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Classical Extreme Value Theory

Setup: 

• {Xt} ~IID(F)

• Mn= max{X1,…, Xn}

• P(Mn  x) = Fn(x)

Now in order for the right hand side to converge to a nonzero value, 

must let x  with n.  Replacing x by un ,

P(Mn  un) = Fn(un)

= (1-(1-F(un)))
n

= (1-n(1-F(un))/n)n  e-t

if and only if

n(1-F(un))  t
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Classical EVT— Extremal Types Theorem

Convergence of types: Now taking un = anx+ bn, an > 0,

P (an
-1(Mn – bn )  x) = Fn(anx+ bn)

 G(x)

if and only if

n(1-F(anx+ bn))  -log G(x)

Theorem. If G is a nondegenerate distribution, then G has to be one 

of the three types,

1. G(x) = exp(-e-x)  (Gumbel)

2. G(x) = exp(-x-a), x   0  (Fréchet)

3. G(x) = exp(-(-x)a),  x  0 (Weibull)
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Classical EVT— GEV

The three types of extreme value distributions can be 

parameterized as one family (GEV family) via,

where

x = 0 implies G(x) = exp(-e-x) (Gumbel)

x > 0 implies G(x)  is Fréchet (a = 1/x)

x < 0 implies G(x)  is Weibull ( x < -1/x, a = -1/x)

Summary

• Gumbel—light tailed

• Fréchet—heavy tailed

• Weibull—finite endpoint

01    ),)1(exp()( /1 >xx-= x- xxxG
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Classical EVT— Examples

In looking at maxima, usually one considers only the Gumbel and 

Fréchet distributions for modeling.

Examples

1.  uniform.  F(x)=x,  0 < x < 1.  With an=1/n, bn=1, we have for n 

large

n(1-F(anx+ bn)) = -x = -log G(x) = -log( exp(-(-x)1)

P(n(Mn – 1 )  x)  ex (x   0).  Weibull limit

2.  exponential.  F(x)=1-e-x,  x > 0.  With an=1, bn=log n, we have                      

n(1-F(anx+ bn)) = n e-x-log n = e-x = -log(exp(-e-x))

P( Mn – log n  x)  exp(-e-x)  (Gumbel limit)

Application to Fisher’s test for hidden periodicity in time series (see 

B&D (1991) and Davis and Mikosch (1999)).
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Classical EVT— Examples

Exponential.  P( Mn – log n  x)  exp(-e-x)

Empirical distribution of Mn – log n, n=100 Limit density
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Classical EVT— Examples

3.  Pareto.  F(x)=1-x-a ,  1 < x.  With an=na, bn=0, we have for n large

n(1-F(anx)) = x-a = -log G(x) = -log( exp(-x-a) ) 

P(n-aMn  x)  exp(-x-a ) (x   0).  Fréchet limit
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Classical EVT— Examples

4.  Gaussian.  

an= (2 log(n))-1/2, bn=(2 log(n))1/2 - .5 (2 log(n))-1/2(log log(n)+log(4pi)), 

n(1-F(anx+ bn))  e-x = -log(exp(-e-x))

P((2 log(n))1/2 (Mn – bn ) x)  exp(-e-x)  (Gumbel limit)
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Classical EVT— Examples
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Classical EVT— Examples
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Classical EVT— Domain of Attraction

If     

P((Mn – bn)/ an  x) = Fn(anx+ bn)   G(x)

which is equivalent to 

n(1-F(anx+ bn))  -log G(x) = (1xx)-1/x,

then we say that F (or X) is in the domain of attraction of G (write 

F or X ϵ D(G)).

Note that if  x=0, then

n(1-F( bn))  1,

or 

P(X1 > bn ) ~ 1/n.

It follows that 

P(X1 - bn > an x | X1 > bn )  (1xx)-1/x

Strasbourg 6/08
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Classical EVT— GPD

P(X1 - bn > an x | X1 > bn )  (1xx)-1/x

Replacing bn with u, it follows that conditional distribution of X1 - u 

given X1 > u has an approximate generalized Pareto distribution,

P(X1 - u ≤ an x | X1 > u ) ~ H(x)=1- (1xx)-1/x

for u large.  

Generalized Pareto Distribution (GPD)

H(x)=1- (1x(x-m)/s)-1/x

The limit above is the basis for fitting the tail of the distribution of a 

random variable using a GPD.  There are myriad of procedures for 

estimating the parameters in this model. 
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Classical EVT— Domains of Attraction

Domains of attraction: There are necessary and sufficient 

conditions for F ϵ D(G) for the three extreme value distributions.  

The heavy-tailed Fréchet, which is perhaps the most commonly 

used extreme value distribution, has the easiest n.a.s. to state (and 

check!).   In this case, 

F ϵ D(exp(-x-a))     if and only if   F is RV(a)  for some a > 0.

Regular variation:  F is RV(a) if and only if

for every x > 0.
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Classical EVT — Domains of Attraction

Examples: 

Pareto,

log-gamma,

infinite variance stable,

Cauchy,

student,

Fréchet. 

Remarks: 

• P(X > x) = L(x)x-a  where L is slowly varying, L(tx)/L(t)1

(think log function for L)

• Can take   bn = 0 and an as the 1-1/n quantile of F, i.e., 

n(1-F(an)) 1.  It turns out that an = L1(n)n1/a

• P(an
-1 Mn  x)  exp(-x-a).



6/24/2008

9

Strasbourg 6/08
18

Point Processes

The theory of point processes plays a central role in extreme value

theory. Applications include:

• Derivation of joint limiting distribution of order statistics, i.e., 

kth largest order statistic, limiting distribution of maximum 

and minimum, etc.

• Calculation of limit distribution of exceedances of a high 

level.

• Extensions to stationary processes.

• Provides a useful tool in heavy-tailed case for deriving 

limiting behavior of various statistics, e.g., sample mean, 

sample autocovariances, etc, which are often determined by 

the behavior of the extreme order statistics.
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Point Processes — Definition and Basic Results.

Setup:

• Suppose (Xt) is an iid sequence with common distribution F.

• F ϵ D(exp(-x-a))   (Can be formulated for general extreme value 

distribution, but for simplicity we will restrict attention to Fréchet.)

We have

n(1-F(anx)) = nP(an
-1X >x))  x-a

from which it follows that

nP(an
-1 X  ϵ (a,b])  a-a - b-a =: n(a,b],

where  n is the measure on (0,] given by n(dx)= ax-a-1(dx).

More generally, we have

nP(an
-1 X  ϵ B)  n(B)

for all nice sets B, those bounded away from 0.
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Point Processes — Definition and Basic Results.

Since

nP(an
-1 X  ϵ B)  n(B)

for nice sets B, it follows that 

nP(an
-1 X  ϵ ) v n(),

where  v denotes vague convergence of measures.

Now for a set B bounded away from 0, define the sequence of point 

processes by

Nn(B) = #{t=1,…,n:  an
-1 Xt ϵ B} = 

where ex is the Dirac measure at x.               
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Point Processes — Definition and Basic Results.

Nn(B) = #{t=1,…,n:  an
-1 Xt ϵ B}  = 

Properties:

• Nn(B) ~ Bin(n,pn ), where pn= P(an
-1 X  ϵ B)  and since

nP(an
-1 X  ϵ B)  n(B),

it follows from convergence of binomial to Poisson that 

Nn(B) d N(B),

where  N(B) is a Poisson random variable with mean n(B).

• In fact, we have the stronger point process convergence,

Nn d N

where N is a Poisson process on (0,] with mean measure n (dx) 

and d denotes convergence in distribution of point processes.
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Point Processes — Definition and Basic Results.

Convergence for point processes. 

For our purposes, d for point processes means that for any 

collection of Borel sets B1, . . . ,Bk that are bounded away from 0 

and P(N(∂Bj) > 0) = 0, j = 1, . . . , k, we have 

(Nn(B1), . . . ,Nn(Bk)) d (N(B1), . . . ,N(Bk))

Strasbourg 6/08
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Point Processes — Application to Extremes

Application

Define Mn,2 to be the second largest among X1, . . . ,Xn. Since the 

event

{an
-1 Mn,2 ≤  y} is the same as {Nn (y,∞) ≤ 1},

we conclude from the point process convergence that

P(an
-1 Mn,2 ≤  y) = P(Nn(y,∞) ≤ 1)

→ P(N(y,∞)) ≤ 1)

= exp{-y-a }(1 − log (exp{-y-a })).



6/24/2008

12

Strasbourg 6/08
24

Point Processes — Application to Extremes

Application

Similarly, the joint limiting distribution of (Mn,Mn,2) can be calculated 

by noting that for y ≤ x,

{an
-1 Mn ≤  x, an

-1 Mn,2 ≤  y} is the same as {Nn (x,∞) ≤ 0, Nn (y,x] ≤ 1}.

Hence,

P(an
-1 Mn ≤  x, an

-1 Mn,2 ≤  y) = P(Nn (x,∞) ≤ 0, Nn(y,x] ≤ 1)

→ P(N(x,∞) ≤ 0, N(y,x] ≤ 1)

= exp{-y-a }(1 + y-a - x-a ).
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Point Processes — Representation of Limit.

Representation of limit Poisson process

The points of the limit Poisson process can be displayed in an

explicit fashion. Set

Gk= E1+ · · · + Ek, 

where E1,E2, . . . are iid unit exponentials.  Then the limit Poisson 

process N has the representation

and

If we order the data, then we can read off the weak convergence

for the kth-largest Mn,k, i.e.,

an
-1 Mn,k d Gk

-1/a     (joint in k)


=

G
=
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n

t

n

t

dXan
ktn

NN
11

/11




=
G a-e=

1

/1

k
k

N



6/24/2008

13

Strasbourg 6/08
26

Point Processes — Exceedances

Point Process of Exceedances.

Sometimes, it is convenient to consider the two-dimensional point 

process defined by

For x > 0 fixed, the point process 

Is the point process of exceedances of the level anx.  This point 

process converges in distribution to a homogeneous Poisson process 

rate with intensity  x-a.

Bottom line: point process of exceedances is approximately Poisson.

.
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Point Processes — An Application

Cool application

If a < 1, then

implies, by an application of the continuous mapping theorem, that

The limit random variable is positive stable with index a.
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Extension to Stationary Time Series

Let (Xt) is a strictly stationary sequence with common df F ∈ D(G), i.e.,                                          

Fn(anx+ bn)  G(x).

Theorem  If (Xt) satisfies a mixing condition (like strong mixing) and

P( an
-1(Mn – bn )  x)  H(x),

H nondegenerate, then there exists a q ∈ (0,1] such that

H(x)=Gq (x).

The parameter θ is called the extremal index and is a measure of

extremal clustering.

Strasbourg 6/08
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Extension to Stationary Time Series—Extremal Index

Fn(anx+ bn)  G(x)   P( an
-1(Mn – bn )  x)  Gq (x).

Properties

• θ < 1 implies clustering of exceedances

• Suppose c is a threshold such that Fn(c) ~.95 and θ = .5. Then

P(Mn ≤ c) ∼ .951/2 = .975

• 1/θ is the mean cluster size of exceedances.

• In a certain sense, one can view θ as a measure of statistical 

efficiency relative to the iid case.  That is, one needs 1/θ more 

observations to match the behavior of the iid case.  Specifically,

P(Mn/q  x)  ~ Fn(x)
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Extension to Stationary Time Series—Example

Example (max-moving average) Let (Zt) be iid with a Pareto 

distribution, i.e.,  P(Z1 > x) = x-a for x 1, and set

Xt = max(Zt, fZt-1),  f ∈ [0,1]. 

Then    

nP(X1 > xn1/a )  (1+fa)x-a and Fn(anx)  exp(-(1+fa)x-a ).

On the other hand

P( n-1/a Mn  x) = P( n-1/a max(Z0 ,…, Zn)  x)  exp(-x-a ).

Thus θ = 1/(1+fa).
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Extension to Stationary Time Series—Example

iid (pareto a = 3)                                   max-moving average (f = 1)

q = 1                                                          q = 1/2    
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Extension to Stationary Time Series—Mixing Conditions

Strong Mixing:

Remarks:

• Since mixing is defined via σ-fields, measurable functions of (Xt) 

inherit the same mixing property. For example, if the stationary 

sequence (Xt) is strongly mixing, so are (|Xt|) and (Xt
2) with a rate 

function of similar order.

• If (ak) decays to zero at an exponential rate, (Xt) is strongly

mixing with geometric rate, i.e., the memory between past and

future dies out exponentially fast.

• Strong mixing is much stronger than Leadbetter’s dependence 

condition D(un).

.  as   0|)()()(|sup
)(  )0(

a=-
ss

kBPAPBAP k
k,sXB,,sXA ss
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Extension to Stationary Time Series—Mixing Conditions

• If (ak) decays to zero at an exponential rate, (Xt) is strongly

mixing with geometric rate, i.e., the memory between past and

future dies out exponentially fast.

• The rate function is closely related to the ACVF of the process:

if E|X1|
2+δ < ∞ for some d > 0, then

|Cov(X0,Xh)|c ak
d/(2+d)

• Many commonly used time series models, such as ARMA, GARCH, 

stochastic volatility processes, and Markov processes are strong 

mixing with a geometric rate.
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Extension to Stationary Time Series—D’

Anti-clustering condition D’(un):  Think of  un as anx + bn .

as k  .

Theorem: If (Xt) satisfies D and D’, FϵD(G), then q = 1 (i.e., no 

clustering).

Remarks:

• If (Xt) is iid, then the lim sup of the sum is 

limsupn n2/k P2(X1 > un) =O(1/k). 

• If (Xt) is a stationary Gaussian process with ACF r(h)=o(1/log h), then 

D and D’ hold and there is no clustering for Gaussian processes.
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Extension to Stationary Time Series—Example

IID N(0,1/(1-.92)) AR(1): Xt = .9 Xt-1 + Zt, (Zt)~IID N(0,1) 

• Even though q = 1, there appears to be some clustering for small n.

• Hsing, Hüsler, Reiss (1996) overcome this problem for Gaussian 

processes by considering a triangular array or rvs.
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Extension to Stationary Time Series—Example

Max-moving average: Let (Zt) be iid with a Pareto distribution, i.e.,  

P(Z1 > x) = x-a for x 1, and set

Xt = max(Zt, fZt-1),  f ∈ [0,1] 

Then, since (Xt) is 1-dependent, the mixing condition D is automatically 

satisfied.  As for D’, 
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Point Process Example—baby steps

In particular, for one-dependent sequences, 

P(X2 > x| X1 > x)  1-q = fa /(1+ fa ).

Point process convergence (max-moving average):  With an=n1/a

nP(Z1 > anx)  x-a  and nP(X1 > anx) (1+fa)x-a 

Define the sequence of point processes by

From the convergence

one can show
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Point Process Example—baby steps

Applying the continuous mapping theorem (need to be careful),

we have
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Def: The random variable X is regularly varying with index a if

P(|X|> t x)/P(|X|>t)  x-a and P(X> t)/P(|X|>t) p,

or, equivalently, if 

P(X> t x)/P(|X|>t)  px-a and P(X< -t x)/P(|X|>t)  qx-a ,

where 0  p  1 and p+q=1.

Equivalence:

X is RV(-a)  if and only if P(X  t  ) /P(|X|>t)v m( )

(v vague convergence of measures on R\{0}).  In this case, 

m(dx) = (pa x-a-1 I(x>0) + qa (-x)-a-1 I(x<0)) dx

Note: m(tA) = t-a m(A) for every t and A bounded away from 0.

Regular Variation — univariate case
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Another formulation (polar coordinates):

Define the  1 valued rv q, P(q = 1) = p, P(q = -1) = 1- p = q.

Then

X is RV(a)  if and only if

or

(v vague convergence of measures on S0= {-1,1}). 

)(x
)t  |X(|

)|X|X/ t x, |X(|
SP

P

SP
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θP
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Regular Variation — univariate case

Strasbourg 6/08
41

Equivalence:

m is a measure on Rm which satisfies for x > 0 and A bounded away 

from 0,  

m(xB) = x-a m(xA).

Multivariate regular variation of X=(X1, . . . , Xm): There exists a 

random vector q  Sm-1 such that

P(|X|> t x, X/|X|   )/P(|X|>t) v x-a P( q   )

(v vague convergence on Sm-1, unit sphere in Rm) .  

• P( q ) is called the spectral measure

• a is the index of X.
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Regular Variation — multivariate case
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Examples: 1. If X1 and X2 are iid RV(a), then X= (X1, X2 ) is 

multivariate regularly varying with index a and spectral distribution

(assuming symmetry) 

P( q =pk/2) = ¼  k=1,2,3,4 (mass on axes).

Interpretation:  Unlikely that X1 and X2 are very large at the same 

time.

Figure: plot of  

(Xt1,Xt2) for realization 

of 10,000.

Regular Variation — multivariate case
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43

2. If X1 = X2 > 0, then X= (X1, X2 ) is multivariate regularly varying 

with index a and spectral distribution

P( q = p/2) ) = 1.

3. AR(1): Xt= .9 Xt-1 + Zt ,  {Zt}~IID t(3)

P( q = arctan(.9)) = .9898   P( q =  p/2) ) = .0102
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Figure: plot of (Xt, Xt+1) for realization of 10,000.

Xt= .9 Xt-1 + Zt
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AR(1), X_{t+1} vs. X_t
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The marginal distribution F for heavy-tailed data is often modeled using

Pareto-like tails,

1-F(x) = x-aL(x),

for x large, where L(x) is a slowly varying function (L(xt)/ L(x)1, as x

1). Now if

X~ F, then P(log X > x) = P(X > exp(x))~exp(-ax), 

and hence log X has an approximate exponential distribution for large x. 

The spacings,

log(X(n-j)) - log(X(n-j-1)),  j=0,1,2,. . . ,m,

from a sample of size n from an exponential distr are approximately 

independent and Exp(a(j+1)) distributed.  This suggests estimating a-1

by
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Estimation of a and q
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Def: The Hill estimate of a for heavy-tailed data with distribution given 

by

1-F(x) = x-aL(x),

is
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The asymptotic variance of this estimate for a is 

and estimated by

(See also GPD=generalized Pareto distribution.)

m/2a ./ˆ 2 ma

Hill’s estimate of a
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For a bivariate series, we will estimate a for the univariate series using 

the Euclidean norm of the two components.

Hill’s estimate of a
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Hill’s estimate of a
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Estimation of the spectral distribution of q

Based on the relation

P(|X|> t x, X/|X|   )/P(|X|>t) v x-a P( q   )

a naïve estimate of the distribution of q is based on the angular 

components Xt/|Xt| in the sample. One simply uses the empirical 

distribution of these angular pieces for which the modulus |Xt|

exceeds some large threshold. In the examples given below, we 

use a kernel density estimate of these angular components for 

those observations whose moduli exceed some large threshold.

Here we only consider two components, i.e., q is one dimensional.
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Estimation of the spectral distribution of q
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Vertical lines on right are at arctan(.9) and arctan(.9) -p
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ARCH(1):   Xt=(a0a1 X2
t-1)

1/2Zt, {Zt}~IID. 

a found by solving  E|a1 Z2|a/2 = 1.

a1 .312 .577 1.00 1.57

a 8.00 4.00 2.00 1.00

Distr of q:   

P(q  ) = E{||(B,Z)||a I(arg((B,Z))  )}/ E||(B,Z)||a

where

P(B = 1) = P(B = -1) =.5

Examples of Processes that are Regular Varying
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Figures: plots of (Xt, Xt+1) and estimated distribution of q for 

realization of 10,000.

Example of ARCH(1):   a0=1, a1=1, a=2, Xt=(a0a1 X2
t-1)

1/2Zt, {Zt}~IID
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Examples of Processes that are Regular Varying
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Example: SV model Xt = st Zt

Suppose Zt ~ RV(a) and

Then Zn=(Z1,…,Zn)’ is regulary varying with index a and so is

Xn= (X1,…,Xn)’ = diag(s1,…, sn) Zn

with spectral distribution concentrated on (1,0), (0, 1).
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Figure: plot of 

(Xt,Xt+1) for 

realization of 10,000.

Examples of Processes that are Regular Varying
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Theorem (Davis & Hsing `95, Davis & Mikosch `97).  Let {Xt} be a 

stationary sequence of random m-vectors.  Suppose

(i) finite dimensional distributions are jointly regularly varying (let

(q-k, . . . , qk) be the vector in S(2k+1)m-1 in the definition).

(ii) mixing condition A (an) or strong mixing.

(iii)

Then

(extremal index)

exists.  If q > 0, then
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Point process Convergence
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Point process convergence(cont)

• (Pi) are points of a Poisson process on (0,) with intensity function

n(dy)=qay-a-1dy.

• , i  1, are iid point process with distribution Q, and Q is the 

weak limit of 
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Remarks:

1.  GARCH and SV processes satisfy the conditions of the theorem.

2. Limit distribution for sample extremes and sample ACF follows from 

this theorem.  
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Setup

 Xt = st Zt ,     {Zt} ~ IID (0,1)

 Xt is RV (a)

 Choose {an} s.t.  nP(Xt > an) 1

Then     
}.exp{)( 1

1 a-- - xxXaP n

n

Then, with Mn= max{X1, . . . , Xn},

(i) GARCH:

q is extremal index ( 0 < q < 1). 

(ii)  SV model:

extremal index q = 1 no clustering. 

},exp{)( 1 a-- q- xxMaP nn

},exp{)( 1 a-- - xxMaP nn

Application to GARCH and SV Models
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Suppose (Xt) is the linear process

If an is chosen such that nP(|Zt| > an) 1, then

)RV(  IID~)(        , a= 


-=

- t

j

jtjt ZZX

and

That is, each Poisson point Gk
-1/a gives rise to a cluster of points 

(deterministic) given by the coefficients of the filter, i.e., jGk
-1/a .

Extremal index and other extremal properties can be determined 

from this limit result.

Application to Linear Processes
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River flow rate for Crystal River located in the mountain of Western 

Colorado (see Cooley et al. (2007)).  After deasonalizing the data, 

we obtain 728 weekly observations from Oct 1, 1990 to Oct 1, 

2005.

Application to Crystal River
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Estimates of a and the distribution of q for bivariate pairs (Xt-1,Xt)

Application to Crystal River
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The extremogram of a stationary time series (Xt) can be viewed as 

the analogue of the correlogram for measuring dependence in 

extremes (see Davis and Mikosch (2008)).

Definition:  For two sets A & B bounded away from 0, the 

extremogram is defined as

rA,B(h) = limnP(an
-1X0 ϵ A, an

-1Xh ϵ B)/ P(an
-1X0 ϵ A)

In many examples, this can be computed explicitly.  If one takes 

A=B=(1,), then

rA,B(h) = limx P(Xh >x, | X0 >x) = l(X0,Xh)

often called the extremal dependence coefficient.

The Extremogram
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The extremogram of a stationary time series (Xt) can be viewed as 

the analogue of the correlogram for measuring dependence in 

extremes (see Davis and Mikosch (2008)).

Definition:  For two sets A & B bounded away from 0, the 

extremogram is defined as

rA,B(h) = limnP(an
-1X0 ϵ A, an

-1Xh ϵ B)/ P(an
-1X0 ϵ A)

In many examples, this can be computed explicitly.  If one takes 

A=B=(1,), then

rA,B(h) = limx P(Xh >x, | X0 >x) = l(X0,Xh)

often called the extremal dependence coefficient (l = 0 means 

independence or asymptotic independence).

The Extremogram
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The extremogram is estimated via the empirical extremogram

defined by

where m with m/n 0.  Note that the limit of the expectation of 

the numerator is

mP (am
-1X0 ϵ A, am

-1Xh ϵ B)  m(AB),

where m is the measure defined in the statement of regular 

variation.  Hence the empirical estimate is asymptotically unbiased.  

Under suitable mixing conditions, a CLT for the empirical estimate 

is established in &M  (2008). 

The Extremogram
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Extremogram for Crystal River  A = B = (1,)

Application to Crystal River
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Fit an AR(6) model to the data (remove all appreciable 

autocorrelation in the data).    Now we estimate the distribution of q

and the extremogram based on the residuals.

Application to Crystal River
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There is still a touch of autocorrelation in the absolute values and 

squares of the residuals.  We remove these by fitting a GARCH 

model to these residuals.  The degrees of freedom for the noise 

was 3.43

Application to Crystal River
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Bonus Example
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Bonus Example
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