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Abstract. In this paper, we introduce k-Young tableaux and their g-indices.

We first present certain expansions of (c(x)D)n in terms of inversion sequences
as well as k-Young tableaux, where c(x) is a smooth function in the indetermi-

nate x and D is the derivative with respect to x. By studying the connections

between k-Young tableaux and standard Young tableaux, we then present
combinatorial interpretations of Eulerian polynomials, second-order Eulerian

polynomials, and André polynomials in terms of standard Young tableaux.

1. Introduction

1.1. Notation and preliminaries.
The Eulerian polynomials An(x) can be defined by the summation formula

(1.1)

(
x
d

dx

)n
1

1− x
=

∞∑
k=0

knxk =
An(x)

(1− x)n+1
.

It is well known (see [12, 14] and references therein) that

An(x) =

n∑
i=0

〈
n

i

〉
xi =

∑
π∈Sn

xdes (π),

where
〈
n
i

〉
is called Eulerian number and Sn is the set of all permutations of the

set [n] = {1, 2, . . . , n}. For π = π(1)π(2) · · ·π(n) ∈ Sn, the number of descents of
π is defined by des (π) = #{i ∈ [n] | π(i) > π(i+ 1)}, where we set π(n+ 1) = 0.

Let [n]k = {1k, 2k, . . . , nk} be a multiset, where each i ∈ [n] appears k times. A
k-Stirling permutation of order n is a permutation of the multiset [n]k such that
for each i, 1 ⩽ i ⩽ n, all entries between any two occurrences of i are at least i.
Let Qn(k) be the set of all k-Stirling permutations of order n. When k = 2, the
set Qn(k) reduces to Qn, which is the set of ordinary Stirling permutations of the
multiset [n]2. For σ = σ1σ2 · · ·σkn ∈ Qn(k), an index i ∈ [kn] is a descent of σ
if σi > σi+1 or i = kn. Let des (σ) be the number of descents of σ. The k-order
Eulerian polynomials are defined by

Cn(x; k) =
∑

σ∈Qn(k)

xdes (π).
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Following [10, Lemma 1], the polynomials Cn(x; k) satisfy the recurrence relation

(1.2) Cn+1(x; k) = (kn+ 1)xCn(x; k) + x(1− x)
d

dx
Cn(x; k), C0(x; k) = 1.

In particular, Cn(x; 1) = An(x). When k = 2, the polynomials Cn(x; k) reduce to
the second-order Eulerian polynomials Cn(x) (see [6, 14]). In [4], Carlitz found that

∞∑
k=0

{
n+ k

k

}
xk =

Cn(x)

(1− x)2n+1
,

where
{
n
k

}
are the Stirling numbers of the second kind, i.e., the number of set

partitions of [n] with k blocks.
Consider the polynomials Fn := Fn(x;α, β, a, b, c) defined as follows:(

a+ bx+ cx2

(1− x)α
d

dx

)n
1

(1− x)β
=

Fn

(1− x)n+nα+β
.

It is routine to verify that F0 = 1 and for n ⩾ 0, one has

(1.3) Fn+1 = (n+ nα+ β)(a+ bx+ cx2)Fn + (a+ bx+ cx2)(1− x)
d

dx
Fn.

Comparing (1.2) with (1.3), we get the following result.

Proposition 1.1. Let k be a nonnegative integer. For n ⩾ 1, we have

(1.4)

(
x

(1− x)k
d

dx

)n
1

1− x
=

Cn(x; k + 1)

(1− x)n+kn+1
.

In this paper, we always let c := c(x) and f := f(x) be two smooth functions in
the indeterminate x, and set D = d

dx . The expansions of (cD)nf have been studied
as early as 1823 by Scherk [1, Appendix A]. He found that

(xD)n =

n∑
k=0

{
n

k

}
xkDk.

In the sequel, we adopt the convention that fk = Dkf and ck = Dkc. Note that
f0 = f , c0 = c, (cD)f = (c)f1, (cD)2f = (cc1)f1 + (c2)f2. For n ⩾ 1, we define

(1.5) (cD)nf =

n∑
k=1

An,kfk.

Note that An,k = An,k(c, c1, . . . , cn−k) is a function of c, c1, . . . , cn−k. In particular,
A1,1 = c, A2,1 = cc1 and A2,2 = c2. By induction, it is easy to verify that
An+1,1 = cDAn,1, An,n = cn and for 2 ⩽ k ⩽ n, we have

(1.6) An+1,k = cAn,k−1 + cDAn,k.

The numbers appearing in An,k as coefficients can be found in [16, A139605]. We
refer the reader to [3, 15] for various examples on the expansions of (cD)n.
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1.2. Motivation and the organization of the paper.
In 1973, Comtet obtained the following result by induction.

Proposition 1.2 ([8]). Let An,k be defined by (1.5). For 1 ⩽ k ⩽ n, we have

(1.7) An,k =
c

k!

∑
(2−k1)(3−k1−k2) · · · (n−k1−k2−· · ·−kn−1)

ck1

k1!
· · ·

ckn−1

kn−1!
,

where the summation is over all sequences (k1, k2, . . . , kn−1) of nonnegative integers
such that k1 + k2 + · · ·+ kn−1 = n− k and k1 + · · ·+ kj ⩽ j for any 1 ⩽ j ⩽ n− 1.

The initial motivation of this paper is give a combinatorial proof of (1.7). In
order to state some combinatorial interpretations for An,k, we need to introduce
several notations on partitions of integers.

A partition λ = (λ1, λ2, . . . , λℓ) is a weakly decreasing sequence of nonnegative
integers. Each λi is called a part of λ. The sum of the parts of a partition λ is
denoted by |λ|. If |λ| = n, then we say that λ is a partition of n, also written as
λ ⊢ n. We denote by mi the number of parts equals i. By using the multiplicities,
we also denote λ by (1m12m2 · · ·nmn). The partition with all parts equal to 0 is the
empty partition. The length of λ, denoted ℓ(λ), is the maximum subscript j such
that λj > 0. The Ferrers diagram of λ is a graphical representation of λ with λi
boxes in its ith row and the boxes are left-justified. For a Ferrers diagram λ ⊢ n (we
will often identify a partition with its Ferrers diagram), a standard Young tableau
(SYT, for short) of shape λ is a filling of the n boxes of λ with the integers 1, 2, . . . , n
such that each number is used, and all rows and columns are increasing (from left
to right, and from bottom to top, respectively). Given a Young tableau, we number
its rows starting from the bottom and going above. Let SYT (n) be the set of SYT

of size n. For a partition λ = (λ1, . . . , λℓ), we define cλ =
∏ℓ

i=1 cλi
, c∅ = 1.

Let
[
n
k

]
be the Stirling numbers of the first kind, which count permutations in

Sn with k cycles. We can now recall a recent result.

Proposition 1.3 ([3]). Let An,k be defined by (1.5). For n ⩾ 1, there exist positive
integers a(n, λ) such that

An,k =
∑

λ⊢n−k

a(n, λ)cn−ℓ(λ)cλ,

where λ runs over all partitions of n − k. The Stirling numbers of the first and
second kinds, and the Eulerian numbers can be respectively expressed as follows:[

n

k

]
=

∑
λ⊢n−k

a(n, λ),

{
n

k

}
= a(n, 1n−k),

〈
n

k

〉
=

∑
ℓ(λ)=n−k

a(n, λ).

Motivated by Propositions 1.2 and 1.3, we first express (cD)nf in terms of in-
version sequences as well as k-Young tableaux in Section 2, and then we present
the other main results. In the rest sections, we prove some of the main results.

2. The g-index of Young tableau and main results

2.1. Inversion sequences and a combinatorial proof of Proposition 1.2.

An integer sequence e = (e1, e2, . . . , en) is an inversion sequence of length n if
0 ⩽ ei < i for all 1 ⩽ i ⩽ n. Let In be the set of all inversion sequences of length
n. There is a natural bijection ψ between In and the symmetric group Sn defined
by ψ(π) = e, where ei = #{j | 1 ⩽ j < i and π(j) > π(i)}.
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Definition 2.1. For any inversion sequence e ∈ In, let |e|j = #{i ∈ [n] | ei = j}.
We now define ϕ(e) = c · c|e|1c|e|2 · · · c|e|n−1

· f|e|0 .

For example, take n = 9 and e = (0, 0, 1, 0, 4, 2, 4, 0, 1), then |e|0 = 4, |e|1 =
2, |e|2 = 1, |e|3 = 0, |e|4 = 2 and |e|j = 0 for 5 ⩽ j ⩽ 8. So that ϕ(e) = c ·
c2c1cc2cccc · f4 = c6c1c

2
2 · f4. The following lemma is fundamental.

Lemma 2.2. For n ⩾ 1, we have

(2.1) (cD)nf =
∑
e∈In

ϕ(e).

Proof. Note that I1 = {0} and I2 = {00, 01}. Since ϕ(0) = cf1, ϕ(00) = c · c ·
f2, ϕ(01) = c · c1 · f1, then (2.1) is valid for n = 1, 2. Assume that (2.1) holds
for a given n. Let In,k = {e ∈ In : |e|0 = k}. Then for any e ∈ In,k, we have
ϕ(e) = c · c|e|1 · c|e|2 · · · c|e|n−1

· fk. Let e′ be obtained from e = (e1, e2, . . . , en) by
appending en+1. We distinguish three cases:

(i) If en+1 = 0, then ϕ(e′) = c · c|e|1 · c|e|2 · · · c|e|n−1
· c · fk+1;

(ii) If en+1 = i and 1 ⩽ i ⩽ n−1, then ϕ(e′) = c ·c|e|1 · · · c|e|i+1 · · · c|e|n−1
·c · fk;

(iii) If en+1 = n, then ϕ(e′) = c · c|e|1 · c|e|2 · · · c|e|n−1
· c1 · fk.

It is routine to check that the first case accounts for the term cAn,k−1 and the
last two cases account for the term cDAn,k. Then

∑
e∈In+1,k

ϕ(e) = (cAn,k−1 +

cDAn,k)fk = An+1,kfk, which follows from (1.6). This completes the proof. □

A combinatorial proof of Proposition 1.2:

Proof. For e ∈ In, let k = |e|0 and ki = |e|n−i for 1 ⩽ i ⩽ n − 1. Note that∑n−1
i=1 ki = n− k and k1+ · · ·+ kj ⩽ j for each j. The number of such e is equal to(

1

k1

)(
2− k1
k2

)(
3− k1 − k2

k3

)
· · ·

(
n− k1 − k2 − · · · − kn−1

k

)
=

(2− k1)(3− k1 − k2) · · · (n− k1 − k2 − · · · − kn−1)

k!k1!k2! · · · kn−1!
.

Then by using Lemma 2.2, we obtain Proposition 1.2. □

2.2. k-Young tableaux and their g-indexes.
Since the ck1

, ck2
, . . . , ckn−1

are commutative, we have to group the terms in (1.7)
which produce the same product ck1ck2 · · · ckn−1 . We say that a type of n is a pair
(k, µ), denoted by (k, µ) ⊢ n, where k ∈ [n] and µ = (µ1, . . . , µn−1) is a partition of
n − k, i.e., µ is written up to n − 1 terms by appending 0’s at the end. Let (k, µ)
be a type of n. We define

Set (µ) = {µj | 1 ⩽ j ⩽ n− 1}, |µ|j = #{i | µi = j, 1 ⩽ i ⩽ n− 1}.

Let (|e|0, µ(e)) be the type of e ∈ In, where µ(e) is the decreasing order of
the numbers |e|1, . . . , |e|n−1. For each type (k, µ) of n, let pk,µ be the number of
inversion sequences of type (k, µ). It follows from Lemma 2.2 that

(2.2) (cD)nf =
∑

(k,µ)⊢n

pk,µccµ1cµ2 · · · cµn−1fk,

where the summation is taken over all types (k, µ) of n.
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Lemma 2.3. By convention, set p0,µ = 0. When (k, µ) = (1, (1, 1, . . . , 1)), it is
clear that pk,µ = 1. For the other types (k, µ) of n, we have

(2.3) pk,µ =
∑

j∈Set (µ)\{0}

(|µ|j−1 + 1)pk,µ(j) + pk−1,µ(0) ,

where µ(j) is obtained from µ by replacing the last occurrence of the part j by j − 1
and by deleting the last 0 and µ(0) is obtained from µ by deleting the last 0. Thus
we have (k, µ(j)) ⊢ (n− 1) and (k − 1, µ(0)) ⊢ (n− 1).

Proof. Take an element e ∈ In of type (k, µ). Let e′ = (e1, e2, . . . , en−1) ∈ In−1 be
obtained from e by deleting the last en. If en = 0, then the type of e′ is (k−1, µ(0)).
This operation is reversible. If en = i (1 ⩽ i ⩽ n− 1) and |e|i = j ∈ Set (µ) \ {0},
then the type of e′ is (k, µ(j)). In this case, the operation is not reversible. We
have exactly (|µ|j−1 + 1) ways to generate the inverses. In fact we can append
en = i′ ̸= i at the end of e′ with the condition of |e|i − 1 = j − 1 = |e|i′ to obtain
an inversion sequence in In of type (k, µ). □

For convenience, we now give an illustration of (2.3), in order to get inversion
sequences of type (k, µ) = (3, (2, 1, 1, 0, 0, 0)), we distinguish three cases:

(i) For each e ∈ I 6 that counted by p2,(2,1,1,0,0), we can get one inversion
sequence of type (k, µ) by appending e7 = 0 at the end of e;

(ii) Let e ∈ I 6 be an inversion sequence counted by p3,(1,1,1,0,0). If |e|i = 1 then
we can append e7 = i at the end of e. As we have three choices for i, we
get the term 3p3,(1,1,1,0,0);

(iii) Let e ∈ I 6 be an inversion sequence counted by p3,(2,1,0,0,0). If |e|i = 0,
then we can append e7 = i at the end of e. As we have four choices for i,
we get the term 4p3,(2,1,0,0,0).

Each type (k, µ) of n can be represented by a picture which contains k boxes in
the bottom row, and the Young diagram of µ in the top. Such picture is called a
(k, µ)-diagram.

Definition 2.4. Let (k, µ) be a type of n. A k-Young tableau Z of shape (k, µ) is
a filling of the n boxes of the (k, µ)-diagram by the integers 1, 2, . . . , n such that
(i) each number is used, (ii) all rows and columns in the top Young diagram are
increasing (from left to right, and from bottom to top, respectively), (iii) the bottom
row is an increasing sequence of length k, starting with 1.

The filling of the top Young diagram of the partition µ is called the top Young
tableau of the k-Young tableau. There is no condition between the bottom row
and the top Young tableau. The rows of the top Young tableau are counted from
bottom to top, and the columns are counted from left to right. We always put a
special column of n boxes at the left of a k-Young tableau, labelled by the integers
1, 2, . . . , n from bottom to top. See Figure 1 (right diagram) for an example.

Definition 2.5. Let Z be a k-Young tableau of shape (k, µ), where k + |µ| = n. For
each v ∈ [n], suppose that v is in the box (i, j) of the top Young diagram, where the first
coordinate i means the column index, and the second coordinate j means the row index.
The g-index of v, denoted by gZ(v), is the number of boxes (i− 1, j′) such that j′ ⩾ j and
the letter in this box is less than or equal to v (see Figures 2 and 3). If v is in the bottom
row, then set gZ(v) = 1. The g-index of Z is given by GZ = gZ(1)gZ(2) · · · gZ(n).
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7

6

5

4

3

2

1 1 5

4 6

2 3 7

Figure 1. (k = 2, µ = (3, 2, 0, 0, 0, 0))-diagram and a k-Young
tableau of shape (k, µ)

5

4

3

2

1

2 5

1 3 4

y

v

x

x

x

x

x ⩽ v < y

gT (v) = #x

Figure 2. Young tableaux and g-index

k = 3

∑
G = 6 G=1·1·1·3

4

3

2

1

4

1 2 3

G=1·1·2·1

4

3

2

1

3

1 2 4

G=1·1·1·1

4

3

2

1

2

1 3 4

Figure 3. All 3-Young tableaux of size 4 and their g-indices

Theorem 2.6. If (k, µ) ⊢ n, then we have

(2.4) pk,µ =
∑
Z

GZ ,

where the summation is taken over all k-Young tableaux of shape (k, µ).

Proof. The identity (2.4) is obtained from Lemma 2.3 by induction on n. The maximum
letter n in a k-Young tableau Z may be at the end of the bottom row, or a corner in
the top Young tableau. In the first case, gZ(n) = 1, and removing the letter n yields a
(k− 1)-Young tableau of shape (k− 1, µ). In the second case, gZ(n) = |µ|j−1 +1, where j
is the length of the row containing n, and removing the letter n yields a k-Young tableaux
of shape (k, µ(j)). We recover all terms in (2.3). This completes the proof. □

In the sequel, we give two applications of Theorem 2.6. When n ⩾ 1, the Stirling
numbers of the first kind

[
n
k

]
can be defined by

∑n
k=1

[
n
k

]
xk = x(x + 1) · · · (x + n − 1).

According to [1, Proposition A.2], we have (exD)nf = enx ∑n
k=1

[
n
k

]
fk. Setting c = ex

and cj = ex in (2.2), it follows from Theorem 2.6 that

(exD)nf = enx
∑

(k,µ)⊢n

∑
Z

GZfk,

So we get the following result.
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Proposition 2.7. For n ⩾ 1, we have∑
(k,µ)⊢n

∑
Z

GZx
k = x(x+ 1)(x+ 2) · · · (x+ n− 1),

where the first summation is taken over all type (k, µ) of n, and the second summation is
taken over all k-Young tableaux of shape (k, µ).

Proposition 2.8. Let
{
n
k

}
be the Stirling numbers of the second kind. We have{

n

k

}
=

∑
Z

GZ ,

where the summation is taken over all k-Young tableaux of shape
(
k, (1n−k0k−1)

)
.

Proof. Let c = x and f = 1/(1− x). Then c1 = 1 and cj = 0 for j ⩾ 2, and fk =
k!/(1− x)k+1. It follows from (2.2) that

(xD)n
1

1− x
=

∑
(k,µ)⊢n

pk,µccµ1cµ2 · · · cµn−1 fk

=
∑

(k,µ=(1n−k0k−1))⊢n

pk,µ · k!xk

(1− x)k+1

=
1

(1− x)n+1

∑
(k,µ=(1n−k0k−1))⊢n

pk,µ · k!xk(1− x)n−k.

By Theorem 2.6, we have

(2.5) An(x) =

n∑
k=0

pk,(1n−k0k−1) · k!x
k(1− x)n−k =

n∑
k=0

∑
Z

GZ · k!xk(1− x)n−k,

where the second summation is taken over all k-Young tableaux of shape (k, (1n−k0k−1)).
The classical Frobenius formula for Eulerian polynomials says that

An(x) =

n∑
k=0

k!

{
n

k

}
xk(1− x)n−k.

Comparing the above formula with (2.5), we get the desired result. □

2.3. The g-indices of Young tableaux.
Let T be a SYT of shape λ and size n. We define the g-index of T very similarly.

We always put a special column of n boxes at the left of T , labelled by 1, 2, 3, . . . , n from
bottom to top. The rows of T are counted from bottom to top, and the columns are
counted from left to right. For each v ∈ [n], suppose that v is in the box (i, j). The g-
index of v, denoted by gT (v), counts boxes (i−1, j′) such that j′ ⩾ j and the letter in this
box is less than or equal to v. The g-index of T is defined by GT = gT (1)gT (2) · · · gT (n).
For the Young tableau given in Figure 2 (left diagram), we have gT (1) = 1, gT (2) =
1, gT (3) = 2, gT (4) = 1, gT (5) = 1.

Example 2.9. The elements in SYT (4) and their g-indices are listed in Figure 4.

Let λ(T ) be the partition of T . If λ(T ) = (λ1, λ2, . . . , λℓ), then let λ(T )! =
∏ℓ

i=1(λi!).

Theorem 2.10. Let Cn(x) be the second-order Eulerian polynomials. Then we have

Cn(x) =
∑

T∈SYT (n)

GT λ(T )! xn+1−ℓ(λ(T )).(2.6)

Theorem 2.11. Let An(x) be the Eulerian polynomials. Then we have

An(x) =
∑

T∈SYT (n)

GT xn+1−ℓ(λ(T )).(2.7)
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x
GT = 1
λ(T )! = 1

g = 1, 1, 1, 14

3

2

1

4

3

2

1

x2
GT = 3
λ(T )! = 2

g = 1, 1, 1, 34

3

2

1

3

2

1 4

GT = 4
λ(T )! = 2

g = 1, 1, 2, 24

3

2

1

4

2

1 3

GT = 4
λ(T )! = 2

g = 1, 1, 2, 24

3

2

1

4

3

1 2

x3
GT = 2
λ(T )! = 4

g = 1, 1, 2, 14

3

2

1

3 4

1 2

GT = 2
λ(T )! = 4

g = 1, 1, 2, 14

3

2

1

2 4

1 3

x3
GT = 3
λ(T )! = 6

g = 1, 1, 1, 34

3

2

1

4

1 2 3

GT = 2
λ(T )! = 6

g = 1, 1, 2, 14

3

2

1

3

1 2 4

GT = 2
λ(T )! = 6

g = 1, 1, 2, 14

3

2

1

2

1 3 4

x4
GT = 1

λ(T )! = 24

g = 1, 1, 1, 14

3

2

1 1 2 3 4

Figure 4. The elements in SYT (4) and their g-indices

Let π ∈ Sn. We say that π has no double descents if there is no index i ∈ [n − 2]
such that π(i) > π(i + 1) > π(i + 2). Then π is called a simsun permutation if for each
k ∈ [n], the subword of π restricted to [k] (in the order they appear in π) contains no
double descents. Simsun permutations are useful in describing the action of the symmetric
group on the maximal chains of the partition lattice (see [17]). We define

Sn(x) =
∑

π∈RSn

xdes (π) =

⌊(n+2)/2⌋∑
i=1

S(n, i)xi,

where RSn is the set of simsun permutations in Sn. Set S1(x) = x. It follows from [7,
Theorem 1] that Sn(x) = (n+1)xSn−1(x) + x(1− 2x)S′

n−1(x) for n ⩾ 2. The polynomial
Sn(x) is known as André polynomial (see [6, 11]).

Theorem 2.12. Let Sn(x) be the André polynomials. For n ⩾ 1, we have

(2.8) Sn(x) =
∑
T

GT xn+1−ℓ(λ(T )),

where the summation is taken over all tableaux in SYT (n) with at most two columns.

We say that π ∈ Sn is alternating if π(i) < π(i+ 1) if i is even and π(i) > π(i+ 1)
if i is odd. Let En denote the number of alternating permutations in Sn. A remarkable
property of simsun permutations is that #RSn = En+1 (see [17, p. 267]).

Corollary 2.13. We have En+1 =
∑

T GT , where the summation is taken over all Young
tableaux in SYT (n) with at most two columns.

Combining [2, Corollary 3.2] and [13, Proposition 1], the gamma expansion of Eulerian
polynomial is given as follows:

An+1(x) =

⌊(n+2)/2⌋∑
i=1

2i−1S(n, i)xi(1 + x)n+2−2i.
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We end this section be giving a characterization for the gamma coefficient polynomial of
An+1(x). For T ∈ SYT (n), if λ(T ) = (1n−2i+22i−1), then n + 1 − ℓ(λ(T )) = i, where
1 ⩽ i ⩽ ⌊(n+ 2)/2⌋. Using (2.8), we immediately get the following corollary.

Corollary 2.14. For n ⩾ 2, we have

⌊(n+2)/2⌋∑
i=1

2i−1S(n, i)xi =
∑
T

GT λ(T )! xn+1−ℓ(λ(T )),

where the summation is taken over all tableaux in SYT (n) with at most two columns.

3. Proof of Theorem 2.10

Setting k = 1 in (1.4), we obtain that

(3.1)

(
x

1− x

d

dx

)n
1

1− x
=

Cn(x)

(1− x)2n+1
.

Setting c = x/(1− x) and f = 1/(1− x), then we have

cj =
j!

(1− x)j+1
(j ⩾ 1); fk =

k!

(1− x)k+1
(k ⩾ 0).

By using (2.2), we obtain(
x

1− x
D

)n
1

1− x
=

∑
(k,µ)⊢n

pk,µ · x
|µ|0+1

1− x

µ1!

(1− x)µ1+1
· · · µn−1!

(1− x)µn−1+1

k!

(1− x)k+1

=
1

(1− x)2n+1

∑
(k,µ)⊢n

pk,µ · k!µ1! · · ·µn−1!x
|µ|0+1.

It follows from (3.1) and Theorem 2.6 that

Cn(x) =
∑

(k,µ)⊢n

pk,µ · k!µ1! · · ·µn−1!x
|µ|0+1

=
∑

(k,µ)⊢n

∑
Z

GZ · k!µ1! · · ·µn−1!x
|µ|0+1.(3.2)

In view of (2.6) and (3.2), we need to establish some relations between k-Young tableaux
and standard Young tableaux. Let Z be a k-Young tableau of shape (k, µ). We define
T = ρ(Z) to be the unique SYT such that the sets of the letters in the j-th column in Z
and T are the same for all j. Let us list some basic facts of this map Z 7→ T = ρ(Z):

(i) We can obtain T from Z by ordering the letters in each column in increasing
order. One can easily check that if T is obtained in this way, then T is a SYT;

(ii) The partition λ(T ) is the decreasing ordering of the sequence (k, µ1, . . . , µn−1),

removing the 0’s at the end. Hence, λ(T )! = k!
(∏n−1

i=1 µi!
)
;

(iii) We have n− ℓ(λ(T )) = |µ|0;
(iv) In general GZ ̸= GT .

For example, take the k-Young tableau given in Figure 1, we obtain the SYT given in
Figure 5. However ρ is not bijective. Let ρ−1(T ) = {(k, µ, Z) | ρ(Z) = T}. By the above
properties of ρ and (3.2), we have

Cn(x) =
∑

T∈SYT (n)

∑
(k,µ,Z)∈ρ−1(T )

GZ · k!µ1! · · ·µn−1!x
|µ|0+1

=
∑

T∈SYT (n)

λ(T )!xn+1−ℓ(λ(T ))
∑

(k,µ,Z)∈ρ−1(T )

GZ .(3.3)
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1
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1 3 7

Figure 5. T = ρ(Z) for Z given in Figure 1

4

2

1 3 5 6

G = 4

ρ−1
4

2 3 5 6

1

G = 2

Γ3 4

2

1 3 5 6

G = 2

Γ4

4

2 5

1 3 6

G = 16

ρ−1
4

2 5 6

1 3

G = 4

Γ1 4

2 3 6

1 5

G = 2

Γ1 4

2 5

1 3 6

G = 4

Γ2 4

2 3

1 5 6

G = 2

Γ2 4 5

2 3 6

1

G = 4

Γ3

Figure 6. Decomposition of ρ−1(T ) into Γ1,Γ2,Γ3,Γ4

Lemma 3.1. For each standard Young tableau T , we have

(3.4)
∑

Z∈ρ−1(T )

GZ = GT ,

where we write Z ∈ ρ−1(T ) instead of (k, µ, Z) ∈ ρ−1(T ), as we can recover (k, µ) from Z.

Proof. We will prove (3.4) by induction on the size of T . Suppose that (3.4) is true for
all standard Young tableaux of size n− 1. Given a T ∈ SYT (n). Let T ′ is a SYT of size
n − 1 obtained from T by removing the letter n. This operation is reversible if λ(T ) is
known. By the hypothesis of induction, we have

(3.5)
∑

Z′∈ρ−1(T ′)

GZ′ = GT ′ ,

Clearly, GT = GT ′ × gT (n). On the other hand, for a k-Young tableau Z ∈ ρ−1(T ), if we
remove the letter n, we obtain a k′-Young tableau Z′ ∈ ρ−1(T ′) of size n−1. However, this
operation is not always reversible. Let us analyse in detail. Let β be the length of the row
containing n in the k-Young tableau Z ∈ ρ−1(T ) with shape (k, µ) if n is in the top Young
tableau of Z. The set ρ−1(T ) can be divided into four subsets: ρ−1(T ) = Γ1+Γ2+Γ3+Γ4,
where Γ1,Γ2,Γ3 and Γ4 are respectively defined as follows:

Γ1 = {Z ∈ ρ−1(T ) : n is in the top Young tableau and k = β − 1},

Γ2 = {Z ∈ ρ−1(T ) : n is in the bottom row and k − 1 ∈ µ},

Γ3 = {Z ∈ ρ−1(T ) : n is in the top Young tableau and k ̸= β − 1},

Γ4 = {Z ∈ ρ−1(T ) : n is in the bottom row and k − 1 ̸∈ µ}.

See Figure 6 for two examples. Some of the Γi may be empty according to T . We claim
that the set Γ1 and Γ2 have the same carnality. For each Z1 ∈ Γ1, there exists Z2 ∈ Γ2

in a unique manner, such that Z′
1 = Z′

2 ∈ ρ−1(T ′), see Figure 7. Moreover, we have the
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n

Z1

n

Z2 Z′

n

T T ′

ρ ρ

del n

del n

Figure 7. Z1, Z2 ∈ ρ−1(T ) are mapped to the same Z ′ ∈ ρ−1(T ′)
by removing the letter n

relations (see Figure 7): gZ1(n) = gT (n) − 1 and gZ2(n) = 1. For Z3 ∈ Γ3 and Z4 ∈ Γ4,
we have gZ3(n) = gT (n) and gZ4(n) = gT (n). By all these observations, we obtain∑
Z∈ρ−1(T )

GZ =
∑

Z1∈Γ1,Z2∈Γ2

(GZ1 +GZ2) +
∑

Z3∈Γ3

GZ3 +
∑

Z4∈Γ4

GZ4

=
∑

Z1∈Γ1,Z2∈Γ2

(gZ1(n)GZ′ + gZ2(n)GZ′) +
∑

Z3∈Γ3

gT (n)GZ′
3
+

∑
Z4∈Γ4

gT (n)GZ′
4

= gT (n)
∑

Z′∈ρ−1(T ′)

GZ′

= gT (n)GT ′

= GT .

Hence (3.4) holds. This completes the proof. □

Proof of Theorem 2.10. Combining (3.3) and Lemma 3.1, we get that

Cn(x) =
∑

T∈SYT (n)

λ(T )!xn+1−ℓ(λ(T ))
∑

(k,µ,Z)∈ρ−1(T )

GZ

=
∑

T∈SYT (n)

GT λ(T )!xn+1−ℓ(λ(T )).

This completes the proof. □

4. Proof of Theorem 2.11

For an alphabet V , let Q[[V ]] be the rational commutative ring of formal power series
in monomials formed from letters in V . Following Chen [5], a context-free grammar over
V is a function G : V → Q[[V ]] that replaces each letter in V by a formal function over
V . The formal derivative DG with respect to G satisfies the derivation rules:

DG(u+ v) = DG(u) +DG(v), DG(uv) = DG(u)v + uDG(v).

Thus DG can be understood as a formal differential operator. The reader is referred
to [6, 14] for recent progress on this subject.

Setting ui = Di
G(u), it follows from (2.2) and (2.4) that

(4.1) (uDG)
n =

∑
(k,µ)⊢n

∑
Z

GZuuµ1uµ2 · · ·uµn−1D
k
G,
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where the first summation is taken over all types (k, µ) of n and the second summation
is taken over all k-Young tableaux of shape (k, µ). Recall that the Eulerian polynomials
An(x) are symmetric, i.e.,

An(x) =

n∑
i=1

〈
n

i

〉
xi =

n∑
i=1

〈
n

i

〉
xn+1−i for n ⩾ 1.

In [9], Dumont found a grammatical interpretation of Eulerian numbers.

Proposition 4.1. If G = {x → y, y → y}, then (xDG)
n(y) =

∑
i⩾1

〈
n
i

〉
xn+1−iyi.

Proof of Theorem 2.11. Let G = {x → y, y → y}. From (4.1), we have

(xDG)
n (y) =

∑
(k,µ)⊢n

∑
Z

GZxxµ1xµ2 · · ·xµn−1D
k
G(y),

where x0 = x and xi = Di
G(x) = y for i ⩾ 1 and Dk

G(y) = y for k ⩾ 0. Hence

(xDG)
n (y) =

∑
(k,µ)⊢n

∑
Z

GZy
n−|µ|0x|µ|0+1.

Comparing this with Proposition 4.1, we get

(4.2) An(x) =

n∑
i=1

〈
n

i

〉
xn+1−i = (xDG)

n(y)|y=1 =
∑

(k,µ)⊢n

∑
Z

GZx
|µ|0+1,

where the first summation is taken over all types (k, µ) of n and the second summation
is taken over all k-Young tableaux of shape (k, µ). By using Lemma 3.1, along the same
lines as in the proof of Theorem 2.10, one can derive (2.7). □

5. Proof of Theorem 2.12

We now recall a grammatical interpretation of André polynomials.

Proposition 5.1 ([9]). If G1 = {x → xy, y → x}, then

Dn
G1

(x) =
∑
i⩾1

S(n, i)xiyn+2−2i.

Equivalently, we see that if G2 = {x → y, y → 1}, then

(xDG2)
n(x) =

∑
i⩾1

S(n, i)xiyn+2−2i.

Proof of Theorem 2.12. Let G2 = {x → y, y → 1}. From (4.1), we have

(5.1) (xDG2)
n (x) =

∑
(k,µ)⊢n

∑
Z

GZxxµ1xµ2 · · ·xµn−1D
k
G2

(x).

Note that x0 = D0
G2

(x) = x, x1 = DG2(x) = y, x2 = D2
G2

(x) = 1 and xi = Di
G2

(x) = 0

for i ⩾ 3. Recall that for (k, µ) ⊢ n, we have k ∈ [n]. Then xµ1xµ2 · · ·xµn−1D
k
G2

(x) ̸= 0 if
and only if 0 ⩽ µj ⩽ 2 for all j ∈ [n− 1] and 1 ⩽ k ⩽ 2. Thus

(5.2) µ = (1m12m20n−1−m1−m2),

where m1 and m2 are nonnegative integers. Assume that Z is a k-Young tableau of shape
(k, µ), where µ is given by (5.2). As in the proof of Theorem 2.10, we define T = ρ(Z) to
be the unique SYT such that the sets of the letters in the j-th column in Z and T are the
same for all j. Then Z has at most two columns. Using Proposition 5.1, we get

(5.3) Sn(x) = (xDG2)
n(x)|y=1 =

∑
(k,µ)⊢n

∑
Z

GZx
|µ|0+1,
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where the first summation is taken over all types (k, µ) of n, the second summation is
taken over all k-Young tableaux of shape (k, µ) and the partitions µ have the form (5.2).
Along the same lines as in the proof of Theorem 2.10, we get the desired formula (2.8). □
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