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Example: 1-d test function

f(x) = 2 cos(7n x/2)e®*, x €[0,2] f’(x)
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Example: 2-d test function

True

True function: 21x21 on [-2,6] x[-2,6]
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Plots for Pound-Dollar Exchange Rates

15 realizations from a SV model fitted to exchange rates + real
data. Which one is the real data?
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Game Plan
» Introduction
* Motivating examples
» Computer experiments
* SIR model
» Gaussian Process Model
* Smoothing techniques
* Limitations of GP model
» Stochastic Heteroscedastic Process (SHP)
* Properties
* Limiting behavior
* Estimation
* Prediction
* Low-rank approximation
» Applications
» Adaptive Sampling—active learning
» Modeling local sensitivity—the derivative process
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Introduction — Computer Experiments

Motivation: Often complicated physical phenomena can be studdied via a
mathematical model , i.e.,

y()=q(x), xeycR’
» X input  y:output function

» q(x): complicated function of x with no analytical form; calculated
through a computer code.

» Computer experiment (CE):

x —— | Code —> Y(X)

» Characteristics of computer experiments.
 deterministic outputs
* high-dimensional inputs

* calculations often expensive.

Strasbourg 6/08
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An lllustrative Example: SIR Model

Susceptible-Infected-Resistant (SIR) model:
» A class of epidemiological models.

» Describes the dynamics of disease spread through a population via a
system of differential equations.

» Composed of three classes: Susceptible (S), Infected (1), Resistant (R)

For example, one SIR model is given by the equations:
S:Q@—%XS+O—QQM—d§—n$
I =r,Sl—(d,+d,)l -agl
: N
R= pan(l—E)R—an+aRI

$(0)=S$,,1(0)=1,,R(0) =R,
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Gaussian Process Model

Given observed data, y(Xy), . . ., ¥(X,), predict y(+) at a new location x,

» True model: y =q(x)
» Popular statistical approaches for a meta-model
= Treat y as a realization from a stochastic process Y.
= Gaussian process model: Sacks, Welch, Mitchell, and Wynn (1989)
Y(X)=9(x)"B+Z(x)

* g(X)TB is the mean function (large scale variability) with g(x)

known.

* Z(x) is a zero-mean Gaussian process (small scale variability)

Strasbourg 6/08
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GP Model — Smoothing techniques

For a GP process, the conditional distribution of y(x,) given the observed
data, y = (y(X,), - - -, Y(X,))T , is normal with mean

(%) =9(%)" B+T,(%, )R, (y-G'P)

and variance
Var (9(%,)) =" (1-1,(%)" R T, (%)),
where
71 (X0) = (r(XoXe), - -+ (60 X))Ts G=(9(Xy),--- 9(%,)T
» The predictor interpolates all the observed data points exactly.
> In practice, the parameter estimates are plugged into the above equations
to get the empirical predictor and predictive variance for y(x,). (This is
slightly different than Kriging in that we are also using a constant in our

predictor.)
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Summary of Stationary GP Model

Advantages:
* Conceptually straightforward to implement.
* Easily accommodates prior knowledge into the form of the covariance
function.
* Predicted surface interpolates the observed responses.

Limitations:
* Stationarity (or isotropy) of a GP process can be a severe restriction
especially for modeling functions whose smoothness varies dramatically
over the input space. In such cases, the predicted surface will over

smooth in some regions and under smooth in others.

Strasbourg 6/08 1
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Overcoming the Limitations of a GP Model

Nonstationary Gaussian processes:
* Can work well in a low-dimensional input space (2- and 3-d). Not
really a systematic approach.
* Computational demands limit the dimensionality.
Multivariate adaptive regression splines (MARS) :
* Adaptively placing knots to account for inhomogeneity
* No clear model interpretation
* Dimensionality limitation
Artificial neural network (ANN):
* Hidden layers introduce extra flexibility

* No clear model interpretation

Strasbourg 6/08 12

Stochastic Heteroscedastic Process (SHP)

SHP model:

Y(x)=9(x)"B+W (x)

W(x)=cexp(&2(x))2(x), >0, t>0.

»The mean function g(x)TB models large scale variation.
» Error process W(x) models small-scale variation.

> o) ~GP(0,p,) and Z(-) ~ GP(0,p,)

» o(+) and Z(+) are independent processes.

» p, and p, are isotropic correlation functions with range parameters 1/¢,
and 1/¢, , respectively.

» The latent process a() is used to model the clustering effect of volatility.

Strasbourg 6/08 13
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Properties of SHP Model

SHP process
» Mean=g(x)TB, variance =c2exp(t?/2), kurtosis=3exp(t?) (tails heavier
than normal which has kurtosis of 3).

» Unconditional correlation function
'[.'2
py(Ih) =exp {_Z @-p.(Ih ||))}pz (Irh D

» Conditioning on the latent process a, the covariance function,

(X X[ 0) = o exp{rau(x)/ 2fp, (| x— X)) exp {ra(x') / 2},

is nonstationary.

Strasbourg 6/08 4

Limiting Behavior of SHP Model

Y(x)=g(X) B+oexp(ta(x)/2)Z(x), >0, 1>0.

»,=0 (¢,— 0 = increasing dependence in a(*)):

= o(X)=a, a~N(@,1).

= unconditional correlation function is p,

= a single realization of Y is indistinguishable from a realization from a GP
» ¢,= 0 (¢, > o = decreasing dependence in o(*)):

= o(+) becomes iid N(0,1)

= unconditional correlation function

1 if | h]|=0,
hi) =
p(l D {em{—tz/4}ﬁ>z(||h")’ if || h]>0.

which is the same as a correlation fcn with a nugget & = 1- exp(-t%/4).

Strasbourg 6/08 15
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SHP — Correlation Plots
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SHP — Correlation Plots

phiz= 20

Effect on :
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SHP Sample Paths — SHP vs GP
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SHP Sample Functions — SHP vs GP (2-d)

GP sample function

SHP sample function
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Summary of SHP

» Stochastic volatility adds more flexibility to the range of sample functions.
» Unconditionally stationary (isotropic) correlation function
» Conditionally, the SHP is a GP with a non-stationary covariance function

» Can recover GP by letting t2= 0.

Strasbourg 6/08 2t

Likelihood Calculation

Recall the SHP model:
Y(x)=9g(x)"B+W(X)

W (x) = cexp[%(x)jZ(x), 5>0, ©>0.

= Observation vector: y = (y;, ...., Y)T
= Latent process vector at observed locations: o = (ay, ...., )"
= Model parameters: y = (0, ¢,), where 0 = (c?, 12, B)
Likelihood:
L(w;y) = [ p(y,o|w)do= [ p(y|,0) p(a] 6, )l

Strasbourg 6/08 22
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Likelihood Calculation

Importance density (Durbin and Koopman (1997), Davis and Rodriguez-Yam
(2005)).
-1y-1
Po (el Yy, w) ~ N(o*,(K*+R,)) ™)
where o* is the mode of p(aly, y) and

2

K*:4T—GZ(B+diag{c})

B= diag{e’m/z}diag{y - gTB}Rz’ldiag{y - gTB}diag{e—w/z}
¢ =(e""?)" diag{y - g"B}R, ‘diag{y - g " Ydiag{e '’}

Strasbourg 6/08 23

Likelihood Calculation

Draw o®,..., oM, from p,(aly, ), likelihood can be approximated by

I p(yla,0)p(a|d,)
Pa(aly, )
e {p(wa,e)p(am)}
1 palaly,y)
1 p(y|a“>,e)p(a“’|¢a)}
N;{ P, (@®ly, v)

L(y;y) = Pa(aly, w)da

Strasbourg 6/08 24
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Estimating a Function of the Latent Process

A function of the latent process g(a) at observed locations can be estimated as

the empirical conditional expectation given by

1 Elg(@)py|a.0)p@]o,)/ p.(ly. )]
E W)= -
O == e a6yl o) b (@ 1y.0)]

= Use importance sampling

= Estimate a by letting g(a) = a

= Predictor for a
Elog |a]=F, (%, 0" R 'a

Var(o, | &) =1—F, (X, X)" R;'F, (X;, X)

o

Strasbourg 6/08 25

Prediction

» Conditional distribution p(Y,| ¥, v, 04,0) :

E(Y, 1Y, 0u00) = 9(%)" B+e™"r, (%, X)" R, 'diag{e ™*"*}y —G'p)
Var(Y, |y, v, o, 0) = c’e™ A-7, (x,, X)T I:’iz_lfz (%5 X))

» Best predictor E(Y,| Y, w) (BP):

E(Y 1Y,¥) = By gy (E(o 1Y, 0 00, )
=By (Emom,y,w(El()(o)T B+e™"r,(x,, )" R, 'diag{e 'T“’Z}(Y—GTB)))
=By (Q(XO)T B+e™e/2 oy, (x,, )" R;'diag{e "“’2}(Y—GTB)))
where po =1, (X, X) Rt and vy =11, (X, X)" R, (X, X)
» Empirical best predictor E(Y,| y, w) (EBP)

Strasbourg 6/08 26
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Implementation — finding o* in importance density

» Alow-rank kriging method (Ruppert et al. (2003)) to approximate the latent

process
a = B o
nx1 nxJ Jx1
= knot locations ky, . . ., k;
B = [p(% _kjl)]lsis n 1<js)
= »~ N, Q)

" Q = [p(lk; =kl 1gije

» maximize the likelihood with respect to w to get best predictor of . The o*

is then approximated by

J
> p(x—k;)
j=1

Strasbourg 6/08

Implementation — Estimation for o2

» The likelihood tends to be flat for a wide range of larger o2 values.
» We ameliorate this problem by using an approximately unbiased estimator
of 2 that incorporates the correlation structure of the process. The sample

variance is
¥= 2n(n 1) 5 ZZ(Y ok
which has an expectation that is given by
E(s?) = o’ exp(7’ /2)[n2 =3 Py, xj)j/(n(n—l))
ik
» Thus an unbiased estimator for o? is

=s’n(n-1)exp(-t /2)(n —ZZPY(XN i J_

Strasbourg 6/08
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Applications — Two-dimensional assessment

Strasbourg 6/08

True

True function: 21x21 on [-2,6] x[-2,6]

Applications — Two-dimensional assessment

Strasbourg 6/08
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Applications — Two-dimensional assessment

Model accuracy; SHP vs GP

= Training data: n=20
= Root mean square error (RMS) and
predictive error variances

= Repeat 100 times; 83% favor SHP model

Uncertainty quantification: SHP vs GP

= Adaptively sample 20 points from grid with
probabilities proportional to SHP/GP model
prediction error variances

= Sample size n: 20 —» 40

= Sample size n: 40 — 60

31
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Adaptively Sampled GP: start w 20 open circles, choose 20 dark circles

ﬁ' L" Prediction
error image
plot

Prediction
error image
plot
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Adaptively Sampled SHP: start w 20 open circles, choose 20 dark circles

. - .. ! - 4Prediction
ly=yI - o] error image
plot
g | 1. L. . B
> 0 ; : v 5 : . 5
o o . . ot . .| Prediction
ly-yI . . . . error ima
o o ge
<] ce < . e lot
o~ ) ° ° o o o ° ~ o o o o o °
i M° T 7 < T T wi!.—a//‘\ o < T T 33
Strasbourg 6/08., 0 N 4 o 2 o N B .

Two dimensional assessment -- RMSEs for 2 sampling GP/SHP plans
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Seven-dimensional assessment: SIR Model

SIR Model: S:QQ—EXS+Q—QQM—d§—n$
I =rSl—(d, +d,)l —a,l
: N
R= pan(l—?)R—an+aRl

S(0)=S,,1(0)=1,,R(0) =R,

= S(t) = the number of susceptible individuals in the pop at time t.
= |[(t) = the number of infected individuals in the pop at time t.

= R(t) = the number of recovered individuals in the pop at time t.

= N(t) = S(t)+I(t)+R(t), the population size at time t.

= S,I,R denote time derivatives.

Strasbourg 6/08 35

Domains for input parameter

Domains for input parameters:

Symbol

Recovery rate ag [0.1,0.3]
Natural growth rate r [0.3,1.7]
Carrying capacity K [95,100]
Probability of inheriting resistance Pr [0.09,0.11]
Natural death rate d, [0.1,0.3]
Contraction rate r [0.1,0.3]
Death rate from disease d, [0.3,1.7]

Quantities of interest:
T

q(x), =T1:[S(s,x)ds q(x), =ij I(s,x)ds  q(x), =ﬂ;R(s,x)ds

0

Strasbourg 6/08 36
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SIR results—ratio of RMSEs

Experiment details:

= Latin hypercube sampling used to select 70 points on 7-d input space

normalized to [0,1]”

= 70 points used in HOPS, GP, and SHP model fitting

= Predictions compared to true values (based on 1000 randomly selected

locations.)

*RMSEs are computed at each of these 1000 locations and ratios

computed—the entire process (selecting points, fitting, etc) is repeated 100

times.

I 0 o K Nl

HOPS/SHP 6.348

G GP/SHP 1.072
HOPS/SP 1.374
b2 GP/SHP 1.042
HOPS/SHP ~ 2.444
a3

GP/SHP 0.990

Strasbourg 6/08

7.160
1.242
15561
1.118
2.709
1.964

7.385
1.260
1.556
1.135
2.751
1.081

8.385
1.426
1.743
1.209
3.088
1.148

89
99
83
100

70
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Introduction to Adaptive Sampling

Motivation: computer experiments can be expensive to perform.

» Optimal sampled points offers savings in time and money.

» How to sample adaptively?

= |nitial set of sample points (locations).

= Form a candidate set of points from which to sample.

= Use a learning strategy to choose new points from the candidate set.

Strasbourg 6/08
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Two Active Learning Algorithms in Machine Learning

Active Learning Mackay (ALM): select the candidate point;< with largest
predictive variance 0?, (X).

X =argmax o (X).

xeX

Active Learning Cohn (ALC): select the candidate point~x which to
maximizes the expected reduction in variance

Ac? () = E.[Ac?(%)]
—E/fo? ©)-0% ()]

Note: Both ALM and ALC are straightforward to implement with a GP
Model.

Strasbourg 6/08 40

Active Learning in SHP Model

» The best predictor E(Y, | y, y) for SHP model is
E(Yo | yv\V) = Ea,a0|y,w(E(Y0 | y,a, aov\V))

»The predictive variance

Var (Y, |y, ) = Eu,a0|y,\u(va'r(YO ly,a, (X‘OI\II))+Var(1,(xO|y,\|/(E(YO |y, a0, )

» The ALM algorithm with SHP model is straightforward to implement, but
ALC is impractical with SHP.

» Will compare performance of SHP(ALM) with GP(ALM) and GP(ALC)

Strasbourg 6/08 4
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2-d example revisited

The root mean square error (RMSE) plots as a function of sample sizes for
SHP and stationary GP models with ALM criterion over 20 replicates.

04
I

0.3

Average RMSE
0.2

0.1

0.0

— GP(ALM)-GP
— GP(ALC)-GP
— GP(ALM)-SHP
— GP(ALC)-SHP

™\ sHP@ALM).GP

SHP(ALM)-SHP

20
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T T T T
30 40 50 60

sample size

Note: Using GP with SHP
selected points gives dramatic
improvement.
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2-d example revisited—GP ALM

Strasbourg 6/08

GP ALM 20

44
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2-d example revisited—-GP ALM

GP ALM GP ALM
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2-d example revisited—SHP ALM
SHP ALM 20 SHP 20 ALM

31
. a7 .
< < 0 33
. . 38 .
. 26 . 3 ¥
28 32
~ . o~
. . . 27
. 36
18 .
" . 22 15 v 12
. . -2, .
10 * 16 10 9 19
°q 6 . o+ 6 .
3, . - R o " .
. 2 . 2 20
4 8 4 8
. 23 " 14
R N ’ a1 2% . 70" 30
T T T T T T T T T T
Strasbourg 6/68 0 2 4 6 2 0 2 4 6

45

46

6/24/2008

21



6/24/2008

Summary of SHP Model in Adaptive Sampling

» SHP model is better able to quantify uncertainty than the GP model
= SHP places next sampled points at “hot” spots.

= GP tends to place next sample points at locations that are uniformly
distributed and away from the current sample locations.

» Introducing a latent process into a GP model allows for more flexibility in
capturing salient features of the data.

» SHP with ALM is more expensive to implement.

Strasbourg 6/08 47

Derivative Process of SHP Model

Some computer experiments provide both y(+) and its first partial
derivatives at observed inputs x.

Recall the SHP model:
Y (x)=9g(x)"B+W(X)

W(x) = cexp(w(x)]Z(x) 50, 1>0.

» The Y’ process can be derived directly from the SHP model

Y'(x)=g'(x)"B+W'(x)

W) =o exp[ ”jZ(x) (T“Z(X)j‘“(x)zu

» Can model Y and Y’ together.

Strasbourg 6/08 49
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Correlation plots -SHP Derivative

tausq=1 phia=50
o o
- ] —— GP deriv (20) — — tausq=0
— phia=10 — tausg=0.1
— phia= 200 — tausg=0.5
— phia=500 — tausq=1
phia= 10000 tausq="5
S S
£ o z o \\
T O T O \
0 0
O. T T T T T T T T O. T T T T T T T T
00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 0.7
distance distance
Note: New class of isotropic oscillating correlation functions.
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Low-Rank SHP Model
SHP model (constant mean):
Y (x) =B+oexp(ta(x)/ 2)Z(x)
: , o' (X
Y'(X) =cexp (m(x)/z)(z (x)+2()Z(x)J
Low-rank SHP model :
Y(x) =B +cexp(tBw/2)Z(x)
MB'o
Y'(x) = sexp(rsmlz)(Z'(x) +22(x)j
"a=Bw anda’' =B’ o
= o~ N(0,Q)
= B(i,j)) = exp (-4, (xi—kj)z), i=1,...,nj=1,..J
= Q) = exp (-¢, (ki — kj)2 ), i=1,...J,j=1,...J
52
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Low-Rank Modeling SHP Derivative

Conditional joint density, p(y,y’|w,®), is normal with

Y G’ J Ry Ry
|:YI:||\V,(D~ N(|:G'T :|B,G |:RY'Y RY'V':|)

Likelihood:
L(w;¥,¥) = [ p(y, Y 0,0) p(w] §, )do

Importance density:

P (@] Y, Y, v) ~ N(o*,V,*)

= @* is the mode of the log-density of p(y,y’, ®|y)

=V * = (-H)'and H = Hessian of log p(y,y’, ®|y)
= Use the numerical solution of the Hessian matrix in the optimization

routine.
= Carry out importance sampling paradigm as before.

Strasbourg 6/08
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1-d test function: f(x) = 2 cos(7n x/2)e3*, x €[0,2]

n=12 w/o der n=12 w/ der

— true — true

— GP — GP
— SHP — Siffthew
HOPS
N AD e,
T T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0

w/o der with der
RMSE GP SHP GP GP.new SHP HOPS

n=5 .6700 5790 .3280 .3280  .223 .350
n=10 .2290 .1510 .0060 .0060 .0028 .145
n=15 .0170 .0038 .0016 .0013  .00038 .055
n=20 .0049 .0034 .0005 .0004 .00014 .031
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1-d test function—f(x) = 2 sin(30(x-0.9)#)*(cos(2(x-0.9))+(x-0.9)/2, x €[0,1]

n=12 w/o der n=12 w/ der
<
[=} <
— true IS A — true
— GP — GP
g i SHP g | \‘ ﬁg!:,nsew
\
=5 N _ //
g i
<
S
@
S
010 0.‘2 014 016 018 110 0.‘0 012 0.‘4 016 0.‘8 110
w/o der with der
RMSE (€] SHP GP GP.new SHP HOPS
n=12 .0660 .0580 .0500 .0420 .0280 .0780
n=18 .0460 .0450 .0110 .0110 .0078 .0370
n=24 .0320 .0260 .0022 .0022 .0010 .0130
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2-d test function—10 points

true function

Strasbourg 6/08

w/der HOPS n=10

10 00
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y SIR Model Results---RMSE

g2 ALM

0.7

— GP(ALM)-GP
™ = GP(ALM)-SHP \
— SHP(ALM)-SHP

— GP(ALM)-GP
[~ = GP(ALM)-SHP

~— SHP(ALM)-SHP
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Summary Remarks

1. Introduced a new stochastic model SHP for computer
experiments.
2. SHP offers more variety of sample path configurations than the
GP.
3. While SHP is a stationary (and isotropic) model, the sample paths
have nonstationary features.
4. Estimation for SHP model is more difficult— low rank latent
processes offer a promising short-cut.
5. SHP model does a better job of quantifying uncertainty than GP
model. SHP is more likely to place next sample points at hot spots.
6. Incorporating derivative information can improve performance
considerably for SHP (and GP).
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