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Rationale Data assimilation methods are looking for an
optimal correction to some background value in a space
of huge dimension ——— try to describe (most of)
this correction in a subspace of low dimension.

The subspace must represent most of the natural
“variability” of the system. But several definitions of the

variability can be thought of:

» Statistical approach: POD (or EOFs, PCA)
variability = variance

» Dynamical systems: vectors of maximum growth
variability = “most dangerous” perturbations

» Spectral analysis:
variability = energy
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EOFs : Empirical Orthogonal Functions
(principal components, Proper Orthogonal Decomposition)

Sample of a model trajectory :  (x(t1);- .., x(tp))

L/, ...,L, :directions in which the variance is maximum

They are the first eigenvectors of the empirical
correlation matrix XXT' with X = (Xy,...,Xp)

X;(6) = [x(t;) — ¥

1 »p 2 1 p N\ 2
where X = — ¥ x(t; o =— ¥ (X;(2))
p j=1 t3) 0= 5




Vectors of maximal growth

Amplification rate of some perturbation Z(t)) :

||Mt1—>t2 (X(t1) + Z(t1)) — Mt1—>t2 (X (t1)) ||
1Z(t1)]]

p(Z(t1)) =

—
2(t,)f

t, ;:
Find Z;(t1) such that p(Z](t1)) = max p(Z(t1))

Degrees of freedom : [ti,t2] ,M,|| .|| ,forward / backward




Vectors of maximal growth (2)

Tangent linear
approximation

Full (nonlinear)
model

[t1,t2]
finite

singular vectors

non-linear singular
vectors (Mu et al.)

[t1,t2]
infinite

Lyapunov vectors

breeding vectors
(Kalnay et al.)

Such vectors are used in particular for stability analysis and

for ensemble simulations.




lllustration in the context of an idealized shallow water

model (Durbiano,2001;Blayo et al., 2004)

(0 0 d dh

U Fv — fut g 4 D, = F, Wind
o w L

v v v

b u— 4 v — ~—~4+D,=F

) 8t+u8x+v8y+fu+g(3’y+ Y Y ‘g
@—Fu@—kv%—kh 6u+8v =0 %

\ ot Ox Oy or  Oy) /é

0

| Snapshot : h




80

80

60
C}o

40 4 2

20

0
20 40 60 80 0 20 40 60 80

euclidian norm velocity norm
2 .2 2 1

u 4+ v+ h S+ 02
S+ o)

80
60|

40'0% &

20|

0
0 20 40 60 80

energy norm
1
§(u2 +v%) + gh

Backward singular vector #| for different norms

(h-component)




80

60

20

0

80

60

40

20

0

0.33 day
40
0 20 40 60 80
30 days
o4
0 20 40 60 80

80

60

40

20

0

80

60

40

20

0

0

| day
b
0 20 40 60 80
;- 200 days
VAR
#
7
20 40 60 80

80
60|
40}

20

2 days

0

0 20

40 60 80

80

60|

v

404

205"
s

2

600 days

0

0 20

40 60 80

Forward singular vector #| for different
lengths of the time-window (h-component)




80

60

40

20 (44

0

0 2I0 4IO 6I0 80
Forward Singular
vector #|

80

60

40

e

20

O s N s
0 20 40 60 80

Forward Nonlinear
Singular vector #1

80

60|

40'o§ &

20|

0

0 20 40 60

80

Backward Singular

vector #l

80

60

9

40 .:QQGQ & S 6o

20

0 20 40 60

POD #lI

80

80
60
N
40~§> @G@Q
% »%@, é@
20 NS
0

0 20 40 60 80
Backward Lyapunov

vector #l

80
60}

.
40" <

G- =

el o
20
0

0 20 40 60 80

Bred mode #|




Colinearity of the different families of vectors

Singular vectors
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» Impact of non linearities (breeding vectors vs Lyapunov vectors)
» Infformation contained in the PODs is quite “different”
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Reduced order methods in data assimilation

» Can we (significantly) reduce the cost of data assimilation
in the context of ocean/atmosphere simulation without
(significantly) degrading the results ?

» More generally, can the concept of “order reduction” lead
to improvements in data assimilation methods ?




4D-Var data assimilation

= F(x) tE€ [to,ty]

Model | dt Observations Yyi,..., YN

Incremental 4D-Var : find dx that minimizes

1 N

J((Sx) = i’l(Hthi’tO(sx oy di)TRi_l(Hthi’thx s di)

21
1
—|—2(6x)TB_16x
where 0x = xg — x? and d; = y; — H(wb(tz‘))




Reduced order version
Control space Span (L, ..., L)

r
dx = xp — x° = zEl w;L; = Lw

1
Cost Function  Jp(w) = 2vaBzzlw
with By = E |(w — w)(w — w)T

Covariance matrix in the full space
B, = E |(6x — %) (6x — 6%)T]|
=LE|(w — w)(w — w)T|LT
= LBy LT (singular low-rank matrix)

*+ Minimization in a space of dimension r << [x]
*+ Almost no modification to the algorithm
- Choice of (L1, ..., Lr) and estimation of By,




Numerical experiment: use of a POD basis for the control of

the initial condition in a model of the Tropical Pacific ocean
(Durbiano, 2001; Robert et al., 2005, 2006)

OPA - TDH model
(Weaver et al.)




Primitive Equations

Momentum

Conservation of mass

Equations for tracers

Equation of state

+ boundary conditions

at

iR Au — fo+ 100 %

- ]« Vu—vau — fo4+ ——=

ot po Ox

duv 1 dp

— 4+ U -Vv—vAv+ fu+ .Imﬂ

at po Oy

ap hvd . . .

o =Py (hydrostatic approximation)
rz
div U=0

(Boussinesq approximation)

-4+ U-VT = K7 AT
a5

+U-VS=KgAS
at :

p=p(T,S,p)




| Resolution: |°x1/2°-2°x 25 levels
i | State variable : [x] ~10°
Sy Timestep = a few minutes

Background error covariance matrix :

Full rank 4D-Var: standard “bell-shaped” spatial covariance (Weaver
et al, 200/)

Reduced-4D-Var: due to the definition of PODs, the covariance
matrix in this basis is diagonal :  B,, = diag(\1,...,A;)




POD analysis of a one-year
trajectory of the model

' ' ' ' % VAR - robor
% VAR cumulee —e— -3

oo

,Q/e/e/e/e/e/e/(

-l aa
/ L7

|
-
-2 o

T 120 163 10 240 Aag

.
+.

..'+"'+--+--+.. . H ; i i
i R e s ar T T e S T S S R SRS I

0 30

Inertia vs number of PODs




Structure of B : assimilation of a single observation

Innovation of |1°C, located on the equator at 160°W, in the
thermocline, at the end of a one-month assimilation window

Temperature component of dx

Z=5m vertical section

-

Full | maximal
4D-Var correction : 0,94 °C

""" = LWl A = S o~ ‘“"‘t:%—’
R - 7 N ",Q _‘ ‘ : -%;nwﬁ#—x_ /‘V/ /,\ . I
W Rl Rl figo= maxima
Reduced Ui - gl Ui | wamal
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Twin experiments : assimilation of simulated observations

300N e e e e e — I
20°N - TAO/TRITON Array

10°N

0°
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° 1 OATLAS oTRITON = Subsurface ADCP I
30°5 | e T T T

120°E  140°E  160°E  180° 160°W 140°W 120°W 100°W 80°W

Reference simulation one-year experiment

Simulated data 70 TAO moorings : vertical sampling of T in the 500
first meters (0,17% of [x]), every 6h + gaussian noise

Background x® a model state three months before

Numerical experiment |2 one-month assimilation windows




[2 - norm of the error as a function of time
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Cost function
(In ] vs iteration #)

log10 Jtot
5.8 T T
— J4D-Var
+++ J Reduced 4D-Var
56}
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6 one-month windows, 22 iterations each
The necessary number of iterations is divided

by a factor of 4-5




Assimilation of real data : the role of model error

The model error makes unefficient the POD basis obtained
by analysis of a model run.

» Compute PODs from a simulation using data assimilation

» limited improvement
or

»Use Reduced-4D-Var as a preconditionner for full 4D-
Var (“two-step 4D-Var”)

» the number of iterations is divided by a factor of 2
or

»Weak constraint optimization: explicit control of (part
of) the model error.




Explicit control of the model error

Xip1 = M;_;11(x3) +e;1
X0 = x0 + &x
1 N

> (H(x;) — i) TR (H(x;) —

J(5X,e1,...,eN):2i:1 ;

Difficulties

- Dimension of the control space : N x [x] !!
- Estimation of Qi




» Dual approach - minimization in the observation

space : representers (Bennett 92), 4D-PSAS (Amodei 95,
Courtier 97, Louvel 01,Auroux 02,07)




» Dual approach - minimization in the observation

space : representers (Bennett 92), 4D-PSAS (Amodei 95,
Courtier 97, Louvel 01,Auroux 02, 07)

» Reduced order modelling of e; :
» systematic bias (Vidard 01,Vidard et al. 04, Griffith and
Nichols 01, 06, D’Andréa and Vautard 01, Bell et al 02) : e; = €




Control of the model bias

xj41 = M;_;11(x;) + @
X0 = xP + 6x

6%, = ¥ (H(x) —y) TR (H () — vi)

1 N

Vesxd = —po + B~ 16x

N
Ve =— % pi+ NSl
1=

Default choice :S =B




Results with the shallow-water model (Vidard et al. 04)

- “Cousin” experiments (a reference ,
model and a perturbed model)
- Obs : sub-sampling of h =

exact bias




Error on the initial correction

Control of the initial Control of the initial
condition only condition + bias




The use of the identified bias significantly improves

the forecast.
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» Dual approach - minimization in the observation

space : representers (Bennett 92), 4D-PSAS (Amodei 95,
Courtier 97, Louvel 01,Auroux 02, 07)

» Reduced order modelling of e; :
» systematic bias (Vidard 01,Vidard et al. 04, Griffith and
Nichols 01, 06, D’Andréa and Vautard 01, Bell et al 02) : e; = €

»decomposition in a low-rank basis (Durbiano 01, Blayo

et al. 04,Vidard et al. 04) : e; =8+ 3 ciL;
71=1




Control of the model error in a reduced space
p

xj41 = Mi_;11(x3) +€+ le CJL]
X0 = xP 4+ 6x
1 _
J@x,e,ct L eM)= S (HG) — vi) TR (H () — i)

N
+2(5X)TB—15X +, &8ss

1 N . :
3 C’LTQ—lc’L

+2 i=1 p

Vsxd = —po + B 1ox

N
Vel =— pz—I—NS g

VCJ——L pz—l—Q




Numerical results with a shallow-water model:

- “Cousin” experiments (a reference
model and a perturbed model)
- Obs : sub-sampling of h

Control of : h
|.C.
|.C. + bias

|.C. + bias + time-varying part
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This identification seems useless
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the model itself.
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Summary on reduced order approaches for variational DA

» Reduced-order methods can be implemented for variational data
assimilation.An important question is therefore : which basis for which
problem ?

» In our experiments, we have seen that POD vectors are relevant for the
control of the initial condition, and that vectors of “maximal growth” are
relevant for the control of the model error.

» There is (to my knowledge) almost no theoretical results concerning
nonlinear vectors (NL Singular vectors, Bred modes - Mu, Kalnay, Toth...).

» Such vectors can perhaps be of interest in the context of extreme events
(“most dangerous” vectors).

» A remark : reduced models are presently being developed for real time
prediction. It seems clear that, at least in their present form, such models
cannot predict extreme events.
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Context : nested models

Nested models give particular insight into local dynamics in regions
of particular interest :

» to locally improve the numerical solution

» to improve the global solution (through some feedback)

(can be interesting in the context of extreme events)

Penven et al., 2006

» How can we adapt variational data assimilation to this context ?
» Are the results improved w.r. to single-grid data assimilation
with a control of boundary data ?
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Mathematical formulation (Debreu et al., 2008)

*H Formulation

@ One-way:
Domaine 2 Domaine w

Qp S~~~ Oxp
/[ [/, VAR S Ox — = Fp(xp, %50
| | | 7 —H =FH(XH) 8t h( ha 70 )
VA SR / -~ ‘ xafx 0) . XO Xh(X, 0) = x?y
/ / / ; £ f 4 4 : X H ? H xaw - II-I:’I(XH)

WH

@ Two-way:

Domaine 2 Domaine w
w ox ox
: o — = Fpy(xp, %) = Fy(xp, xo.)
ot ot
xH(x,0) = xY, xh(x,0) = x?

Xw = Gf(xh) Xouw = (%)




Assimilation system

» Observations on both grids 0
» Control of the initial condition on both grids x° = [ H }

J Jb + Jobs
Jb (XO - xb)TB—l(XO - xb)

4 b T b
Jors = / [xp — “Hn+/ (—
0 0

Background error covariance matrix :
It can be demonstrated that

J., B/’ J.,GIB,”

BY? ~SST =
I, MK, Bi? J,U,IBI/Q

multi

where By and Bh correspond to single-grid covariance matrices.




Optimality system: no interaction

(O
( OXH = Fy(xy) sur Qy x [0, T]
{ Ot 0

L XH(X, 0) = xH
4 b
oP OF,
op  [0Fu
ot é)xH

\ P(T)=0

P = H}(Hyxy(t) — yu(t))

-

obs __ __
VX%J = —P(0)

. ( 6Xh
o = Fh(xp) sur wp x [0, T]
L Xh(X, 0) = X?)

-

([ 6Q OF, | *

+
ot Bxh
| Q1) =0

wp A .Q = Hj, (Hpxp(t) — ya(t))

-

ng Jobs — —Q(O)




Optimality system: one-way interaction

(8
: % — Fy(xy) sur Qp X [0, T]
\ XH(X, 0) = x?‘f

([ 6P OFy 1™ oF, 1~
Qu < — + Hi1  py h Q= H (Hyxy(t) — t
! 5 By b | oxa. H(Hgxy(t) — yy(t))
P(T)=0

\

obs _
ng, J°Ps = —P(0)

\

( ( 6x,,
5 = Fh(xhy x5w) sur wp X [0, T]
) xh(x,0) =%

\ Xow — IZ(XH)

wh  § | ao+ OF, ™
ot axh
Q(T)=0

.Q = Hj (Hpxp(t) — yau(t))

.

\

obs __
V,0/%% = ~Q(0)

\

Intergrid interactions in the adjoint models are in the opposite
sense than in the direct models.




Wh

.

vtimality system: two-way interaction

( 6XH
St = Fy(xy,x.) sur Qy x [0, T]
\ XH(X, 0) = X(,J_'
L X, = G:(Xh) sur LU'OH X [O‘ T]
A 7 PR LN HEy (Hpxp(t) = yp(t,
— . ‘ = ~ t o t
$ ot Oxy h %5 SR e
. P(T)=0

obs __
Vg J7 = —P(0)

r 0
%N Pyl xon) s wp x 0,7
t
3 e o) =

h
(| Xow = Ig(xy)

,

6Q [oF, ]~
I + —_—
ot Oxp,

| Q(T)=0

.

OFy1* -
Q+c) L)H] P = H (Hypxa(t) — yh(t))

V_0J% = —Q(0)
*h




Eventually : addition of a new term controlling the intergrid transfers

Domaine 2 Domaine w
r 0 r O
% - FH(XH)xw) % — Fh(xh,xaw)
< xH(Xa O) — x(i)-l < Xh(X, 0) — x(I)v
\ Xw = Gﬁ(xh) + €w \ Xow = /Z(XH) T €dw
J(x°, €) = JPBO) + U5 (X0, €) + UC(e)

with < (e) |Cell?
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Numerical experiments (Simon 07, Simon et al. 08)

Shallow water model

dx=dy=25 km dx=dy=8.33 km

Twin experiments (true state = simulation with uniformly high
resolution everywhere)
Observations : sampling of h on the fine grid only




Numerical experiments (2)

Cost function

X Cost function
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» Better decrease of Jobs with the two-grid algorithms
» Additional control of the intergrid errors improves the decrease




relatve RMS error

Numerical experiments (3)

RMS error on the fine grid

Water height Velocity
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» Two-grid solutions are clearly better than the single grid solution
» Two-way interaction leads to (slightly) better results than one-

way interaction




Numerical experiments (4)

Kinetic and potential energy on the fine grid

Kinatic Energy: line grid
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» Bad physical behaviour of the single grid optimal solution
» Energies of the two-grid solutions are close to the “truth”
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Numerical experiments (5)

RMS error on the outer coarse grid
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» small improvement of the coarse solution outside from the
refined domain




Summary on variational DA for nested systems

Nested systems allow some focus of the simulation on regions of
particular interest.

» The formulation of variational data assimilation in such systems
has been derived.

» First numerical experiments indicate that such an approach leads
to improved results with regard to data assimilation in a local fine
resolution model with control of boundary data

» + several other technical aspects on VDA and multigrid methods
(see Simon, 2007)
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