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Bayesian Dynamic Models Hidden Markov Models and State-Space Models

Hidden Markov Model (HMM)

The Hidden State Process {Xk}k≥0 is a Markov chain with initial
probability density function (pdf) t0(x) and transition
density function t(x, x′) such that*

p(x0:k) = t0(x0)
k−1∏
l=0

t(xl, xl+1) .

The Observed Process {Yk}k≥0 is such that the conditional joint
density of y0:k given x0:k has the conditional
independence (product) form

p(y0:k|x0:k) =
k∏

l=0

`(xl, yl) .

*x0:k denotes the collection x0, . . . , xk.



Bayesian Dynamic Models Hidden Markov Models and State-Space Models

Graphical Representation of the Dependence Structure

The HMM can be represented pictorially by a Bayesian network
which depicts the conditional independence relations:
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Bayesian Dynamic Models Hidden Markov Models and State-Space Models

State-Space Form

Here the model is described in a functional form:

Xk+1 = a(Xk, Uk) ,

Yk = b(Xk, Vk) ,

where {Uk}k≥0 and {Vk}k≥0 are mutually independent i.i.d.
sequences of random variables (also independent of X0).

Remark

The term state-space model often refers to the case where a and b
are linear functions of their arguments (and {Uk}, {Vk}, X0 are
jointly Gaussian).
Likewise, the term HMM is sometimes used (not in this talk!)
more restrictively for the case where X is a finite set.
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HMM Examples
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Bayesian Dynamic Models Extensions

Beyond HMMs

For sequential Monte Carlo methods, the key point is the structure
of the conditional p(x0:k|y0:k): the methods described in this talk
directly apply in cases where the conditional may be factored as

p(x0:k|y0:k) = p(x0|y0)
k−1∏
l=0

p(xl+1|xl, y0:l+1)

Example: Switching Autoregressive Model

If the observation equation is replaced by

Yk = b(Xk)Yk−1 + Vk

then p(x0:k|y0:k) = p(x0|y0)
∏k−1

l=0 p(xl+1|xl, yl+1, yl)



Bayesian Dynamic Models Extensions

Hierarchical HMMs
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Bayesian network for a hierarchical HMM: The state sequence {Xk} is

composed of two chains {Ck} and {Zk} that evolve in parallel and the

observation Yk depends on both component of the chain.



Bayesian Dynamic Models Extensions

In hierarchical HMMs, sequential Monte Carlo is applicable to the
marginalized posterior p(c0:k|Y0:k) (despite the fact that it doesn’t
factorizes as previously requested due to the marginalization of
Z0:k) when

p(zk|c0:k, y0:k) is computable

Conditionally Gaussian Linear State-Space Model

Dynamic equation

Zk+1 = A(Ck+1)Zk + R(Ck+1)Uk

Observation equation

Yk = B(Ck)Zk + S(Ck)Vk

where {Ck} is a finite-valued Markov Chain.
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The Filtering and Smoothing Recursions Basic Recursions

Tasks of interest for HMMs

State Inference How to make probabilistic statements on the state
sequence given the model and the observations?

Filtering πk|k(xk) = p(xk|Y0:k)
Prediction πk+1|k(xk+1) = p(xk+1|Y0:k)
Smoothing π0:k|k(x0:k) = p(x0:k|Y0:k)

(fixed-interval: πl|k for l = 0, . . . , k;
fixed-lag: πk|k+∆ for k = 0, . . . )

Parameter Inference How to tune the model parameters based on
the observations?



The Filtering and Smoothing Recursions Basic Recursions

Recursive Structure of the Joint Smoothing Density

By Bayes’ rule

π0:k+1|k+1(x0:k+1)

= (Lk+1(Y0:k+1))
−1 t0(x0)

k∏
l=0

t(xl, xl+1)
k+1∏
l=0

`(xl, Yl)

=
(

Lk+1(Y0:k+1)
Lk(Y0:k)

)−1

π0:k|k(x0:k) t(xk, xk+1)`(xk+1, Yk+1) ,

where the normalization constants Lk, i.e., the likelihood of the
observations, is usually not computable.



The Filtering and Smoothing Recursions Basic Recursions

The Joint Smoothing Recursion

π0:k+1|k+1(x0:k+1) =
(

Lk+1

Lk

)−1

π0:k|k(x0:k) t(xk, xk+1)`(xk+1, Yk+1)

The marginal recursion may be decomposed in two steps:

Prediction

πk+1|k(xk+1) =
∫

πk|k(xk)t(xk, xk+1)dxk

Filtering

πk+1|k+1(xk+1) =
(

Lk+1

Lk

)−1

πk+1|k(xk+1)`(xk+1, Yk+1)



The Filtering and Smoothing Recursions Computational Filtering and Smoothing Approaches

Exact Implementation of the Filtering and Smoothing
Recursions

When X is finite (Baum et al., 1970) The associated
computational cost is |X|2 per time index (for the
filtering part).

In linear Gaussian state-space models (Kalman & Bucy, 1961) The
filtering and prediction recursion is implemented by
the Kalman filter (Lk+1/Lk is interpreted as the
likelihood of the (k + 1)-th innovation).

Such finite dimensional filters exist only in very specific models
(see, e.g., Runggaldier & Spizzichino, 2001)



The Filtering and Smoothing Recursions Computational Filtering and Smoothing Approaches

Approximate Implementations of the Filtering and
Smoothing Recursions

EKF (Extended Kalman Filter) Linearization-based approach
(for non-linear Gaussian state space models)

UKF (Unscented Kalman Filter, Julier & Uhlmann, 1997)
Point-based approach

Variational Methods (e.g., Valpola & Karhunen, 2002) Based
on parametric density approximation arguments.

Exact Suboptimal Filters In particular, Kalman filter viewed as
minimum mean square error linear filtering.



The Filtering and Smoothing Recursions Computational Filtering and Smoothing Approaches

Sequential Monte Carlo (SMC)

Sequential Monte Carlo (sometimes called particle filtering) is
a method which uses pseudo-random simulations to produce
successive populations of weighted “particles” X1:n

k and
associated weights W 1:n

k such that

n∑
i=1

W i
kf(Xi

k) ≈
∫

f(x)πk|k(x)dx ,

for all functions f of interest.

The SMC process is sequential in the sense that given X1:n
k ,

W 1:n
k and the observations Y0:k+1, X1:n

k+1 and W 1:n
k+1 are

conditionally independent of previous populations of particles.

SMC is based on importance sampling and resampling.
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Sequential Importance Sampling Self-Normalized Importance Sampling

Self-Normalized Importance Sampling, or IS (Hammersley
& Handscomb, 1964)

IS is a weighted form of Monte Carlo approximation, in which
expectations under a target pdf π

π(f) = Eπ[f(X)]

are estimated as

π̂n
q (f) =

n∑
i=1

ωi∑n
j=1 ωj︸ ︷︷ ︸
W i

f(Xi) ,

where

Xi ∼ iid q,

ωi = π
q (Xi).

This form of IS (sometimes also called Bayesian IS) does not
necessitate that π be properly normalized.



Sequential Importance Sampling Self-Normalized Importance Sampling

Performance of IS

Assuming that Eπ[π
q (X)(1 + f2(X))] < ∞, π̂n

q (f) is consistent
and asymptotically normal, with asymptotic variance given by

υq(f) = Eπ

[
π

q
(X) (f(X)− π(f))2

]
.

The asymptotic variance can be estimated from the IS sample by

υ̂n
q (f) = n

n∑
i=1

(W i)2{f(Xi)− π̂n
q (f)}2 ,

where W i = ωi/
∑n

j=1 ωj are the normalized weights.



Sequential Importance Sampling Self-Normalized Importance Sampling

Elements of proof
Consistency If π̄ = π/c, where c =

∫
π(x)dx, is a pdf,

Eq[ωif(Xi)] = Eq

[
π

q
(X)f(X)

]
= cEπ̄[f(X)] .

CLT

√
n(π̂n

q (f)− π̄(f)) =
1√
n

∑n
i=1 ωi(f(Xi)− π̄(f))

1
n

∑n
j=1 ωj

and Var[ωi(f(Xi)− π(f))] = c2 Eπ̄[ π̄
q (X)(f(X)− π(f))2].

Empirical estimate

υ̂n
q (f) =

n∑
i=1

W i
π̄
q (Xi)

1
n

∑n
j=1

π̄
q (Xj)

{f(Xi)− π̂n
q (f)}2



Sequential Importance Sampling Self-Normalized Importance Sampling

Empirical diagnostic tools for IS

Effective sample size

ESSn
q =

[
n∑

i=1

(
W i
)2]−1

1 1 ≤ ESSn
q ≤ n

2 n/ ESSn
q is an estimate of Eπ[π

q (X)] which is the maximal IS
asymptotic variance for functions f such that
|f(x)− π(f)| ≤ 1 (note: these functions have maximal Monte
Carlo variance of 1 under π ).

3 n/ ESSn
q −1 is an estimator of the χ2 divergence∫

(π(x)− q(x))2

q(x)
dx

(n/ ESSn
q −1 is also the square of the empirical coefficient of

variation associated with the normalized weights).



Sequential Importance Sampling Self-Normalized Importance Sampling

Another Empirical diagnostic tools for IS

(Shannon) Entropy of the Normalized Weights

ENTn
q = −

N∑
i=1

W i log(W i)

1 1 ≤ exp(ENTn
q ) ≤ n

2 exp(ENTn
q )/n is an estimate of exp[−K(π||q)], where

K(π||q) is the Kullback-Leibler divergence between π and q.



Sequential Importance Sampling Self-Normalized Importance Sampling

Optimal IS Instrumental Density

When considering large classes of functions f , IS generally appears
to perform worse than Monte Carlo under π (e.g., for functions
such that |f(x)− π(f)| ≤ 1, the maximal Monte Carlo asymptotic
variance is 1 whereas, the maximal IS asymptotic variance is
Eπ[π

q (X)] which is strictly larger than 1 by Jensen’s inequality,
unless q = π).

However, for a fixed function f , the optimal IS density is not π but

|f(x)− π(f)|π(x)∫
|f(x′)− π(f)|π(x′)dx′

as Cauchy-Schwarz inequality implies that

Eπ

[
π

q
(X) (f(X)− π(f))2

]
Eπ

[ q

π
(X)

]
︸ ︷︷ ︸

=1

≥ E2
π [|f(X)− π(f)|] .



Sequential Importance Sampling Self-Normalized Importance Sampling

Example (Bayesian Posterior)

Consider a simple model in which

X0 ∼ N(1, 22) ,

Y0|X0 ∼ N(X2
0 , σ2) .

And apply IS to compute expectations under the posterior for
Y0 = 2, using the prior as instrumental pdf.
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Sequential Importance Sampling Sequential Importance Sampling (SIS)

Back to the Filtering and Smoothing Problem

How to estimate expectations under the posterior
π0:k|k(x0:k) = p(x0:k|Y0:k) in the model

p(x0:k) = t0(x0)
k−1∏
l=0

t(xl, xl+1) ,

p(y0:k|x0:k) =
k∏

l=0

`(xl, yl) ,

using a sequential algorithm ?



Sequential Importance Sampling Sequential Importance Sampling (SIS)

Sequential Smoothing through IS, or SIS (Handschin & Mayne,
1969-1970)

1 Propose n independent particle trajectories {Xi
0:k+1}1≤i≤n

under a Markovian scheme such that

p(x0:k+1) = ρ0:k+1(x0:k+1) = q0(x0)
k∏

l=1

ql(xl, xl+1) .

2 Compute importance weights sequentially:

ωi
k+1 =

π0:k+1|k+1(Xi
0:k+1)

ρ0:k+1(Xi
0:k+1)

= ωi
k×

t(Xi
k, X

i
k+1)`(X

i
k+1, Yk+1)

qk(Xi
k, X

i
k+1)

.

Then,
n∑

i=1

ωi
k+1∑n

j=1 ωj
k+1

f(Xi
0:k+1)

is an estimate of E [f(X0:k+1)|Y0:k+1].



Sequential Importance Sampling Sequential Importance Sampling (SIS)

FILT.

INSTR.

FILT. +1

One step of the SIS algorithm with just seven particles.



Sequential Importance Sampling Sequential Importance Sampling (SIS)

Choice of the Instrumental Kernel

The so-called “optimal” choice of qk, consists in setting

qk(x, x′) = qopt
k (x, x′) =

t(x, x′)`(x′, Yk+1)∫
t(x, x′′)`(x′′, Yk+1)dx′′

for which the normalized weights are predictable, i.e. W i
k+1 depend

on Xi
k but not Xi

k+1 (hence, for this instrumental kernel the
conditional variance cancels).

This is however usually not feasible and common choices include

1 the prior qk = t (and then ωi
k ∝ `(Xi

k, Yk))
2 approximations (sometimes heuristic) to qopt

k (moment
matching, use of EKF or UKF, . . . ),

3 tuning parameters of qk so as to maximize the effective
sample size or entropy criterions



Sequential Importance Sampling Weight Degeneracy

Weight Degeneracy

Empirically, the SIS approach always fail when the time-horizon k
is more than a few tens; the IS weights ω1:n

k usually become very
unbalanced with a few weights dominating all the other

To understand why it is the case, consider the (silly) model where{
t(x, x′) = t(x′) = t0(x′) , (Independent states)

`(x, y) = `(y) , (Non-informative observations)

and the instrumental kernel is such that ql(x, x′) = q0(x′) = q(x′)



Sequential Importance Sampling Weight Degeneracy

Weight Degeneracy (Contd.)

For a function of interest f that only depends on the last
coordinate xk of the trajectory x0:k, the asymptotic variance of the
SIS approximation to πk|k(f) = Eπk|k [f(X)] is given by

υk(f) =∫
· · ·
∫ ( k∏

l=0

t

q
(xl)

)2 (
f(xk)− πk|k(f)

)2 k∏
l=0

q(xl) dx0 . . . dxk

=
(∫ t

q
(x)t(x)dx︸ ︷︷ ︸

>1

)k
∫

t

q
(x)
(
f(x)− πk|k(f)

)2
t(x)dx .

In practise, this situation can usually be detected by monitoring the
effective sample size or entropy criterions, which become
abnormally small.



Sequential Importance Sampling Weight Degeneracy

Application to the Stochastic Volatility Model

This is a non-linearly observed state-space model used to represent
log-returns in quantitative finance:

Xk+1 = φXk + σUk |φ| < 1 ,

Yk = β exp(Xk/2)Vk ,

where

{Uk}k≥0 and {Vk}k≥0 are independent standard Gaussian
white noise processes.

X0 ∼ N(0, σ2/(1− φ2).

We consider trajectories of length 50 simulated under the model
with φ = 0.98, σ = 0.17 and β = 0.64 and apply SIS with qk = q
and n = 1, 000 particles.



Sequential Importance Sampling Weight Degeneracy

Typical Evolution of ESS for a Single Trajectory
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Sequential Importance Sampling Weight Degeneracy

Evolution of ESS When Averaging Over Trajectories
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Sequential Importance Sampling Weight Degeneracy

Typical Evolution of the Weight Distribution
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Filtering Results
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Sequential Importance Sampling with Resampling Sampling Importance Resampling

In IS, it is indeed possible to reset the weights to a constant value
at the price of a, usually moderate, increase in variance.

Sampling Importance Resampling (Rubin, 1987)

Replace {X1:n,W 1:n} by {X̃1:Ñ , W̃ 1:Ñ} such that the discrepancy

between the resampled weights {W̃ 1:Ñ} is reduced and∑Ñ
i=1 W̃ i

kδX̃i is a good approximation to
∑n

i=1 W iδXi .

In general the resampling is random and subject to the constraints
Ñ = n ,

W̃ i = 1/Ñ ,

E
[∑Ñ

i=1 1{X̃i = Xj}
∣∣∣X1:n,W 1:n

]
= ÑW j (1 ≤ j ≤ n).

The last condition is often referred to as unbiasedness or proper
weighting.



Sequential Importance Sampling with Resampling Sampling Importance Resampling

Multinomial Resampling

1 Draw, conditionally independently given {X1:n,W 1:n}, n
discrete random variables (J1, . . . , Jn) taking their values in
the set {1, . . . , n} with probabilities (W 1, . . . ,Wn).

2 Set, for i = 1, . . . , n, X̃i = XJi
and W̃ i = 1/n.

Let Ci =
∑n

j=1 1{X̃j = Xi}
(i = 1, . . . , n) denote the number of
times each particle is duplicated in the
resampling process. The counts
(C1, . . . , Cn) follow a multinomial
distribution with parameters n,
(W 1, . . . ,Wn), conditionally to
{X1:n,W 1:n} .

INSTRUMENTAL

TARGET

Resampled particles



Sequential Importance Sampling with Resampling Sampling Importance Resampling

Some Results on SIR

1 X̃i D−→ π are n →∞ (some extensions of this result)

2
1
n

∑n
i=1 f(X̃i) is an asymptotically normal estimator of π(f)

(assuming Eπ[π
q (X)(1 + f2(X)) + f2(X)] < ∞) with

asymptotic variance given by

υ̃q(f) = Eπ

[
π

q
(X) (f(X)− π(f))2

]
︸ ︷︷ ︸

υq(f)

+Eπ

[
(f(X)− π(f))2

]
︸ ︷︷ ︸

Varπ [f(X)]

If n is sufficiently large, the cost of resampling is very moderate in
situation that are challenging for IS, i.e., when
υq(f) � Varπ[f(X)].



Sequential Importance Sampling with Resampling Sampling Importance Resampling

Elements of Proof

For a bounded function f ,

E
[
f(X̃i)

]
= E

[
E
(

f(X̃i)
∣∣∣X1:n,W 1:n

)]
= E

 n∑
j=1

W jf(Xj)


and

∑n
j=1 W jf(Xj) a.s.−→ π(f) (|

∑n
j=1 W jf(Xj)| ≤ ‖f‖∞).

For the CLT, an ingredient of the proof is that

n Var

[
1
n

n∑
i=1

f(X̃i)

]
= n Var

[
n∑

i=1

W if(Xi)

]
︸ ︷︷ ︸

→υq(f)

+ E

[
n∑

i=1

W if2(Xi)−

(
n∑

i=1

W if(Xi)

)2

︸ ︷︷ ︸
a.s.−→Varπ [f(X)]

]
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There Exists Resampling Schemes with Reduced Variance

Residual Resampling

For i = 1, . . . , n set

Ci =
⌊
nW i

⌋
+ C̄i ,

where C̄1, . . . , C̄n are distributed, conditionally to W 1:n, according
to the multinomial distribution Mult(n−R, W̄ 1, . . . , W̄n) with
R =

∑n
i=1bnW ic and

W̄ i =
nW i − bnW ic

n−R
, i = 1, . . . , n .

This scheme is obviously unbiased and induces an additional
variance which is always lower than Varπ[f ] (the same is true for
the bootstrap filter based on residual resampling, Douc &
Moulines, 2005).



Sequential Importance Sampling with Resampling Sequential Importance Sampling with Resampling (SISR)

The Simplest Functional Algorithm (Gordon et al., 1993)
Regular resampling is added to avoid weight degeneracy and to
guarantee the long-term (k →∞) stability of the particle filter.

The Bootstrap filter

1 Given X̃1:n
k , propose new positions Xi

k+1 independently under

the prior dynamic t(X̃i
k, ·), for i = 1, . . . , n;

2 Compute the weights ωi
k+1 = `(Xi

k+1, Yk+1), for i = 1, . . . , n

and normalize them (W i
k+1 = ωi

k+1/
∑n

j=1 ωj
k+1);

3 Resample to obtain X̃1:n
k+1, e.g., by drawing independent

indices J i
k+1 such that P

(
J i

k+1 = j
∣∣W 1:n

k+1

)
= W j

k+1 and

setting X̃i
k+1 = X

Ji
k+1

k+1 (Multinomial Resampling).

To avoid unnecessary resampling, 3 can be used only when the
ESS statistics of the weights W 1:n

k+1 falls below a threshold.



Sequential Importance Sampling with Resampling Sequential Importance Sampling with Resampling (SISR)
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SIS (left) and SISR (right).



Sequential Importance Sampling with Resampling Case Study

AR(1) Model Observed in Pulsated Noise

We consider a simple Gaussian linear state-space model to allow
for comparison with analytical computations:

Xk+1 = φXk + σUk ,

Yk = Xk + ηkVk ,

where φ = 0.99, σ = 0.2, and ηk is varied (periodically) between
0.1 and 3.

The observation sequence is simulated from the model but we also
consider the influence of an out-of-model outlying observation at
time 460.



Sequential Importance Sampling with Resampling Case Study
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Sequential Importance Sampling with Resampling Case Study

Sequential Importance Sampling (prior kernel, n = 100)
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Sequential Importance Sampling with Resampling Case Study

Bootstrap Filter (prior kernel, n = 100, resamp. ESS < 10)
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Sequential Importance Sampling with Resampling Case Study

Bootstrap Filter (prior kernel, n = 100, resamp. always)
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Sequential Importance Sampling with Resampling Case Study

Bootstrap Filter (prior kernel, n = 100, resamp. ESS < 10)
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Sequential Importance Sampling with Resampling Case Study

Bootstrap Filter (n = 5, 000, resamp. ESS < 500)
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Sequential Importance Sampling with Resampling Case Study

Conclusions

With resampling, SISR achieves long-term stability.

The increase in variance due to resampling is very moderate,
especially when resampling is applied only when needed.

The method is still sensitive to outliers, model
misspecification, etc., which may necessitate the use of more
elaborate instrumental kernels.
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The Auxiliary Particle Filter A New Interpretation of SISR

Alternatives to SISR

The resampling step in the SISR algorithm can be seen as a
method to sample approximately under the distribution
obtained when plugging the current particle approximation
into the filtering update.

This alternative way of thinking about resampling suggests
several sequential Monte Carlo variants.



The Auxiliary Particle Filter A New Interpretation of SISR

The Filtering Recursion Revisited

Recall that (with more general notations)

πk+1|k+1(f) =

∫ ∫
f(x′)πk|k(dx)t(x, dx′)`(x′, Yk+1)∫ ∫

πk|k(dx)t(x, dx′)`(x′, Yk+1)
.

Now, consider what happens when considering the empirical
filtering distribution

π̂n
k|k =

n∑
i=1

W i
kδXi

k

as an approximation to πk|k and plugging it into the previous
relation.



The Auxiliary Particle Filter A New Interpretation of SISR

Filtering Target

One obtains a mixture target pdf

πn
k+1|k+1(x) =

∑n
i=1 W i

kt(X
i
k, x)`(x, Yk+1)∑n

i=1

∫
W i

kt(X
i
k, x)`(x, Yk+1)dx

=
n∑

i=1

W i
kγk(Xi

k)∑n
j=1 W j

kγk(X
j
k)

qopt
k (Xi

k, x) ,

where

γk(x) =
∫

t(x, dx′)`(x′, Yk+1) ,

qopt
k (x, x′) =

t(x, x′)`(x′, Yk+1)
γk(x)

.



The Auxiliary Particle Filter A New Interpretation of SISR

Filtering Step
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The Auxiliary Particle Filter A New Interpretation of SISR

The previous reinterpretation of SISR shows that resampling and
trajectory update can be integrated into a single global IS step
that targets πn

k+1|k+1.

But,

how to chose the global instrumental kernel
qglob
k ((X1:n

k ,W 1:n
k ), x)?

as πn
k+1|k+1 is an n-mixture density, evaluation of the IS

weights may necessitate of the order of n2 computations.

Remark The global instrumental kernel that corresponds to the
bootstrap filter (with resampling) is

qglob
k ((X1:n

k ,W 1:n
k ), x) =

n∑
i=1

W i
k t(Xi

k, x) .



The Auxiliary Particle Filter The Auxiliary Trick

The Auxiliary Trick
Assume that the global instrumental kernel is a mixture of the form

qglob
k ((X1:n

k ,W 1:n
k ), x) =

n∑
i=1

τ i
kqk(Xi

k, x) .

To avoid the n2 update, one can use data augmentation,
introducing the mixture component as an auxiliary variable:

qaux
k ((X1:n

k ,W 1:n
k ), (i, x)) = τ i

kqk(Xi
k, x)

defines a pdf on {1, . . . , n} × X, whose marginal is
qk((X1:n

k ,W 1:n
k ), x).

Likewise,

πn,aux
k+1|k+1(i, x) =

1
c
W i

kt(X
i
k, x)`(x, Yk+1) ,

where c =
∑n

i=1

∫
W i

kt(X
i
k, x)`(x, Yk+1)dx, is the auxiliary target

with marginal πn
k+1|k+1(x).



The Auxiliary Particle Filter The Auxiliary Trick

Auxiliary Sampling Algorithm (Pitt & Shephard, 1999)

Auxiliary Particle Filter

Repeat n times independently, for i = 1, . . . , n,

1 Sample an index J i in {1, . . . , n} with probabilities
(τ1

k , . . . , τn
k ).

2 Sample a position Xi
k+1 from qk(XJi

k , x).
3 Compute the (unnormalized) auxiliary IS weight

ωi
k+1 =

W Ji

k t(XJi

k , X i
k+1)`(X

i
k+1, Yk+1)

τJi

k qk(XJi

k , X i
k+1)

.



The Auxiliary Particle Filter The Auxiliary Trick

The Auxiliary View Provides New Degrees of Freedom
In the original auxiliary particle filter, Pitt & Shephard used qi

k = t
and proposed an heuristic rule for setting the weights τ i

k based on
Xi

k and Yk+1.

The auxiliary IS weight may also be rewritten in normalized form as

ωi
k+1 =

W Ji

k γk(XJi

k )qopt
k (XJi

k , X i
k+1)

τJi

k t(XJi

k , X i
k+1)

.

showing that the optimal choice of τ i
k, in the sense of minimizing

the conditional (to X1:n
k ,W 1:n

k ) variance of
∑n

i=1 W i
k+1f(Xi

k+1)
for a function f , is an instance of the Neyman allocation problem.
And thus the optimal choice is

τ i
k ∝ W i

kγk(Xi
k)
√

υi(f)

where υi(f) is the asymptotic variance of IS for f , target
qopt
k (Xi

k, x), and, instrumental pdf t(Xi
k, x) (Olsson et al., 2007).
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Smoothing Using the Ancestry Tree
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Smoothing Using the Ancestry Tree
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Smoothing Using the Ancestry Tree
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Smoothing Using the Ancestry Tree

5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

time index

st
at

e

5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

time index

st
at

e

Predictive densities and evolution of the particle ancestry tree
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Smoothing Using the Ancestry Tree
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Smoothing Using the Ancestry Tree

5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

time index

st
at

e

5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

time index

st
at

e

Predictive densities and evolution of the particle ancestry tree
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Smoothing Backward Reweighting

Backward Smoothing Recursion

There are several options for computing the marginal smoothing
pdfs πl|k such that

πl|k(x) = p(xl|Y0:k)

for l = 0, . . . , k.

The backward smoothing recursion is based on the observation
that the conditional time-reversed state sequence has a
non-homogeneous Markovian structure (for conditionally Gaussian
linear state-space models, this is known as RTS, or
Rauch-Tung-Striebel, 1965, smoothing).



Smoothing Backward Reweighting

Backward Smoothing Recursion

Define the backward smoothing kernels:

bl(xl+1, xl) =
πl|l(xl)t(xl, xl+1)∫
πl|l(x)t(x, xl+1)dx

,

for l = k − 1, k − 2, . . . , 0.

Then

πl|k(xl) =
∫

πl+1|k(xl+1)bl(xl+1, xl)dxl+1 .

As
p(xl, xl+1|Y0:k) = p(xl|xl+1, Y0:k)︸ ︷︷ ︸

p(xl|xl+1, Y0:l)︸ ︷︷ ︸
bl(xl+1,xl)

p(xl+1|Y0:k)︸ ︷︷ ︸
πl+1|k(xl+1)



Smoothing Backward Reweighting

Particle Reweighting Scheme

The natural approximation to the backward smoothing recursion
consists in computing smoothing weights W i

l|k backwards
according to the recursion

W i
k|k = W i

k, for i = 1, . . . , n.

For l = k − 1, k − 2, . . . , 0,

W i
l|k =

n∑
j=1

W j
l+1|k

W i
l t(Xi

l , X
j
l+1)∑n

i′=1 W i′
l t(Xi′

l , Xj
l+1)

,

for i = 1, . . . , n.

The approximation to E[f(Xl)|Y0:k] is given by
∑n

i=1 W i
l|k f(Xi

l ).



Smoothing Backward Reweighting

Back to Our Case Study

AR(1) Model Observed in Pulsated Noise
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Smoothing Backward Reweighting

Using the Ancestry Tree (n = 100)
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Smoothing Backward Reweighting

With Backward Reweighting (n = 100)
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Smoothing Backward Reweighting

Backward Particle Reweighting

Appears to be efficient and stable in the long term (although this
hasn’t been proved yet).

Yet,

it is not sequential (in particular, one needs to store all
particle positions and weights);

it has a potential numerical complexity proportional to the
number n of particles squared (but not further likelihood
evaluation is needed).



Smoothing Smoothing for Sum Functionals

Sum Functionals and Parameter Estimation

For parameter estimation, one requires smoothing of particular
sum functionals of the hidden states.

In the example of the stochastic volatility model, one needs to
evaluate E [si(X0:n)|Y0:n], for 0 ≤ i ≤ 4 with

s0(x0:n) = x2
0 , s1(x0:n) =

n−1∑
k=0

x2
k , s2(x0:n) =

n∑
k=1

x2
k ,

s3(x0:n) =
n∑

k=1

xkxk−1 , s4(x0:n) =
n∑

k=0

Y 2
k exp(−xk) .

We consider the simple case of s0(X0) using
∑N

i=1 W i
n

{
Xi

0:n(0)
}2

as the sequential Monte Carlo estimate of E (s0(X0)|Y0:n) (for
sum functionals, the same applies for each term in the sum).



Smoothing Smoothing for Sum Functionals

Smoothing for s0(X0)
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Box and whisker plots of particle estimates of
R

x2 π0|k(dx) for
k = 1, 5, 20, 30 and 500, and particle population sizes n = 102,
103 and 104.



Smoothing Smoothing for Sum Functionals

Smoothing for s0(X0), Contd.
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Particle trajectories at time n = 70 for the stochastic volatility
model with n = 100 particles and systematic resampling.

Using k < n is beneficial! Properly setting k corresponds to a
bias-variance tradeoff: k ↑ bias decreases, k ↓ variance decreases.

Hence, the general principle for sequential smoothing of sum
functionals: use fixed-lag smoothing (Olsson et al., 2008).



Mixture Kalman Filter

1 Bayesian Dynamic Models

2 The Filtering and Smoothing Recursions

3 Sequential Importance Sampling

4 Sequential Importance Sampling with Resampling

5 The Auxiliary Particle Filter

6 Smoothing

7 Mixture Kalman Filter
The Mixture Kalman Filter (MKF) Algorithm
An Application to Change Point Detection



Mixture Kalman Filter The Mixture Kalman Filter (MKF) Algorithm

Filtering in Conditionally Gaussian Linear State-Space
Models

There are several cases of interest where the “particles” are more
complicated than just elements of the state-space X.

Conditionally Gaussian Linear State-Space Model

Dynamic equation

Zk = A(Ck)Zk−1 + R(Ck)Uk−1

Observation equation

Yk = B(Ck)Zk + S(Ck)Vk

where {Ck} is itself a finite-valued Markov Chain.

Many applications: Non-Gaussian noises modelled as mixtures,
switching models, applications in digital communications, etc.
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The Exact Filtering Recursions

Given C0:k, p(zk|Y0:k, C0:k) is a Gaussian distribution with
mean vector Ẑk|k(Y0:k, C0:k) and covariance matrix
Σk|k(Y0:k, C0:k), which can be determined recursively using
the Kalman filter.

Hence p(xk|Y0:k) is the mixture of |C|k+1 Gaussian densities

p(xk|Y0:k) ∝
∑

c0:k∈|C|k+1

Lk(Y0:k|c0:k)p(c0:k)×

N
(
xk; Ẑk|k(Y0:k, c0:k),Σk|k(Y0:k, c0:k)

)
.

This is obviously of no use when k is not very small.
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Mixture Kalman Filtering

Using (Zk, Ck) as state variable, one an use the SMC
approaches described so far with (Z× C)-valued particles.

One can also use a related algorithm, where each particle
represents a trajectory C0:k summarized by the Kalman
statistics Ẑk|k(Y0:k, C0:k) and Σk|k(Y0:k, C0:k).

The resulting algorithm mixes systematic exploration of the
trajectory continuations (in C), Kalman update to compute the
likelihood factor and resampling.
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MKF: computation of the weights

For i = 1, . . . , n and j = 1, . . . , r, compute

Ẑk+1|k(C
i
0:k, j) = A(j)Ẑk|k(C

i
0:k) ,

Σk+1|k(C
i
0:k, j) = A(j)Σk|k(C

i
0:k)A

t(j) + R(j)Rt(j) ,

Ŷk+1|k(C
i
0:k, j) = B(j)Ẑk+1|k(C

i
0:k, j) ,

Γk+1(Ci
0:k, j) = B(j)Σk+1|k(C

i
0:k, j)B

t(j) + S(j)St(j) ,

ωi,j
k+1 = W i

k N(Yk+1 ; Ŷk+1|k(C
i
0:k, j),Γk+1(Ci

0:k, j)) QC(Ci
k, j) .
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MKF: Importance Sampling Step

For i = 1, . . . , n, draw J i
k+1 with probabilities proportional to

ωi,1
k+1, . . . , ω

i,r
k+1, conditionally independently of the particle history,

and set

Ci
0:k+1 = (Ci

0:k, J i
k+1) ,

W i
k+1 =

r∑
j=1

ωi,j
k+1

/
n∑

i=1

r∑
j=1

ωi,j
k+1 ,

Kk+1(Ci
0:k+1) = Σk+1|k(C

i
0:k, J

i
k+1)B

t(J i
k+1)Γ

−1
k+1(C

i
0:k+1, J

i
k+1) ,

Ẑk+1|k+1(C
i
0:k+1) = Ẑk+1|k(C

i
0:k, J

i
k+1)

+ Kk+1(Ci
0:k+1){Yk+1 − Ŷk+1|k(C

i
0:k, J

i
k+1)} ,

Σk+1|k+1(C
i
0:k+1) = {I −Kk+1(Ci

0:k+1)B(Jk+1)}Σk+1|k(C
i
0:k, J

i
k+1) .
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Application to a Change Point Detection Task
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Left: well-log data waveform with a median smoothing estimate
of the state. Right: median smoothing residual.
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Change Point Modelling

To model this situation we put C = {0, 1}, where Ck = 0
means that there is no change point at time index k whereas
Ck = 1 means that a change point has occurred.

The state space model is

Zk+1 = A(Ck+1)Zk + R(Ck+1)Uk ,

Yk = Zk + Vk ,

where A(0) = I, R(0) = 0 and A(1) = 0 and R(1) = R.

The simplest model consists in taking for {Ck}k≥0 an i.i.d.
sequence of Bernoulli random variables with probability of
success p. The time between two change points (period of
time during which the state variable is constant) is then
distributed as a geometric random variable with mean 1/p.
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Outliers Modelling
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Quantile-quantile regression of empirical quantiles of the well-log
data residuals with respect to quantiles of the standard normal
distribution.
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Outliers Modelling, Contd.

The normal distribution does not fit the measurement noise
well in the tails.

We model the measurement noise as a mixture of two
Gaussian distributions:

Zk+1 = A(Ck+1,1)Zk + R(Ck+1,1)Uk , Uk ∼ N(0, 1) ,

Yk = µ(Ck,2) + B(Ck,2)Zk + S(Ck,2)Vk , Vk ∼ N(0, 1) ,

where Ck,1 ∈ {0, 1} and Ck,2 ∈ {0, 1} are indicators of the
presence of a change point and of an outlier, respectively.

{Ck,2} is modelled as a two-state Markov chain which
represents the clustering behavior of outliers.
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On-line analysis of the well-log data, using 100 particles with
detection delay d = 0. Top: data; middle: posterior probability
of a jump; bottom: posterior probability of an outlier.
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On-line analysis of the well-log data, using 100 particles with
detection delay d = 5 (same display as above).



Conclusions

There are many more important issues in SMC such as

Analysis of Performance Convergence of more elaborate
algorithms, less restrictive conditions for long-term stability,
analysis of smoothing algorithms

Resampling Variants Conditional variance reduction schemes,
triggered resampling, varying number of particles . . .

Choice of the Instrumental Moves Lookahead moves,
combination with deterministic approximation, adaptive moves
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