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Outline

Introduction
Basic concepts
Prior information
Analytical solution
Variational solution
Monte Carlo solution
Diagnostics
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In the beginning…

Summer 1654: correspondence between 
Blaise Pascal and Pierre Fermat

2 players gamble 32 pistols each in a game of 
chance
The contest is best in five sets
The game stops before the end
How should the 64 pistols be shared?
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In the beginning…

Summer 1654: correspondence between 
Blaise Pascal and Pierre Fermat

2 players gamble 32 pistols each in a game of 
chance
The contest is best in five sets
The game stops before the end
How should the 64 pistols be shared?

Chance becomes a scientific topic
Virtual realizations of a random variable
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Two examples of application

Weather analyses
Carbon flux estimation
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Weather analyses

How to start a forecast

Observations for 7 a.m., 20 May 1910
for a forecast at 1 p.m.

Six weeks of hand-computation
Richardson (1922)

Local interpolation
Cressman (1959)
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Weather analyses

Uncertain observations
Need of a statistical approach

Model – Obs
Solar elevations

Low
High

Andrae et al. (2004)

Pressure (hPa)

Temperature (K)
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Weather analyses

Uncertain observations
Indirect observations

IASI spectrum
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Weather analyses

Uncertain observations
Indirect observations
Very large state vector

ECMWF grid points:
76,757,590 in upper air
91 vertical levels, 25km horizontal
6 prognostic variables defined at each grid point
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Weather analyses

Uncertain observations
Indirect observations
Very large state vector
Very large observation vector

Irregular data coverage

Data sources
at ECMWF
# of obs. assimilated
Over 24h on 13/02/2006
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NWP analysis

Prior Observations

Analysis
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NWP sequential filter
10 Jan. 00 UTC 10 Jan. 12 UTC 11 Jan. 00 UTC

+ Obs. + Obs. + Obs.

AN ANANFC FCFCFC
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Estimation of carbon fluxes

CO2 concentrations measured at Mace Head 
(IRL)
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Estimation of carbon fluxes

CO2 concentrations measured at Mace Head 
(IRL)
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Estimation of carbon fluxes

Uncertain observations
Indirect observations

Quasi-linear observation operator

Very large observation vector
Forthcoming satellite observations

Very large state vector
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From conditional probabilities…

“The Probability of the happening of two Events 
dependent, is the product of the Probability of the 
happening of one of them, by the Probability which 
the other will have of happening, when the first is 
considered as having happened” (de Moivre 1718)

p(A Λ B) = p(A) p(B|A)
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… to Bayes’ theorem

p(A Λ B) = p(B Λ A) 
p(A) p(B|A) = p(B) p(A|B) 
p(A|B) = p(A) p(B|A) / p(B)
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… to Bayes’ theorem

p(A Λ B) = p(B Λ A) 
p(A) p(B|A) = p(B) p(A|B) 
p(A|B) = p(A) p(B|A) / p(B)

“If an event can be produced by a number n of 
different causes, then the probabilities of these 
causes given the event are to each other as the 
probabilities of the event given the causes, and the 
probability of the existence of each of these is 
equal to the probability of the event given that 
cause, divided by the sum of all of the probabilities 
of the event given each of these causes”
(Laplace 1774)
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… to Bayes’ theorem (cont’)

Monovariate discrete:

Monovariate continuous

Multivariate continuous



23-24 June 2008 Assimilex

Model of learning

Number of observations

Ex:
monovariate x,
up to 25 observations

…1 2

1 2
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Some vocabulary

Community-dependent
x: state vector or control vector
P(x): prior or background pdf
P(y|x): observation pdf
P(x|y): posterior pdf or analysis or inversion
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Prior pdf

The prior has the same weight than an observation

“It ain't what you don't know that gets you into 
trouble. It's what you know for sure that just ain't so”
(Mark Twain)

Accurate observations make an uncertain prior vanish
pdf model
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Prior pdf (cont’)

Uninformative prior?
Equiprobability (principle of insufficient reason or of 
indifference, Bernoulli, Laplace)
The unbounded flat pdf does not integrate to 1. 
(improper prior)
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Example 1

What is the pdf p(x) of a uniform prior for x Є [0,1]?
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Example 1

What is the pdf p(x) of a uniform prior for x Є [0,1]?
∫0

1 p(x) dx = 1.0
p(x) = k 
∫0

1 k dx = 1.0
k [x]0

1 = 1.0
k = p(x) = 1.0
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Example 2

What is the pdf p(x) of a uniform prior for 
y=x2, x Є [0,1]?
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Example 2

What is the pdf p(x) of a uniform prior for 
y=x2, x Є [0,1]?
∫0

1 p(y) dy = 1.0
p(y) = k = 1.0
a Є [0,1], b Є [0,1]
∫x=a

x=b p(x) dx = ∫x=a
x=b p(y) dy= ∫x=a

x=b 2x dx
p(x) = 2x
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Example 2

What is the pdf p(x) of a uniform prior for 
y=x2, x Є [0,1]?
∫0

1 p(y) dy = 1.0
p(y) = k = 1.0
a Є [0,1], b Є [0,1]
∫x=a

x=b p(x) dx = ∫x=a
x=b p(y) dy= ∫x=a

x=b 2x dx
p(x) = 2x

∫0
1 p(x) dx = [x2]0

1 = 1.0
Note the apparent inconsistency between

p(x) and p(y) for x = 0
Can we reconcile p(x) and p(x2)?
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Example 2

Can we reconcile p(x) and p(x2)?
p(x) ~ p(xn) for uniform p( ln(x) )
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Prior pdf (cont’)

The illusion of uninformative priors
Invariance properties

Translation p(x) = p(x+δx)
Maximum entropy
pdf model parameters part of the estimation problem
Evaluate prior pdf with accurate observations

Once and for all
Situation dependent?

Use a proxy of the prior pdf
NMC method: use spread of forecasts valid at the same 
time but at different ranges

Choice of state variables
z, z2, log(z), …
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Prior flux uncertainties

ORCHIDEE model of the terrestrial 
biosphere: pdf from model-obs statistics

Statistics of ORCHIDEE errors wrt CarboEurope
flux database

200 sites, daily fluxes

Distribution of the errors of 
simulated daily CO2 fluxes

(gC/m2/day)
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Prior flux uncertainties

ORCHIDEE model of the terrestrial 
biosphere: pdf from model-obs statistics

Statistics of ORCHIDEE errors wrt CarboEurope
flux database

200 sites, daily fluxes
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Computing the posterior pdf

Analytical solution
Variational solution
Monte Carlo solution
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The linear problem with Gaussian 
statistics and zero biases

x: state vector
xb: mean prior value of state vector
y: observation vector
H: linear observation operator
B: background error covariance matrix
R: observation error covariance matrix

positive definite
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Analytical solution

Expected value of the posterior PDF

Covariance of the posterior PDF

Gain matrix
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Implementation
Inversion system:

B, R, xb, y and H given
H : operator from state vector space to 
observation space
Issues:

Compute H
Exact derivatives
Finite differences
From H

Matrix inversion
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Non-linear observation operator

In the tangent-linear hypothesis, the non-
linear operators are linearized in the 
vicinity of some state of x

H[x] ~ H[xb] + H(x-xb)

Loss of optimality
Statistics less Gaussian
The degree of linearity is relative to x-xb
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Non-linear observation operator

In the tangent-linear hypothesis, the non-
linear operators are linearized in the 
vicinity of some state of x

H[x] ~ H[xb] + H(x-xb)

Possible inner loop/ outer loop system
H[x] ~ H[xa

i] + Hi (x-xa
i)

Repeat the inversion keeping the same xb

ii i

i i

i
i
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Observation screening

Only use data with accurate linearized
observation operator

Or possibility of weak constraint

6.3 micron

4.5 micron

14.3 micron

PDF of correlations between
H.δx and H[x+ δx] – H[x] 
Hemispheric data

x = T, q profile
H = simulate AIRS in the

presence of clouds
δx = perturbation from B
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Analytical solution: CO2

Year-to-year variability of the CO2 
trend at the monitoring sites 
used in the inverse procedure over 

the period 1980-1998. 

Inferred anomalous changes in the 
global land (A) and ocean (B) 
carbon fluxes 

Bousquet et al., Science, 2000
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Example

xb = 15.0, σb = 1.0
y = 15.5, σy = 0.5
h = 1
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Example

xb = 15.0, σb = 1.0
y = 15.5, σy = 0.5
h = 1

k = 1.02/(0.52+1.02) = 0.8
xa = 15.0 + 0.8 (15.5 – 15.0) = 15.4
σa = √(1.02(1-k)) ≈ 0.45
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Impact of error correlations (1/2)

Correlated errors for observations of the 
same variable
σb = 1.0
σy1 = 0.5
σy2 = 0.5
Cor(εy1 , εy2)
h = [1,1]T
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Impact of error correlations (1/2)

Correlated errors for observations of the 
same variable
σb = 1.0
σy1 = 0.5
σy2 = 0.5
Cor(εy1 , εy2)
h = [1,1]T
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Impact of error correlations (2/2)

Correlated errors for observations of a different
variable
σb1 = 1.0
σb2 = 1.0
Cor(εb1 , εb2) = 0.
σy1 = 0.5
σy2 = 0.5
Cor(εy1 , εy2)
H = I2
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Impact of error correlations (2/2)

Correlated errors for observations of a different
variable
σb1 = 1.0
σb2 = 1.0
Cor(εb1 , εb2) = 0.
σy1 = 0.5
σy2 = 0.5
Cor(εy1 , εy2)
H = I2
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Impact of error correlations

Possible applications
Multitracer inversion from satellite products

Dense data: case 1/2
Distinct variables: case 2/2

AIRS
CO2

AIRS
CO

AIRS
CH4
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Implementation
Inversion system:

Issues:
Compute H
Matrix inversion
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Computing the posterior pdf

Analytical solution
Variational solution
Monte Carlo solution
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Variational solution

The linear problem with 
Gaussian statistics and 
zero biases

Xa minimises

Covariance of the 
posterior 

PDF: 



23-24 June 2008 Assimilex

Accuracy of Jacobians

New types of model validation
Tough requirement for statistics-based models 

Chevallier and Mahfouf (2001)
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Garand et al. (2001)
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Outliers

Outliers may drive the quadratic function 
Preliminary screening
Ex: remove observations for which |Hxb-y| > 3 σo …
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Implementation

Inversion system:

B, R, xb, y and H given
Issues:

Compute H and HT

Matrix inversions
Minimisation method (grad(J(xa)) ~ 0)
Compute J’’
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Compute H and HT

H: Tangent-linear (Jacobian) matrix H
HT: Adjoint matrix of H
Chain rule:

Hx = Hn Hn-1 … H2 H1x
HTy* = H!

T H2
T … Hn-1

T Hn
Ty*

First order Taylor development of each individual line 
of code

Example:
Compute the tangent-linear and adjoint operators of 
the following lines of code:

a = b2

a = a2

1 1( ) 2 ( ) 2 ( [ ])TJ H− −∇ = +bx B x - x H R y - x
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Adjoint technique

Example:
Compute the adjoint instruction of the line:

a = b2

Forward statement
a = b2

Tangent-linear statement
δb = 0.δa + 1.δb
δa = 0.δa + 2b.δb

Adjoint statement
b* = 2ba*+ 1.b* 
a* = 0.a*+ 0.b* 
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Adjoint technique

Example:
Compute the adjoint instruction of the line:

a = a2

Forward statement
a = a2

Tangent-linear statement
δa = 2a.δa

Adjoint statement
a* = 2a.a*
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Handling the linearization points

Handling of trajectory
Hx = Hn Hn-1 … H2 H1x (forward)
HTy* = H!

T H2
T … Hn-1

T Hn
Ty* (backward)

Linearization points for the adjoint
Stored in computer memory
Stored on disk
Recomputed on the fly
Some mixture of the above
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Which code?

Adjoint of full code or of simplified version?
Time handling

Ht(x) ~ H(x) 
Spatial resolution

HHR(x) ~ HLR(x)
Sophistication of physics
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Adjoint coding

Manual coding
Automatic differentiation

29 softwares listed in http://www.autodiff.org
Source code transformation

From the original code
From a recoded version 

Operator overloading
Freeware or not

Correctness of the TL
Linearity
Convergence of the Taylor development

Correctness of the AD
Linearity
(Hx)THx = xTHT(Hx)

… to the accuracy of the computer

http://www.autodiff.org/


23-24 June 2008 Assimilex

Invert R matrix

R-1: 
Try to have it diagonal

Ignore correlations
Data thinning
Increase variances and set correlations to zero

Example:
Invert CO2 fluxes from forthcoming OCO satellite 
observations
Hypothesised correlations of 0.5 from one 
observation to the next

1 1( ) 2 ( ) 2 ( [ ])TJ H− −∇ = +bx B x - x H R y - x
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Reference case

No correlations
error reduction 1-sig(post)/sig(prior)

Reference error reduction
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Test case 1

Correlations properly accounted for
error reduction 1-sig(post)/sig(prior)

Change in error reductionReference error reduction
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Test case 2

Correlations simply ignored in the inversion
error reduction 1-sig(post)/sig(prior)

Change in error reductionReference error reduction
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Test case 3

Data thinning (remove one obs. every two)
error reduction 1-sig(post)/sig(prior)

Change in error reductionReference error reduction
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Test case 4

Obs. variances multiplied by 2, no 
correlations
error reduction 1-sig(post)/sig(prior)

Change in error reductionReference error reduction
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Invert B matrix

B-1: 
B sparse
Ex: 

B = STCS with S vector of standard deviations, C 
eigenvalue-decomposed C = VTvV
C block-diagonal, or product of block-diagonal 
matrices
B-1 = S Vv-1VT ST

1 1( ) 2 ( ) 2 ( [ ])TJ H− −∇ = +bx B x - x H R y - x



23-24 June 2008 Assimilex

Minimisation algorithm

Many optimization methods available
Conjugate gradient

Lanczos algorithm provides the leading
eigenvalues of the Hessian of the cost function as 
by-product of the minimisation

CH4 flux inversion
Error reduction
for a series of large
regions
Meirink et al. (2008)
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Conditioning

Many optimization methods available
More efficient with preconditioning

State vector ≠ physical vector
z = A-1/2(x-xb) reduces the minimisation to one 
iteration with conjugate gradients

Jz’’~I

z = B-1/2(x-xb) is a simple approximation
J unchanged
gradz(J) = B+1/2 gradx(J) 
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Implementation

Inversion system:

B, R, xb, y and H given
Issues:

Compute H and HT

Matrix inversions
Minimisation method (grad(J(xa)) ~ 0)
Compute A
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NWP 4D-Var

x: atmospheric state at initial time step
H: linearized observation operator

inc. time evolution of x

The ECMWF 12h
4D-Var system
(1997, 2000)
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Incremental 4D-Var

ECMWF system
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Inner loop/ outer loop system

Inner loop strictly linear (TL)
Non-linear updates in outer loop

J = Jo + Jb + Jc

Trémolet (2005)

1 1( ) 2 ( ) 2 ( [ ])TJ H− −∇ = +bx B x - x H R y - x
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Variational inversion of CO2 fluxes

gC/m2 for 2003
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Fit to dependent data

0
1
2
3
4
5
6
7
8
9

10

ALT ASK CBW HUN MHD MLO NWR PAL POCS30 PUY

Prior
Post

Example: 10 out of 69 stations

RMS
[CO2]
(ppm)
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Computing the posterior pdf

Analytical solution
Variational solution
Monte Carlo solution
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Particle filter 

Apply Bayes’ formula to a discrete ensemble of x’s

Number of observations

Ex: 100 points
monovariate x,
Gaussian pdfs,
up to 25 observations
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Particle filter
100 points

10 points

5 points
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Particle filter

Curse of dimensionality
Sampling high-dimensional spaces
Exponential increase of ensemble size to 
maintain a given sampling accuracy
+ Numerical issues

Localization
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Ensemble methods

No limitation wrt linearity or pdf model
No adjoint model
Parallel hardwares
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Ensemble methods

Ensemble Kalman filter (Evensen 1994)
Ensemble forecast of error statistics
Full-rank analytical analysis

Ensemble square root filter (Whitaker and Hamill
2002)

Ensemble forecast of error statistics
Reduced rank analytical analysis

Maximum likelihood ensemble filter (Zupanski 2005)
Ensemble forecast of error statistics
Minimize cost function in ensemble subspace

…
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Ensemble methods: CO2

CarbonTracker
http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/

Ensemble square root filter
135 parameters
150 members

http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/
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Replace B by an ensemble?

Correlation matrix defined with 500km e-folding 
lengths over land and 1000km over ocean

Perform PCA – truncate to 500 PCs – validate

Anti-diagonal Diagonal
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Effective ensemble methods

Localization
Add hard constraints to reduce the size of 
the state vector

From flux estimation to model parameter 
estimation

Split problem into pieces
Sequential
Pre-processing

Trick or treat?
Diagnostics only?
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Ensemble methods for diagnostics

Ensembles of inversions with consistent 
statistics make it possible to reconstruct
the posterior pdf

Sample xb from B
Sample y from R
xa follows A
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OCO error reduction

No correlations
error reduction 1-sig(post)/sig(prior)
4 years of 8-day segments (180 fluxes)

Reference error reduction
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Expected uncertainty reduction

Monte Carlo approach with 5 iterations
Random errors

1 – sig_a/sig_b
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Ensemble methods for diagnostics

Similarly, one may compute the influence 
matrix

S = dŷ/dy = R-1HAHT , ŷ = Hxa
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Evaluation

J(xa) < J(xb) 

J(xa) follows a chi-square pdf centered on p with 
std. dev. √p 

p: number of observations

The sum of two normal distributions is a normal 
distribution

H(xb) – y : zero bias, covariance HBHT+R

Real world vs. theory
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Evaluation (cont’)

Use independent (new) observations yn unbiased
with covariance Rn

H(xa) – yn , unbiased, covariance HAHT+Rn

H(xa) – yn uncorrelated with H(xb) – y and unbiased

Recycle xa
Spin-down or spin-up

Evolution of precipitation (mm day–1) 
and evaporation (mm day–1) in the 
tropical band between 30°N and 30°S 
during the 10-day forecasts, averaged 
over Apr 2002.
Andersson et al. (2005)
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Summary

Data assimilation for large state vectors
Bayes’ theorem as a paradigm
Assignment of errors 
Analytical formulation

Gaussian framework, weakly-non-linear
Inversion of large matrices
Handling of a large observation operator

Variational formulation
Gaussian framework, weakly-non-linear

Monte Carlo formulation
Curse of dimensionality

Reduce problem size
Localization
Add hard constraints
Split problem into pieces

Hybrid approaches
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Some references on-line

F. Bouttier and P. Courtier: Data assimilation concepts 
and methods

http://www.ecmwf.int/newsevents/training/lecture_notes/pdf
_files/ASSIM/Ass_cons.pdf

E.T. Jaynes: Probability theory: the logic of Science
http://omega.albany.edu:8008/JaynesBook.html

A. Tarantola: Inverse problem theory
http://www.ipgp.jussieu.fr/~tarantola/Files/Professional/Book
s/index.html

http://www.ecmwf.int/newsevents/training/lecture_notes/pdf_files/ASSIM/Ass_cons.pdf
http://www.ecmwf.int/newsevents/training/lecture_notes/pdf_files/ASSIM/Ass_cons.pdf
http://omega.albany.edu:8008/JaynesBook.html
http://www.ipgp.jussieu.fr/~tarantola/Files/Professional/Books/index.html
http://www.ipgp.jussieu.fr/~tarantola/Files/Professional/Books/index.html
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