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Abstract. Let p be a prime number, j and d ≥ 3 positive integers
coprime with p. We provide the explicit continued fraction expansion
of the j/d-th root of 1 + x−1 in the power series field Fp((x

−1)). We
determine its irrationality exponent.
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1. Introduction

Throughout this paper, we let q be a power of a prime number p and
Fq((x−1)) denote the field of power series in x−1 over Fq. In parallel with
the theory of continued fractions for real numbers, a theory of continued
fractions has been developed in Fq((x−1)), where the partial quotients are
(non-constant) polynomials in x; see the beginning of Section 3. Like in the
real case, the continued fraction expansion of a power series ξ in Fq((x−1))
is ultimately periodic if and only if ξ is quadratic; see [20, Section 3]. While
the continued fraction expansion of algebraic real numbers of degree at least
three remains very mysterious, the continued fraction expansion of certain
algebraic power series in Fq((x−1)) has been precisely determined. For in-
stance, Baum and Sweet [2] have noticed that, for any positive integer s,
the power series

ξBS,s = [x;xp
s
, xp

2s
, . . .] = x+

1

xps + 1

xp2s+···

in Fq((x−1)), which satisfies ξBS,s = x+1/ξp
s

BS,s, is a root of the polynomial

Zp
s+1 − xZps − 1,

hence is algebraic over Fq(x). Its degree is equal to ps+1 and its irrational-
ity exponent (see Definition 3.1) is also equal to ps + 1, by [10, p. 214].
This shows that a power series analogue of Roth’s theorem does not hold
and that the power series analogue of Liouville’s theorem, which has been
established by Mahler [13], is best possible; namely, an algebraic power se-
ries in Fq((x−1)) cannot be approximated by rational fractions at an order
exceeding its degree. In the opposite direction, there are explicit examples of
algebraic power series whose sequence of partial quotients are polynomials of
bounded degree, that is, algebraic power series that are badly approximable
by rational fractions, a first example in F2((x

−1)) being given in [2].
In the same paper [2], the authors derived the explicit continued fraction

expansion of the power series

(1.1)

(
P (x)

P (x) + 1

)1/(2m−1)

∈ F2((x
−1)),
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where P (x) is in F2[x] \ F2. Since then, several explicit continued fractions
of algebraic power series have been obtained; see [1, 11, 12, 15–17, 19, 20] for
example. More recently, several families of continued fractions in F2((x

−1))
whose sequence of partial quotients can be generated by a finite automaton
have been shown to be algebraic [4–8]. The main purpose of the present
paper is to considerably extend the result of [2] on (1.1).

Let d, j be coprime integers with d ≥ 2, 1 ≤ j ≤ d/2 and such that p
does not divide jd. Let s be the smallest positive integer such that d divides
ps − 1 and set d′ = (ps − 1)/d. We let (1 + x−1)1/(p

s−1) denote the unique
power series ξ = 1 + . . . in Fp((x−1)) such that ξp

s−1 = 1 + x−1 and we set

(1 + x−1)j/d =
(
(1 + x−1)1/(p

s−1)
)jd′

.

The case d = 2, j = 1, and p odd is easy. Namely, we have

(1.2) (1 + x−1)1/2 = [1; 2x+ 1/2, (−8x− 4, 2x+ 1)∞]

in Q((x−1)), where the notation ( )∞ means that the sequence of partial

quotients of (1+x−1)1/2 is eventually periodic of period −8x−4, 2x+1; see
Section 12 for a proof. Since the leading coefficient of each partial quotient
is coprime with p, we immediately get that

(1 + x−1)1/2 = [1; 2x+ 1/2, (−8x− 4, 2x+ 1)∞]

in Fp((x−1)).
The main result of the present work is the following theorem.

Theorem 1.1. Let p be a prime number, d ≥ 3 an integer not divisible by
p, and j a nonzero integer coprime with d. We give a full description of the
continued fraction expansion of the power series (1 + x−1)j/d in Fp((x−1)).

For the case p = 2, which is considerably simpler than the case p odd,
precise statements are given in Theorems 2.2 and 4.2. The case p odd is
much more complicated. To solve it, we have observed, experimentally, that
in every case many convergents are of the form (1+ x−1)m for an integer m
in Z. Instead of giving a very technical, lengthy statement, we explain first
how to find the infinite sequence (mk)k≥0 of integers such that (|mk|)k≥0 is

increasing and (1 + x−1)m is a convergent to (1 + x−1)j/d if and only if m
is an element of (mk)k≥0. Then, we give the continued fraction expansion
of (1 + x−1)m0 and explain how to get the continued fraction expansion of
(1 + x−1)mk+1 from the one of (1 + x−1)mk , for k ≥ 0.

To our knowledge, Theorem 1.1 is the first general result on the continued
fraction expansions of a ‘natural’, simple, infinite family of algebraic power
series in arbitrary (finite) characteristic.

The precise knowledge of the continued fraction expansion of (1+x−1)j/d

in Fp((x−1)) allows us to determine its irrationality exponent and its ap-
proximation spectrum (see Definition 3.1). We gather several Diophantine
results in Section 3.
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2. Results

2.1. p-adic expansions of rational numbers. Let p be a prime number.
Every p-adic integer λ in Zp has a unique representation

λ = λ0 + λ1p+ λ2p
2 + . . . , λi ∈ {0, 1, . . . , p− 1},

called its Hensel expansion. We define the power series (1 + x−1)λ in
Fp((x−1)) to be

(1 + x−1)λ = (1 + x−1)
∑

i≥0 λip
i

=
∏
i≥0

(1 + x−1)λip
i
=
∏
i≥0

(1 + x−p
i
)λi .

Mendès France and van der Poorten [14] proved that (1+x−1)λ is algebraic
over Fp(x) if and only if the p-adic integer λ is in Q∩Zp.

We check that if λ = λ′0 + λ′1p + λ′2p
2 + . . ., where (λ′i)i≥0 is a bounded

sequence of integers, then

(1 + x−1)λ = (1 + x−1)
∑

i≥0 λ
′
ip

i

=
∏
i≥0

(1 + x−1)λ
′
ip

i
=
∏
i≥0

(1 + x−p
i
)λ

′
i ,

as well. Furthermore, for λ in Q∩Zp, the expression (1 + x−1)λ gives the
same result when λ is viewed as a rational number (as in Section 1) and
when it is viewed as a p-adic number. These claims, as well as the other
claims and the lemmas of this and the next sections, are proved in Section 5.

In the sequel, we sometimes assume that λ is a rational number j/d.
Clearly, p and d are assumed to be coprime. We will often also assume
that p and j are coprime. This is not at all restrictive, since the partial
quotients of the power series ξp in Fp((x−1)) are the p-th powers of the
partial quotients of the p-adic number ξ.

For the question investigated in this paper, the Hensel expansion is not
the most appropriate way to represent the p-adic number λ. We make use in
F2 of expansions with alternate signs over the set of digits {−1, 0, 1} and, in
Fp with p odd, of expansions over the set of digits {−(p−1)/2, . . . , (p−1)/2}.

Our results give a precise description of the continued fraction expansion
of any power series (1 + x−1)λ in Fp((x−1)) with λ in Zp.

2.2. Over the field F2. The continued fraction expansion of (1 + x−1)λ in
F2((x

−1)) can be described in terms of the expansion with alternate signs
of the 2-adic integer λ.

Lemma 2.1. Every positive integer m has a unique binary representation
with alternate signs

m = 2vℓ − 2vℓ−1 + . . .− 2v1 + 2v0 ,

where vℓ > . . . > v0 are non-negative integers and ℓ is even. Every negative
integer m has a unique binary representation with alternate signs

m = −2vℓ + 2vℓ−1 − . . .− 2v1 + 2v0 ,
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where vℓ > . . . > v0 are non-negative integers and ℓ is odd. Every nonzero
2-adic integer λ which is not in Z∩Z2 has a unique expansion with alternate
signs

λ = 2v0 − 2v1 + 2v2 − . . . ,
where (vℓ)ℓ≥0 is an increasing sequence of non-negative integers.

The following theorem asserts in particular that, for every λ in Z2, any
convergent to the power series (1 + x−1)λ is an integral power of 1 + x−1.

This holds in particular for any rational power (1 + x−1)j/d with d odd.
To shorten the notation, we put

[k]x = 1 + x+ . . .+ xk−1, k ≥ 1.

Theorem 2.2. (i). Let m be a nonzero integer. Let

m = (−1)ℓ2vℓ + (−1)ℓ−12vℓ−1 + . . .+ 2v0

denote its binary representation with alternate signs. Set

mk = (−1)k2vk + (−1)k−12vk−1 + . . .+ 2v0 , k = 0, . . . , ℓ.

Then, the convergents to (1 + x−1)m are

(1 + x−1)m0 , (1 + x−1)m1 , . . . , (1 + x−1)mℓ = (1 + x−1)m,

if v1 > v0 + 1, and

(1 + x−1)m1 , (1 + x−1)m2 , . . . , (1 + x−1)mℓ = (1 + x−1)m,

if v1 = v0 + 1.
(ii). Let λ be an element of Z2 \Z, whose expansion with alternate signs

is given by
λ = 2v0 − 2v1 + 2v2 − . . . ,

with v0 < v1 < . . . Set m−1 = 0 and

(2.1) mk = 2v0 − 2v1 + 2v2 − . . .+ (−1)k2vk , k ≥ 0.

Then, the partial quotients an, n ≥ 1, of

(2.2) (1 + x−1)λ = [1; a1, a2, a3, . . .],

which are polynomials in x2
v0 , and its convergents Pn/Qn are given by

(ii.a) if v1 > v0 + 1:

a1 = x2
v0
;

an = (x+ x2)|mn−3|[2vn−1−vn−2 − 1]2
vn−2

x , n ≥ 2;

Pn
Qn

= (1 + x−1)mn−1 , n ≥ 1;

(ii.b) if v1 = v0 + 1:

a1 = 1 + x2
v0
;

a2 = [2v2−v0 − 1]2
v0

x ;

an = (x+ x2)|mn−2|[2vn−vn−1 − 1]2
vn−1

x , n ≥ 3;
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Pn
Qn

= (1 + x−1)mn , n ≥ 1.

With the notation of Theorem 2.2, we have |mk+1| ≥ |mk| for k ≥ 0, with
equality if and only if k = 0 and v1 = v0 + 1.

When λ = j/d is rational and 1 ≤ j < d/2, we give in Theorem 4.2
below a closed formula for an depending on the value of n modulo a suitable
integer at most equal to (d − 1)/4. As an illustration of Theorem 4.2, we

derive the continued fraction expansion of (1 + x−1)1/13.

Corollary 2.3. The continued fraction expansion of (1 + x−1)1/13 is

[1;x, [3]x, (x+ x2)1, (x+ x2)3 · [7]8x, (x+ x2)5 · [3]64x , (x+ x2)59, . . .],

where the partial quotients an are given by

a1 = x,

a3n = (x+ x2)(3·2
6n−4−(−1)n)/13, n ≥ 1,

a3n+1 = (x+ x2)(5·2
6n−3+(−1)n)/13 · [7]26n−3

x , n ≥ 1,

a3n+2 = (x+ x2)(2
6n−(−1)n)/13 · [3]26nx , n ≥ 0.

Further examples can be found on the webpage
http://irma.math.unistra.fr/~guoniu/pthroot/ .

2.3. Over the field Fp with p odd. In this subsection, we let p denote an
odd prime number. We use the signed p-adic expansion of an element of Zp
instead of its Hensel expansion.

Lemma 2.4. Every nonzero integer m has a unique representation

m = d0p
v0 + d1p

v1 + . . .+ dℓp
vℓ ,

where 0 ≤ v0 < v1 < . . . < vℓ are integers and the digits di are in {−(p −
1)/2, . . . , (p− 1)/2} and are nonzero. We call it the signed p-adic represen-
tation of m. More generally, every p-adic integer λ which is not in Z∩Zp
has a unique expansion

(2.3) λ = d0p
v0 + d1p

v1 + . . . ,

where 0 ≤ v0 < v1 < . . . are integers and all the digits di are in {−(p −
1)/2, . . . ,−1, 1, . . . , (p− 1)/2}, and we call it its signed p-adic expansion.

Let λ be a p-adic integer which is not in Z∩Zp and let

(2.4) λ = d0p
v0 + d1p

v1 + d2p
v2 + . . .

denote its signed p-adic expansion. We want to compute the continued
fraction expansion of (1 + x−1)λ. We assume that v0 = 0 in (2.4). This is
not a restriction since every nonzero p-adic integer is equal to a power of
p times a p-adic unit and, as already pointed out, the partial quotients of
the p-th power of an element of Fp((x−1)) are the p-th powers of its partial
quotients.
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Define the integer sequence (mk)k≥0 by setting

mk = d0 + d1p
v1 + . . .+ dkp

vk , k ≥ 0.

Since

(2.5) |mk| ≤
p− 1

2
· p

vk+1 − 1

p− 1
<
pvk+1

2
, k ≥ 0,

and |mk+1−mk| ≥ pvk+1 , the sequence (|mk|)k≥0 is increasing. Furthermore,
mk and dk have the same sign.

Lemma 2.5. Let λ be a nonzero p-adic integer in Zp and set ξ = (1+x−1)λ.
Let (mk)k≥0 be the sequence defined above. For k ≥ 0, the rational fraction
(1 + x−1)mk is a convergent to ξ. Conversely, if m is a nonzero integer
such that (1 + x−1)m is a convergent to ξ, then there exists k ≥ 0 such that
m = mk.

We postpone its proof to Section 6. Theorem 2.2 shows that the analogue
of Lemma 2.5 holds for p = 2.

By Lemma 2.5, to compute the continued fraction expansion of (1+x−1)λ,
it is sufficient to compute the continued fraction expansion of (1 + x−1)m0

and to know how the continued fraction expansion of (1 + x−1)mk+1 can be
deduced from the one of (1 + x−1)mk .

The next lemma answers the former question (recall that |m0| < p/2
always holds). It follows from a classical result of Lagrange [9] and its proof
is postponed to Section 12. Throughout this paper, by length of a finite
continued fraction, we mean the number of its partial quotients (excluding
the polynomial part). For example, the length of 1 + x−1 = [1, x] is 1 and
the length of the ℓ-th convergent to the infinite continued fraction expansion
[a0; a1, . . .] is equal to ℓ, for ℓ ≥ 1.

Lemma 2.6. Let p be an odd prime number and m be a nonzero integer
with |m| < p/2. For j = 2, . . . , |m|, set

fj =
(2j − 1)(m− j + 2)(m− j + 4) · · · (m+ j − 2)

(m− j + 1)(m− j + 3) · · · (m+ j − 1)
(2x+ 1).

Then, we have

(2.6) (1 + x−1)m =
[
1,
x

m
+

1−m
2m

, 2f2,
f3
2
, . . . , 2(−1)mf|m|

]
,

and the length of (1 + x−1)m is equal to |m|.

Throughout this paper, w stands for a finite word over the alphabet
composed of the non-constant polynomials in Fp[x]. It may be the empty
word. When it appears in a continued fraction expansion, we read the
sequence of its letters as a sequence of partial quotients. Writing w =
w1, . . . , wk, its reversal

←−w is the word

←−w = wk, . . . , w1,
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and, for a nonzero ρ in Zp, we set

ρw = ρw1, ρ
−1w2, . . . , ρ

(−1)k+1
wk,

and we call ρw a twist of w.
Let m be a nonzero integer coprime with p. The first partial quotient

of (1 + x−1)m is 1 and the second one depends only on the value of m

modulo p. By Lemma 2.6, it is equal to x
d0

+ 1−d0
2d0

, where d0 is the integer in

{−(p−1)/2, . . . , (p−1)/2} which is congruent to m modulo p. This justifies
the first two partial quotients in (2.7) below.

The Key Lemma below is the main ingredient of the proof of Theorem
1.1 for odd primes.

Lemma 2.7 (Key Lemma). Let k ≥ 0 be an integer. Let d0, d1, . . . , dk, dk+1

be nonzero integers in {−(p − 1)/2, . . . , (p − 1)/2}. Let v1, . . . , vk, vk+1 be
integers with 0 < v1 < . . . < vk < vk+1 and set

mk := d0 + d1p
v1 + . . .+ dkp

vk , mk+1 = mk + dk+1p
vk+1 .

Let

(2.7) (1 + x−1)mk =
[
1,
x

d0
+

1− d0
2d0

,w
]

denote the continued fraction expansion of (1 + x−1)mk , where w is a finite
word, possibly empty. Set

ε = − sgn(mk)dk+1 = − sgn(mkmk+1)|dk+1|,

y =
x

mk
+

1−mk

2mk
,

h = (
←−−
w/2, 2y + 1,−2y − 1,−w/2).

For any non-negative integer j, put

δ(4j) = 4, δ(4j + 1) = 16, δ(4j + 2) =
1

4
, δ(4j + 3) = 1,

and let ηε(j) be given by the Ultimate Triangle defined in Section 8. If mk

is odd, then the continued fraction expansion of (1 + x−1)mk+1 is given by

(1+x−1)mk+1 = [1, y,w, ck+1, ηε(0)h, ηε(1)ck+1, ηε(2)h, . . . , ηε(2|ε|−3)ck+1],

if mk and mk+1 have opposite signs, and by

(1 + x−1)mk+1 = [1, y,w, ck+1, ηε(0)h, ηε(1)ck+1, ηε(2)h, . . . , ηε(2|ε| − 2)h],

otherwise.
If mk is even, then the continued fraction expansion of (1 + x−1)mk+1 is

given by

(1 + x−1)mk+1 = [1, y,w, ck+1, δ(0)ηε(0)h, δ(1)ηε(1)ck+1, δ(2)ηε(2)h, . . . ,

δ(2|ε| − 3)ηε(2|ε| − 3)ck+1],
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if mk and mk+1 have opposite signs, and by

(1 + x−1)mk+1 = [1, y,w, ck+1, δ(0)ηε(0)h, δ(1)ηε(1)ck+1, δ(2)ηε(2)h, . . . ,

δ(2|ε| − 2)ηε(2|ε| − 2)h],

otherwise.
Here, ck+1 is the polynomial part of the rational fraction c′k+1 defined by

c′k+1 = (−1)mk4mk−|mk| (1 + x)p
vk+1−|mk|

dk+1x|mk|
,

where

mk =

{
0, if mk is even,

1, if mk is odd.

In particular, if ℓk and ℓk+1 denote the lengths of the continued fraction
expansions of (1 + x−1)mk and (1 + x−1)mk+1, respectively, then

ℓk+1 = (2|dk+1| − 1)ℓk + |dk+1|, if mkmk+1 < 0,

and

ℓk+1 = (2|dk+1|+ 1)ℓk + |dk+1|, if mkmk+1 > 0.

Moreover, ℓk and mk have the same parity for every k ≥ 0.

It should be pointed out that ηε(0), . . . , ηε(2|ε| − 2) are rational numbers
and do not depend on the prime p. Since their numerators and denominators
are divisible only by primes less than p, they are nonzero modulo p. The
shape of, say, the continued fraction expansion of (1 + x−1)1/4 in Fp((x−1))
depends on the signed p-adic expansion of 1/4, but the coefficients ηε(h) are
rational numbers independent of p.

To derive the continued fraction expansion of (1+x−1)j/d in Fp((x−1)), we
first compute the signed p-adic expansion of j/d and then we apply Lemma
2.7 repeatedly. Two explicit examples are discussed in Section 13.

Lemma 2.7 allows us to describe precisely the degrees of the partial quo-
tients of (1 + x−1)λ.

Corollary 2.8. Let λ be in Z \Zp. Every partial quotient of (1+x−1)λ is a
linear polynomial or a twist of a polynomial of degree δk := pvk+1−2|mk|, for
some k ≥ 0. Furthermore, for every ℓ ≥ 0, the first occurrence of a partial
quotient of degree δℓ arises immediately after the convergent (1 + x−1)mk ,
where k is the smallest integer with δk = δℓ.

Note that the δk may not be all distinct. For example, if mk > 0, dk+1 =
(p− 1)/2, and vk+2 = vk+1 + 1, then

pvk+2 − 2|mk+1| = pvk+1+1 − 2mk − (p− 1)pvk+1 = pvk+1 − 2|mk|.
For p = 2, the proof of Theorem 2.2 shows that every partial quotient of

(1+x−1)λ is equal to the integer part of a rational fraction (1+x)|mk+1|/x|mk|,
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with mk as in (2.1). Thus, the degree of the k-th (or (k + 1)-th, depending
whether or not v1 is equal to v0 + 1) partial quotient of (1 + x−1)λ is equal
to |mk| − |mk−1|, that is, to 2vk − 2|mk−1|.

2.4. Comments on the proofs. We had to compute many explicit exam-
ples to be able to guess the precise form of the continued fraction expansion
of (1 + x−1)j/d in Fp((x−1)). The case p = 2 became simpler once we real-
ized that all the convergents are integral powers of (1 + x−1). For the case
p odd, once we found the expression of mk and realized that one goes from
the continued fraction expansion of (1 + x−1)mk to that of (1 + x−1)mk+1

by adding partial quotients given, roughly speaking, by w,←−w (notations
from Lemma 2.7), the most difficult point was to find the expression of the
(nonzero) coefficients in Fp by which the partial quotients of w,←−w are mul-
tiplied. Subsequently, it was a great surprise when we noticed that these
coefficients are given by the same array of rational numbers, that we simply
have to take modulo p. To summarize, the most difficult part of the proof of
Lemma 2.7 was to guess the conclusion of the lemma. It then only remained
for us to check its correctness by a direct computation. That being said,
this last step is quite lengthy and complicated.

In a forthcoming work, we will investigate how the constructions described
in the present paper can be used to get new results on continued fraction
expansions of real numbers. Namely, the formula obtained in Section 9 are
established over an arbitrary field, hence are valid over the rationals.

3. Irrationality exponent and approximation spectrum

We define an absolute value | · | on Fq((x−1)) as follows. We set |0| = 0
and, if ξ = btx

t + bt−1x
t−1 + . . . with bt ̸= 0, we set |ξ| = et. In particular,

if ξ is a nonzero polynomial in Fq[x], then |ξ| = edeg(ξ).
Any element of Fq(x) is uniquely expressed as a finite continued fraction

(3.1) [a0; a1, . . . , an] =
Pn
Qn

,

where a0, a1, . . . , an are in Fq[x] and have positive degree, except possibly
for a0. Every element ξ in Fq((x−1)) \ Fq(x) can be uniquely represented as
an infinite continued fraction

ξ = [a0; a1, . . .],

where a0, a1, a2, . . . are in Fq[x] and have positive degree, except possibly for
a0. The Pn/Qn defined by (3.1) are the convergents to ξ and the ai’s are its
partial quotients. We have

(3.2)
∣∣∣ξ − Pn

Qn

∣∣∣ = 1

|QnQn+1|
=

1

|an+1| · |Qn|2
, n ≥ 0,

and

(3.3) Pn+1 = an+1Pn + Pn−1, Qn+1 = an+1Qn +Qn−1, n ≥ 1.
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Observe that

degQn = deg a1 + . . .+ deg an, n ≥ 1.

Standard references include [20, 21]. Unlike in the real case, the knowledge
of the convergent Pn/Qn (viewed as a rational fraction) does not determine
Pn and Qn, since it gives no information on their leading coefficient. For
example, (x+ 1

x

)m
= [a0; a1, . . . , an] =

Pn
Qn

,

with a positive integer m, does not imply that the polynomial Pn given by
the recurrence (3.3) is equal to (x+1)m; we only know that Pn is a constant
multiple of (x+ 1)m. A further illustration is given by

[1;−x− 1] = 1 +
1

−x− 1
=

−x
−x− 1

=
x

x+ 1
,

giving that P1 = −x and Q1 = −x− 1.
The determination of the continued fraction expansion of ξ allows us

to compute its irrationality exponent µ(ξ) and its approximation spectrum
S(ξ), a more general notion introduced by Schmidt [20].

Definition 3.1. Let ξ = [a0; a1, a2, . . .] be in Fq((x−1)) \ Fq(x) and denote
by (Pn/Qn)n≥0 the sequence of its convergents. The irrationality exponent
of ξ, denoted by µ(ξ), is defined by

(3.4) µ(ξ) := lim sup
n→+∞

− log |ξ − Pn/Qn|
log |Qn|

= 2 + lim sup
n→+∞

deg an+1

degQn
.

The approximation spectrum of ξ, denoted by S(ξ), is the set of limit points
of the sequence

− log |ξQn − Pn|
log |Qn|

, n ≥ 1.

We let

ν(ξ) := lim sup
n→+∞

− log |ξQn − Pn|
log |Qn|

= lim sup
n→+∞

degQn+1

degQn
= µ(ξ)− 1

and

ν̂(ξ) := lim inf
n→+∞

− log |ξQn − Pn|
log |Qn|

= lim inf
n→+∞

degQn+1

degQn
denote, respectively, the greatest and the smallest element of the approxima-
tion spectrum of ξ.

Since any element P/Q in Fq(x) such that |ξ − P/Q| < 1/|Q|2 is a con-
vergent to the irrational power series ξ (this statement is usually called Le-
gendre’s theorem for power series), the last equality in (3.4) follows straight-
forwardly from (3.2) and (3.3).

We derive from Theorems 2.2 and 2.7 the value of the irrationality ex-
ponent of (1 + x−1)j/d in Fp((x−1)). Since ξ, ξ−1, and (1 + x−1)ξ have the
same irrationality exponent for every nonzero power series ξ, there is no
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restriction in assuming that 1 ≤ j < d/2. As usual, an empty sum is equal
to 0.

Theorem 3.2. Let p be a prime number and j, d positive integers with
gcd(p, jd) = 1 and 1 ≤ j < d/2. If p = 2, then write j = j0 and

d = j0 + j1 2
u1 = j1 + j2 2

u2 = . . . = js−1 + j0 2
us−1 ,

where j1, . . . , js−1 are distinct odd integers in [1, d/2]. Set O2,j,d := {j =
j0, j1, . . . , js−1}. Then,

µ((1 + x−1)j/d) =
d

min{ȷ̄ : ȷ̄ ∈ O2,j,d}
≥ d

j
,

ν̂((1 + x−1)j/d) =
d

max{ȷ̄ : ȷ̄ ∈ O2,j,d}
− 1 > 1,

and

S((1 + x−1)j/d) =
{d− ȷ̄

ȷ̄
: ȷ̄ ∈ O2,j,d

}
.

If p is odd, then write the signed p-adic expansion of j/d in Zp as

j

d
= (d0 + d1p

v1 + . . .+ ds−1p
vs−1)(1 + pvs + p2vs + . . .),

with vs minimal. Set v0 = 0. For h = 0, . . . , s− 1, define

jh =
d(dh + dh+1p

vh+1−vh + . . .+ ds−1p
vs−1−vh + d0p

vs−vh + . . .+ dh−1p
vs+vh−1−vh)

1− pvs

and Op,j,d := {j = j0, j1, . . . , js−1}. Then,

(3.5) µ((1 + x−1)j/d) =
d

min{|ȷ̄| : ȷ̄ ∈ Op,j,d}
≥ d

j
.

Theorem 3.2 extends a result of Osgood [18], who established in 1975 that

the irrationality exponent of the power series (1 + x−1)1/d is equal to d.
Note also that j = j0 is always an element of the set Op,j,d. The ap-

pearence of the sets Op,j,d in Theorem 3.2 is not surprising: it follows from

the fact that (1+x−1)j/d and (1+x−1)j/d−(d0+d1pv1+...+dip
vi ) have the same

irrationality exponent for every i ≥ 0. Said differently, to compute the irra-
tionality exponent of (1 + x−1)j/d, we have to consider the (finitely many)
shifted sequences of the sequence of digits of j/d.

For an odd prime p, a simple algorithm allows us to compute the sets
Op,j,d, where 1 ≤ j < d/2 and gcd(p, jd) = 1. There is a unique pair (a0, ε0)
with 1 ≤ a0 ≤ (p− 1)/2 and ε0 = ±1 such that

p | (a0d− ε0j).

Then, define the integers j1 and u1 by

a0d = ε0j + j1p
u1 , gcd(p, j1) = 1.
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Observe that 1 ≤ j1 < d/2. There is a unique pair (a1, ε1) with 1 ≤ a1 ≤
(p− 1)/2 and ε1 = ±1 such that

p | (a1d− ε1j1).
Then, define the integers j2 and u2 by

a1d = ε1j1 + j2p
u2 , gcd(p, j2) = 1.

Observe that 1 ≤ j2 < d/2. Continue like this to get j3, j4, . . . until one
reaches jh = j. This will always happen since the ji’s are in a finite set.
We check that h = s, the values ji are the same as in Theorem 3.2, and
ui = vi − vi−1. We also check that

Op,j,d = {j, j1, . . . , jh−1}.

We can completely characterize the cases where (1 + x−1)j/d has a non-
trivial uniform exponent of approximation and the cases where its approxi-
mation spectrum is finite.

Proposition 3.3. Let p be a prime number, j, d coprime integers with d ≥ 3,
1 ≤ j < d/2 and gcd(p, jd) = 1. Set ξ = (1 + x−1)j/d. If p = 2, then
ν̂(ξ) > 1 and the approximation spectrum S(ξ) is finite. If p ≥ 3, write its
signed p-adic expansion as

j

d
= (d0 + d1p

v1 + . . .+ ds−1p
vs−1)(1 + pvs + p2vs + . . .),

with vs minimal. Then, the three following properties are equivalent:

(i) ν̂(ξ) > 1;

(ii)The approximation spectrum S(ξ) is finite;

(iii) s is even and d0, d1, . . . , ds−1 take alternatively the values 1 and −1.

To conclude this section, we briefly discuss simultaneous rational approx-
imation of the first integral powers of 1 + x−1.

Observe that, for any integer k ≥ 1 and any real number µ ≥ 2, if ξ and
P/Q satisfy |ξ − P/Q| = 1/|Q|µ, then

|ξk − P k/Qk| ≤ c(ξ, k)|Qk|−µ/k,
for some positive c(ξ, k) independent of P/Q. Consequently, we have µ(ξk) ≥
µ(ξ)/k or, equivalently,

(3.6) ν(ξk) ≥ ν(ξ)− k + 1

k
, k ≥ 1.

Definition 3.4. Let ξ be in Fq((x−1)) \ Fq(x). Let k ≥ 1 be an integer. Let
λk(ξ) denote the supremum of the real numbers λ for which

0 < max{|Q(T )ξ − P1(T )|, . . . , |Q(T )ξk − Pk(T )|} < e−λdeg(Q)

has infinitely many solutions in polynomials Q(T ), P1(T ), . . . , Pk(T ) in Fq[x].

The next result has been established in [3].
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Theorem 3.5. Let ξ be a power series in Fq((x−1)). For any positive integer
k, we have

(k + 1)
(
1 + λk+1(ξ)

)
≥ k

(
1 + λk(ξ)

)
,

with equality if λk+1(ξ) > 1. Consequently, for every integer n with n ≥ k,
we have

(3.7) λn(ξ) ≥
kλk(ξ)− n+ k

n
,

and equality holds if λn(ξ) > 1.

By combining Theorems 3.2 and 3.5, we easily get some partial results on
the values of exponents of simultaneous approximation at the d-th root of
1 + x−1.

Theorem 3.6. Let p be a prime number and d ≥ 3 an integer. Let j be
the greatest positive integer coprime with pd such that j < d/2 and j is the
smallest element of the set Op,j,d. Then, we have

λh
(
(1 + x−1)1/d

)
=
d− h
h

, h = 1, . . . , j.

More generally, we can study the irrationality exponent of ξλ = (1+x−1)λ

for an arbitrary λ in Zp \Z, since we have a precise description of its con-
tinued fraction expansion. We may return to this question in a subsequent
work.

4. A simplified statement over F2

In the special case of F2, we can give a close formula for the partial
quotients an defined in Theorem 2.2. First, we need to introduce several
functions which play a crucial role in our approach. The correctness of the
definition is not immediate and will be checked in the next half a page.

Definition 4.1. Let d ≥ 3 be an odd integer. Set

A = Ad = {j | 1 ≤ j ≤ (d− 1)/2, j odd, gcd(j, d) = 1}.
Let ψd : A→ A be the map defined by the relation

(4.1) d = j + ψd(j)2
δd(j),

where δ(j) = δd(j) ≥ 1. The map ψ = ψd is a permutation on A. Let j be
in A. Set

σj(n) = σj,d(n) = δ(j) + δ(ψ(j)) + . . .+ δ(ψn(j)), n ≥ 0,

σj(−1) = 0. The function ρj : N≥−1 → N≥0 is defined by

ρj(n) = ρj,d(n) =
(
ψn+1(j) · 2σj(n) + (−1)nj

)
/d.

Furthermore, we let θj = θj,d denote the length of the orbit of ψ containing
j and we put βj = βj,d = σj(θj − 1). For i = 0, 1, . . . , θj − 1 and m ≥ −1
such that θjm+ i ≥ −1 we then have

ρj(θjm+ i) = ρj,d(θjm+ i) =
(
ψi+1(j) · 2βjm+σj(i) + (−1)θjm+ij

)
/d.
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When there is no risk of confusion, we write A, ψ, δ, σj , θj , and βj instead
of Ad, ψd, δd, σj,d, θj,d, and βj,d.

For j in A, observe that ψ(j) is the odd part of d − j. Since any two
distinct integers in (d/2, d) have different odd parts, the map ψ is injective
and is thus a permutation of the set A.

Furthermore, the integer βj is the smallest positive integer h such that

2h is congruent to ±1 modulo d. Therefore, βj is independent of j. To see
this, observe that, for j in A, the integer ψ−1(j) is equal to d − h, where
h is the unique integer of the form 2aj in the interval (d/2, d). Consider
the multiplication by 2 map T2 on Z /dZ, identified with {0, 1, . . . , d − 1}.
Then, the orbit of j under ψ−1 can be derived from its orbit O under T2
as follows: it is composed of the odd elements of O less than d/2 and of
the integers d − r, where r runs through the even elements of O greater
than d/2. Consequently, the cardinality of the orbit of j under ψ is equal to
the smallest positive integer a such that 2aj is congruent to ±j modulo d.
Since j and d are coprime, this integer is independent of j: it is the smallest
integer h ≥ 1 such that 2h is congruent to ±1 modulo d.

However, for j and j′ in A, the integers θj and θj′ may differ when j and
j′ do not belong to the same orbit of ψ.

The function ρj is fully determined by the permutation ψ and the values

of the function δ at j, ψ(j), . . . , ψθ−1(j). The fact that ρj takes integral
values is not immediate from its definition and is established in the course
of the proof of Theorem 4.2, where we obtain another expression for ρj .

Recall that

[k]x = 1 + x+ . . .+ xk−1, k ≥ 1.

Theorem 4.2. Let j, d be odd, coprime, positive integers with d ≥ 3 and
j < d/2. Let ρj,d and σj,d be as in Definition 4.1. Then, the continued

fraction expansion of (1 + x−1)j/d in F2((x
−1)) is given by

(4.2) (1 + x−1)j/d = [1; a1, a2, a3, . . .],

where the partial quotients an are polynomials in x, defined as follows:
(i) if d− j ≡ 2 (mod 4), then

a1 = 1 + x;

a2 = [2σj,d(1) − 1]x;

an = (x+ x2)ρj,d(n−2)[2σj,d(n−1)−σj,d(n−2) − 1]2
σj,d(n−2)

x , n ≥ 3;

Pn
Qn

= (1 + x−1)(−1)nρj,d(n), n ≥ 1;

(ii) if d ≡ j (mod 4), then

a1 = x;

an = (x+ x2)ρj,d(n−3)[2σj,d(n−2)−σj,d(n−3) − 1]2
σj,d(n−3)

x , n ≥ 2;
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Pn
Qn

= (1 + x−1)(−1)n−1ρj,d(n−1), n ≥ 1.

Theorem 4.2 follows from Theorem 2.2 once we have checked that the
expansion with alternate signs of the 2-adic number j/d is given by

1− 2σj,d(0) + 2σj,d(1) − 2σj,d(2) + . . .

To see this, keeping the notation from the beginning of this section and
removing the subscript d, we get

j

d
= 1− ψ(j)

d
2δ(j)

= 1−
(
1− ψ2(j)

d
2δ(ψ(j))

)
2δ(j)

= 1− 2δ(j) +
ψ2(j)

d
2δ(j)+δ(ψ(j))

Also, we should add that σj,d(0) = 1 if d− j ≡ 2 (mod 4), while σj,d(0) > 1
otherwise.

As an illustration of Theorem 4.2, we derive the continued fraction ex-
pansion of (1 + x−1)1/13. Since

13 = 1 + 3 · 22 = 3 + 5 · 21 = 5 + 1 · 23,

we have

σ1(3n) = 6n+ 2, σ1(3n+ 1) = 6n+ 3, σ1(3n+ 2) = 6n+ 6, n ≥ 0.

Furthermore,

ψ3n
1 (1) = 1, ψ3n+1

1 (1) = 3, ψ3n+2
1 (1) = 5.

By Theorem 4.2, this gives Corollary 2.3. Ignoring a1 in Corollary 2.3, we
see that the expression of an depends only on the value of n modulo 3, that
is, modulo the length θ1,13 of the orbit of the permutation ψ13 containing 1.
We point out that θ1,d can be as large as (d+1)/4 (we have θ1,d = (d+1)/4
for 1/d = 1/11 and for 1/d = 1/59, for example).

More generally, up to the first one or two partial quotients, the expression
of an depends only on the value of n modulo the length θj,d of the orbit of
Ad containing j.

If θ1,d = 1, then d = 1 + 2u for some u ≥ 1. Consequently, for an odd

integer d, the partial quotients an in the continued fraction of (1 + x−1)1/d

have a unified formula for all n (that is, we do not need to distinguish
congruence classes of n) if and only if there exists an integer u ≥ 1 such that
d = 1 + 2u.

Since any element of F2((x
−1)) has a unique continued fraction expansion,

Theorem 4.2 is still true if we replace x by any polynomial P (x) in F2[x]\F2.
Baum–Sweet’s result [2], that is, the continued fraction expansion of (1.1),
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is derived from Theorem 4.2 by replacing d by 2m − 1 and x by 1 + P (x).
Notice that by replacing x by 1 + x in Theorem 4.2 we get that

(4.3) (1 + x−1)−j/d = [1; a1 + 1, a2, a3, a4, . . .],

where the ai are the partial quotients of (1 + x−1)j/d. To see this, observe
that the terms x + x2 and [k]x for k of the form 2ℓ − 1 remain unchanged
when we replace x by 1 + x.

The case j/d = 1/3 in (4.3) was obtained by Mendès France and van der
Poorten in [15].

Proof of Theorem 4.2. Let j, d be odd, coprime, positive integers with d ≥
3 and j < d/2. Theorem 2.2 gives the continued fraction expansion of
(1 + x−1)λ for the 2-adic integer

λ = lim
k→+∞

λk,

where λk is the integer

λk = (−1)k2σj(k−1) + (−1)k−12σj(k−2) + · · ·+ 2σj(1) − 2σj(0) + 1, k ≥ 1.

Note that λk is positive when k ≥ 2 is even and negative when k ≥ 1 is odd.
Let i ≥ 1 be an integer. Recall that, by the definition of the map ψ, we have

d = ψi(j) + ψi+1(j)2δ(ψ
i(j)).

By multiplying both sides by (−1)i2σj(i−1), we get

(−1)id2σj(i−1) = (−1)iψi(j)2σj(i−1) + (−1)iψi+1(j)2σj(i).

For an integer k ≥ 1, taking the summation of the above identity for i =
1, 2, . . . , k yields

(−1)1d2σj(0) + (−1)2d2σj(1)+ · · ·+ (−1)kd2σj(k−1)

= (−1)1ψ(j)2σj(0) + (−1)kψk+1(j)2σj(k)

= −(d− j) + (−1)kψk+1(j)2σj(k),

since d = j + ψ(j)2σj(0). Hence, we have

(−1)kψk+1(j)2σj(k)

= (−1)kd2σj(k−1) + (−1)k−1d2σj(k−2) + · · ·+ d2σj(1) − d2σj(0) + d− j
= dλk − j,

This shows that the sequence of integers (λk)k≥1 tends in Z2 to j/d, thus
λ = j/d. Furthermore, since

(−1)kψk+1(j)2σj(k) = (−1)kdρj(k)− j,

we get that

(−1)kρj(k) = 1− 2σj(0) + 2σj(1) − 2σj(2) + . . .+ (−1)k2σj(k−1),
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thus ρj(k) is an integer. Then, by applying Theorem 2.2 with v0 = 0,

vk = σj(k − 1) for k ≥ 1 and mk = (−1)kρj(k) for k ≥ 0, we obtain
Theorem 4.2. □

5. Proofs of the results from Subsections 2.1 and 2.2

Proofs of the claims in Subsection 2.1. Let λ be in Zp. LetM be an integer
with M ≥ (p− 1)/2. Assume that

λ = λ0 + λ1p+ . . . = λ′0 + λ′1p+ . . . ,

with 0 ≤ λi ≤ p − 1 and |λ′i| ≤ M for i ≥ 0. For an integer k ≥ 0, set
pk = λ0 + λ1p+ . . .+ λkp

k and observe that

|(1+ x−1)λ− (1+ x−1)pk | = |(1+ x−1)pk | · |(1+ x−1)λk+1p
k+1+...− 1| < e−p

k
.

To see that

(1 + x−1)λ = (1 + x−1)
∑

i≥0 λ
′
ip

i

=
∏
i≥0

(1 + x−1)λ
′
ip

i
=
∏
i≥0

(1 + x−p
i
)λ

′
i ,

it is then sufficient to note that, since (|λ′i|)i≥0 is bounded, we have

vp
(
(λ0 + λ1p+ . . .+ λkp

k)− (λ′0 + λ′1p+ . . .+ λ′kp
k)
)
−−−−→
k→+∞

+∞,

where vp denotes the p-adic valuation.

We check now that for λ in Q∩Zp the expression (1 + x−1)λ gives the
same result when λ is viewed as a rational number (as in Section 1) and
when it is viewed as a p-adic number.

Assume, without any loss of generality, that 0 < λ < 1, λ = j/d, where
d ≥ 3 and gcd(jd, p) = 1. Let s be the smallest positive integer such that d
divides ps−1. The signed p-adic expansion of 1/(ps−1) is −1−ps−p2s−. . ..
By definition of the p-adic power, we have

(5.1) (1 + x−1)
1

ps−1 =
∏
i≥0

(1 + x−1)−p
si
=
∏
i≥0

(1 + x−p
si
)−1.

Since (
(1 + x−p

si
)−1
)ps−1

= (1 + x−p
s(i+1)

)−1 (1 + x−p
si
), i ≥ 0,

the last infinite product in (5.1), raised to the power ps − 1, is equal to
1 + x−1. This proves our claim for λ = 1/(ps − 1).

Now, write the representation in base p of the integer j(ps − 1)/d in
[1, ps − 1] as

j(ps − 1)

d
= j0 + j1p+ . . .+ js−1p

s−1, where 0 ≤ j0, . . . , js−1 ≤ p− 1.

Then, the p-adic number λ = j/d can be expressed as

j

d
=
j(ps − 1)/d

ps − 1
= −j(p

s − 1)

d
(1 + ps + p2s + . . .)

= −(j0 + j1p+ . . .+ js−1p
s−1) · (1 + ps + p2s + . . .),
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and we have

(1 + x−1)λ =
s−1∏
i=0

ji∏
h=1

(
(1 + x−p

i
)−1

)1+ps+...
=

s−1∏
i=0

ji∏
h=1

(
(1 + x−p

i
)−1

)1/(1−ps)
,

where 1/(1− ps) is viewed as a rational number. Then, we note that

s−1∏
i=0

ji∏
h=1

(
(1 + x−p

i
)−1

)1/(1−ps)
=
(
(1 + x−1)−(j0+j1p+...+js−1ps−1)

)1/(1−ps)
= (1 + x−1)j/d.

This shows that the expression (1 + x−1)λ gives the same result when λ is
viewed as a rational number and when it is viewed as a p-adic number. □

Proof of Lemma 2.1. We only justify the last assertion. Observe that, if λ
is not in Z∩Z2, then

λ =
∑
i≥1

(2ai + 2ai+1 + . . .+ 2ai+ci),

where (ai)i≥1 is increasing and ai + ci + 1 < ai+1 for i ≥ 1. Then,

λ =
∑
i≥1

(−2ai + 2ai+ci+1) = 2a1 − 2a1+1 + 2a1+c1+1 +
∑
i≥2

(−2ai + 2ai+ci+1),

which has the desired property (note that −2a1+1 + 2a1+c1+1 vanishes if
c1 = 0). Furthermore, λ is the limit in Z2 of the sequence of positive
integers

2a1 − 2a1+1 + 2a1+c1+1 +
m∑
i=2

(−2ai + 2ai+ci+1), m ≥ 2.

This proves the lemma. □

Until the end of this section, the last convergent of a finite continued
fraction [a0; a1, a2, . . . , am] is the rational fraction [a0; a1, a2, . . . , am−1]. The
first assertion of the next lemma is proved at the end of [20, Section 1]. The
second one is certainly well-known.

Lemma 5.1. Let ξ be in Fq((x−1)). If the rational fraction P/Q satisfies
|ξ − P/Q| < 1/|Q|2, then P/Q is a convergent to ξ. If, moreover, ξ is a
rational fraction R/S with P/Q ̸= R/S and if |ξ − P/Q| = 1/|QS|, then
P/Q is the last convergent to ξ.

Proof. If the last assertion does not hold, let U/V denote the last convergent
to ξ = R/S. Then, |Q| < |V | < |S| and

1

|QS|
=
∣∣∣ξ − P

Q

∣∣∣ ≥ 1

|QV |
>

1

|QS|
,
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a contradiction. □

We are now in position to establish Theorem 2.2.

Proof of Theorem 2.2. We only consider the case of λ in Z2 \Z, since the
case of integers is similar (and easier). Let (mk)k≥−1 be the sequence of
integers defined in (2.1). If v1 > v0 + 1, then

|(1 + x−1)λ − (1 + x−1)m0 | < |x|−2·2v0 .

Thus, 1 + x−2v0 is a convergent to (1 + x−1)λ and a1 = x2
v0 . If v1 = v0 + 1,

then m1 = −2v0 and

|(1 + x−1)λ − (1 + x−1)m1 | < |x|−2·2v0 .

Thus, (1 + x−2v0 )−1 is a convergent to (1 + x−1)λ and a1 = 1 + x2
v0 .

Let k ≥ 2 be an even integer. Thus, mk is positive, mk−1 is negative, and
mk −mk−1 = 2vk . Since (1 + x)u = 1 + xu for any u which is a power of 2,
we have(1 + x

x

)mk

−
( x

1 + x

)−mk−1

=
(1 + x)mk−mk−1 − xmk−mk−1

xmk(1 + x)−mk−1

=
(1 + x)2

vk − x2vk

xmk(1 + x)−mk−1
=

1

xmk(1 + x)−mk−1
.

This shows that (1+x−1)mk−1 is a convergent to (1+x−1)mk and, moreover,
it is its last convergent, by Lemma 5.1. Assume that k ≥ 3 is an odd
integer, or k = 1 and v1 > v0 + 1. Then, a similar computation shows that
(1 + x−1)mk−1 is the last convergent to (1 + x−1)mk . Consequently, if mk is
positive, then the last partial quotient Ak of (1 + x−1)mk satisfies

(1 + x)mk = Akx
−mk−1 + (1 + x)mk−2 ,

thus

Akx
−mk−1 = (1 + x)mk−2

(
(1 + x)mk−mk−2 − 1

)
= (1 + x)mk−2

(
(1 + x)2

vk−1 (2vk−vk−1−1) − 1
)

= (1 + x)mk−2
(
(1 + x)2

vk−vk−1−1 − 1
)2vk−1

= (1 + x)mk−2x2
vk−1

[2vk−vk−1 − 1]2
vk−1

x ,

where we have used that (1 + x)u−1 = [u]x, when u is a power of 2. Since
mk−1 −mk−2 = −2vk−1 , we get that

Ak = (x+ x2)mk−2 [2vk−vk−1 − 1]2
vk−1

x .

The same result holds if mk is negative, by a similar computation (in this

case the first factor is (x + x2)−mk−2 = (x + x2)|mk−2|). This shows that
ak = Ak−1 for k ≥ 2 in Case (ii.a) and ak = Ak for k ≥ 3 in Case (ii.b).
It only remains for us to compute a2 when v1 = v0 + 1. Note that −m1 =
m0 = 2v0 . As P0 = Q0 = 1, we get

(1 + x)m2 = a2x
−m1 + 1.
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A similar computation as above yields

a2x
−m1 = x2

v0
[2v2−v0 − 1]2

v0

x ,

giving a2 = [2v2−v0 − 1]2
v0

x , as asserted. □

6. Proofs of Lemmas 2.4 and 2.5

Proof of Lemma 2.4. We only justify the last assertion. Let λ be a p-adic
integer and let

λ− 1

2
=
∑
i≥0

λip
i

be the Hensel expansion of λ− 1/2. Then,

λ =
1

2
+
∑
i≥0

λip
i = −p− 1

2
(1 + p+ p2 + . . .) +

∑
i≥0

λip
i

=
∑
i≥0

(
λi −

p− 1

2

)
pi,

where all the digits λi − (p− 1)/2 are in {−(p− 1)/2, . . . , (p− 1)/2}. □

Proof of Lemma 2.5. Observe that

deg(ξ − (1 + x−1)mk) = deg((1 + x−1)λ−mk − 1) = −pvk+1 ,

while, by (2.5), we have pvk+1 > 2|mk|. It then follows from the first assertion
of Lemma 5.1 that (1 + x−1)mk is a convergent to ξ.

Let m be a nonzero integer not in the sequence (mk)k≥1 and let k be such
that

(6.1) |mk| < |m| < |mk+1|.

Assume that (1 + x−1)m is a convergent to ξ. Then, (1 + x−1)mk is a
convergent to (1 + x−1)m and (1 + x−1)m is a convergent to (1 + x−1)mk+1 .
Since

(1 + x−1)m − (1 + x−1)mk = (1 + x−1)mk
(
(1 + x−1)m−mk − 1

)
,

we have

|(1 + x−1)m − (1 + x−1)mk | = e−p
u
,

where pu is the largest power of p dividing m−mk. Since (1 + x−1)mk is a
convergent to (1 + x−1)m, we get

|(1 + x−1)m − (1 + x−1)mk | < e−2|mk|,

thus pu > 2|mk|. Likewise, if pv denote the largest power of p dividing
mk+1 −m, then pv > 2|m|. It follows from (6.1) and the first inequality of
(2.5) that u, v ≤ vk+1. Recall that mk+1 −mk = dk+1p

vk+1 . If u ̸= v, then
|m−mk|p ̸= |m−mk+1|p and

p−vk+1 = |mk+1−mk|p = max{|m−mk|p, |m−mk+1|p} = p−min{u,v} > p−vk+1 ,
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which is absurd. Thus, we must have u = v. Then,

2|m| < pv = pu ≤ |m−mk| < 2|m|,
a contradiction. □

7. Proofs of the results from Section 3

Proof of Theorem 3.2 for p = 2. Let j be in A. Let n be a positive integer.
By Definition 4.1, we have

ρj(n) = (ψn+1(j) · 2σj(n) + (−1)n · j)/d.
Since

d = ψn+1(j) + ψn+2(j) · 2δ(ψn+1(j)),

we get

dρj(n+ 1) = ψn+2(j) · 2σj(n+1) + (−1)n+1 · j

= 2σj(n+1)−δ(ψn+1(j))(d− ψn+1(j)) + (−1)n+1 · j

= 2σj(n)(d− ψn+1(j)) + (−1)n+1 · j,
thus

ρj(n+ 1)

ρj(n)
=
d− ψn+1(j)

ψn+1(j)
+ o(1).

By Theorem 4.2, we get

degQn+1

degQn
=
ρj(n+ 1− ε)
ρj(n− ε)

,

with ε = 1 if 4 divides d− j and ε = 0 otherwise.
Recall that the approximation spectrum S(ξ) of ξ is the set of limit points

of the sequence (degQn+1/ degQn)n≥1. With θj as in Definition 4.1, we have
established that

S(ξ) =
{d− j

j
,
d− ψ(j)
ψ(j)

, . . . ,
d− ψθj−1(j)

ψθj−1(j)

}
.

Since ψi(j) is the integer ji defined in the statement of the theorem, for
i = 0, . . . , h− 1, the proof is complete. □

Proof of Theorem 3.2 for p odd. It follows from (3.4) and Corollary 2.8 that

µ
(
(1 + x−1)λ

)
= 2 + lim sup

k→+∞

pvk+1 − 2|mk|
|mk|

= lim sup
k→+∞

pvk+1

|mk|
.

Note that pvk+1 − 2|mk| ≥ 1 for k ≥ 0, by (2.5).
Let vs denote the smallest positive integer such that d divides pvs −1 and

set a = (pvs − 1)/d. Then, the rational number j/d is equal to aj/(pvs − 1).
Let d0 + d1p

v1 + . . . + ds−1p
vs−1 denote the signed p-adic representation of

−aj. Then, the signed p-adic expansion of j/d is purely periodic and equal
to

j/d = (d0 + d1p
v1 + . . .+ ds−1p

vs−1) · (1 + pvs + p2vs + . . .).
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Since vℓs = ℓvs for ℓ ≥ 1, we get

mℓs+h = (d0 + d1p
v1 + . . .+ ds−1p

vs−1) · (1 + pvs + . . .+ p(ℓ−1)vs)

+ d0p
ℓvs + . . .+ dhp

vh+ℓvs ,

for ℓ ≥ 0 and h = 0, . . . , s − 1. Then, we have (as usual, an empty sum is
equal to 0)

µ(ξ) = max
0≤h≤s−1

pvh∣∣∣d0+d1pv1+...+ds−1p
vs−1

pvs−1 + (d0 + . . .+ dh−1pvh−1)
∣∣∣ ,

Furthermore, since(
d0 + d1p

v1 + . . .+ ds−1p
vs−1 + (pvs − 1)(d0 + . . .+ dh−1p

vh−1)
)
p−vh

=
(
dhp

vh + . . .+ ds−1p
vs−1 + pvs(d0 + . . .+ dh−1p

vh−1)
)
p−vh

=dh + . . .+ ds−1p
vs−1−vh + (d0p

vs−vh + . . .+ dhp
vs+vh−1−vh)

=
jh(1− pvs)

d
,

with jh as in the statement of the theorem, we get

µ(ξ) = max
0≤h≤s−1

pvs − 1

|jh(1− pvs)/d|
.

This establishes (3.5). □

Proof of Proposition 3.3. The case p = 2 follows immediately from Theo-
rem 4.2.

Assume that p is odd and keep the notation of the Proposition. Observe
first that if s = 1, v1 = 1, and d0 = ±(p− 1)/2, then

λ = ±p− 1

2
· 1

1− pv1
= ∓1

2

and ξ is a quadratic number. We exclude this case. Set

mk = d0 + d1p
v1 + . . . , k ≥ 0.

Since ξ and (1 + x−1)hξ have the same approximation spectrum for any

integer h, we can replace ξ with (1 + x−1)ȷ̄/d, for any ȷ̄ in the set Op,j,d
defined in Theorem 3.2. This amounts to take any cyclic permutation of the
digits d0, d1, . . . , ds−1 of j/d. The fact that some elements of Op,j,d may be
negative does not cause any trouble.

Assume that (iii) does not hold. By taking, if necessary, a cyclic permu-
tation of d0, d1, . . . , ds−1, we can assume that ds−1 and ds have the same
sign (equivalently, that ms−1 and ms have the same sign) or that |ds| ≥ 2.
Let k be a positive integer. Since the sequences (sgn(mi))i≥0 and (di)i≥0

are periodic of period s, we get that mks−1 and mks have the same sign or
|dks| ≥ 2. In particular, the ε defined in Lemma 2.7 to derive the continued
fraction expansion of (1 + x−1)mks from that of (1 + x−1)mks−1 is not equal
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to 1. Said differently, setting (1 + x−1)mks−1 = [1, y,wks−1], we do not have
(1 + x−1)mks = [1, y,wks−1, cks]. Thus, writing

(1 + x−1)m(k−h)s−1 = [1, y,w(k−h)s−1], 0 ≤ h ≤ k − 1,

Lemma 2.7 asserts that there exist cks in Fp[x] \ Fp and a nonzero ηk in Fp
such that

(1+x−1)mks = [1, y,wks−1, cks, ηk(
←−−−−−
wks−1/2, 2y+1,−2y−1,−wks−1/2), . . .],

where deg cks = pvks−2|mks−1|. Here and below, the notation η(a1, . . . , am)
for a nonzero η in Fp and a1, . . . , am in Fp[x] \ Fp stands for the sequence of

m partial quotients ηa1, η
−1a2, . . . , η

(−1)m+1
am.

Let h be an integer with 0 < h ≤ k− 1. Then, there exist nonzero η′k and
ρh,k in Fp such that

(1 + x−1)mks = [1, y,wks−1, cks, ηk(
←−−−−−
wks−1/2, 2y + 1,−2y − 1),

η′k(w(k−h)s−1/2), ρh,kc(k−h)s, . . .],

Since
vℓs = ℓvs, ℓ ≥ 1,

the degree of the numerator (and of the denominator) of the rational fraction
rk,h
tk,h

:= [1, y,wks−1, cks, ηk(
←−−−−−
wks−1/2, 2y + 1,−2y − 1), η′k(w(k−h)s−1/2)]

is equal to

|mks−1|+(pvks−2|mks−1|)+|mks−1|+|m(k−h)s−1| = phvspv(k−h)s+|m(k−h)s−1|.
Furthermore,

deg c(k−h)s = pv(k−h)s − 2|m(k−h)s−1|
and

m(k−h)s−1 = (d0 + d1p
v1 + . . .+ ds−1p

vs−1) · p
(k−h)vs − 1

pvs − 1
.

By the minimality of s, we cannot have d0 = . . . = ds−1 = ±(p − 1)/2 if
s ≥ 2. Thus,

|m(k−h)s−1| <
p− 1

2
· p

vs−1+1 − 1

p− 1
· p

(k−h)vs − 1

pvs − 1
≤ p(k−h)vs − 1

2
, if s ≥ 2.

This also holds if s = 1, since in that case we have excluded the values
d0 = ±(p− 1)/2. Consequently, setting

σh := lim
k→+∞

deg c(k−h)s

deg rk,h
= lim

k→+∞

pv(k−h)s − 2|m(k−h)s−1|
phvspv(k−h)s + |m(k−h)s−1|

=
pvs − 1− 2|d0 + d1p

v1 + . . .+ ds−1p
vs−1 |

phvs(pvs − 1) + |d0 + d1pv1 + . . .+ ds−1pvs−1 |
,

the real number 1+σh is greater than 1 and it belongs to the approximation
spectrum of ξ. Since h is arbitrary, this shows that the approximation
spectrum of ξ is infinite. Thus, (ii) does not hold. Furthermore, we have
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shown that there are infinitely many partial quotients of the form αy + β,
with α, β in Fp and α nonzero. This implies that ν̂(ξ) = 1.

Assume now that (iii) holds. Since j ≥ 1, we have d0 = 1, . . . , ds−1 = −1,
thus

mk = (−1)k(pvk − pvk−1 + . . .+ (−1)k), k ≥ 0.

It then follows from Lemma 2.7 that there is a linear polynomial y and
polynomials c1, c2, . . . such that

ξ = [1; y, c1, c2, . . . , cs, cs+1, . . .]

and

deg ci = pvi − 2|mi−1| = 2|mi| − pvi , i ≥ 1.

Arguing then as in the proof of (3.5), we get that

S(ξ) =
{

pvi

| − j
d + (1− pv1 + . . .+ (−1)i−1pvi−1)|

: 0 ≤ i ≤ s− 1

}
.

This proves that the Diophantine spectrum is a finite set and that ν̂(ξ) > 1.
The proof of the proposition is complete. □

Proof of Theorem 3.6. By Theorem 3.2, the condition on j implies that

λj
(
(1 + x−1)1/d

)
≤ ν

(
(1 + x−1)j/d

)
=
d− j
j

.

Since ν((1 + x−1)1/d) = d− 1, it follows from (3.7) than

λj
(
(1 + x−1)1/d

)
≥ d− j

j
.

Consequently, we have indeed equality, and we conclude by Theorem 3.5. □

8. Ultimate Triangle over Q

Definition 8.1. Let u and v be real numbers such that u ≤ v and v − u is
an even integer. We define their jump product Ju• vK by Ju• vK = 1 if u = v
and by

Ju • vK = u(u+ 2)(u+ 4) · · · (v − 2), if u < v.

We stress that the jump product J·•·K has the lowest priority order among
the other operations, like addition, subtraction and product. Consequently,
for two integral valued expressions e1 and e2, we simply write Je1•e2K instead
of J(e1) • (e2)K.

For u, v two positive integers of the same parity with u < v, we check
that

(8.1) Ju • vK =


2(v−u)/2

(v/2− 1)!

(u/2− 1)!
, if u is even;

2(u−v)/2
((u− 1)/2)! (v − 1)!

((v − 1)/2)! (u− 1)!
, if u is odd.
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Definition 8.2. Given a nonzero integer ε = 1,−1, 2,−2, 3,−3, . . . Let m =
0, 1, . . . , 2|ε| − 3 if ε > 0, or m = 0, 1, . . . , 2|ε| − 2 if ε < 0. We define

ηε(m) =


−2m−4⌊m/4⌋−1 J|ε| − t • |ε|+ t+ 2K

J|ε− 1| − t • |ε− 1|+ t+ 2K
, if m = 2t is even;

2m−4⌊m/4⌋−3(m+ 2)|ε| J|ε| − t • |ε|+ t+ 2K
J|ε| − t− 1 • |ε|+ t+ 3K

, if m = 2t+ 1 is odd.

The rational numbers ηε(m) defined above form an infinite triangle, called
the Ultimate Triangle, whose line numbered ε is given by{

[ηε(0), ηε(1), . . . , ηε(2ε− 3)], if ε > 0;

[ηε(0), ηε(1), . . . , ηε(2|ε| − 3), ηε(2|ε| − 2)], if ε < 0.

The first few lines of the Ultimate Triangle are reproduced below.

ε ηε(m)

1

−1 −1/4
2 −1 1

−2 −1/3 1 −3/4
3 −3/4 27/32 −16/3 8

−3 −3/8 27/32 −16/15 8 −5/32
4 −2/3 4/5 −15/4 25/4 −8/5 16/5

−4 −2/5 4/5 −5/4 25/4 −8/35 16/5 −35/64
...

...

Observe that |ε|+t+3 and |ε−1|+t+2 in Definition 8.2 are at most equal
to 2|ε|+2. Consequently, the largest prime number dividing the numerator
or the denominator of the rational number ηε(m) is always less than 2|ε|+1.

9. Preliminaries to the proof of the Key Lemma 2.7

We reformulate the lemma in terms of matrices, whose coefficients are
in Fp[x] (actually, we can work over an arbitrary field). For each sequence
w = w1, w2, . . . , wk we define

M(w) =

(
w1 1
1 0

)(
w2 1
1 0

)
· · ·
(
wk 1
1 0

)
=

(
Pw P ′

w

Qw Q′
w

)
.

We stress that ′ does not mean derivative. Then, we have

P ′
w

Q′
w

= [w1, w2, . . . , wk−1],
Pw

Qw
= [w1, w2, . . . , wk].

Recall that

←−w = wk, . . . , w2, w1,
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ρw = ρw1, ρ
−1w2, . . . , ρ

(−1)k+1
wk, ρ ∈ Fp \{0},

−w = (−1)w.

Lemma 9.1. Let ρ be a nonzero rational number. Keeping the above nota-
tion, we have

M(←−w) =

(
Pw Qw

P ′
w Q′

w

)
, M(−w) = (−1)k

(
Pw −P ′

w

−Qw Q′
w

)
,

M(ρw) =



(
Pw ρP ′

w

ρ−1Qw Q′
w

)
, if k is even;(

ρPw P ′
w

Qw ρ−1Q′
w

)
, if k is odd.

Moreover, we have

PwQ
′
w − P ′

wQw = (−1)k.

Proof. This is an easy computation. □

Lemma 9.2. Let w be a finite or empty sequence of elements in Fp[x] \ Fp
such that

M(1, x,w) =

(
P P ′

Q Q′

)
.

Let

(9.1) v = (2x+ 1,
1

2
w) and h = (←−v ,−v).

Then,

M(h) =



(
−4PQ QP ′ + PQ′

−QP ′ − PQ′ P ′Q′

)
, if the length of w is even;(

PQ −(QP ′ + PQ′)

QP ′ + PQ′ −4P ′Q′

)
, if the length of w is odd.

Proof. This follows from a direct matrix calculation. Note that when w is
the empty sequence, we have h = (2x+ 1,−2x− 1). □

Observe that the length of h is always even. Below, ck+1 is the polynomial
defined in the Key Lemma. Throughout the end of this section, we assume
that the length of w is even (we explain in Section 10 how to deduce the
case of odd length from that of even length).

Definition 9.3. For a nonzero rational number ρ, set

M =

(
P P ′

Q Q′

)
, C(ρ) =

(
ρck+1 1
1 0

)
,

H(ρ) =

(
−4PQ ρ(QP ′ + PQ′)

−ρ−1(QP ′ + PQ′) P ′Q′

)
.
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In this and the next sections, we adopt the following notation: for an
integer k, we define

k̄ =

{
0, if k is even,

1, if k is odd.

In view of Lemma 9.2, our goal is to establish the following

Theorem 9.4. For every positive integer ε, set

MC(1)H(ηε(0))C(ηε(1)) · · ·H(ηε(2ε− 4))C(ηε(2ε− 3)) =

(
Aε A′

ε

Bε B′
ε

)
.

We have

Aε = (−1)ε+12ε+ε−2(εck+1PQ+ P ′Q)ε/Q,(9.2)

Bε = (−1)ε+12ε+ε−2(εck+1PQ+ PQ′)ε/P.(9.3)

For every negative integer ε, set

MC(1)H(ηε(0))C(ηε(1)) · · ·H(ηε(2|ε| − 4))×

×C(ηε(2|ε| − 3))H(ηε(2|ε| − 2)) =

(
Aε A′

ε

Bε B′
ε

)
.

We have

Aε = 2−ε+ε(εck+1PQ+ PQ′)−εP,(9.4)

Bε = 2−ε+ε(εck+1PQ+ P ′Q)−εQ.(9.5)

In both cases we have

(9.6)
Aε
Bε

=

(
εck+1 + P ′/P

εck+1 +Q′/Q

)ε P
Q
.

Proof that Theorem 9.4 implies Lemma 2.7 when ℓk is odd. The assumption
that ℓk is odd means that the word w defined in (2.7) has even length, thus
Theorem 9.4 can be applied. We apply it with ε as in Lemma 2.7, that is,
with ε := − sgn(mk)dk+1. Assume that (1 + x−1)mk := P/Q and let P ′/Q′

denote the last convergent to P/Q. We have to show that(
εck+1 + P ′/P

εck+1 +Q′/Q

)ε P
Q

= (1 + x−1)mk+1 .

We first check that our choice of ck+1 implies (9.6).
By the theory of continued fractions, we have

P ′Q− PQ′ = (−1)ℓk .

Assume first that mk > 0. We claim that

f := (−1)ℓk (x+ 1)p
vk+1

dk+1PQ
+

Q′

dk+1Q
= (−1)ℓk (x+ 1)p

vk+1
+ (−1)ℓkPQ′

dk+1PQ
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is a polynomial. Indeed, the numerator of f is clearly divisible by P , as P
is a constant multiple of (1 + x)mk and mk < pvk+1 . Since this numerator is
also equal to

xp
vk+1

+ 1 + (−1)ℓk(P ′Q− (−1)ℓk) = xp
vk+1

+ (−1)ℓkP ′Q,

it is also divisible by Q, as Q is a constant multiple of xmk .
Using that ε = −dk+1, we get

εfPQ = −(−1)ℓk(x+ 1)p
vk+1 − PQ′

and we check that(
εf + P ′/P

εf +Q′/Q

)ε P
Q

=
(
1 +

(−1)ℓk
εfPQ+ PQ′

)εP
Q

=
(
1− 1

(x+ 1)p
vk+1

)εP
Q

=
( x

x+ 1

)εpvk+1 P

Q

= (1 + x−1)dk+1p
vk+1+mk = (1 + x−1)mk+1 .

Assume now that mk < 0. Then, ε = dk+1. Arguing as above, we check
that

f ′ := (−1)ℓk (x+ 1)p
vk+1

dk+1PQ
− P ′

dk+1P
= (−1)ℓk (x+ 1)p

vk+1 − (−1)ℓkP ′Q

dk+1PQ

is a polynomial. Since

εf ′PQ = (−1)ℓk(x+ 1)p
vk+1 − P ′Q

= (−1)ℓkxp
vk+1

+ (−1)ℓk − P ′Q = (−1)ℓkxp
vk+1 − PQ′,

we get (
εf ′ + P ′/P

εf ′ +Q′/Q

)ε P
Q

=
(
1 +

(−1)ℓk
εf ′PQ+ PQ′

)εP
Q

=
(
1 +

1

xp
vk+1

)εP
Q

= (1 + x−1)dk+1p
vk+1+mk = (1 + x−1)mk+1 .

Recalling that the degree of P ′ (resp., of Q′) is less than that of P (resp., of
Q), this shows that in both cases ck+1 is the polynomial part of

(9.7) (−1)ℓk (x+ 1)p
vk+1

dk+1PQ
.

One can check that ℓk+1 = (2|dk+1| − 1)ℓk + |dk+1| if ε is positive (or,
equivalently, if mk and mk+1 have opposite signs) and ℓk+1 = (2|dk+1| +
1)ℓk+ |dk+1| if ε is negative (or, equivalently, if mk and mk+1 have the same
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sign). The arguments given in Section 10 show that this remains true if ℓk
is even. Recalling that ℓ0 = |m0| and noticing that

ℓk+1 − ℓk ≡ dk+1 ≡ mk+1 −mk (mod 2),

and immediate induction shows that mk and ℓk have the same parity for
every k ≥ 0.

By Lemma 9.5 below, the leading coefficient of P is equal to ±2|mk|−mk .
Since Q has the same leading coefficient as P , we then derive from (9.7) that
ck+1 is the polynomial part of

(−1)ℓk (x+ 1)p
vk+1−|mk|

dk+14|mk|−mkx|mk|
.

This completes the proof, since ℓk and mk have the same parity. □

Lemma 9.5. Let m be an integer, and P be the numerator of the continued
fraction of (1 + x−1)m. Then, the leading coefficient of P is equal to

G(P ) = κ2|m|−m,

where κ = 1 if m ≥ 0, and κ = (−1)m if m < 0.

Proof. A quick check shows that the lemma is true for m = 0,±1. Assume
that m satisfies 2 ≤ |m| ≤ (p − 1)/2. We apply Lemma 2.6 and keep its
notation. Then, f2 . . . fm is a polynomial in x whose leading coefficient is
m2m−1 if m > 0 and (−1)mm2|m|−1 if m < 0. The expression of (1+ x−1)m

given in (2.6) then shows that the leading coefficient of P (which is equal to
the product of the leading coefficients of the partial quotients) is equal to

2m−1+δ if m > 0 and to (−1)m2|m|−1+δ if m < 0, where δ = 1 if m is even
and δ = 0 if m is odd. The lemma is proved when |m| ≤ (p− 1)/2.

Let (dk)k≥0 be a sequence of nonzero integers in {−(p−1)/2, . . . , (p−1)/2}
and (vk)k≥1 an increasing sequence of positive integers. For k ≥ 0, set

mk = d0 + d1p
v1 + . . .+ dkp

vk .

We have checked above that the lemma holds for m0. Let k ≥ 0 be an
integer such that the lemma holds for mk. We show that it holds for mk+1.
We let G(R) denote the leading coefficient of a non-constant polynomial R
in Fp[x]. We keep the notation of the preceding proof and also assume that
mk is odd. We know that G(P ) = G(Q) and recall that ε = − sgn(mk)dk+1.
It follows from (9.7) that

G(ck+1) = (−1)mk
1

dk+1G(P )2
,

G(ck+1εPQ) = (−1)mk
ε

dk+1
= −(−1)mk sgn(mk).

Assume first that ε > 0. We then have

sgn(mk+1) = sgn(dk+1) = − sgn(mk),
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and it follows from Theorem 9.4 that

Aε = (−1)ε+12ε+ε−2(εck+1PQ+ P ′Q)ε/Q,

G(Aε) = (−1)ε+12ε+ε−2(G(εck+1PQ+ P ′Q))ε/G(Q)

= (−1)ε+12ε+ε−2(G(εck+1PQ))ε/G(Q)

= (−1)ε+12ε+ε−2(−(−1)mk sgn(mk))
ε/G(P )

= (−1)ε+12ε+ε−2(sgn(mk))
ε/(sgn(mk)2

|mk|−1),

since the lemma holds for mk. Using Fermat’s Little Theorem, we then get
that, in Fp,

G(Aε) = (− sgn(mk))
ε+12ε+ε̄−|mk|−1

= (− sgn(mk))
ε+12|m|+ε−1

= (sgn(m))ε+12|m|−m = κ2|m|−m.

Assume now that ε < 0. Then, we have,

Aε = 2−ε+ε(εck+1PQ+ PQ′)−εP

G(Aε) = 2−ε+ε(G(εck+1PQ+ PQ′))−εG(P )

= 2−ε+ε(−(−1)mk sgn(mk))
−ε × sgn(mk)2

|mk|−1,

since the lemma holds for mk. Using Fermat’s Little Theorem, we then get
that, in Fp,

G(Aε) = (sgn(mk))
ε+12−ε+ε+|mk|−1

= κ2|m|+ε−1 = κ2|m|−m.

The case mk even is similar in view of Theorem 9.4 and Section 10. We
omit the details.

By Lemma 2.4, this shows that the lemma holds for every integer m
which is not divisible by p. When m is a multiple of p, say m = pam′ with
gcd(p,m′) = 1, then the partial quotients of (1+x−1)m are the pa-th powers

of the partial quotients of (1 + x−1)m
′
. In Fp, their leading coefficients are

the same. This completes the proof of the lemma. □

We will derive Theorem 9.4 from Theorem 9.9 below. First, we perform
a change of variables to get an equivalent, but slightly simpler, statement.
We define

Y := εck+1PQ, r := P ′Q+ Y, q := PQ′ + Y.

We use the letter r to avoid any confusion with the prime number p. Then
(9.6) becomes

(9.8)
Aε
Bε

=

(
r

q

)ε P
Q
.
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Now, we observe thatM,MC(1), and any finite productMC(1)H(ηε(0)) · · ·
take one of the two following forms(

∗P ∗/Q
∗Q ∗/P

)
,

(
∗/Q ∗P
∗/P ∗Q

)
,

where the factors ∗ are polynomials in Y, r, q. In particular, neither P , nor
Q, occur in the factors ∗. Consequently, we can assume that P = Q = 1,
thus

Y = εck+1, r = P ′ + Y, q = Q′ + Y.

We work in the polynomial ring over the rational number Q[Y, r, q] and
view Y, r, q as indeterminates.

Definition 9.6. For a nonzero rational number ρ, define

M =

(
1 r − Y
1 q − Y

)
, C(ρ) =

(
ρY 1
1 0

)
,

H(ρ) =

(
−4 ρ(r + q − 2Y )

−ρ−1(r + q − 2Y ) (r − Y )(q − Y )

)
.

It is convenient to extend the definition of ηε(m) form = −2,−1, 0, 1, 2, . . ..

Definition 9.7. Given a nonzero integer ε = 1,−1, 2,−2, 3,−3, . . ., let m =
0, 1, . . . , 2|ε| − 1 if ε > 0, or m = 0, 1, . . . , 2|ε| if ε < 0. We define

ζε(m) =

{
ηε(m− 2), if m = 2t is even;

ηε(m− 2)/ε, if m = 2t+ 1 is odd.

For later use, we check that

ηε(2t+ 1)

ηε(2t)
= − (2t+ 3)ε

2(ε+ t+ 1)
,

thus we get

(9.9)
ζε(2t+ 1)

ζε(2t)
=
ηε(2t− 1)/ε

ηε(2t− 2)
= − 2t+ 1

2(ε+ t)

Furthermore, by combining

ηε(2t) =
−22t−4⌊t/2⌋−1 J|ε| − t • |ε|+ t+ 2K

J|ε− 1| − t • |ε− 1|+ t+ 2K
,

with

ηε(2t+ 2) =
−22t+2−4⌊(t+1)/2⌋−1 J|ε| − t− 1 • |ε|+ t+ 1 + 2K

J|ε− 1| − t− 1 • |ε− 1|+ t+ 1 + 2K
,

we get

(9.10) ηε(2t)ηε(2t+ 2) =
ε+ t+ 1

ε− t− 2
.

This shows that Theorem 9.4 is equivalent to:
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Theorem 9.8. For every positive integer ε, let

MC(1/ε)H(ζε(2))C(ζε(3)) · · ·H(ζε(2ε− 2))C(ζε(2ε− 1)) =

(
Aε A′

ε

Bε B′
ε

)
.

We have

Aε = (−1)ε+12ε+ε−2rε,(9.11)

Bε = (−1)ε+12ε+ε−2qε.(9.12)

For every negative integer ε, let

MC(1/ε)H(ζε(2))C(ζε(3)) · · ·H(ζε(2|ε| − 2))×

C(ζε(2|ε| − 1))H(ζε(2|ε|)) =
(
Aε A′

ε

Bε B′
ε

)
.

We have

Aε = 2−ε+εq−ε,(9.13)

Bε = 2−ε+εr−ε.(9.14)

In both cases we have
Aε
Bε

=

(
r

q

)ε
.

Since

ζε(0) = ηε(−2) = −2, ζε(1) = ηε(−1)/ε = 1/ε,

we have

MC(1/ε)H(ζε(2))C(ζε(3)) · · ·
= M (H(−2))−1 ×H(ζε(0))C(ζε(1))×H(ζε(2))C(ζε(3)) · · ·
= U×Dε(0)×Dε(1) · · · ,

where

U := M (H(−2))−1 =
1

r − q

(
(Y − r)/2 −2
−(Y − q)/2 2

)
and, for t = 0, 1, . . . , |ε| − 1,

Dε(t) := H(ζε(2t))C(ζε(2t+ 1))

=

 ζε(2t)
(
r + q − 2Y ε−t−1

ε+t

)
−4

rq − (2ε−1)(r+q)
2(ε+t) Y + ε−t−1

ε+t Y
2 −(ζε(2t))−1(r + q − 2Y )

 ,

by (9.9).
Consequently, it is sufficient to establish the following

Theorem 9.9. For every positive integer ε, let

UDε(0)Dε(1) · · ·Dε(ε− 1) =

(
Aε A′

ε

Bε B′
ε

)
.
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Then, Aε and Bε are given by (9.11) and (9.12), respectively. For every
negative integer ε, let

UDε(0)Dε(1) · · ·Dε(|ε| − 1)H(ζε(2|ε|)) =
(
Aε A′

ε

Bε B′
ε

)
.

Then, Aε and Bε are given by (9.13) and (9.14), respectively. In both cases
we have

Aε
Bε

=

(
r

q

)ε
.

10. When the length of w is odd

We explain in this section how to deduce the results for w of odd length
from those established for w of even length.

Observe first that in Lemma 9.2 in both cases the length of h is even.

Lemma 10.1. Let he and ho be two sequences of even length over Fp[x]\Fp
such that

M(he) =

(
−4A B
−B C

)
and M(ho) =

(
A −B
B −4C

)
.

Let α, β, γ be nonzero elements of Fp. Let c be in Fp[x] \ Fp and s a finite
sequence over Fp[x]. Then, we have

M(αhe, βc, γhe) = M(4αho, 16βc,
1

4
γho),

[s, αhe] = [s, 4αho],

[s, αhe, βc] = [s, 4αho, 16βc],

The first equality is about matrices, while the last two equalities are about
continued fractions and do not extend to matrices.

Proof. This follows from a direct computation. □

The form of the matrix M(h) in Lemma 9.2 allows us to apply Lemma
10.1 with

A := PQ, B := QP ′ + PQ′, C := P ′Q′

to deduce from Theorem 9.4 (which addresses the case where the length of
w is even) its analogue for the case where the length of w is odd. Then, we
derive the continued fraction expansion of (1+x−1)mk+1 when the length of
w is odd (that is, when the length ℓk of (1 + x−1)mk is even). We omit the
details.

11. Proof of Theorem 9.9

For i, j in {1, 2}, let U [i, j] denote the i× j coefficient of the matrix U .
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Lemma 11.1. We have

U [1, 1](r, q) = U [2, 1](q, r),

U [1, 2](r, q) = U [2, 2](q, r),

Bε(r, q) = Aε(q, r),

B′
ε(r, q) = A′

ε(q, r).

Proof. The assertion about the coefficients of U is easy to check. It implies
the last two assertions, since the matrices D and H are symmetric in the
indeterminates r and q. □

Definition 11.2. For every positive integer k and j = 0, 1, . . . , k, we use
the following notations:

Φ(k, j; r, q) =

j∑
d=0

(
k+j+1
d

)(
j
d

)(
k
d

) (−r)dqj−d,

K1(k, j) =


22−k−k̄

Jk + j • 2k − 2K
J1 • k − j − 1K

, if k − j is even,

2k̄−1 Jk − j − 1 • k − k̄K
Jk − 1 + k̄ • k + jK

, if k − j is odd,

K2(k, j) =


−2−k−k̄ Jk + j + 2 • 2k + 2K

kJ1 • k − j − 1K
, if k − j is even,

−2k̄−1 Jk − j − 1 • k + 2− k̄K
kJk + 1 + k̄ • k + j + 2K

, if k − j is odd,

K3(k, j) =


2k̄

Jk − j • k + k̄K
Jk + 1− k̄ • k + j + 1K

, if k − j is even,

22−k−k̄
Jk + j + 1 • 2kK

J1 • k − jK
, if k − j is odd,

K4(k, j) =


(−1)k2−k−k̄ Jk + j + 2 • 2k + 2K

J1 • k − j + 1K
, if k − j is even,

(−1)k+12k̄−1 Jk − j + 1 • k + 2− k̄K
Jk + 1 + k̄ • k + j + 2K

, if k − j is odd,

K5(k, j) =


(−1)k+12−k−k̄

(k + j + 1)Jk + j + 2 • 2k + 2K
kJ1 • k − j + 1K

, if k − j is even,

(−1)k2k̄−1 (k + j + 1)Jk − j + 1 • k + 2− k̄K
kJk + 1 + k̄ • k + j + 2K

, if k − j is odd.
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It follows from (8.1) that

K1(k, j) =



2−j−k̄
(k − 2)!((k − j)/2− 1)!

(k − j − 2)!((k + j)/2− 1)!
, if k − j is even,

1, if k = 1 and j = 0,

0, if k − j = 1 and k ≥ 2,

2j+k̄
(k − 2)!((k + j − 1)/2)!

((k − j − 3)/2)!(k + j − 1)!
, if k − j is odd and k − j ≥ 3,

K2(k, j) =


−2−j−k̄−1 (k − 1)!((k − j)/2− 1)!

((k + j)/2)!(k − j − 2)!
, if k − j is even,

0, if k − j = 1,

−2j+k̄+1 (k − 1)!((k + j + 1)/2)!

((k − j − 3)/2)!(k + j + 1)!
, if k − j is odd and k − j ≥ 3,

K3(k, j) =


2j+k̄+1 (k − 1)!((k + j)/2)!

((k − j)/2− 1)!(k + j)!
, if k − j is even,

21−j−k̄
(k − 1)!((k − j − 1)/2)!

((k + j − 1)/2)!(k − j − 1)!
, if k − j is odd,

K4(k, j) =


(−1)k2−j−k̄ k!((k − j)/2)!

((k + j)/2)!(k − j)!
, if k − j is even,

(−1)k+12j+k̄
k!((k + j + 1)/2)!

(k + j + 1)!((k − j − 1)/2)!
, if k − j is odd,

K5(k, j) =


(−1)k+12−j−k̄

(k + j + 1)(k − 1)!((k − j)/2)!
((k + j)/2)!(k − j)!

, if k − j is even,

(−1)k2j+k̄ (k − 1)!((k + j + 1)/2)!

(k + j)!((k − j − 1)/2)!
, if k − j is odd.

For each positive integer k and j = 0, 1, . . . , k − 2 such that k − j is odd,
define

Ψ(k, j; r, q) = K1(k, j)Φ(k − 2, j; r, q)

= 2k̄−1 Jk − j − 1 • k − k̄K
Jk − 1 + k̄ • k + jK

j∑
d=0

(
k+j−1
d

)(
j
d

)(
k−2
d

) (−r)dqj−d.

Since Jk − j − 1 • k − k̄K = (k − j − 1)Jk − j + 1 • k − k̄K and, for d ≥ 1,(
k − 2

d

)
=

(
k − 2

d− 1

)
· k − d− 1

d
,

we have

Ψ(k, j; r, q) = 2k̄−1 (k − j − 1)Jk − j + 1 • k − k̄K
Jk − 1 + k̄ • k + jK

×

(
qj +

j∑
d=1

d
(
k+j−1
d

)(
j
d

)
(k − d− 1)

(
k−2
d−1

)(−r)dqj−d)
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= 2k̄−1 Jk − j + 1 • k − k̄K
Jk − 1 + k̄ • k + jK

×

(
(k − j − 1)qj +

j∑
d=1

d(k − j − 1)
(
k+j−1
d

)(
j
d

)
(k − d− 1)

(
k−2
d−1

) (−r)dqj−d
)
.

Hence we have

Ψ(k, j; r, q) = 2k̄−1 Jk − j + 1 • k − k̄K
Jk − 1 + k̄ • k + jK

×
(
(k − j − 1)qj

+

j−1∑
d=1

d(k − j − 1)
(
k+j−1
d

)(
j
d

)
(k − d− 1)

(
k−2
d−1

) (−r)dqj−d +
j
(
k+j−1
j

)(
k−2
j−1

) (−r)j
)
.(11.1)

Formula (11.1) is defined for j = 0, 1, . . . , k−2. Its right-hand side is also
valid for j = k − 1. Thus, we use it to define Ψ(k, j; r, q) when j = k − 1.

Theorem 11.3. For a nonzero integer ε and j = 0, 1, . . . , |ε| − 1, set

Πε(j) := UDε(0)Dε(1) · · ·Dε(j) =

(
Aε(j) A′

ε(j)
Bε(j) B′

ε(j)

)
.

If ε > 0, then we have

Aε(j) = Ψ(|ε|, j; r, q)r +K2(|ε|, j)Φ(|ε| − 1, j; r, q)Y

A′
ε(j) = K3(|ε|, j)Φ(|ε| − 1, j; r, q)

Bε(j) = Ψ(|ε|, j; q, r)q +K2(|ε|, j)Φ(|ε| − 1, j; q, r)Y

B′
ε(j) = K3(|ε|, j)Φ(|ε| − 1, j; q, r)

If ε < 0, then we have

Aε(j) = K4(|ε|, j)Φ(|ε|, j; q, r)r +K5(|ε|, j)Φ(|ε| − 1, j; q, r)Y

A′
ε(j) = (−1)jK3(|ε|, j)Φ(|ε| − 1, j; q, r)

Bε(j) = K4(|ε|, j)Φ(|ε|, j; r, q)q +K5(|ε|, j)Φ(|ε| − 1, j; r, q)Y

B′
ε(j) = (−1)jK3(|ε|, j)Φ(|ε| − 1, j; r, q)

Sketch of the proof. We check by a direct computation that the theorem
holds for j = 0. Then, we verify that Πε(j + 1) = Πε(j)Dε(j + 1) for
j = 0, . . . , |ε| − 2. Consider only the special case where j is even and ε is
positive and even. With t = j + 1, we need to check that

Aε(j + 1) = Aε(j)ζε(2t)

(
r + q − 2Y

ε− t− 1

ε+ t

)
+A′

ε(j)

(
rq − (2ε− 1)(r + q)

2(ε+ t)
Y +

ε− t− 1

ε+ t
Y 2

)
,

that is,

K1(ε, j + 1)Φ(ε− 2, j + 1; r, q)r +K2(ε, j + 1)Φ(ε− 1, j + 1; r, q)Y

=
(
K1(ε, j)Φ(ε− 2, j; r, q)r
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+K2(ε, j)Φ(ε− 1, j; r, q)Y
)
ζε(2j + 2)

(
r + q − 2Y

ε− j − 2

ε+ j + 1

)
+K3(ε, j)Φ(ε− 1, j; r, q)

(
rq − (2ε− 1)(r + q)

2(ε+ j + 1)
Y +

ε− j − 2

ε+ j + 1
Y 2

)
.

To check this, we view both expressions as polynomials in Y and verify that
the coefficients of 1, Y , and Y 2 coincide. Let us do this for the coefficients
of Y . This amounts to check that

K2(ε, j + 1)Φ(ε− 1, j + 1; r, q)

= (K1(ε, j)Φ(ε− 2, j; r, q)r) ζε(2j + 2)

(
−2ε− j − 2

ε+ j + 1

)
+ (K2(ε, j)Φ(ε− 1, j; r, q)) ζε(2j + 2) (r + q)

+K3(ε, j)Φ(ε− 1, j; r, q)

(
−(2ε− 1)(r + q)

2(ε+ j + 1)

)
.

By Definition 9.7, this is equivalent to

2K2(ε, j + 1)Φ(ε− 1, j + 1; r, q)(ε+ j + 1)

= −4K1(ε, j)Φ(ε− 2, j; r, q)rηε(2j)(ε− j − 2)

+ 2K2(ε, j)Φ(ε− 1, j; r, q)ηε(2j) (r + q) (ε+ j + 1)

−K3(ε, j)Φ(ε− 1, j; r, q)(2ε− 1)(r + q).

Recalling that that ε and j are assumed to be even, we get

ηε(2j) = −22j−2j−1 Jε− j • ε+ j + 2K
Jε− 1− j • ε+ j + 1K

,

K2(ε, j + 1) = −2−1 Jε− j − 2 • ε+ 2K
εJε+ 1 • ε+ j + 3K

,

K1(ε, j) = 22−ε
Jε+ j • 2ε− 2K
J1 • ε− j − 1K

,

K2(ε, j) = −2−ε
Jε+ j + 2 • 2ε+ 2K
εJ1 • ε− j − 1K

,

K3(ε, j) = 20
Jε− j • εK

Jε+ 1 • ε+ j + 1K
.

Inserting this in the equality to be checked and noticing that Ju • vK·Jv • wK =
Ju • wK for every integers u, v, w, we use (8.1) to show that 2ε−2J1 • ε− 1K =
Jε • 2ε− 2K and we see after some simplification that we need to verify that

− (ε− 1)Φ(ε− 1, j + 1; r, q)

= 2r(ε+ j)Φ(ε− 2, j; r, q)

− (ε− 1)(r + q)Φ(ε− 1, j; r, q).

We use the definition of Φ to conclude. We omit the details. We check
analogously that the values of A′

ε(j + 1), Bε(j + 1), and B′
ε(j + 1) are those
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given by the theorem. We also have to consider the remaining cases (ε
negative, ε or j odd). A full proof is given in Appendix A. □

Deduction of Theorem 9.9 from Theorem 11.3. If ε > 0 and j = ε − 1, we
have

Aε = Aε(ε− 1) = Ψ(ε, ε− 1; r, q)r

= 2ε̄−1 Jε− j + 1 • ε− ε̄K
Jε− 1 + ε̄ • ε+ jK

j
(
ε+j−1
j

)(
ε−2
j−1

) (−r)j

=
2ε̄−1(ε− 1)J2 • ε− ε̄Kr

Jε− 1 + ε̄ • 2ε− 1K

(
2ε− 2

ε− 1

)
(−r)ε−1

= (−1)ε+12ε+ε̄−2rε.

Hence, by Lemma 11.1, we get

Bε = (−1)ε+12ε+ε̄−2qε,

and conclude that
Aε
Bε

=

(
r

q

)ε
.

If ε < 0, j = |ε| − 1, then(
Aε(j) A′

ε(j)
Bε(j) B′

ε(j)

)
H(ζε(2|ε|)) =

(
Aε A′

ε

Bε B′
ε

)
.

Hence,

Aε = −4Aε(j)−A′
ε(j)

r + q − 2Y

ζε(2|ε|)
= −4K4(|ε|, j)Φ(|ε|, j; q, r)r − 4K5(|ε|, j)Φ(|ε| − 1, j; q, r)Y

− (−1)jK3(|ε|, j)Φ(|ε| − 1, j; q, r)
r + q − 2Y

ζε(2|ε|)
.

With k = |ε| and j = k − 1,

K3(k, j) = 22−k−k̄,

K4(k, j) = (−1)k+12k̄−1 J2 • k + 2− k̄K
Jk + 1 + k̄ • 2k + 1K

,

K5(k, j) = (−1)k2k̄ J2 • k + 2− k̄K
Jk + 1 + k̄ • 2k + 1K

,

ζε(2k) = −2(−1)k J1 • 2k + 1K
J2 • 2k + 2K

,

Φ(|ε|, j; q, r) =
k−1∑
d=0

(
2k
d

)(
k−1
d

)(
k
d

) (−q)drk−1−d
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=
k−1∑
d=0

(
2k
d

)
(k − d)
k

(−q)drk−1−d,

Φ(|ε| − 1, j; q, r) =
k−1∑
d=0

(
2k − 1

d

)
(−q)drk−1−d.

We check that

α = −4K5(|ε|, j)Y − (−1)jK3(|ε|, j)
r + q − 2Y

ζε(2|ε|)

= −4(−1)
k2k̄J2 • k + 2− k̄K

Jk + 1 + k̄ • 2k + 1K
Y + (−1)j22−k−k̄(r + q − 2Y )

J2 • 2k + 2K
2(−1)kJ1 • 2k + 1K

= (−1)j21−k+k̄(r + q)
J2 • 2k + 2K
J1 • 2k + 1K

,

thus

Aε = −4K4(|ε|, j)Φ(|ε|, j; q, r)r + αΦ(|ε| − 1, j; q, r)

= −4r (−1)
k+12k̄−1J2 • k + 2− k̄K

Jk + 1 + k̄ • 2k + 1K

k−1∑
d=0

(
2k
d

)
(k − d)
k

(−q)drk−1−d

+ (−1)j21−k+k̄(r + q)
J2 • 2k + 2K
J1 • 2k + 1K

k−1∑
d=0

(
2k − 1

d

)
(−q)drk−1−d

= (−1)k+12k̄+1 k!

J1 • 2k + 1K

k−1∑
d=0

[
(−r)

(
2k
d

)
(k − d)
k

+ (r + q)

(
2k − 1

d

)]
(−q)drk−1−d.

Since

T :=
k−1∑
d=0

[
(−r)

(
2k
d

)
(k − d)
k

+ (r + q)

(
2k − 1

d

)]
(−q)drk−1−d

=
k−1∑
d=0

[
r

(
2k − 1

d− 1

)
+ q

(
2k − 1

d

)]
(−q)drk−1−d

=

k−1∑
d=0

(
2k − 1

d− 1

)
(−q)drk−d −

k−1∑
d=0

(
2k − 1

d

)
(−q)d+1rk−d−1

= −
(
2k − 1

k − 1

)
(−q)k,

we derive that

Aε = (−1)k+12k̄+1 k!

J1 • 2k + 1K
T

= 2k̄+1 k!

J1 • 2k + 1K

(
2k − 1

k − 1

)
qk = 2k+k̄qk.
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By Lemma 11.1 we get Bε = 2k+k̄rk, and we conclude that

Aε
Bε

=

(
r

q

)ε
.

This proves the theorem. □

12. Proof of Lemma 2.6

We start with an easy lemma.

Lemma 12.1. If the generalized continued fraction

f(z) = c0 +
a0z
1

+
a1z
1

+
a2z
1

+ · · ·

is equal to the continued fraction

f(z) = c0 +
1

d1(u1 + z−1) +
1

d2(u2 + z−1) +
. . .

then

u1 = a1,

uk = a2k−2 + a2k−1, k ≥ 2,

d1 = a−1
0

d2k+1 =
(a1a2)(a5a6) · · · (a4k−3a4k−2)

a0(a3a4) · · · (a4k−1a4k)
, k ≥ 1,

d2k = −
a0(a3a4) · · · (a4k−5a4k−4)

(a1a2)(a5a6) · · · (a4k−3a4k−2)
, k ≥ 1.

Proof. This follows from an elementary continued fraction manipulation. □

Lagrange [9] showed that, for every real number r, we have

(1 + z)r = 1 +
rz
1
−

(r−1)z
2
1

+
(r+1)z
2·3
1

−
(r−2)z
2·3
1

+
(r+2)z
2·5
1

−
(r−3)z
2·5
1

+
(r+3)z
2·7
1

+ · · ·

By setting x = 1/z, taking r = 1/2 and applying Lemma 12.1 with c0 =
1, a0 = 1/2, and ak = 1/4 for k ≥ 1, we derive the continued fraction

expansion of (1 + x−1)1/2 given in (1.2).
By Lemma 12.1 applied with

c0 = 1,

a0 = r,

a2k = (r + k)/(2(2k + 1)), k ≥ 1,

a2k−1 = −(r − k)/(2(2k − 1)), k ≥ 1,
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and with the notation of Lemma 12.1, we get

u1 = −(r − 1)/2,

uk = 1/2, k ≥ 2,

d1 = r−1,

d2k+1 =
(4k + 1)Jr − 2k + 1 • r + 2k + 1K

Jr − 2k • r + 2k + 2K
, k ≥ 1,

d2k =
4(4k − 1)Jr − 2k + 2 • r + 2kK

Jr − 2k + 1 • r + 2k + 1K
, k ≥ 1.

This implies the following result when r is an integer.

Lemma 12.2. For any nonzero integer r, we have

(1 + x−1)r = 1 +
1

r−1(x− (r − 1)/2) +
1

d2(x+ 1/2) +
1

d3(x+ 1/2) +
. . .

where

d2k+1 =
(4k + 1)Jr − 2k + 1 • r + 2k + 1K

Jr − 2k • r + 2k + 2K
, 1 ≤ k ≤ (|r| − 1)/2,

d2k =
4(4k − 1)Jr − 2k + 2 • r + 2kK

Jr − 2k + 1 • r + 2k + 1K
, 1 ≤ k ≤ |r|/2.

Lemma 2.6 directly follows from Lemma 12.2. If p is an odd prime number
with p > 2|r|, then the prime divisors of the denominators of d2, . . . , dr
obtained in Lemma 12.2 are all less than p, thus they are not divisible by
p. In this case, the continued fraction expansion of (1 + x−1)r in Fp((x−1))
follows from its continued fraction expansion in Q((x−1)) by simply taking
all the partial quotients modulo p. This does not remain the case when |r|
exceeds 2p. To see this, take for instance p = 3 and r = 11 (see Subsection
13.1 below). Then, we get

d3 = 5 · 10 · 12
9 · 11 · 13

,

which is not an element of Z3.

13. Two examples

We keep the notation of Lemma 2.7 and write

ξ = (1 + x−1)j/d = [1; a1, a2, . . .],
pk
qk

:= [1; a1, a2, . . . , ak], k ≥ 1.
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13.1. Continued fraction expansion of (1 + x−1)1/5 in F3((x
−1)). We

explain how Lemmata 2.5 to 2.7 allow us to compute by hand the continued
fraction expansion of (1 + x−1)1/5 in F3((x

−1)). Since

1

5
=

16

80
= (−1 + 3 + 9− 27)(1 + 81 + 812 + . . .)

in F3, we have

d4h = d4h+3 = −1, d4h+1 = d4h+2 = 1, h ≥ 0,

and the sequence (mk)k≥0 starts with

−1, 2, 11,−16,−97, 146, 875, . . .

By Lemma 2.5, the convergents to ξ := (1+ x−1)1/5 of the form (1+ x−1)m

are then

x

x+ 1
,
(x+ 1

x

)2
,
(x+ 1

x

)11
,
( x

x+ 1

)16
,
( x

x+ 1

)97
. . .

For k ≥ 0, let ℓk denote the length of the continued fraction expansion of
(1 + x−1)mk . This means that pℓk/qℓk = (1+ x−1)mk . We apply Lemma 2.7
to compute ℓk. We get ℓ0 = 1, ℓ1 = 2, ℓ2 = 3 ·2+1, . . . and an easy induction
shows that

ℓ2h−2 = 3h − 2, ℓ2h−1 = 3h − 1, h ≥ 1.

Consequently, we have

p32h+1−2

q32h+1−2

=
( x

x+ 1

)|m4h|
,

p32h+1−1

q32h+1−1

=
(x+ 1

x

)|m4h+1|
, h ≥ 0,

and

p32h+2−2

q32h+2−2

=
(x+ 1

x

)|m4h+2|
,

p32h+2−1

q32h+2−1

=
( x

x+ 1

)|m4h+3|
, h ≥ 0.

By Lemma 2.6 and Lemma 2.7 applied with w being the empty (alterna-
tively, this can be easily done by hand), we get

p1
q1

=
x

x+ 1
= [1;−x− 1],

p2
q2

=
(x+ 1

x

)2
= [1;−x− 1,−x+ 1].

Also, observe that

η−1(0) = −1, δ(0) = 1.

Furthermore, m2h is odd and m2h+1 is even for h ≥ 0. We deduce from
Lemma 2.7 that there are only two cases. Let h ≥ 1 be an integer.
• If (1 + x−1)m2h = [1;−x− 1,w], then

(1 + x−1)m2h+1 = [1;−x− 1,w, c2h+1].

• If (1 + x−1)m2h+1 = [1;−x − 1,w], then (1 + x−1)m2h+2 = [1;−x −
1,w, c2h+2,−h], where h = (−←−w , x− 1,−x+ 1,w), thus

(1 + x−1)m2h+2 = [1;−x− 1,w, c2h+2,
←−w ,−x+ 1, x− 1,−w].
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Let us now compute the polynomials ck. Let h ≥ 0 be an integer. First,
note that

|m2h|+ |m2h+1| = 32h+1.

Since

x3
2h+1

(x− 1)3
2h+1

= (x+ 1)2·3
2h+1 − 1,

we get

(x+ 1)3
2h+2−|m2h+1| = (x+ 1)|m2h|(x+ 1)3

2h+2−|m2h+1|−|m2h|

= (x+ 1)|m2h|(x+ 1)2·3
2h+1

= (x+ 1)|m2h|
(
x3

2h+1
(x− 1)3

2h+1
+ 1
)
.

Since |m2h+1| > |m2h|, this shows that

Polpart
((x+ 1)3

2h+2−|m2h+1|

x|m2h+1|

)
= (x+ 1)|m2h|x3

2h+1−|m2h+1|(x− 1)3
2h+1

= (x+ 1)|m2h|x|m2h|(x− 1)3
2h+1

,

where Polpart means the polynomial part. Likewise, by using that

|m2h+2|+ |m2h| = 4 · 32h+1,

we obtain

(x+ 1)3
2h+3−|m2h+2| = (x+ 1)|m2h|(x+ 1)3

2h+3−|m2h+2|−|m2h|

= (x+ 1)|m2h|(x+ 1)5·3
2h+1

= (x+ 1)|m2h|
(
(x+ 1)3x(x− 1) + x3 + 1

)32h+1

= (x+ 1)|m2h|
(
x4·3

2h+1
(x− 1)3

2h+1
+ x3

2h+1
(x− 1)3

2h+1
+ x3·3

2h+1
+ 1
)
,

thus, since 3 · 32h+1 + |m2h| < 3 · 32h+1 + |m2h+1| = |m2h+2|,

Polpart
((x+ 1)3

2h+3−|m2h+2|

x|m2h+2|

)
= (x+ 1)|m2h|x4·3

2h+1−|m2h+2|(x− 1)3
2h+1

= (x+ 1)|m2h|x|m2h|(x− 1)3
2h+1

.

Since

sgn
(
(−1)m4hd4h+1

)
= sgn

(
(−1)m4h+3d4h+4

)
= −1, h ≥ 0,

and

sgn
(
(−1)m4h+1d4h+2

)
= sgn

(
(−1)m4h+2d4h+3

)
= 1, h ≥ 0,

we have proved that

c2h+2 = c2h+3 = (x+ 1)|m2h|x|m2h|(x− 1)3
2h+1

, for h ≥ 0 even,

and

c2h+2 = c2h+3 = −(x+ 1)|m2h|x|m2h|(x− 1)3
2h+1

, for h ≥ 1 odd.
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Let us apply Lemma 2.7 to derive the continued fraction expansion of
(1 + x−1)11 from that of (1 + x−1)2. Since c2 = x(x + 1)(x − 1)3 and
h = (x− 1, x− 1,−x+ 1,−x+ 1), we get

p7
q7

=
(x+ 1

x

)11
= [1;−x− 1,−x+ 1, c2,−h]

= [1;−x− 1,−x+ 1, x(x+ 1)(x− 1)3,−x+ 1,−x+ 1, x− 1, x− 1]

= [1;−v + 1,−v, c2,−v,−v, v, v],

where v denotes the polynomial x− 1 (we use this to shorten the notation).
Let us apply Lemma 2.7 to derive the continued fraction expansion of (1 +
x−1)−16 from that of (1 + x−1)11. There is only one partial quotient to
add, which is the polynomial part of (1 + x)16/x11, that is, c2 = c3 =
x(x+ 1)(x− 1)3. Consequently, we obtain

p8
q8

=
( x

x+ 1

)16
= [1;−v + 1,−v, c2,−v,−v, v, v, c2].

Then, we find

p25
q25

=
( x

x+ 1

)97
= [1;−x− 1,−v, c2,−v,−v, v, v, c2,−c4,−h]

= [1;−v + 1,−v, c2,−v,−v, v, v, c2,−c4, c2, v, v, . . . ,−v,−c2],

with c4 = x11(x+ 1)11(x− 1)27, and

p26
q26

=
(x+ 1

x

)146
= [1;−v+1,−v, c2,−v,−v, v, v, c2,−c4, c2, v, v, . . . ,−v,−c2,−c4].

Furthermore,

p79
q79

=
(x+ 1

x

)875
= [1;−x−1,−x+1, . . . ,−c2,−c4, c6,−c4,−c2, . . . , c2, c4],

with c6 = x97(x+ 1)97(x− 1)243.
The partial quotients of degree greater than one are

±gh, with gh := (x2 + x)|m2h|(x− 1)3
2h+1

, h ≥ 0.

We show by induction on h that

(1 + x−1)m4h+2 = [1;−x− 1, . . . , g2h+1, . . . , g0, g1, g2, . . . , g2h],

(1 + x−1)m4h+3 = [1;−x− 1, . . . , g2h+1, . . . , g0, g1, g2, . . . , g2h, g2h+1],

(1 + x−1)m4h+4 = [1;−x− 1, . . . , g2h+1, . . . , g0, g1, g2, . . . , g2h, g2h+1,−g2h+2, g2h+1, . . . ,

g2, g1, g0, . . . ,−g0,−g1,−g2, . . . ,−g2h+1],

(1+x−1)m4h+5 = [1;−x−1, . . . ,−g2h+2, . . . ,−g0,−g1,−g2, . . . ,−g2h+1,−g2h+2],

and

(1 + x−1)m4h+6 = [1;−x− 1, . . . , g2h+1, . . . ,−g0,−g1,−g2, . . . ,−g2h+1,−g2h+2,

g2h+3, g2h+2, . . . ,−g0,−g1, . . . , g0, g1, g2, . . . , g2h+2].
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Indeed, assuming that the continued fraction expansions of (1 + x−1)m4h+2

is as above, we use our preceding observations to derive the continued frac-
tion expansions of (1 + x−1)m4h+3 , . . . , (1 + x−1)m4h+6 , and we observe that
the latter one has the same form as the continued fraction expansion of
(1 + x−1)m4h+2 . Furthermore, we have shown that the continued fraction
expansion of (1 + x−1)m6 = (1 + x−1)875 has the requested form.

Since the lengths of the continued fraction expansions of (1+x−1)m4h+2 , . . .,
(1+x−1)m4h+5 are 32h+2− 2, 32h+2− 1, 32h+3− 2, 32h+3− 1, respectively, we
derive that

a3h = (−1)h−1gh−1, a3h±i = (−1)hgh−1−i, i = 1, . . . , h− 2,

and

deg q3h−1 = |m2h−1|, h ≥ 1.

This allows us to determine infinitely many elements of the approximation
spectrum S(ξ) of ξ. Namely, an easy computation shows that

deg q3h

deg q3h−1

= 1 +
deg gh−1

deg q3h−1

= 1 +
2|m2h−2|+ 32h−1

|m2h−1|
= 2 + 3

|m2h−2|
|m2h−1|

.

Likewise,

deg q3h−i
deg q3h−i−1

= 1 +
deg gh−i−1

deg q3h−1 − deg gh−2 − . . .− deg gh−i−1
.

An easy induction shows that

|m2h| =
6 · 32h − (−1)h

5
, |m2h+1| =

3 · 32h+1 + (−1)h

5
, h ≥ 0.

Using that

deg gh−1−i = 2|m2h−2−2i|+ 32h−1−2i, i = 0, 1, . . . , h− 1,

we get that

lim
h→+∞

deg q3h−i
deg q3h−i−1

= 1 +
8

5 · 32i−1 + 1
, i ≥ 0,

and, similarly,

lim
h→+∞

deg q3h+i
deg q3h+i−1

= 1 +
8

35 · 32i−1 − 9
, i ≥ 1.

This shows that

S(ξ) ⊃
{
1 +

8

5 · 32i−1 + 1
: i ≥ 0

}
∪
{
1 +

8

35 · 32i−1 − 9
: i ≥ 1

}
,

thus the set S(ξ) is infinite. The largest elements of these two infinite families
are

4,
3

2
,

13

12
,

18

17
,

118

117
, . . .

A further look at the continued fraction expansion of (1+x−1)1/5 shows that
there are other elements in the approximation spectrum, an example being
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given by 44/41. We leave to the interested reader the precise determination
of the set S(ξ).

13.2. Continued fraction expansion of (1+x−1)1/4 in F7((x
−1)). Since

1

4
=

−12
−49 + 1

= −12(1 + 72 + 74 + . . .) = (2− 2 · 7)(1 + 72 + 74 + . . .)

in F7, the sequence (mk)k≥0 starts with

2,−12, 86,−600, . . . ,
and we have

mk = (−1)k 7
k+1 + (−1)k

4
, k ≥ 0.

In particular, mk and mk+1 have opposite signs and it follows from Lemmas
2.6 and 2.7 that the length ℓk of the continued fraction expansion of (1 +
x−1)mk satisfies ℓk = 3k+1 − 1 for k ≥ 0. By Lemma 2.7, all the partial

quotients of (1+x−1)1/4 in F7((x
−1)) are either linear or constant multiples

of the polynomial part of

Πk :=
(1 + x)7

k−|mk−1|

x|mk−1|
,

for some k ≥ 1. Setting m−1 = 0, we claim that

Polpart(Πk) = x|mk−2|(1+x)|mk−2|(x+4)7
k−1

(x2+x+6)7
k−1

=: Pk, k ≥ 1,

where, as above, Polpart means the polynomial part. This is true for k = 1
since

P1 = Polpart
((1 + x)5

x2

)
= x3 + 5x2 + 10x+ 10 = (x+ 4)(x2 + x+ 6).

Let k ≥ 3 be an odd integer. Then, mk−1 = mk−2 + 2 · 7k−1 and

7k−|mk−1| = 5·7k−1−mk−2 = 5·7k−1+|mk−2|, |mk−1| = 2·7k−1−|mk−2|,

thus, since 7k−1 > 2|mk−2|, we get

Polpart(Πk) = x|mk−2|(1 + x)|mk−2|Polpart
((1 + x)5·7

k−1

x2·7k−1

)
= x|mk−2|(1 + x)|mk−2|Polpart

((1 + x)5

x2

)7k−1

,

as claimed. The case k even is analogous and we omit it. By Lemma 2.7,
the first partial quotient of (1 + x−1)1/4 in F7((x

−1)) which is a constant
multiple of Pk is a3k .
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Appendix A. Full proof of Theorem 11.3

We provide a full proof of Theorem 11.3. It contains several steps. For
the idea of the proof, see the sketch of proof below the statement of Theorem
11.3.

A.1. Rewriting ζk(2t). The definition of ζε(m) is given in Definition 9.7.
We rewrite it according to the parity of ε.

Lemma A.1. For a positive integer k and t = 0, 1, . . . , k − 1, we have

ζk(2t) = −22t−3−4⌊(t−1)/2⌋ Jk − t+ 1 • k + t+ 1K
Jk − t • k + tK

and

ζ−k(2t) = −22t−3−4⌊(t−1)/2⌋ Jk − t+ 1 • k + t+ 1K
Jk − t+ 2 • k + t+ 2K

.

Lemma A.2. For a positive integer k and t = 0, 1, . . . , k − 1, we have

ζ2k(4t) = −
2−4 t+1 (2 k + 2 t)! (k − t)! (k − t− 1)!

(2 k − 2 t)! (k + t)! (k + t− 1)!
,

ζ−2k(4t) = −
2−4 t+1 (2 k + 2 t)! (k − t)!2

(2 k − 2 t)! (k + t)!2
,

ζ2k(4t+ 2) = −24 t+1 (2 k − 2 t− 2)! (k + t)!2

(2 k + 2 t)! (k − t− 1)!2
,

ζ−2k(4t+ 2) = −24 t+1 (2 k − 2 t)! (k + t+ 1)! (k + t)!

(2 k + 2 t+ 2)! (k − t)! (k − t− 1)!
.

For a non-negative integer k and t = 0, 1, . . . , k − 1, we have

ζ2k+1(4t) = −
24 t+1 (2 k − 2 t)! (k + t)!2

(2 k + 2 t)! (k − t)!2
,

ζ−2k−1(4t) = −
24 t+1 (2 k − 2 t+ 2)! (k + t+ 1)! (k + t)!

(2 k + 2 t+ 2)! (k − t+ 1)! (k − t)!
,

ζ2k+1(4t+ 2) = −2−4 t−3 (2 k + 2 t+ 2)! (k − t)! (k − t− 1)!

(2 k − 2 t)! (k + t+ 1)! (k + t)!
,

ζ−2k−1(4t+ 2) = −2−4 t−3 (2 k + 2 t+ 2)! (k − t)!2

(2 k − 2 t)! (k + t+ 1)!2
.

A.2. Rewriting Ki(k, j). We rewriteK1(k, j),K2(k, j),K3(k, j),K4(k, j),K5(k, j)
given in Definition 11.2 according to the parities of k and j.

Lemma A.3. We have

K1(1, 0) = 1,

K1(j + 1, j) = 0, j ≥ 1,

K2(j + 1, j) = 0, j ≥ 0,
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and

K1(2k, 2j) =
(−j + k − 1)! (2 k − 2)!

22 j (j + k − 1)! (−2 j + 2 k − 2)!
,

K1(2k, 2j + 1) =
22 j+1 (j + k)! (2 k − 2)!

(2 j + 2 k)! (−j + k − 2)!
,

K1(2k + 1, 2j) =
22 j+1 (j + k)! (2 k − 1)!

(2 j + 2 k)! (−j + k − 1)!
,

K1(2k + 1, 2j + 1) =
2−2 j−2 (−j + k − 1)! (2 k − 1)!

(j + k)! (−2 j + 2 k − 2)!
,

K2(2k, 2j) = −
2−2 j−1 (−j + k − 1)! (2 k − 1)!

(j + k)! (−2 j + 2 k − 2)!
,

K2(2k, 2j + 1) = − 22 j+2 (j + k + 1)! (2 k − 1)!

(2 j + 2 k + 2)! (−j + k − 2)!
,

K2(2k + 1, 2j) = − 22 j+2 (j + k + 1)! (2 k)!

(2 j + 2 k + 2)! (−j + k − 1)!
,

K2(2k + 1, 2j + 1) = − 2−2 j−3 (−j + k − 1)! (2 k)!

(j + k + 1)! (−2 j + 2 k − 2)!
,

K3(2k, 2j) =
22 j+1 (j + k)! (2 k − 1)!

(2 j + 2 k)! (−j + k − 1)!
,

K3(2k, 2j + 1) =
(−j + k − 1)! (2 k − 1)!

22 j (j + k)! (−2 j + 2 k − 2)!
,

K3(2k + 1, 2j) =
(−j + k)! (2 k)!

22 j (j + k)! (−2 j + 2 k)!
,

K3(2k + 1, 2j + 1) =
22 j+3 (j + k + 1)! (2 k)!

(2 j + 2 k + 2)! (−j + k − 1)!
,

K4(2k, 2j) =
(−j + k)! (2 k)!

22 j (j + k)! (−2 j + 2 k)!
,

K4(2k, 2j + 1) = − 22 j+1 (j + k + 1)! (2 k)!

(2 j + 2 k + 2)! (−j + k − 1)!
,

K4(2k + 1, 2j) =
22 j+1 (j + k + 1)! (2 k + 1)!

(2 j + 2 k + 2)! (−j + k)!
,

K4(2k + 1, 2j + 1) = −2−2 j−2 (−j + k)! (2 k + 1)!

(j + k + 1)! (−2 j + 2 k)!
,

K5(2k, 2j) = −
(2 j + 2 k + 1) (−j + k)! (2 k − 1)!

22 j (j + k)! (−2 j + 2 k)!
,

K5(2k, 2j + 1) =
22 j+1 (j + k + 1)! (2 k − 1)!

(2 j + 2 k + 1)! (−j + k − 1)!
,
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K5(2k + 1, 2j) = − 22 j+1 (j + k + 1)! (2 k)!

(2 j + 2 k + 1)! (−j + k)!
,

K5(2k + 1, 2j + 1) =
2−2 j−2(2 j + 2 k + 3) (−j + k)! (2 k)!

(j + k + 1)! (−2 j + 2 k)!
.

A.3. Rewriting Dε(t). The definition ofDε(t) is given just above Theorem
9.9. Since Dε(t) involves ζε(2t), we need to rewrite Dε(t) according to the
parity of ε. Notice that all the entries of Dε(t) are polynomials in Y of
degree at most 2.

Below, we let Dε(t)[i, j] denote the i × j entry of the matrix Dε(t). We
assume implicitly that ε is nonzero and t = 0, . . . , |ε| − 1.

Lemma A.4. We have

D2k(2t)[1, 1] =
2−4 t+1

(
Y (2 k−2 t−1)

k+t − r − q
)
(2 k + 2 t)! (k − t)! (k − t− 1)!

(2 k − 2 t)! (k + t)! (k + t− 1)!
,

D2k(2t)[1, 2] = −4,

D2k(2t)[2, 1] =
Y 2(2 k − 2 t− 1)

2 (k + t)
− Y (4 k − 1)(r + q)

4 (k + t)
+ rq,

D2k(2t)[2, 2] = −
(2Y − r − q) (2 k − 2 t)! (k + t)! (k + t− 1)!

2−4 t+1 (2 k + 2 t)! (k − t)! (k − t− 1)!
,

D−2k(2t)[1, 1] =
2−4 t+1

(
Y (2 k+2 t+1)

k−t − r − q
)
(2 k + 2 t)! (k − t)!2

(2 k − 2 t)! (k + t)!2
,

D−2k(2t)[1, 2] = −4,

D−2k(2t)[2, 1] =
Y 2(2 k + 2 t+ 1)

2 (k − t)
− Y (4 k + 1)(r + q)

4 (k − t)
+ rq,

D−2k(2t)[2, 2] = −
(2Y − r − q) (2 k − 2 t)! (k + t)!2

2−4 t+1 (2 k + 2 t)! (k − t)!2
,

D2k+1(2t)[1, 1] =
24 t+1

(
4Y (k−t)
2 k+2 t+1 − r − q

)
(2 k − 2 t)! (k + t)!2

(2 k + 2 t)! (k − t)!2
,

D2k+1(2t)[1, 2] = −4,

D2k+1(2t)[2, 1] =
2Y 2(k − t)
2 k + 2 t+ 1

− Y (4 k + 1)(r + q)

2 (2 k + 2 t+ 1)
+ rq,

D2k+1(2t)[2, 2] = −
(2Y − r − q) (2 k + 2 t)! (k − t)!2

24 t+1 (2 k − 2 t)! (k + t)!2
,

D−2k−1(2t)[1, 1] =
24 t+1

(
4Y (k+t+1)
2 k−2 t+1 − r − q

)
(2 k − 2 t+ 2)! (k + t+ 1)! (k + t)!

(2 k + 2 t+ 2)! (k − t+ 1)! (k − t)!
,

D−2k−1(2t)[1, 2] = −4,
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D−2k−1(2t)[2, 1] =
2Y 2(k + t+ 1)

2 k − 2 t+ 1
− Y (4 k + 3)(r + q)

2 (2 k − 2 t+ 1)
+ rq,

D−2k−1(2t)[2, 2] = −
(2Y − r − q) (2 k + 2 t+ 2)! (k − t+ 1)! (k − t)!

24 t+1 (2 k − 2 t+ 2)! (k + t+ 1)! (k + t)!
,

D2k(2t+ 1)[1, 1] =
24 t+1

(
4Y (k−t−1)
2 k+2 t+1 − r − q

)
(2 k − 2 t− 2)! (k + t)!2

(2 k + 2 t)! (k − t− 1)!2
,

D2k(2t+ 1)[1, 2] = −4,

D2k(2t+ 1)[2, 1] =
2Y 2(k − t− 1)

2 k + 2 t+ 1
− Y (4 k − 1)(r + q)

2 (2 k + 2 t+ 1)
+ rq,

D2k(2t+ 1)[2, 2] = −(2Y − r − q) (2 k + 2 t)! (k − t− 1)!2

24 t+1 (2 k − 2 t− 2)! (k + t)!2
,

D−2k(2t+ 1)[1, 1] =
24 t+1

(
4Y (k+t+1)
2 k−2 t−1 − r − q

)
(2 k − 2 t)! (k + t+ 1)! (k + t)!

(2 k + 2 t+ 2)! (k − t)! (k − t− 1)!
,

D−2k(2t+ 1)[1, 2] = −4,

D−2k(2t+ 1)[2, 1] =
2Y 2(k + t+ 1)

2 k − 2 t− 1
− Y (4 k + 1)(r + q)

2 (2 k − 2 t− 1)
+ rq,

D−2k(2t+ 1)[2, 2] = −(2Y − r − q) (2 k + 2 t+ 2)! (k − t)! (k − t− 1)!

24 t+1 (2 k − 2 t)! (k + t+ 1)! (k + t)!
,

D2k+1(2t+ 1)[1, 1] =
2−4 t−3

(
Y (2 k−2 t−1)

k+t+1 − r − q
)
(2 k + 2 t+ 2)! (k − t)! (k − t− 1)!

(2 k − 2 t)! (k + t+ 1)! (k + t)!
,

D2k+1(2t+ 1)[1, 2] = −4,

D2k+1(2t+ 1)[2, 1] =
Y 2(2 k − 2 t− 1)

2 (k + t+ 1)
− Y (4 k + 1)(r + q)

4 (k + t+ 1)
+ rq,

D2k+1(2t+ 1)[2, 2] = −(2Y − r − q) (2 k − 2 t)! (k + t+ 1)! (k + t)!

2−4 t−3 (2 k + 2 t+ 2)! (k − t)! (k − t− 1)!
,

D−2k−1(2t+ 1)[1, 1] =
2−4 t−3

(
Y (2 k+2 t+3)

k−t − r − q
)
(2 k + 2 t+ 2)! (k − t)!2

(2 k − 2 t)! (k + t+ 1)!2
,

D−2k−1(2t+ 1)[1, 2] = −4,

D−2k−1(2t+ 1)[2, 1] =
Y 2(2 k + 2 t+ 3)

2 (k − t)
− Y (4 k + 3)(r + q)

4 (k − t)
+ rq,

D−2k−1(2t+ 1)[2, 2] = −(2Y − r − q) (2 k − 2 t)! (k + t+ 1)!2

2−4 t−3 (2 k + 2 t+ 2)! (k − t)!2
.

A.4. Rewriting Aε(j), A
′
ε(j), Bε(j), B

′
ε(j). We rewriteAε(j), A

′
ε(j), Bε(j), B

′
ε(j)

given in Theorem 11.3 according to the sign of ε and the parities of ε and j.
Below, we have replaced Ψ(k, j; r, q) by the product K1(k, j)Φ(k− 2, j; r, q).
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A2k(2j) = Y K2 (2 k, 2 j) Φ (2 k − 1, 2 j; r, q)

+ rK1 (2 k, 2 j) Φ (2 k − 2, 2 j; r, q) ,

A2k(2j + 1) = Y K2 (2 k, 2 j + 1)Φ (2 k − 1, 2 j + 1; r, q)

+ rK1 (2 k, 2 j + 1)Φ (2 k − 2, 2 j + 1; r, q) ,

A−2k(2j) = rK4 (2 k, 2 j) Φ (2 k, 2 j; q, r)

+ Y K5 (2 k, 2 j) Φ (2 k − 1, 2 j; q, r) ,

A−2k(2j + 1) = rK4 (2 k, 2 j + 1)Φ (2 k, 2 j + 1; q, r)

+ Y K5 (2 k, 2 j + 1)Φ (2 k − 1, 2 j + 1; q, r) ,

A2k+1(2j) = Y K2 (2 k + 1, 2 j) Φ (2 k, 2 j; r, q)

+ rK1 (2 k + 1, 2 j) Φ (2 k − 1, 2 j; r, q) ,

A2k+1(2j + 1) = Y K2 (2 k + 1, 2 j + 1)Φ (2 k, 2 j + 1; r, q)

+ rK1 (2 k + 1, 2 j + 1)Φ (2 k − 1, 2 j + 1; r, q) ,

A−2k−1(2j) = Y K5 (2 k + 1, 2 j) Φ (2 k, 2 j; q, r)

+ rK4 (2 k + 1, 2 j) Φ (2 k + 1, 2 j; q, r) ,

A−2k−1(2j + 1) = Y K5 (2 k + 1, 2 j + 1)Φ (2 k, 2 j + 1; q, r)

+ rK4 (2 k + 1, 2 j + 1)Φ (2 k + 1, 2 j + 1; q, r) ,

A′
2k(2j) = K3 (2 k, 2 j) Φ (2 k − 1, 2 j; r, q) ,

A′
2k(2j + 1) = K3 (2 k, 2 j + 1)Φ (2 k − 1, 2 j + 1; r, q) ,

A′
−2k(2j) = K3 (2 k, 2 j) Φ (2 k − 1, 2 j; q, r) ,

A′
−2k(2j + 1) = −K3 (2 k, 2 j + 1)Φ (2 k − 1, 2 j + 1; q, r) ,

A′
2k+1(2j) = K3 (2 k + 1, 2 j) Φ (2 k, 2 j; r, q) ,

A′
2k+1(2j + 1) = K3 (2 k + 1, 2 j + 1)Φ (2 k, 2 j + 1; r, q) ,

A′
−2k−1(2j) = K3 (2 k + 1, 2 j) Φ (2 k, 2 j; q, r) ,

A′
−2k−1(2j + 1) = −K3 (2 k + 1, 2 j + 1)Φ (2 k, 2 j + 1; q, r) ,

B2k(2j) = Y K2 (2 k, 2 j) Φ (2 k − 1, 2 j; q, r)

+ qK1 (2 k, 2 j) Φ (2 k − 2, 2 j; q, r) ,

B2k(2j + 1) = Y K2 (2 k, 2 j + 1)Φ (2 k − 1, 2 j + 1; q, r)

+ qK1 (2 k, 2 j + 1)Φ (2 k − 2, 2 j + 1; q, r) ,

B−2k(2j) = qK4 (2 k, 2 j) Φ (2 k, 2 j; r, q)

+ Y K5 (2 k, 2 j) Φ (2 k − 1, 2 j; r, q) ,

B−2k(2j + 1) = qK4 (2 k, 2 j + 1)Φ (2 k, 2 j + 1; r, q)

+ Y K5 (2 k, 2 j + 1)Φ (2 k − 1, 2 j + 1; r, q) ,

B2k+1(2j) = Y K2 (2 k + 1, 2 j) Φ (2 k, 2 j; q, r)
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+ qK1 (2 k + 1, 2 j) Φ (2 k − 1, 2 j; q, r) ,

B2k+1(2j + 1) = Y K2 (2 k + 1, 2 j + 1)Φ (2 k, 2 j + 1; q, r)

+ qK1 (2 k + 1, 2 j + 1)Φ (2 k − 1, 2 j + 1; q, r) ,

B−2k−1(2j) = Y K5 (2 k + 1, 2 j) Φ (2 k, 2 j; r, q)

+ qK4 (2 k + 1, 2 j) Φ (2 k + 1, 2 j; r, q) ,

B−2k−1(2j + 1) = Y K5 (2 k + 1, 2 j + 1)Φ (2 k, 2 j + 1; r, q)

+ qK4 (2 k + 1, 2 j + 1)Φ (2 k + 1, 2 j + 1; r, q) ,

B′
2k(2j) = K3 (2 k, 2 j) Φ (2 k − 1, 2 j; q, r) ,

B′
2k(2j + 1) = K3 (2 k, 2 j + 1)Φ (2 k − 1, 2 j + 1; q, r) ,

B′
−2k(2j) = K3 (2 k, 2 j) Φ (2 k − 1, 2 j; r, q) ,

B′
−2k(2j + 1) = −K3 (2 k, 2 j + 1)Φ (2 k − 1, 2 j + 1; r, q) ,

B′
2k+1(2j) = K3 (2 k + 1, 2 j) Φ (2 k, 2 j; q, r) ,

B′
2k+1(2j + 1) = K3 (2 k + 1, 2 j + 1)Φ (2 k, 2 j + 1; q, r) ,

B′
−2k−1(2j) = K3 (2 k + 1, 2 j) Φ (2 k, 2 j; r, q) ,

B′
−2k−1(2j + 1) = −K3 (2 k + 1, 2 j + 1)Φ (2 k, 2 j + 1; r, q) .

By replacing the Ki(k, t) by their expressions given in Lemma A.3, we
obtain the following identities.

Lemma A.5. We have

A2k(2j) = −
2−2 j−1Y Φ (2 k − 1, 2 j; r, q) (−j + k − 1)! (2 k − 1)!

(j + k)! (−2 j + 2 k − 2)!

+
rΦ (2 k − 2, 2 j; r, q) (−j + k − 1)! (2 k − 2)!

22 j (j + k − 1)! (−2 j + 2 k − 2)!
,

A2k(2j + 1) = −22 j+2Y Φ (2 k − 1, 2 j + 1; r, q) (j + k + 1)! (2 k − 1)!

(2 j + 2 k + 2)! (−j + k − 2)!

+
22 j+1rΦ (2 k − 2, 2 j + 1; r, q) (j + k)! (2 k − 2)!

(2 j + 2 k)! (−j + k − 2)!
,

A−2k(2j) = −
Y (2 j + 2 k + 1)Φ (2 k − 1, 2 j; q, r) (−j + k)! (2 k − 1)!

22 j (j + k)! (−2 j + 2 k)!

+
rΦ (2 k, 2 j; q, r) (−j + k)! (2 k)!

22 j (j + k)! (−2 j + 2 k)!
,

A−2k(2j + 1) = −22 j+1rΦ (2 k, 2 j + 1; q, r) (j + k + 1)! (2 k)!

(2 j + 2 k + 2)! (−j + k − 1)!

+
22 j+1Y Φ (2 k − 1, 2 j + 1; q, r) (j + k + 1)! (2 k − 1)!

(2 j + 2 k + 1)! (−j + k − 1)!
,

A2k+1(2j) = −
22 j+2Y Φ (2 k, 2 j; r, q) (j + k + 1)! (2 k)!

(2 j + 2 k + 2)! (−j + k − 1)!
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+
22 j+1rΦ (2 k − 1, 2 j; r, q) (j + k)! (2 k − 1)!

(2 j + 2 k)! (−j + k − 1)!
,

A2k+1(2j + 1) = −2−2 j−3Y Φ (2 k, 2 j + 1; r, q) (−j + k − 1)! (2 k)!

(j + k + 1)! (−2 j + 2 k − 2)!

+
2−2 j−2rΦ (2 k − 1, 2 j + 1; r, q) (−j + k − 1)! (2 k − 1)!

(j + k)! (−2 j + 2 k − 2)!
,

A−2k−1(2j) = −
22 j+1Y Φ (2 k, 2 j; q, r) (j + k + 1)! (2 k)!

(2 j + 2 k + 1)! (−j + k)!

+
22 j+1rΦ (2 k + 1, 2 j; q, r) (j + k + 1)! (2 k + 1)!

(2 j + 2 k + 2)! (−j + k)!
,

A−2k−1(2j + 1) =
2−2 j−2Y (2 j + 2 k + 3)Φ (2 k, 2 j + 1; q, r) (−j + k)! (2 k)!

(j + k + 1)! (−2 j + 2 k)!

− 2−2 j−2rΦ (2 k + 1, 2 j + 1; q, r) (−j + k)! (2 k + 1)!

(j + k + 1)! (−2 j + 2 k)!
,

A′
2k(2j) =

22 j+1Φ (2 k − 1, 2 j; r, q) (j + k)! (2 k − 1)!

(2 j + 2 k)! (−j + k − 1)!
,

A′
2k(2j + 1) =

Φ (2 k − 1, 2 j + 1; r, q) (−j + k − 1)! (2 k − 1)!

22 j (j + k)! (−2 j + 2 k − 2)!
,

A′
−2k(2j) =

22 j+1Φ (2 k − 1, 2 j; q, r) (j + k)! (2 k − 1)!

(2 j + 2 k)! (−j + k − 1)!
,

A′
−2k(2j + 1) = −Φ (2 k − 1, 2 j + 1; q, r) (−j + k − 1)! (2 k − 1)!

22 j (j + k)! (−2 j + 2 k − 2)!
,

A′
2k+1(2j) =

Φ (2 k, 2 j; r, q) (−j + k)! (2 k)!

22 j (j + k)! (−2 j + 2 k)!
,

A′
2k+1(2j + 1) =

22 j+3Φ (2 k, 2 j + 1; r, q) (j + k + 1)! (2 k)!

(2 j + 2 k + 2)! (−j + k − 1)!
,

A′
−2k−1(2j) =

Φ (2 k, 2 j; q, r) (−j + k)! (2 k)!

22 j (j + k)! (−2 j + 2 k)!
,

A′
−2k−1(2j + 1) = −22 j+3Φ (2 k, 2 j + 1; q, r) (j + k + 1)! (2 k)!

(2 j + 2 k + 2)! (−j + k − 1)!
,

B2k(2j) = −
2−2 j−1Y Φ (2 k − 1, 2 j; q, r) (−j + k − 1)! (2 k − 1)!

(j + k)! (−2 j + 2 k − 2)!

+
qΦ (2 k − 2, 2 j; q, r) (−j + k − 1)! (2 k − 2)!

22 j (j + k − 1)! (−2 j + 2 k − 2)!
,

B2k(2j + 1) = −22 j+2Y Φ (2 k − 1, 2 j + 1; q, r) (j + k + 1)! (2 k − 1)!

(2 j + 2 k + 2)! (−j + k − 2)!

+
22 j+1qΦ (2 k − 2, 2 j + 1; q, r) (j + k)! (2 k − 2)!

(2 j + 2 k)! (−j + k − 2)!
,
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B−2k(2j) = −
Y (2 j + 2 k + 1)Φ (2 k − 1, 2 j; r, q) (−j + k)! (2 k − 1)!

22 j (j + k)! (−2 j + 2 k)!

+
qΦ (2 k, 2 j; r, q) (−j + k)! (2 k)!

22 j (j + k)! (−2 j + 2 k)!
,

B−2k(2j + 1) = −22 j+1qΦ (2 k, 2 j + 1; r, q) (j + k + 1)! (2 k)!

(2 j + 2 k + 2)! (−j + k − 1)!

+
22 j+1Y Φ (2 k − 1, 2 j + 1; r, q) (j + k + 1)! (2 k − 1)!

(2 j + 2 k + 1)! (−j + k − 1)!
,

B2k+1(2j) = −
22 j+2Y Φ (2 k, 2 j; q, r) (j + k + 1)! (2 k)!

(2 j + 2 k + 2)! (−j + k − 1)!

+
22 j+1qΦ (2 k − 1, 2 j; q, r) (j + k)! (2 k − 1)!

(2 j + 2 k)! (−j + k − 1)!
,

B2k+1(2j + 1) = −2−2 j−3Y Φ (2 k, 2 j + 1; q, r) (−j + k − 1)! (2 k)!

(j + k + 1)! (−2 j + 2 k − 2)!

+
2−2 j−2qΦ (2 k − 1, 2 j + 1; q, r) (−j + k − 1)! (2 k − 1)!

(j + k)! (−2 j + 2 k − 2)!
,

B−2k−1(2j) = −
22 j+1Y Φ (2 k, 2 j; r, q) (j + k + 1)! (2 k)!

(2 j + 2 k + 1)! (−j + k)!

+
22 j+1qΦ (2 k + 1, 2 j; r, q) (j + k + 1)! (2 k + 1)!

(2 j + 2 k + 2)! (−j + k)!
,

B−2k−1(2j + 1) =
2−2 j−2Y (2 j + 2 k + 3)Φ (2 k, 2 j + 1; r, q) (−j + k)! (2 k)!

(j + k + 1)! (−2 j + 2 k)!

− 2−2 j−2qΦ (2 k + 1, 2 j + 1; r, q) (−j + k)! (2 k + 1)!

(j + k + 1)! (−2 j + 2 k)!
,

B′
2k(2j) =

22 j+1Φ (2 k − 1, 2 j; q, r) (j + k)! (2 k − 1)!

(2 j + 2 k)! (−j + k − 1)!
,

B′
2k(2j + 1) =

Φ (2 k − 1, 2 j + 1; q, r) (−j + k − 1)! (2 k − 1)!

22 j (j + k)! (−2 j + 2 k − 2)!
,

B′
−2k(2j) =

22 j+1Φ (2 k − 1, 2 j; r, q) (j + k)! (2 k − 1)!

(2 j + 2 k)! (−j + k − 1)!
,

B′
−2k(2j + 1) = −Φ (2 k − 1, 2 j + 1; r, q) (−j + k − 1)! (2 k − 1)!

22 j (j + k)! (−2 j + 2 k − 2)!
,

B′
2k+1(2j) =

Φ (2 k, 2 j; q, r) (−j + k)! (2 k)!

22 j (j + k)! (−2 j + 2 k)!
,

B′
2k+1(2j + 1) =

22 j+3Φ (2 k, 2 j + 1; q, r) (j + k + 1)! (2 k)!

(2 j + 2 k + 2)! (−j + k − 1)!
,

B′
−2k−1(2j) =

Φ (2 k, 2 j; r, q) (−j + k)! (2 k)!

22 j (j + k)! (−2 j + 2 k)!
,
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B′
−2k−1(2j + 1) = −22 j+3Φ (2 k, 2 j + 1; r, q) (j + k + 1)! (2 k)!

(2 j + 2 k + 2)! (−j + k − 1)!
.

A.5. Proof of Theorem 11.3 for j = 0. For a nonzero integer ε and
j = 0, 1, . . . , |ε| − 1, recall that

Πε(j) := UDε(0)Dε(1) · · ·Dε(j) =

(
Aε(j) A′

ε(j)
Bε(j) B′

ε(j)

)
.

Idea of the proof: We check by a direct computation that the theorem
holds for j = 0. Then, we verify that Πε(j + 1) = Πε(j)Dε(j + 1) for
j = 0, . . . , |ε| − 2.

In this section, we check by a direct computation that the theorem holds
for j = 0. We have:

U =
1

r − q

(
(Y − r)/2 −2
−(Y − q)/2 2

)
,

K1(k, 0) = 1,

K2(k, 0) = −
k − 1

k
,

K3(k, 0) = 1,

K4(k, 0) = 1,

K5(k, 0) = −
k + 1

k
,

and
Φ(k, 0; r, q) = 1.

This gives:
• ε = k > 0:

Ak(0) = r +K2(k, 0)Y = r − k − 1

k
Y,

A′
k(0) = 1,

Bk(0) = q +K2(k, 0)Y = q − k − 1

k
Y,

B′
k(0) = 1.

• ε = −k < 0:

A−k(0) = r +K5(k, 0)Y = r − k + 1

k
Y,

A′
−k(0) = 1,

B−k(0) = q +K5(k, 0)Y = q − k + 1

k
Y,

B′
−k(0) = 1.

In both cases, we have
ζε(0) = −2.
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We distinguish four cases to check that U×Dε(0) = Πε(0):
• ε = 2k:

U×

(
2Y (2 k−1)

k − 2 q − 2 r −4
Y 2(2 k−1)

2 k − Y (4 k−1)(q+r)
4 k + qr −Y + 1

2 q +
1
2 r

)
=

(
−2Y k−2 kr−Y

2 k 1

−2Y k−2 kq−Y
2 k 1

)
.

• ε = −2k:

U×

(
2Y (2 k+1)

k − 2 q − 2 r −4
Y 2(2 k+1)

2 k − Y (4 k+1)(q+r)
4 k + qr −Y + 1

2 q +
1
2 r

)
=

(
−2Y k−2 kr+Y

2 k 1

−2Y k−2 kq+Y
2 k 1

)
.

• ε = 2k + 1:

U×

(
8Y k
2 k+1 − 2 q − 2 r −4

2Y 2k
2 k+1 −

Y (4 k+1)(q+r)
2 (2 k+1) + qr −Y + 1

2 q +
1
2 r

)
=

(
−2Y k−(2 k+1)r

2 k+1 1

−2Y k−(2 k+1)q
2 k+1 1

)
.

• ε = −2k − 1:

U×

(
8Y (k+1)
2 k+1 − 2 q − 2 r −4

2Y 2(k+1)
2 k+1 − Y (4 k+3)(q+r)

2 (2 k+1) + qr −Y + 1
2 q +

1
2 r

)
=

(
−2Y k−(2 k+1)r+2Y

2 k+1 1

−2Y k−(2 k+1)q+2Y
2 k+1 1

)
.

This completes the case j = 0.

A.6. The key identities for the inductive step. We need to verify that,
for j = 0, . . . , |ε| − 2, we have

Πε(j + 1) = Πε(j)Dε(j + 1),

that is,

(A.1)

(
Aε(j + 1) A′

ε(j + 1)
Bε(j + 1) B′

ε(j + 1)

)
=

(
Aε(j) A′

ε(j)
Bε(j) B′

ε(j)

)

×

ζε(2j + 2)
(
r + q − 2Y ε−(j+1)−1

ε+j+1

)
−4

rq − (2ε−1)(r+q)
2(ε+j+1) Y + ε−(j+1)−1

ε+j+1 Y 2 −(ζε(2j + 2))−1(r + q − 2Y )

 .

The entries of these matrices are polynomials in Y of degree at most 2.
The above identity is equivalent to four identities for quadratic polynomials
in Y . One of these four identities is (recall that t = j + 1)

Aε(j + 1) = Aε(j)ζε(2t)

(
r + q − 2Y

ε− t− 1

ε+ t

)
+A′

ε(j)

(
rq − (2ε− 1)(r + q)

2(ε+ t)
Y +

ε− t− 1

ε+ t
Y 2

)
.

For example, when ε = 2k and j is replaced by 2j, the above identity
becomes

−
24 j+1

(
4Y (j−k+1)
2 j+2 k+1 + r + q

)
(j + k)!2

(2 j + 2 k)! (−j + k − 1)!

×
(
2−2 j−1Y Φ (2 k − 1, 2 j; r, q) (2 k − 1)!

(j + k)!
− rΦ (2 k − 2, 2 j; r, q) (2 k − 2)!

22 j (j + k − 1)!

)
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+

(
4Y 2(j−k+1)
2 j+2 k+1 + Y (4 k−1)(r+q)

2 j+2 k+1 − 2 rq
)
22 j+1Φ (2 k − 1, 2 j; r, q) (j + k)! (2 k − 1)!

2 (2 j + 2 k)! (−j + k − 1)!

− 22 j+2Y Φ (2 k − 1, 2 j + 1; r, q) (j + k + 1)! (2 k − 1)!

(2 j + 2 k + 2)! (−j + k − 2)!

+
22 j+1rΦ (2 k − 2, 2 j + 1; r, q) (j + k)! (2 k − 2)!

(2 j + 2 k)! (−j + k − 2)!
= 0.

To prove each such identity, we equate each coefficient of Y d, for d =
0, 1, 2. We need to prove that (take the numerator, then simplify):

[Y 0] 0 = (j + k)(r + q)Φ (2 k − 2, 2 j; r, q)− (2k − 1)qΦ (2 k − 1, 2 j; r, q)

+ (k − j − 1)Φ (2 k − 2, 2 j + 1; r, q),

[Y 1] 0 = (2 k − 1)Φ (2 k − 1, 2 j + 1; r, q)

− (2 k − 1)(r + q)Φ (2 k − 1, 2 j; r, q)

+ 4 r (j + k) Φ (2 k − 2, 2 j; r, q),

[Y 2] 0 = 0.

The notation [Y d] means that we consider the coefficient of Y d. Doing the
same calculations for all other cases, we get a full list of 4 × 3 × 8 = 96
identities to prove (the 4 entries of the matrices are quadratic polynomials,
and we distinguish according to the sign of k and to the parities of j and k).

The notation (ε, j)ij [Y
d] used below means that the identity is obtained

by considering the coefficient of Y d in the i× j entry of (A.1).
In all the cases, the identities obtained by considering the coefficients

of Y 2 are tautologies. This is also the case for the identities obtained by
considering the coefficients of Y in the entries of the second column of each
matrix. Consequently, we are left with 48 identities to be checked, namely:

(2k, 2j)11[Y
0] 0 = (2 k − 1)qΦ (2 k − 1, 2 j; r, q)

− (j + k)(q + r)Φ (2 k − 2, 2 j; r, q)

+ (j − k + 1)Φ (2 k − 2, 2 j + 1; r, q) ,

(2k, 2j)11[Y
1] 0 = (2 k − 1)(q + r)Φ (2 k − 1, 2 j; r, q)

− 4 (j + k)rΦ (2 k − 2, 2 j; r, q)

− (2 k − 1)Φ (2 k − 1, 2 j + 1; r, q) ,

(2k, 2j)12[Y
0] 0 = (2 k − 1)(q + r)Φ (2 k − 1, 2 j; r, q)

− 4 (j + k)rΦ (2 k − 2, 2 j; r, q)

− (2 k − 1)Φ (2 k − 1, 2 j + 1; r, q) ,

(2k, 2j)21[Y
0] 0 = (2 k − 1)rΦ (2 k − 1, 2 j; q, r)

− (j + k)(q + r)Φ (2 k − 2, 2 j; q, r)
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+ (j − k + 1)Φ (2 k − 2, 2 j + 1; q, r) ,

(2k, 2j)21[Y
1] 0 = (2 k − 1)(q + r)Φ (2 k − 1, 2 j; q, r)

− 4 (j + k)qΦ (2 k − 2, 2 j; q, r)

− (2 k − 1)Φ (2 k − 1, 2 j + 1; q, r) ,

(2k, 2j)22[Y
0] 0 = (2 k − 1)(q + r)Φ (2 k − 1, 2 j; q, r)

− 4 (j + k)qΦ (2 k − 2, 2 j; q, r)

− (2 k − 1)Φ (2 k − 1, 2 j + 1; q, r) ,

(2k, 2j + 1)11[Y
0] 0 = 2 (2 k − 1)qΦ (2 k − 1, 2 j + 1; r, q)

− (2 j + 2 k + 1)(q + r)Φ (2 k − 2, 2 j + 1; r, q)

+ (2 j − 2 k + 3)Φ (2 k − 2, 2 j + 2; r, q) ,

(2k, 2j + 1)11[Y
1] 0 = (2 k − 1)(q + r)Φ (2 k − 1, 2 j + 1; r, q)

− 2 (2 j + 2 k + 1)rΦ (2 k − 2, 2 j + 1; r, q)

− (2 k − 1)Φ (2 k − 1, 2 j + 2; r, q) ,

(2k, 2j + 1)12[Y
0] 0 = (2 k − 1)(q + r)Φ (2 k − 1, 2 j + 1; r, q)

− 2 (2 j + 2 k + 1)rΦ (2 k − 2, 2 j + 1; r, q)

− (2 k − 1)Φ (2 k − 1, 2 j + 2; r, q) ,

(2k, 2j + 1)21[Y
0] 0 = 2 (2 k − 1)rΦ (2 k − 1, 2 j + 1; q, r)

− (2 j + 2 k + 1)(q + r)Φ (2 k − 2, 2 j + 1; q, r)

+ (2 j − 2 k + 3)Φ (2 k − 2, 2 j + 2; q, r) ,

(2k, 2j + 1)21[Y
1] 0 = (2 k − 1)(q + r)Φ (2 k − 1, 2 j + 1; q, r)

− 2 (2 j + 2 k + 1)qΦ (2 k − 2, 2 j + 1; q, r)

− (2 k − 1)Φ (2 k − 1, 2 j + 2; q, r) ,

(2k, 2j + 1)22[Y
0] 0 = (2 k − 1)(q + r)Φ (2 k − 1, 2 j + 1; q, r)

− 2 (2 j + 2 k + 1)qΦ (2 k − 2, 2 j + 1; q, r)

− (2 k − 1)Φ (2 k − 1, 2 j + 2; q, r) ,

(−2k, 2j)11[Y 0] 0 = k(q + r)Φ (2 k, 2 j; q, r)

− (2 j + 2 k + 1)qΦ (2 k − 1, 2 j; q, r)

− kΦ (2 k, 2 j + 1; q, r) ,

(−2k, 2j)11[Y 1] 0 = 4 krΦ (2 k, 2 j; q, r)

− (2 j + 2 k + 1)(q + r)Φ (2 k − 1, 2 j; q, r)

+ (2 j − 2 k + 1)Φ (2 k − 1, 2 j + 1; q, r) ,

(−2k, 2j)12[Y 0] 0 = 4 krΦ (2 k, 2 j; q, r)

− (2 j + 2 k + 1)(q + r)Φ (2 k − 1, 2 j; q, r)

+ (2 j − 2 k + 1)Φ (2 k − 1, 2 j + 1; q, r) ,
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(−2k, 2j)21[Y 0] 0 = k(q + r)Φ (2 k, 2 j; r, q)

− (2 j + 2 k + 1)rΦ (2 k − 1, 2 j; r, q)

− kΦ (2 k, 2 j + 1; r, q) ,

(−2k, 2j)21[Y 1] 0 = 4 kqΦ (2 k, 2 j; r, q)

− (2 j + 2 k + 1)(q + r)Φ (2 k − 1, 2 j; r, q)

+ (2 j − 2 k + 1)Φ (2 k − 1, 2 j + 1; r, q) ,

(−2k, 2j)22[Y 0] 0 = 4 kqΦ (2 k, 2 j; r, q)

− (2 j + 2 k + 1)(q + r)Φ (2 k − 1, 2 j; r, q)

+ (2 j − 2 k + 1)Φ (2 k − 1, 2 j + 1; r, q) ,

(−2k, 2j + 1)11[Y
0] 0 = k(q + r)Φ (2 k, 2 j + 1; q, r)

− 2 (j + k + 1)qΦ (2 k − 1, 2 j + 1; q, r)

− kΦ (2 k, 2 j + 2; q, r) ,

(−2k, 2j + 1)11[Y
1] 0 = 2 krΦ (2 k, 2 j + 1; q, r)

− (j + k + 1)(q + r)Φ (2 k − 1, 2 j + 1; q, r)

+ (j − k + 1)Φ (2 k − 1, 2 j + 2; q, r) ,

(−2k, 2j + 1)12[Y
0] 0 = 2 krΦ (2 k, 2 j + 1; q, r)

− (j + k + 1)(q + r)Φ (2 k − 1, 2 j + 1; q, r)

+ (j − k + 1)Φ (2 k − 1, 2 j + 2; q, r) ,

(−2k, 2j + 1)21[Y
0] 0 = k(q + r)Φ (2 k, 2 j + 1; r, q)

− 2 (j + k + 1)rΦ (2 k − 1, 2 j + 1; r, q)

− kΦ (2 k, 2 j + 2; r, q) ,

(−2k, 2j + 1)21[Y
1] 0 = 2 kqΦ (2 k, 2 j + 1; r, q)

− (j + k + 1)(q + r)Φ (2 k − 1, 2 j + 1; r, q)

+ (j − k + 1)Φ (2 k − 1, 2 j + 2; r, q) ,

(−2k, 2j + 1)22[Y
0] 0 = 2 kqΦ (2 k, 2 j + 1; r, q)

− (j + k + 1)(q + r)Φ (2 k − 1, 2 j + 1; r, q)

+ (j − k + 1)Φ (2 k − 1, 2 j + 2; r, q) ,

(2k + 1, 2j)11[Y
0] 0 = 4 kqΦ (2 k, 2 j; r, q)

− (2 j + 2 k + 1)(q + r)Φ (2 k − 1, 2 j; r, q)

+ (2 j − 2 k + 1)Φ (2 k − 1, 2 j + 1; r, q) ,

(2k + 1, 2j)11[Y
1] 0 = k(q + r)Φ (2 k, 2 j; r, q)

− (2 j + 2 k + 1)rΦ (2 k − 1, 2 j; r, q)

− kΦ (2 k, 2 j + 1; r, q) ,

(2k + 1, 2j)12[Y
0] 0 = k(q + r)Φ (2 k, 2 j; r, q)
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− (2 j + 2 k + 1)rΦ (2 k − 1, 2 j; r, q)

− kΦ (2 k, 2 j + 1; r, q) ,

(2k + 1, 2j)21[Y
0] 0 = 4 krΦ (2 k, 2 j; q, r)

− (2 j + 2 k + 1)(q + r)Φ (2 k − 1, 2 j; q, r)

+ (2 j − 2 k + 1)Φ (2 k − 1, 2 j + 1; q, r) ,

(2k + 1, 2j)21[Y
1] 0 = k(q + r)Φ (2 k, 2 j; q, r)

− (2 j + 2 k + 1)qΦ (2 k − 1, 2 j; q, r)

− kΦ (2 k, 2 j + 1; q, r) ,

(2k + 1, 2j)22[Y
0] 0 = k(q + r)Φ (2 k, 2 j; q, r)

− (2 j + 2 k + 1)qΦ (2 k − 1, 2 j; q, r)

− kΦ (2 k, 2 j + 1; q, r) ,

(2k + 1, 2j + 1)11[Y
0] 0 = 2 kqΦ (2 k, 2 j + 1; r, q)

− (j + k + 1)(q + r)Φ (2 k − 1, 2 j + 1; r, q)

+ (j − k + 1)Φ (2 k − 1, 2 j + 2; r, q) ,

(2k + 1, 2j + 1)11[Y
1] 0 = k(q + r)Φ (2 k, 2 j + 1; r, q)

− 2 (j + k + 1)rΦ (2 k − 1, 2 j + 1; r, q)

− kΦ (2 k, 2 j + 2; r, q) ,

(2k + 1, 2j + 1)12[Y
0] 0 = k(q + r)Φ (2 k, 2 j + 1; r, q)

− 2 (j + k + 1)rΦ (2 k − 1, 2 j + 1; r, q)

− kΦ (2 k, 2 j + 2; r, q) ,

(2k + 1, 2j + 1)21[Y
0] 0 = 2 krΦ (2 k, 2 j + 1; q, r)

− (j + k + 1)(q + r)Φ (2 k − 1, 2 j + 1; q, r)

+ (j − k + 1)Φ (2 k − 1, 2 j + 2; q, r) ,

(2k + 1, 2j + 1)21[Y
1] 0 = k(q + r)Φ (2 k, 2 j + 1; q, r)

− 2 (j + k + 1)qΦ (2 k − 1, 2 j + 1; q, r)

− kΦ (2 k, 2 j + 2; q, r) ,

(2k + 1, 2j + 1)22[Y
0] 0 = k(q + r)Φ (2 k, 2 j + 1; q, r)

− 2 (j + k + 1)qΦ (2 k − 1, 2 j + 1; q, r)

− kΦ (2 k, 2 j + 2; q, r) ,

(−2k − 1, 2j)11[Y
0] 0 = 4 (j + k + 1)qΦ (2 k, 2 j; q, r)

− (2 k + 1)(q + r)Φ (2 k + 1, 2 j; q, r)

+ (2 k + 1)Φ (2 k + 1, 2 j + 1; q, r) ,

(−2k − 1, 2j)11[Y
1] 0 = (j + k + 1)(q + r)Φ (2 k, 2 j; q, r)

− (2 k + 1)rΦ (2 k + 1, 2 j; q, r)
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− (j − k)Φ (2 k, 2 j + 1; q, r) ,

(−2k − 1, 2j)12[Y
0] 0 = (j + k + 1)(q + r)Φ (2 k, 2 j; q, r)

− (2 k + 1)rΦ (2 k + 1, 2 j; q, r)

− (j − k)Φ (2 k, 2 j + 1; q, r) ,

(−2k − 1, 2j)21[Y
0] 0 = 4 (j + k + 1)rΦ (2 k, 2 j; r, q)

− (2 k + 1)(q + r)Φ (2 k + 1, 2 j; r, q)

+ (2 k + 1)Φ (2 k + 1, 2 j + 1; r, q) ,

(−2k − 1, 2j)21[Y
1] 0 = (j + k + 1)(q + r)Φ (2 k, 2 j; r, q)

− (2 k + 1)qΦ (2 k + 1, 2 j; r, q)

− (j − k)Φ (2 k, 2 j + 1; r, q) ,

(−2k − 1, 2j)22[Y
0] 0 = (j + k + 1)(q + r)Φ (2 k, 2 j; r, q)

− (2 k + 1)qΦ (2 k + 1, 2 j; r, q)

− (j − k)Φ (2 k, 2 j + 1; r, q) ,

(−2k − 1, 2j + 1)11[Y
0] 0 = 2 (2 j + 2 k + 3)qΦ (2 k, 2 j + 1; q, r)

− (2 k + 1)(q + r)Φ (2 k + 1, 2 j + 1; q, r)

+ (2 k + 1)Φ (2 k + 1, 2 j + 2; q, r) ,

(−2k − 1, 2j + 1)11[Y
1] 0 = (2 j + 2 k + 3)(q + r)Φ (2 k, 2 j + 1; q, r)

− 2 (2 k + 1)rΦ (2 k + 1, 2 j + 1; q, r)

− (2 j − 2 k + 1)Φ (2 k, 2 j + 2; q, r) ,

(−2k − 1, 2j + 1)12[Y
0] 0 = (2 j + 2 k + 3)(q + r)Φ (2 k, 2 j + 1; q, r)

− 2 (2 k + 1)rΦ (2 k + 1, 2 j + 1; q, r)

− (2 j − 2 k + 1)Φ (2 k, 2 j + 2; q, r) ,

(−2k − 1, 2j + 1)21[Y
0] 0 = 2 (2 j + 2 k + 3)rΦ (2 k, 2 j + 1; r, q)

− (2 k + 1)(q + r)Φ (2 k + 1, 2 j + 1; r, q)

+ (2 k + 1)Φ (2 k + 1, 2 j + 2; r, q) ,

(−2k − 1, 2j + 1)21[Y
1] 0 = (2 j + 2 k + 3)(q + r)Φ (2 k, 2 j + 1; r, q)

− 2 (2 k + 1)qΦ (2 k + 1, 2 j + 1; r, q)

− (2 j − 2 k + 1)Φ (2 k, 2 j + 2; r, q) ,

(−2k − 1, 2j + 1)22[Y
0] 0 = (2 j + 2 k + 3)(q + r)Φ (2 k, 2 j + 1; r, q)

− 2 (2 k + 1)qΦ (2 k + 1, 2 j + 1; r, q)

− (2 j − 2 k + 1)Φ (2 k, 2 j + 2; r, q) .

We delete duplicates and use the symmetry in r and q. We are left with
the following 12 identities:



EXPLICIT CONTINUED FRACTION EXPANSIONS 63

0 = (2 k − 1)rΦ (2 k − 1, 2 j; q, r)− (j + k)(r + q)Φ (2 k − 2, 2 j; q, r)

+ (j − k + 1)Φ (2 k − 2, 2 j + 1; q, r) ,

0 = (2 k − 1)(r + q)Φ (2 k − 1, 2 j; q, r)− 4 (j + k)qΦ (2 k − 2, 2 j; q, r)

− (2 k − 1)Φ (2 k − 1, 2 j + 1; q, r) ,

0 = 2 (2 k − 1)rΦ (2 k − 1, 2 j + 1; q, r)

− (2 j + 2 k + 1)(r + q)Φ (2 k − 2, 2 j + 1; q, r)

+ (2 j − 2 k + 3)Φ (2 k − 2, 2 j + 2; q, r) ,

0 = (2 k − 1)(r + q)Φ (2 k − 1, 2 j + 1; q, r)

− 2 (2 j + 2 k + 1)qΦ (2 k − 2, 2 j + 1; q, r)

− (2 k − 1)Φ (2 k − 1, 2 j + 2; q, r) ,

0 = k(r + q)Φ (2 k, 2 j; r, q)− (2 j + 2 k + 1)rΦ (2 k − 1, 2 j; r, q)

− kΦ (2 k, 2 j + 1; r, q) ,

0 = 4 kqΦ (2 k, 2 j; r, q)− (2 j + 2 k + 1)(r + q)Φ (2 k − 1, 2 j; r, q)

+ (2 j − 2 k + 1)Φ (2 k − 1, 2 j + 1; r, q) ,

0 = k(r + q)Φ (2 k, 2 j + 1; r, q)− 2 (j + k + 1)rΦ (2 k − 1, 2 j + 1; r, q)

− kΦ (2 k, 2 j + 2; r, q) ,

0 = 2 kqΦ (2 k, 2 j + 1; r, q)− (j + k + 1)(r + q)Φ (2 k − 1, 2 j + 1; r, q)

+ (j − k + 1)Φ (2 k − 1, 2 j + 2; r, q) ,

0 = 4 (j + k + 1)rΦ (2 k, 2 j; r, q)− (2 k + 1)(r + q)Φ (2 k + 1, 2 j; r, q)

+ (2 k + 1)Φ (2 k + 1, 2 j + 1; r, q) ,

0 = (j + k + 1)(r + q)Φ (2 k, 2 j; r, q)− (2 k + 1)qΦ (2 k + 1, 2 j; r, q)

− (j − k)Φ (2 k, 2 j + 1; r, q) ,

0 = 2 (2 j + 2 k + 3)rΦ (2 k, 2 j + 1; r, q)

− (2 k + 1)(r + q)Φ (2 k + 1, 2 j + 1; r, q)

+ (2 k + 1)Φ (2 k + 1, 2 j + 2; r, q) ,

0 = (2 j + 2 k + 3)(r + q)Φ (2 k, 2 j + 1; r, q)

− 2 (2 k + 1)qΦ (2 k + 1, 2 j + 1; r, q)

− (2 j − 2 k + 1)Φ (2 k, 2 j + 2; r, q) .

Four of these identities are obtained by shifting by 1 another identity, so
we are left with the following 8 identities, where, as in the sequel, we use
the shortened notation

Φ (k, j) = Φ (k, j; r, q) .

0 = (2 k + 1)qΦ (2 k + 1, 2 j)− (j + k + 1)(q + r)Φ (2 k, 2 j)
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+ (j − k)Φ (2k, 2 j + 1) ,

0 = 2 (2 k + 1)qΦ (2 k + 1, 2 j + 1)− (2 j + 2 k + 3)(q + r)Φ (2 k, 2 j + 1)

+ (2 j − 2 k + 1)Φ (2 k, 2 j + 2) ,

0 = (2 k + 1)(q + r)Φ (2 k + 1, 2 j)− 4 (j + k + 1)rΦ (2 k, 2 j)

− (2 k + 1)Φ (2 k + 1, 2 j + 1) ,

0 = (2 k + 1)(q + r)Φ (2 k + 1, 2 j + 1)− 2 (2 j + 2 k + 3)rΦ (2 k, 2 j + 1)

− (2 k + 1)Φ (2 k + 1, 2 j + 2) ,

0 = k(r + q)Φ (2 k, 2 j)− (2 j + 2 k + 1)rΦ (2 k − 1, 2 j)− kΦ (2 k, 2 j + 1) ,

0 = k(r + q)Φ (2 k, 2 j + 1)− 2 (j + k + 1)rΦ (2 k − 1, 2 j + 1)

− kΦ (2 k, 2 j + 2) ,

0 = 4 kqΦ (2 k, 2 j)− (2 j + 2 k + 1)(r + q)Φ (2 k − 1, 2 j)

+ (2 j − 2 k + 1)Φ (2 k − 1, 2 j + 1) ,

0 = 2 kqΦ (2 k, 2 j + 1)− (j + k + 1)(r + q)Φ (2 k − 1, 2 j + 1)

+ (j − k + 1)Φ (2 k − 1, 2 j + 2) .

The cases 2j and 2j+1 can be merged and we are left with the following
4 identities:

0 = 2(2 k + 1)qΦ (2 k + 1, j)− (j + 2k + 2)(q + r)Φ (2 k, j)

+ (j − 2k)Φ (2k, j + 1) ,

0 = (2 k + 1)(q + r)Φ (2 k + 1, j)− 2 (j + 2k + 2)rΦ (2 k, j)

− (2 k + 1)Φ (2 k + 1, j + 1) ,

0 = k(r + q)Φ (2 k, j)− (j + 2 k + 1)rΦ (2 k − 1, j)− kΦ (2 k, j + 1) ,

0 = 4 kqΦ (2 k, j)− (j + 2 k + 1)(r + q)Φ (2 k − 1, j)

+ (j − 2 k + 1)Φ (2 k − 1, j + 1) .

We merge the cases 2k and 2k − 1, thus we are eventually left with only
two identities to check.

Lemma A.6. For k ≥ 1 and j = 0, 1, . . . , k − 2, we have

0 = (k−1)(r + q)Φ (k − 1, j)−2 (j + k)rΦ (k − 2, j)−(k−1)Φ (k − 1, j + 1)

and

0 = 2 kqΦ (k, j)−(j + k + 1)(r + q)Φ (k − 1, j)+(j − k + 1)Φ (k − 1, j + 1) .

A.7. Proof of Lemma A.6 (the inductive step). We prove the first
identity of Lemma A.6.

Define

δ = (k − 1)Φ (k − 1, j + 1) + 2 (j + k)rΦ (k − 2, j)− (k − 1)(r + q)Φ (k − 1, j)

We need to prove that δ = 0.
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We use the definition of Φ and put all the terms r and q after the signs∑
to get

δ = (k − 1)

j+1∑
d=0

(
k+j+1
d

)(
j+1
d

)(
k−1
d

) (−r)dqj+1−d

+ 2r(k + j)

j∑
d=0

(
k+j−1
d

)(
j
d

)(
k−2
d

) (−r)dqj−d

− (k − 1)(r + q)

j∑
d=0

(
k+j
d

)(
j
d

)(
k−1
d

) (−r)dqj−d

= (k − 1)

j+1∑
d=0

(
k+j+1
d

)(
j+1
d

)(
k−1
d

) (−r)dqj+1−d

− 2(k + j)

j∑
d=0

(
k+j−1
d

)(
j
d

)(
k−2
d

) (−r)d+1qj−d

+ (k − 1)

j∑
d=0

(
k+j
d

)(
j
d

)(
k−1
d

) (−r)d+1qj−d

− (k − 1)

j∑
d=0

(
k+j
d

)(
j
d

)(
k−1
d

) (−r)dqj+1−d.

By shifting the indices of the second and third sums, we obtain

δ = (k − 1)

j+1∑
d=0

(
k+j+1
d

)(
j+1
d

)(
k−1
d

) (−r)dqj+1−d

− 2(k + j)

j+1∑
d=1

(
k+j−1
d−1

)(
j

d−1

)(
k−2
d−1

) (−r)dqj−d+1

+ (k − 1)

j+1∑
d=1

(
k+j
d−1

)(
j

d−1

)(
k−1
d−1

) (−r)dqj−d+1

− (k − 1)

j∑
d=0

(
k+j
d

)(
j
d

)(
k−1
d

) (−r)dqj+1−d

=

j∑
d=1

δ1(d)(−r)dqj−d+1 + δ2,

where

δ1(d) = (k − 1)

(
k+j+1
d

)(
j+1
d

)(
k−1
d

) − 2(k + j)

(
k+j−1
d−1

)(
j

d−1

)(
k−2
d−1

) + (k − 1)

(
k+j
d−1

)(
j

d−1

)(
k−1
d−1

)



66 YANN BUGEAUD AND GUO-NIU HAN

− (k − 1)

(
k+j
d

)(
j
d

)(
k−1
d

)
=

j!(k − 1− d)!(k + j)!

d!(k − 2)!(j − d+ 1)!(k + j − d+ 1)!

[
(k + j + 1)(j + 1)− 2d(k + j − d+ 1)

+ d(k − d)− (j − d+ 1)(k + j − d+ 1)
]

= 0

and

δ2 = +(k − 1)qj+1 + (k − 1)

(
k+j+1
j+1

)(
j+1
j+1

)(
k−1
j+1

) (−r)j+1

− 2(k + j)

(
k+j−1
j

)(
j
j

)(
k−2
j

) (−r)j+1 + (k − 1)

(
k+j
j

)(
j
j

)(
k−1
j

) (−r)j+1 − (k − 1)qj+1

= (k − 1)

(
k+j+1
j+1

)(
k−1
j+1

) (−r)j+1 − 2(k + j)

(
k+j−1
j

)(
k−2
j

) (−r)j+1

+ (k − 1)

(
k+j
j

)(
k−1
j

)(−r)j+1

= (−r)j+1 (k + j)!(k − j − 2)!

k!(k − 2)!

[
(k + j + 1)− 2k + (k − 1− j)

]
= 0.

We conclude that

δ =

j∑
d=1

δ1(d)(−r)dqj−d+1 + δ2 = 0,

and the first identity holds. .
We prove the second identity of Lemma A.6. Define

δ′ = 2 kqΦ (k, j)− (j + k + 1)(r + q)Φ (k − 1, j) + (j − k + 1)Φ (k − 1, j + 1) .

We need to prove that δ′ = 0.
We use the definition of Φ and put all the terms r and q after the signs∑
to get

δ = 2kq

j∑
d=0

(
k+j+1
d

)(
j
d

)(
k
d

) (−r)dqj−d

− (j + k + 1)(r + q)

j∑
d=0

(
k+j
d

)(
j
d

)(
k−1
d

) (−r)dqj−d

+ (j − k + 1)

j+1∑
d=0

(
k+j+1
d

)(
j+1
d

)(
k−1
d

) (−r)dqj+1−d
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= 2k

j∑
d=0

(
k+j+1
d

)(
j
d

)(
k
d

) (−r)dqj+1−d

+ (j + k + 1)

j∑
d=0

(
k+j
d

)(
j
d

)(
k−1
d

) (−r)d+1qj−d

− (j + k + 1)

j∑
d=0

(
k+j
d

)(
j
d

)(
k−1
d

) (−r)dqj+1−d

+ (j − k + 1)

j+1∑
d=0

(
k+j+1
d

)(
j+1
d

)(
k−1
d

) (−r)dqj+1−d.

By shifting the indices of the second sum, we obtain

δ = 2k

j∑
d=0

(
k+j+1
d

)(
j
d

)(
k
d

) (−r)dqj+1−d

+ (j + k + 1)

j+1∑
d=1

(
k+j
d−1

)(
j

d−1

)(
k−1
d−1

) (−r)dqj−d+1

− (j + k + 1)

j∑
d=0

(
k+j
d

)(
j
d

)(
k−1
d

) (−r)dqj+1−d

+ (j − k + 1)

j+1∑
d=0

(
k+j+1
d

)(
j+1
d

)(
k−1
d

) (−r)dqj+1−d

=

j∑
d=1

δ′1(d)(−r)dqj−d+1 + δ′2,

where

δ′1(d) = 2k

(
k+j+1
d

)(
j
d

)(
k
d

) + (j + k + 1)

(
k+j
d−1

)(
j

d−1

)(
k−1
d−1

) − (j + k + 1)

(
k+j
d

)(
j
d

)(
k−1
d

)
+ (j − k + 1)

(
k+j+1
d

)(
j+1
d

)(
k−1
d

)
=

(j + k + 1)!(k − d− 1)!j!

d!(k + j − d+ 1)!(k − 1)!(j − d+ 1)!

[
2(k − d)(j − d+ 1) + d(k − d)

− (k + j − d+ 1)(j − d+ 1) + (j − k + 1)(j + 1)
]

= 0

and

δ′2 = 2kqj+1 + (j + k + 1)

(
k+j
j

)(
j
j

)(
k−1
j

) (−r)j+1 − (j + k + 1)qj+1
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+ (j − k + 1)qj+1 + (j − k + 1)

(
k+j+1
j+1

)(
j+1
j+1

)(
k−1
j+1

) (−r)j+1

= (j + k + 1)

(
k+j
j

)(
k−1
j

)(−r)j+1 + (j − k + 1)

(
k+j+1
j+1

)(
k−1
j+1

) (−r)j+1

=
(k + j + 1)!(k − j − 2)!

k!(k − 1)!
(−r)j+1

[
(k − 1− j) + (j − k + 1)

]
= 0.

We conclude that

δ′ =

j∑
d=1

δ′1(d)(−r)dqj−d+1 + δ′2 = 0,

and the proof is complete.
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intégral, Gauthier-Villars, (1869), 301–332. 7, 41

[10] A. Lasjaunias, A survey of diophantine approximation in fields of power
series, Monatsh. Math. 130 (2000), 211–229. 2

[11] A. Lasjaunias, Algebraic continued fractions in Fq((T−1)) and recurrent
sequences in Fq, Acta Arith. 133 (2008), 251–265. 3

[12] A. Lasjaunias and J.-Y. Yao, Hyperquadratic continued fractions in odd
characteristic with partial quotients of degree one, J. Number Theory
149 (2015), 259–284. 3



EXPLICIT CONTINUED FRACTION EXPANSIONS 69

[13] K. Mahler, On a theorem of Liouville in fields of positive characteristic,
Canad. J. Math. 1 (1949), 397–400. 2

[14] M. Mendès France and A. J. van der Poorten. Automata and the arith-
metic of formal power series, Acta Arith. 46 (1986), 211–214. 4

[15] M. Mendès France and A. J. van der Poorten. Some explicit continued
fraction expansions, Mathematika 38 (1991), 1–9. 3, 17

[16] W. H. Mills and D. P. Robbins, Continued fractions for certain algebraic
power series, J. Number Theory 23 (1986), 388–404.
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