induces a well-defined element in Out(Hn), which depends only on λ.

Theorem 5.4 – There is an injective homomorphism of groups

Γ: Gal(Q/Q) −→ lim
n
Out(Hn) ∼= Out(F̂2) .

Proof. We have explained how to associate to λ ∈ Gal(Q/Q) an element
in Out(Hn). First we need to prove that this gives a homomorphism

Γn : Gal(Q/Q) −→ Out(Hn) ,

for each fixed n. Assume that Γn(λi) is represented by h 7→ ι−1i ◦ λ∗i (h) ◦ ιi,
for i = 1, 2. Then Γn(λ1) ◦ Γn(λ2) is represented by their composition, which is

h 7→ ι−13 ◦ (λ1λ2)∗ ◦ ι3 ,
where ι3 = λ1ι2 ◦ ι1. Since ι3 is an isomorphism Ln → λ1λ2Ln, we see that this
automorphism represents Γn(λ1λ2), so Γn(λ1λ2) = Γn(λ1)Γn(λ2), as requested.

Next we study the compatibility with the maps Out(Hn+1) → Out(Hn). The
point is that Ln ⊂ Ln+1, and that Ln corresponds to a characteristic subgroup
of Hn+1 in the Galois correspondence (namely H(n)

n+1). It follows that any isomor-
phism Ln+1 → λLn+1 must carry Ln onto λLn. Together with the naturality of λ∗,
this gives the desired compatibilities.

Finally we must prove that Γ is injective. We have seen that the action
of Gal(Q/Q) on dessins is faithful; so it suffices to shows that whenever Γ(λ) = 1,
the action of λ on dessins is trivial.

To see this, pick any extension L of Q(x), giving an object in Etale(Q(x)). It
is contained in Ln for some n, and corresponds to a certain subgroup K of Hn in
the Galois correspondence. By lemma 4.12, λL corresponds to λ∗(K) as a subfield
of λLn. The condition Γ(λ) = 1 means that, if we identify λLn with Ln by means
of some choice of isomorphism ι (which we may), the map λ∗ becomes conjugation
by a certain element of Hn. So λL corresponds to a conjugate of K, and is thus
isomorphic to L (this is part of the Galois correspondence). �

5.3. Action of Out(Hn) on dessins. We seek to define a down-to-earth descrip-
tion of an action of limnOut(Hn) on (isomorphism classes of) dessins. In fact we
only define an action on connected dessins in what follows, and will not recall that
assumption. (It is trivial to extend the action to all dessins if the reader wishes to
do so.)

We work in Setsσ,α,φ, in which a typical (connected) object is K\G, where G is
a finite group with two generators σ and α and K is a subgroup. Assume that G
has order ≤ n. Then there is a surjective map p : Hn → G, sending σ and α to the
elements bearing the same name. We let N = ker(p) and K̄ = p−1(K).

Now suppose γ is an automorphism of Hn. We can consider γG = Hn/γ(N),
which we see as possessing the distinguished generators σ and α, the images un-
der Hn → Hn/γ(N) of the elements with the same name. We certainly do not
take γ(σ) and γ(α) as generators; on the other hand γ induces an isomorphism
of groups G → γG which is not compatible with the distinguished generators. Fi-
nally γG has the subgroup γK, the image of γ(K̄) under Hn → Hn/γ(N). The
object γK\γG in Setsσ,α,φ is the result of applying γ to K\G. Clearly this defines
an action of Out(Hn) on isomorphism classes of dessins whose cartographic group
has order ≤ n.

Lemma 5.5 – Suppose γ ∈ Out(Hn) is of the form γ = Γn(λ) for some λ ∈
Gal(Q/Q). Then the action of γ on (isomorphism classes of) dessins agrees with
that of λ.

Proof. We keep the notation introduced above, and write C for the regular dessin
defined by the finite group Hn with its two canonical generators. The dessin X =
K\G considered is the intermediate dessin of C corresponding to the subgroup K̄
of Aut(C ) = Hn. Thus λX corresponds to the subgroup λ∗(K̄) of Aut(λC ) =
λ∗(Hn). Picking an isomorphism ι between C and λC as before, we see that λX is
isomorphic γ(K̄)\Hn as requested. �

Lemma 5.6 – The actions defined above are compatible as n varies and can be com-
bined into a single action of limnOut(Hn) on the isomorphism classes of dessins.

Proof. It suffices to prove that, for any integers n, s, if we pick γn+s ∈ Out(Hn+s)
and let γn be its image under the projection Out(Hn+s) → Out(Hn), then for
any dessin X whose cartographic group G has order ≤ n the dessins γn+sX
and γnX are isomorphic. However this follows easily from the fact that the projec-
tion pn+s : Hn+s → G factors as pn ◦ πn+s, where we write πn+s : Hn+s → Hn for
the natural map. �

Now we seek to prove that the action of limnOut(Hn) on dessins is faithful.

Theorem 5.7 – The group limnOut(Hn) ∼= Out(F̂2) acts faithfully on the set of
regular dessins.

Proof. Let β ∈ Aut(F̂2) correspond to γ = (γn)n≥1 ∈ limnOut(Hn). If the action
of this element is trivial on the set of all regular dessins, then the automorphism β
must fix all open, normal subgroups of F̂2. However the theorem of Jarden already
used in the proof of lemma 5.3 implies then that β is an inner automorphism of F̂2.
As a result, γn = 1 for all n. �

Here it was necessary to see limnHn as Out(F̂2) to conduct the proof (or more
precisely, to be able to apply Jarden’s theorem which is stated in terms of F̂2).

Corollary 5.8 – The group Gal(Q/Q) acts faithfully on the set of regular dessins.

Example 5.9 – Suppose γ is an automorphism ofHn for which you have an explicit
formula, say

γ(σ) = αφα−1 , γ(α) = α .

What is the effect of γ on dessins, explicitly? Discussing this for regular dessins
for simplicity, say you have G, a finite group of order ≤ n with two distinguished
generators written as always σ and α. Can we compute the effect of γ on (G, σ, α)
immediately?

The answer is that some care is needed. Looking at the definitions, we write G =
Hn/N for some uniquely defined N , and the new dessin is (Hn/γ(N), σ, α). If we
want to write this more simply, according to the principle that “applying γ gives
the same group with new generators”, we exploit the isomorphism of groups

G = Hn/N −→ Hn/γ(N)

which is induced by γ. Transporting the canonical generators of Hn/γ(N) to G via
this isomorphism gives is fact (G, γ−1(σ), γ−1(α)) (note the inverses!).

In our case we compute γ−1(σ) = φ, γ−1(α) = α. In short
γ(G, σ, α) = (G,φ, α)

with, as ever, φ = (σα)−1. Incidentally, if we compare this with example 2.6, we
see that the action of γ is to turn a dessin into its “dual”.

5.4. The coarse Grothendieck-Teichmüller group. Let us give a list of con-
ditions describing a subgroup of limOut(Hn) containing the image of Gal(Q/Q).

Lemma 5.10 – Let γ = Γn(λ) ∈ Out(Hn), for some λ ∈ Gal(Q/Q). Then γ can be
represented by an element of Aut(Hn), still written γ for simplicity, and enjoying
the following extra properties: there exists an integer k prime to the order of Hn,
and an element f ∈ [Hn, Hn], the commutator subgroup, such that

γ(σ) = σk and γ(α) = f−1αkf .

Moreover γ(σα) is conjugated to (σα)k.

Proof. This follows from proposition 4.10 (the branch cycle argument) applied
to Ln. More precisely, let us write σ for σ̃ and α for α̃, etc. Then there is an
isomorphism ι between Ln and λLn, under which σλ ∈ Aut(λLn) is identified
with σ ∈ Hn, and similarly for αλ and φλ ; as for λ∗, it becomes Γn(λ) when
viewed in Out(Hn). Thus a simple translation of the notation shows that γ(σ)
is conjugated to σk, where k is determined by the action of λ on roots of unity,
while γ(α) is conjugated to αk and γ(σα) is conjugated to (σα)k. By composing
with an inner automorphism, we may thus assume that γ(σ) = σk.

Let g ∈ Hn be such that γ(α) = g−1αkg. Every element of the abelian
group Hn/[Hn, Hn] can be written αjσi for some integers i, j, so let us write g =
αjσic1 for some c1 ∈ [Hn, Hn]. Further put σic1 = c2c1σ

i; here c2 is a commutator,
so that f = c2c1 ∈ [Hn, Hn]. Thus g = αjfσi and

γ(α) = gαkg−1 = (σ−if−1α−j)αk(αjfσi) = σ−i(fαkf−1)σi .

By composing γ with conjugation by σi, we obtain a representative which is of the
desired form. �

For each n there is an automorphism δn of Hn satisfying δn(σ) = αφα−1 =
σ−1α−1, δn(α) = α, δn(φ) = σ. We write δ = (δn)n≥1 for the corresponding
element of limnOut(Hn). The letter δ is for duality, as the next lemma explains.

Lemma 5.11 – (1) The dessin δC resulting from the application of δ to an arbi-
trary dessin C is its “dual”. If C corresponds to the surface S endowed with
the Belyi map F : S → P1, then δC corresponds to S endowed with 1/F .

(2) If γ = Γ(λ) ∈ limnOut(Hn) for λ ∈ Gal(Q/Q), then γ and δ commute.

Note that δ squares to conjugation by α. Thus in Out(Hn), it is equal to its
inverse, and the letter ω is often used in the literature for δ−1.

Proof. (1) follows from the computations in example 2.6 and example 5.9.
Since the Galois action proceeds by the effect of λ ∈ Gal(Q/Q) on the coef-

ficients of the equations defining S as a curve, and the coefficients of the ratio-
nal fraction F , the first point implies that λδC ∼= δλC for any dessin C . Since
the action of limnOut(Hn) on isomorphism classes of dessins is faithful, this im-
plies λδ = δλ. �

Note that we have relied on the point of view of algebraic curves in this argument.
Now we turn to the study of the automorphism of Hn usually written θn which

satisfies θn(σ) = α and θn(α) = σ. We write θ = (θn)n≥1 for the corresponding
element of limnOut(Hn).

Lemma 5.12 – (1) The dessin θC resulting from the application of θ to an
arbitrary dessin C is simply obtained by changing the colours of all the
vertices in C . If C corresponds to the surface S endowed with the Belyi
map F : S → P1, then θC corresponds to S endowed with 1− F .

(2) If γ = Γ(λ) ∈ limnOut(Hn) for λ ∈ Gal(Q/Q), then γ and θ commute.

Proof. As the previous proof, based on example 2.7. �

We come to the definition of the coarse Grothendieck-Teichmüller group, to be
denoted GT . In fact, we start by defining the subgroup GT (n) of Out(Hn) com-
prised of all the elements γ such that:
(GT0) γ has a representative in Aut(Hn), say γ̃, for which there exists an integer kn

prime to the order of Hn, and an element fn ∈ [Hn, Hn], such that

γ̃(σ) = σkn and γ̃(α) = f−1n αknfn .

(GT1) γ commutes with θn.
(GT2) γ commutes with δn,

Remark that conditions (GT2) and (GT0) together imply that γ̃(σα) is conju-
gated to (σα)kn .

We let GT = limn GT (n). The contents of this section may thus be summarized
as follows, throwing in the extra information we have from proposition 4.10:

Theorem 5.13 – There is an injective homomorphism

Γ: Gal(Q/Q) −→ GT .
Moreover, for γ = Γ(λ), the integer kn can be taken to be any integer satisfying

λ(ζN ) = ζknN .

Here N is the order of Hn, and ζN = e
2iπ
N .

5.5. Variants. It should be clear that the groups Hn are not the only ones we
could have worked with. In fact, let N be a collection of subgroups of F2 with the
following properties:

(i) each N ∈ N has finite index in F2 ,
(ii) each N ∈ N is characteristic (and in particular normal),
(iii) for any normal subgroup K in F2, there exists N ∈ N such that N ⊂ K.
(iv) for eachN ∈ N , the groupG = F2/N has the following property: given two

pairs of generators (g1, g2) and (h1, h2) for G, there exists an automorphism
of G taking gi to hi, for i = 1, 2.

So far we have worked with N = the collection of all subgroups F (n)
2 (for n ≥ 1).

Other choices include:
• For n ≥ 1, let F [n]

2 = the intersection of all normal subgroups of F2 of
order dividing n. Then take N = the collection, for all n ≥ 1, of all the
groups F [n].

• For G a finite group, let NG = the intersection of all the normal sub-
groups N of F2 such that F2/N is isomorphic to G (the group G not hav-
ing distinguished generators). Then take N = the collection of all NG,
where G runs through representatives for the isomorphism classes of finite
groups which can be generated by two elements.

To establish condition (iv) in each case, one proves a more “universal” property
analogous to (2) of proposition 5.1 for Hn.

The reader will check that all the preceding material is based only on these four
conditions, and the results below follow mutatis mutandis. First, as in §5.1 we have

F̂2
∼= lim
N∈N

F2/N ,

and
Out(F̂2) ∼= lim

N∈N
Out(F2/N) .

In particular we have maps Gal(Q/Q) → Out(F2/N) for N running through N ,
and any non-trivial element of Gal(Q/Q) has non-trivial image in some Out(F2/N).

Let us introduce the notation GT (K), for any characteristic subgroup K of finite
index in F2, to mean the subgroup of Out(F2/K) of those elements satisfying (GT0)
- (GT1) - (GT2). Note that N being characteristic, it makes sense to speak of δ
and θ as elements of Out(F2/N). In the same fashion we define GT (K), as a
subgroup of Out(F̂2/K), when K is open and characteristic in F̂2.

With this terminology, one proves that the elements of Out(F2/N) coming from
elements of Gal(Q/Q) must in fact lie in GT (N). If we let GT (N ) denote the
inverse limit of the groups GT (N) for N ∈ N , then it is isomorphic to a subgroup
of Out(F̂2) and we have an injection of Gal(Q/Q) into GT (N ).

The next lemma then proves that GT (N ) is independent of N :

Lemma 5.14 – Let β ∈ Out(F̂2). Then β lies in GT (N ) if and only if for
each open, characteristic subgroup K of F̂2, the induced element of Out(F̂2/K)
is in GT (K).

In particular, the group GT (N ), as a subgroup of Out(F̂2) is independent of the
choice of N .

Proof. The condition is clearly sufficient, as we see by letting K run through the
closures of the elements of N .

To see that it is necessary, we only need to observe that K contains the closure of
an element N ∈ N , so F̂2/K is a quotient of F2/N and the automorphism induced
by β on F̂2/K is also induced by an element of GT (N); thus it must lie in GT (K).

This characterization of elements of GT (N ) visibly does not make any reference
to N . �

In theory, all choices for N are equally valid, and in fact no mention of any choice
is necessary: one may state all the results of this section in terms of Out(F̂2), for
example defining GT by the characteristic property given in the lemma. In practice
however, choosing a collection N allows us to compute GT (N) explicitly for some
groups N ∈ N , and that is at least a baby step towards a description of Gal(Q/Q).
The difficulty of the computations will depend greatly on the choices we make. For
example, with the groups F (n), the order of Hn increases very rapidly with n, but
the indexing set is very simple; with F [n], the order of F2/F

[n]
2 is much less than the

order of Hn, but the inverse limits are more involved. In a subsequent publication,
computations with the family N of all the groups of the form NG will be presented.

We conclude with yet another definition of GT which does involve choosing a
collection N . This is the traditional definition.

5.6. Taking coordinates; the group ĜT 0. We start with a couple of observa-
tions about Hn.

Lemma 5.15 – If k1 and k2 are integers such that σk1 and σk2 are conjugate in Hn,
then k1 ≡ k2 mod n. Similarly for α.

Proof. We use the map Hn → Cn = 〈x〉, where Cn is the cyclic group of order n,
sending both σ and α to x. The image of σki is xki (for i = 1, 2), and conjugate
elements of Cn are equal, so k1 ≡ k2 mod n. �

Corollary 5.16 – Let γ ∈ GT (n). For i = 1, 2, let γ̃i be a representative for γ
in Aut(Hn) such that γ̃i(σ) is conjugate to σki . Then k1 ≡ k2 mod n. This defines
a homomorphism

GT (n) −→ (Z/n)× ,

which we write γ 7→ k(γ) (or sometimes kn(γ) for emphasis).
Letting n vary, we obtain a homomorphism

k : GT −→ Ẑ× .

Here Ẑ = limn Z/nZ is the profinite completion of the ring Z.

Proposition 5.17 – Let γ ∈ GT . Then γ has a lift β ∈ Aut(F̂2) satisfying

β(σ) = σk(γ) , β(α) = f−1αk(γ)f ,

for some f ∈ [F̂2, F̂2], the commutator subgroup. The element f is unique, and as
a result, so is β.

Proof. Start with any lift β0. The elements β0(σ) and σk(γ) are conjugate in every
group Hn, so β0(σ) is in the closure of the conjugacy class of σk(γ). However this
class is closed (the map x 7→ xσk(γ)x−1 is continuous and its image must be closed
since its source F̂2 is compact). So β0(σ) is conjugated to σk(γ), and likewise β0(α)
is conjugated to αk(γ). Now, argue as in lemma 5.10 to obtain the existence of a
representative β as stated.

We turn to the uniqueness. If f ′ can replace f , then f = c1f
′c2 where c2

centralizes σ and c1 centralizes α. However the centralizer of σ in F̂2 is the (closed)
subgroup generated by σ and likewise for α. Since f and f ′ are assumed to be both
commutators, we can reduce mod [F̂2, F̂2] and obtain a relation c1c2 = 1; the latter
must then hold true in any finite, abelian group on two generators σ and α, and
this is clearly only possible if c1 = c2 = 1 in F̂2. �

We observe at once:

Corollary 5.18 – The injection Γ: Gal(Q/Q) → Out(F̂2) lifts to an injection
Γ̃ : Gal(Q/Q) → Aut(F̂2). In particular, an element of Gal(Q/Q) can be entirely
described by a pair (k, f) ∈ Ẑ× × [F̂2, F̂2].

Proof. Let Γ̃(λ) be the lift of Γ(λ) described in the proposition. The composition
of two automorphisms of F̂2 of this form is again of this form, so Γ̃(λ)Γ̃(µ) must be
the lift of Γ(λ)Γ(µ) = Γ(λµ), that is, it must be equal to Γ̃(λµ). �

We want to describe a group analogous to GT in terms of the pairs (k, f). There
is a subtlety here, in that if we pick k ∈ Ẑ× and f ∈ [F̂2, F̂2] arbitrarily, the
self-homomorphism β of F̂2 satisfying

(*) β(σ) = σk , β(α) = f−1αkf

may not be an automorphism. Keeping this in mind, we define a group ĜT 0

now – the notation is standard, and the index “0” is not to be confused with
our writing GT (n) for n = 0; moreover the notation does not refer to a profi-
nite completion of some underlying group GT 0. So let ĜT 0 be the group of all
pairs (k, f) ∈ Ẑ× × [F̂2, F̂2] such that :

• Let β be the self-homomorphism defined by (*); then β is an automorphism.
• β commutes with δ in Out(F̂2).
• β commutes with θ in Out(F̂2).

The composition law on ĜT 0 is defined via the composition of the corresponding
automorphisms of F̂2; one may recover k and f from β, and indeed ĜT 0 could
have been defined as a subgroup of Aut(F̂2), though that is not what has been
traditionally done in the literature.

The definition of ĜT 0 was given by Drinfeld in [Dri90]. The reader who is familiar
with loc. cit. may not recognize ĜT 0 immediately behind our three conditions, so
let us add:

Lemma 5.19 – This definition of ĜT 0 agrees with Drinfeld’s.

Proof. This follows from [Sch97], §1.2, last theorem, stating that “conditions (I) and
(II)” are equivalent with the commutativity conditions with θ and δ respectively
(the author using the notation ω for an inverse of δ in Out(F̂2)). �

The natural map Aut(F̂2)→ Out(F̂2) induces a map ĜT 0 → GT . The existence
and uniquess statements in proposition 5.17 imply the surjectivity and injectivity
of this map, respectively, hence:

Proposition 5.20 – ĜT 0 and GT are isomorphic.

One may rewrite the main theorem of this section, theorem 5.13, as follows:

Theorem 5.21 – There is an injective homomorphism of groups

Gal(Q/Q) −→ ĜT 0 .

Composing this homomorphism with the projection ĜT 0 → Ẑ× gives the cyclotomic
character of Gal(Q/Q).

We conclude with a few remarks about the (real) Grothendieck-Teichmüller
group. This is a certain subgroup of ĜT 0, denoted ĜT , also defined by Drinfeld
in [Dri90]. It consists of all the elements of ĜT 0 satisfying the so-called “pentagon
equation” (or “condition (III)”).

Ihara in [Iha94] was the first to prove the existence of an injection of Gal(Q/Q)

into ĜT . His method is quite different from ours, and indeed proving the pentagon
equation following our elementary approach would require quite a bit of extra work.

Another noteworthy feature of Ihara’s proof (beside the fact that it refines ours by
dealing with ĜT rather than ĜT 0) is that it does not, or at least not explicitly, refer
to dessins d’enfants. It is pretty clear that the original ideas stem from the material
in the esquisse [Gro97] on dessins, but the children’s drawings have disappeared
from the formal argument. We hope to have demonstrated that the elementary
methods could be pushed quite a long way.
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