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Influenza epidemics

1) Short term (morbidity data):
data assimilation by particle filtering

2) Long term (mortality data):
extreme value analysis of epidemics
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Particle Filters

The different Kalman filters involve a Gaussian distribution
assumption — at least for the update.
This not the case for particle filters.

In particle filters the update step is based on
sequential importance resampling.



Sequential importance resampling
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Influenza epidemics

Influenza infects from 5% to 20% of the population during
an epidemic.
Inserm Sentinelles network:

1200 general practitioners reporting once a week.
The conditions leading to an outbreak are not well
understood.
Early detection of an epidemic could limit its impact.



Data: reported cases by general practitioners

No virological analysis:
diagnostic of influenza-like illness (ILI).
Many infected people do not consult (~ 50%).
Irregular logging in by doctors:

absence of cases is not reported,
accumulation of cases, etc.
=⇒ need for data pre-processing.
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Stochastic epidemiological model

Susceptible: the people free from the disease and without
specific immunity,

Infected: the people infected by the virus and who are still
infectious,

Removed: the people who have recovered from their illness,
are no longer infectious and are immunized.

SIR model: a partition (varying with time) of the total
population (which is assumed constant),

N(x) = St(x) + It(x) + Rt(x)

where x is location in geographical space.



Epidemic state: a hidden Markov chain

Two epidemic states: Yt ∈ {1, 2}
Transition probabilities: P(Yt = j | Yt−1 = i) = Pij

Contamination probabilities for S-I contact: τt ∈ τ1, τ2
(change of dynamics during epidemics)



Regionalized SIR model

The new cases in a region x result from contacts between
susceptibles at x and infectives from all regions x′.
Each susceptible avoids contamination during a time
interval with probability:

q(x, t) =
∏
x′

(
1 − τt

It(x′)
N(x′)

)at (x,x′)

where at(x, x′) is the contact rate, known from the
population fluxes.
Number of new infectives at x:
binomial with parameters S(x) and 1 − q(x, t).



Regionalized SIR model

Sharp increase of the probability of contamination during
epidemic episodes, modeled for each region: τt(x)

Infected It(x) split according to time since infection:
I0
t (x), ..., I6

t (x)

Recovery probability for each category at a time step is:
pk

rec ; k = 1, · · · , 7 with p7
rec = 1

(since infection cannot last more than 7 days).
Relation between declarations and the epidemic state:
the number of declarations in x is conditionally binomial,
with parameters St−1(x)− St(x) and pdecl(x)

Population fluxes:
described using an origin-destination matrix based on a
gravitational model (in analogy with Newton’s laws).
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Early detection problem

Reported cases: � Paris (75) � Hauts de Seine (92)
Epidemic state: � common to both departements



Sentinelles data (example)
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Reported cases of ILI: 4 regions
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Estimation of the two-state Markov chain
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Estimation of the number of infected individuals
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Early detection of the epidemics...
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Conclusion

The particle filter is an efficient tool for the early detection
of a change in epidemic state.
Improvements are needed in the underlying SIR model and
its parameterization.
An important side-product of the system is that it provides
an estimate of the total number of infected people at a
given time for a given region.
As a scenario simulator it can also provide an error
estimate in the assessment of the severeness of an
epidemy.



Perspectives I
Inclusion of climate parameters. Alternative filters

Knowing that a virus is likely to be already present at the
beginning of a winter period:

there is a need to characterize the meteorological
configurations leading to an outbreak on the basis of the
23 years of available weekly Sentinelles data,
relevant climatic parameters could be included into the
epidemics’ early detection system.

As the dimensionality of the system grows, the particle filter is
in danger of becoming impracticable. Alternatives can be:

the Ensemble Kalman Filter,
the Marginalized Particle Filter (for mixed linear/non-linear
state space models).



Perspectives II
Other diseases

The system can easily be adapted to handle other diseases
than influenza:

gastro-enteritis, chickenpox
(also monitored by Sentinelles)
bacterial meningitis
(sub-sahelian zone: meningitis belt; China)
. . .



Influenza epidemics

1) Short term: data assimilation by particle filtering

2) Long term (mortality data):

extreme value analysis of epidemics



Extreme value analysis of
US P&I mortality data

under consideration of demographic effects

Huey Chyi LEE, Hans WACKERNAGEL
Equipe de Géostatistique — MINES ParisTech

(with input from: Fabrice CARRAT, Magali LEMAITRE, Mark WILSON)



Motivation

Epidemiology is intimately linked to demography.
Studying epidemics at the scale of several decades
requires a detailed analysis of the evolution of the age
distribution in the same period.
E.g. above 20 years old the P&I mortality increases
exponentially with age.
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Demography: exploratory analysis

We consider the four most populated states of the United
States.
Population is subdivided into 19 age-groups.
We consider the evolution between the 10-year censuses
since 1970.
We finally compute the average age for people 65 and
older in each year.



Population: 19 age groups

00 = 0 years
01 = 1-4 years
02 = 5-9 years
03 = 10-14 years
04 = 15-19 years
...

14 = 65-69 years
15 = 70-74 years
16 = 75-79 years
17 = 80-84 years
18 = 85 years and older



California population: age-group evolution
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California population by age-groups
Evolution over 4 decades
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Comparing California and Texas
Population evolution over 4 decades

California population: gfdsg Texas
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Comparing California and New York
Population evolution over 4 decades

California population: gfdsg New York
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Comparison between California and Florida
Population evolution over 4 decades

California population: gfdsg Florida
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Average age for 65 and above
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Mortality data
P&I proportion of total mortality

Proportion of deaths due to Pneumonia & Influenza among
the total mortality in the age group.
The age-group analysed consists of people of age 65 and
above.
The block maxima of P&I mortality are taken in each
July-June period.

We need to take account of the effect of aging of the US
population over the last decades.
In the non-stationary model we will thus use the
average-age above 65 as covariate.
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California: maxima of P&I mortality

Time series

myear

ex
tr

em
eC

A
m

or
t

0.04

0.06

0.08

0.10

0.12

1970 1975 1980 1985 1990 1995

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ljHistogram

extremeCAmort

P
er

ce
nt

 o
f T

ot
al

0

5

10

15

20

0.04 0.06 0.08 0.10 0.12

ffhjfkjglj;k



Assimilex Workshop • Strasbourg 2008

Demography P&I mortality data Conclusion and perspectives

Motivation: extreme value analysis

Frequency and intensity of extremes
Return period:
- how likely is the advent of an unusual weather event of a
given type within the next decade/century?
- what about a major epidemic?

Return level:
- what level could the event reach as compared to past
events?

Extreme value analysis
A rationale to compute the probability and level of events
within and beyond the range of past measurements.
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Frequency and intensity of extremes
Return period:
- how likely is the advent of an unusual weather event of a
given type within the next decade/century?
- what about a major epidemic?

Return level:
- what level could the event reach as compared to past
events?

Extreme value analysis
A rationale to compute the probability and level of events
within and beyond the range of past measurements.



Modeling extreme influenza epidemics

As there is only one epidemic per year we use the block
maxima approach.
Non-stationarity in the location and scale parameters of the
generalized extreme value distribution (GEV) will be
considered.



Generalized Extreme Value distribution
The generalized extreme value distribution (family):

G(x) = exp

(
−
[
1 + ξ

(
x − µ

σ

)]−1/ξ
)

defined on {x : 1 + ξ(x − µ)/σ > 0}.

µ : location parameter
σ : scale parameter
ξ : shape parameter determines the rate of decay in

the tail.

Fact
The case ξ = 0 corresponds to the Gumbel distribution
(which has no shape parameter).



Domains of attraction

Gumbel domain (ξ = 0): The distribution of maxima of
exponential, normal, lognormal, logistic, gamma
distributed variables tends asymptotically to a
Gumbel distribution.

Fréchet domain (ξ > 0): Asymptotic distribution for maxima of
Pareto, Cauchy, t, F distributed variables. . .

Weibull domain (ξ < 0): Asymptotic distribution for maxima of
uniform, beta, Burr distributed variables. . .

Extreme value paradigm
The extreme value paradigm consists in modeling the tails of a distribution F
using asymptotically motivated distributions G of the maxima. It is actually
not necessary to know F , the distribution of the complete data set.



Domains of attraction

Gumbel domain (ξ = 0): The distribution of maxima of
exponential, normal, lognormal, logistic, gamma
distributed variables tends asymptotically to a
Gumbel distribution.

Fréchet domain (ξ > 0): Asymptotic distribution for maxima of
Pareto, Cauchy, t, F distributed variables. . .

Weibull domain (ξ < 0): Asymptotic distribution for maxima of
uniform, beta, Burr distributed variables. . .

Extreme value paradigm
The extreme value paradigm consists in modeling the tails of a distribution F
using asymptotically motivated distributions G of the maxima. It is actually
not necessary to know F , the distribution of the complete data set.



Return level plot
Return period:

mean waiting time between two extreme events.
Return level:

the level associated with a return period.

Example
A centenary flood is a flood expected to occur only once in a century.

−2 0 2 4 6

0
5

10
15

−log( −log(1−p) )

R
et

ur
n 

le
ve

l

Gumbel
GEV: shape=  0.2
GEV: shape= −0.2



GEV fit to California P&I mortality
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Profile likelihood for return levels
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Gumbel model for California P&I mortality
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Considering ξ = 0 provides also a good fit.
The confidence intervals for the return levels are much
narrower ! (Parsimonious model: one parameter less!)
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Non-stationary extreme value modeling
Introducing covariates: year as well as average-age above 65

Model 1: linear trend for location parameter.
Model 2: linear trend for location parameter and

exponential trend for scale parameter.
Model 3: linear trend and

linear dependence on average-age
for location parameter.



Summary table: California non-stationary fit

Model 1: µ depends

linearly on year

Model 2:σ depends

exponentially on year

Model 3: Linear dependence of

µ on year and average age

Calculated Maximum

likelihood estimates

µ = 0.06+0.19 ·year

σ=0.01

ξ=0.1

µ = 0.06 + 0.2 · year

σ =
exp(−4.4 + 1.1 · year)

ξ=0.2

µ =
−1.66 + 0.1 · year − 0.02 · age

σ=0.01

ξ=0.08

Negative

log-likelihood

-84.9 -84.2 -85.4

Deviance from GEV

model

D1=2{84.9-74.1}

=21.6

D2=2{84.2-74.1}

=20.2

D3=2{85.4-74.1}

=22.6



Residual diagnostic plots for California
The 3 non-stationary models
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Conclusion: non-stationary model

California P&I mortality is best fitted with the
non-stationary GEV Model 2:
- location parameter µ depends linearly on time,
- scale parameter σ depends exponentially on time.
That model seems to provide better results than
the inclusion of average-age ≥ 65 as covariate.
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Perspectives

This preliminary study is now being improved for the following
aspects:

Use P&I mortality rate
(instead of P&I proportion of total mortality).
Consider several P&I mortality age-groups above 65.
Duplicate study in France.
Go back until 1945 to include the 1957 (asian flu) epidemic.
Consider a spatially non-stationary model.
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