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What is sorting?

It is an algorithm that rearranges permutations.
If it outputs the identity permutation, we say that the input is sortable for this
algorithm.

Example: Stack sorting (Knuth 60’s)

The map S : Sn → Sn defined as S(τnρ) = S(τ)S(ρ)n

321

312231

213 132

123

S(321) = S(21)3 = 123
S(231) = S(2)S(1)3 = 213
S(312) = S(12)3 = 123
S(213) = S(21)3 = 123
S(132) = S(1)S(2)3 = 123
S(123) = S(12)3 = 123
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What is sorting?

It is an algorithm that rearranges permutations.
If it outputs the identity permutation, we say that the input is sortable for this
algorithm.

Example: Stack sorting (Knuth 60’s)

The map S : Sn → Sn defined as S(τnρ) = S(τ)S(ρ)n

321

312231

213 132

123

321 = s2 · s1 · s2
231 = s1 · s2
312 = s2 · s1
213 = s1
132 = s2
123 = e.
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Permutations

We are interested in working with the following presentation of the symmetric
group

Sn = 〈 {s1, . . . , sn−1} : (sisi+1)
3 = (sisj)

2 = e 〉

where si = (i i + 1) are the simple transpositions.

Examples
1243 = s3,

1423 = s2 · s3,

3421 = s2 · s1 · s3 · s2 · s3.

Daniel Tamayo Jiménez Permutree Sorting and Automata 6 / 31



Weak order

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

Figure 1: The (right) weak order of S4 generated by s1, s2, s3.
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Weak order (inversions)

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

Figure 2: The (right) weak order of S4 generated by s1, s2, s3.
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Weak order congruences

We want to take congruences that preserve meets and joins. That is,

x ≡ x′ and y ≡ y′ =⇒ x ∨ y ≡ x′ ∨ y′ and x ∧ y ≡ x′ ∧ y′

a

b c

d e

f

Nothing else is affected.

a

b c

d e

f
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Weak order congruences

We want to take congruences that preserve meets and joins. That is,

x ≡ x′ and y ≡ y′ =⇒ x ∨ y ≡ x′ ∨ y′ and x ∧ y ≡ x′ ∧ y′

a

b c

d e

f

Nothing else is affected.

a

b c

d e

f
e ∨ b ≡ e ∨ a ⇒ f ≡ e.

c ∨ b ≡ c ∨ a ⇒ f ≡ c.

d ∧ f ≡ d ∧ e ⇒ d ≡ a.
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Lattice quotient example
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Lattice quotient example
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Lattice quotient example

Figure 3: The resulting lattice quotient from contracting the red edge.
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Weak order congruences

Figure 4: We study the contraction of any combination of green edges on S4. We call
these permutree congruences.

Daniel Tamayo Jiménez Permutree Sorting and Automata 11 / 31



Why these particular ones?

Figure 5: The Tamari lattice, a Cambrian lattice, and the boolean lattice as lattice
quotients from contractions in red.
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Coxeter Groups

It is a group generated by elements si that satisfy relations (sisj)
mij = e encoded

as vertices and edges of the following graphs:

Figure 6: Finite Coxeter Groups (source: Wikipedia)

Each Coxeter Group has a weak order lattice associated to it where we can
define permutree congruences.

Not all of them have combinatorial objects like permutations associated to
them.
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Why automata?

The congruences that we consider come from a more general case studied by
Reading [Rea07].

Different points of view have been found to study them:

Lattice congruences

Root systems

Pattern avoidance.

Reduced words (automata!)
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Big objective
Characterize minimal elements of permutree congruences in all Coxeter groups.

Little objective
Get an algorithm based on reduced words that characterizes minimal elements
of permutrees congruences in type A (permutations).

There are already other characterizations [PP18], [CPP19]:

Pattern avoidance.

Minimality of linear extensions of permutrees.

Inversion sets.
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Translations

We can identify our congruences through orientations of the Coxeter graph of
Sn.

2 31 n− 1n− 2
· · ·

Figure 7: Coxeter graph of Sn.

s1
s2 s3

⇔
2 31
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Translations

We can identify our congruences through orientations of the Coxeter graph of
Sn.

2 31 n− 1n− 2
· · ·

Figure 8: Coxeter graph of Sn.

s1
s2

s3

⇔
2 31
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Single orientation automata

j− 1 j ⇐⇒ U(j) =

start U(j + 1)

sj−1

sj

sj

Figure 9: A single orientation and its automaton.

start . . .

sj−1

sj

sj

sj

sj+1

sj+1

sj+1

sj+2

sj+2

sn−1

sn−2

sn−1

sn−1

sn−1

Figure 10: The complete automaton U(j).

Daniel Tamayo Jiménez Permutree Sorting and Automata 18 / 31



Single orientation automata

j− 1 j ⇐⇒ U(j) =

start U(j + 1)

sj−1

sj

sj

Figure 9: A single orientation and its automaton.

start . . .

sj−1

sj

sj

sj

sj+1

sj+1

sj+1

sj+2

sj+2

sn−1

sn−2

sn−1

sn−1

sn−1

Figure 10: The complete automaton U(j).

Daniel Tamayo Jiménez Permutree Sorting and Automata 18 / 31



Example

2 3 ⇐⇒ U(2) =

start U(3)

s1

s2

s2

Figure 11: A single orientation and its automaton.

start

s1

s2

s2

s2

s3

s3

s3

s4

s4

s4

Figure 12: The complete automaton U(2) for S5.
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Example

s3 · s2 · s1 · s2 is accepted by U(2).

s3 · s1 · s2 · s1 is rejected by U(2).

s1 · s3 · s2 · s1 is rejected by U(2).

start

s1

s2

s2

s2

s3

s3

s3

s4

s4

s4

Figure 13: The complete automaton U(2) for S5.
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Properties of the automata

Theorem (Pilaud, Pons, T. 2020)

Fix j ∈ {2, . . . , n− 1}. The following conditions are equivalent for π ∈ Sn:

π has a reduced expression accepted by the automaton U(j),

π avoids jki with i < j < k. (j is fixed!)

Example:

start

s1

s2

s2

s2

s3

s3

s3 4213 avoids 2ki and has the re-
duced expression s3 · s2 · s1 · s2
which is accepted by U(2).
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Some other properties

The accepted reduced words have a nice structure!

They are closed by prefix.

All are accepted in the same state of our automata.

If a permutation is accepted, then there is a reduced expression starting
with its descents that prioritizes healthy states.

start

s1

s2

s2

s2

s3

s3

s3

s4

s4

s4

Figure 14: The complete automaton U(2) for S5.
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If a permutation is accepted, then there is a reduced expression starting
with its descents that prioritizes healthy states.

start

s1

s2

s2

s2

s3

s3

s3

s4

s4

s4

Figure 15: The complete automaton U(2) for S5.
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Proposition (Pilaud, Pons, T. 2020)
All reduced expressions of a permutation π ∈ Sn end at

1 the same healthy state of U(j) if π keeps the values [j] in the same relative
order.

2 the same state of U(j) if π keeps the values [n] \ [j− 1] in the same
relative order.

3 the same ill state of U(j) otherwise.

start

s1

s2

s2

s2

s3

s3

s3

s4

s4

s4

Figure 16: The complete automaton U(2) for S5.
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Accepted reduced words

start

s1

s2

s2

s2

s3

s3

s3

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

Figure 17: U(2) and its accepted reduced words.
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Some other properties

The accepted reduced words have a nice structure!

They are closed by prefix.

All are accepted in the same state of our automata.

If a permutation is accepted, then there is a reduced expression starting
with its descents that prioritizes healthy states.

start . . .

sj−1

sj

sj

sj

sj+1

sj+1

sj+1

sj+2

sj+2

sn−1

sn−2

sn−1

sn−1

sn−1

Figure 18: The complete automaton U(j).
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Algorithm example

Data: a permutation π ∈ Sn and an integer j ∈ {2, . . . , n− 1}
Result: a reduced word accepted by U(j) that may be a reduced expression
for π

π w j `

3421 ε 2 2
2431 s2 3 1
1432 s2 · s1 3 3
1342 s2 · s1 · s3 4 2
1243 s2 · s1 · s3 · s2 4 3
1234 s2 · s1 · s3 · s2 · s3 4

Table 1: The ({2},∅)-permutree sorting
of π2 := 3421.

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321
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Algorithm non-example

Data: a permutation π ∈ Sn and an integer j ∈ {2, . . . , n− 1}
Result: a reduced word accepted by U(j) that may be a reduced expression
for π

π w j `

4231 ε 2 3
3241 s3 2 2
2341 s3 · s2 3 1
1342 s3 · s2 · s1 3 2
1243 s3 · s2 · s1 · s2 3

Table 2: The ({2},∅)-permutree sorting
of π2 := 4231.

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321
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Multiple orientation automata

Several orientations lead to multiple congruences, which correspond to
multiple automata.

start

s2

s3

s3

s3 ⋂ start

s2

s1

s1

s1

=
start

s1

s2
s3

s1, s3

s1

s2

s1

s3s2

s3

Figure 19: The automaton P({3}, {2}).

Red (resp. blue) transitions indicate we are staying in the same type of state in
U(3) (resp. D(2)). Purple ones indicate we are changing state in both automata.
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Intersection of automata

start

s1

s2
s3

s1, s3

s1

s2

s1

s3s2

s3

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

Figure 20: P({3}, {2}) and its accepted reduced words.
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Algorithm 2 example

π w U D ` k
3214 ε {3} {2} 1 .
3124 s1 {3} {1} 2 3
2134 s1 · s2 ∅ {1} 1 .
1234 s1 · s2 · s1

Table 3: The ({3}, {2})-permutree sorting
of π2 := 3214.

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321
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c-sorting (Coxeter sorting) [Rea07]

Let π := 3421 and take the Coxeter element c := s2 · s1 · s3.

Consider the infinite word

c∞ = c · c · c · · · = s2 · s1 · s3 · s2 · s1 · s3 · s2 · s1 · s3 · · · .

Out of all the reduced expressions of π, denote the lexicographically first in c∞

as π(c) = s2 · s1 · s3 · s2 · s3 and call it the c-sorting word.

If Supp(π(c)) ⊇ Supp(π(c)) ⊇ Supp(π(c)) ⊇ · · · , we say that π is c-sortable.

Daniel Tamayo Jiménez Permutree Sorting and Automata 30 / 31



c-sorting (Coxeter sorting) [Rea07]

Let π := 3421 and take the Coxeter element c := s2 · s1 · s3.

Consider the infinite word

c∞ = c · c · c · · · = s2 · s1 · s3 · s2 · s1 · s3 · s2 · s1 · s3 · · · .

Out of all the reduced expressions of π, denote the lexicographically first in c∞

as π(c) = s2 · s1 · s3 · s2 · s3 and call it the c-sorting word.

If Supp(π(c)) ⊇ Supp(π(c)) ⊇ Supp(π(c)) ⊇ · · · , we say that π is c-sortable.

Daniel Tamayo Jiménez Permutree Sorting and Automata 30 / 31



c-sorting (Coxeter sorting) [Rea07]

Let π := 3421 and take the Coxeter element c := s2 · s1 · s3.

Consider the infinite word

c∞ = c · c · c · · · = s2 · s1 · s3 · s2 · s1 · s3 · s2 · s1 · s3 · · · .

Out of all the reduced expressions of π, denote the lexicographically first in c∞

as π(c) = s2 · s1 · s3 · s2 · s3 and call it the c-sorting word.

If Supp(π(c)) ⊇ Supp(π(c)) ⊇ Supp(π(c)) ⊇ · · · , we say that π is c-sortable.

Daniel Tamayo Jiménez Permutree Sorting and Automata 30 / 31



c-sorting (Coxeter sorting) [Rea07]

Let π := 3421 and take the Coxeter element c := s2 · s1 · s3.

Consider the infinite word

c∞ = c · c · c · · · = s2 · s1 · s3 · s2 · s1 · s3 · s2 · s1 · s3 · · · .

Out of all the reduced expressions of π, denote the lexicographically first in c∞

as π(c) = s2 · s1 · s3 · s2 · s3 and call it the c-sorting word.

If Supp(π(c)) ⊇ Supp(π(c)) ⊇ Supp(π(c)) ⊇ · · · , we say that π is c-sortable.

Daniel Tamayo Jiménez Permutree Sorting and Automata 30 / 31



Theorem (Pilaud, Pons, T. 2020)
For any Coxeter element c and permutation π, TFAE:

1 π avoids jki for j ∈ Uc and kij for j ∈ Dc,
2 for each j, there exists a reduced expression for π that is accepted by U(j)

if j ∈ Uc and D(j) if j ∈ Dc,
3 there exists a reduced expression of π accepted by P(Uc,Dc),
4 the c-sorting word π(c) is accepted by the automaton P(Uc,Dc),
5 π is c-sortable.
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Recent developments and advantages

Generalizable to type B.

Problems arise in other Coxeter types like type D and H.

Computationally faster than doing lattice congruences in SageMath (albeit
some details).
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Other types

U(j) =

start U(j + 1)
sj−1

sj

sj
U(n) =

start D(n)
sn−1

sn

sn
D(j) =

start D(j− 1)
sj

sj−1

sj−1

Figure 21: Recursive definition of the automata U(j) and D(j) in type B (above) and
the corresponding automata that form U(2) in D4 (below).
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