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Abstract

An integer sequence {a(n)}n≥0 is called apwenian if a(0) = 1 and a(n) ≡ a(2n+1)+a(2n+2) (mod 2) for
all n ≥ 0. The apwenian sequences are connected with the Hankel determinants, the continued fractions,
the rational approximations and the measures of randomness for binary sequences. In this paper, we
study the automatic apwenian sequences over different alphabets. On the alphabet {0, 1}, we give an
extension of the generalized Rueppel sequences and characterize all the 2-automatic apwenian sequences
in this class. On the alphabet {0, 1, 2}, we prove that the only apwenian sequence, among all fixed points
of substitutions of constant length, is the period-doubling like sequence. On the other alphabets, we give
a description of the 2-automatic apwenian sequences in terms of 2-uniform morphisms. Moreover, we find
two 3-automatic apwenian sequences on the alphabet {1, 2, 3}.

Key words: Automatic sequences, apwenian sequences, Hankel determinants, Rueppel sequences,
period-doubling sequence

1. Introduction

Apwenian sequences were introduced in the study of Hankel determinants of automatic sequences.
Recall that the Hankel determinant of a sequence a = {a(n)}n≥0 of order n (n ≥ 1) is defined by

Hn(a) =

∣∣∣∣∣∣∣∣∣
a(0) a(1) · · · a(n− 1)
a(1) a(2) · · · a(n)
...

...
. . .

...
a(n− 1) a(n) · · · a(2n− 2)

∣∣∣∣∣∣∣∣∣ = det(a(i+ j))0≤i,j≤n−1.

Hankel determinants play an important role in the study of rational approximation. In 1998, Allouche,
Peyrière, Wen and Wen [2] studied the Hankel determinants of the Thue-Morse sequence t which is
a famous 2-automatic sequence. They proved that the Hankel determinants of the ±1 Thue-Morse
sequence satisfy the congruence Hn(t)/2

n−1 ≡ 1 (mod 2) for all n ≥ 1 . Using this fact, Bugeaud [4]
obtained the exact value of the irrationality exponent of the Thue-Morse number. Since then, several
Hankel determinants of automatic sequences have been computed and several irrationality exponents of
automatic numbers have been obtained. See [7, 10, 17, 5, 11] for example.

Apwenian sequences over {1,−1} and {0, 1} are studied in [8, 9, 1]. To study the non-purely automatic
sequences over {0, 1}, let us slightly generalize the {0, 1}-apwenian sequences.

Definition 1. A nonnegative integer sequences a = {a(n)}n≥0 is called apwenian, if

a(0) = 1, and ∀ n ≥ 0, a(n) ≡ a(2n+ 1) + a(2n+ 2) (mod 2). (1)

As proved in [9], the sequence a is apwenian if and only if Hn(a) ≡ 1 (mod 2) for all n ≥ 1. From
Formula (1), Allouche et al. discovered that the apwenian sequences over {0, 1} are the same as the
sequences with perfect linear complexity profile (PLCP) up to indexing [1]. Here, the sequences with
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perfect linear complexity profile were defined in the study of measures of randomness for binary sequences
[15, 16, 13].

Automatic apwenian sequences have also been studied. In [9], Guo et al. proved that the only
apwenian sequence over {0, 1} which is purely automatic is the period-doubling sequence. In [1], Allouche
et al. proved that for an apwenian sequence {u(n)}n≥0, it is 2-automatic if and only if the subsequence
{u(2n + 1)}n≥0 is 2-automatic. Moreover, they defined a map φ3 from the set of {0, 1}-sequences to
the set of apwenian sequences, and showed that the so-called generalized Rueppel sequences φ3(b) is
2-automatic if and only if the {0, 1}-sequence b is ultimately periodic. They also mentionned that the
period-doubling sequence is not a generalized Rueppel sequence.

In this paper, we study the automatic apwenian sequences over different alphabets. In section 2, we
recall some notation and definitions. In section 3, we construct a class of apwenian sequences on the
alphabet {0, 1} which contains the generalized Rueppel sequences and the period-doubling sequence. All
the automatic apwenian sequences in this class are determined (see Theorem 1). In section 4, we consider
the apwenian sequences on the alphabet {0, 1, 2}, and prove that the only apwenian sequence, among all
purely automatic sequences, is the period-doubling like sequence (Theorem 2). In the last section, we
give a characterization of 2-automatic apwenian sequences in terms of 2-uniform morphisms (Theorem
3). Moreover, we find two 3-automatic apwenian sequences on the alphabet {1, 2, 3} (Examples 13 and
14). This answers the following question by Allouche et al. [1]: “Are there PLCP/apwenian sequences
that are d-automatic for some d not a power of 2? ”

2. Preliminary

In this section, we recall some notation and definitions which can be found in [3].
Let Σ be a finite alphabet. We denote the set of finite words over the alphabet Σ by Σ∗. For a finite

word W ∈ Σ∗, we denote the length of W by |W |. If |W | = 0, we call W the empty word. Together with
the concatenation operation, the set Σ∗ forms a free monoid. Let ΣN be the set of infinite words over the
alphabet Σ. There is a natural metric on ΣN: for u = {u(n)}n≥0,v = {v(n)}n≥0 ∈ ΣN,

dist(u,v) = 2−min{n≥0:u(n)̸=v(n)}.

Let Σ and ∆ be two finite alphabets. A morphism is a map σ from Σ∗ to ∆∗ satisfying σ(UV ) =
σ(U)σ(V ) for all U, V ∈ Σ∗. If there is a constant k ≥ 1 such that |σ(a)| = k for all a ∈ Σ, then we say
that σ is k-uniform on Σ. A 1-uniform morphism is called a coding. For a morphism σ, if an infinite
sequence u satisfies σ(u) = u, then the sequence u is called a fixed point of σ.

If Σ = ∆, we can iterate the application of σ. We define σ0(a) = a and σn(a) = σ(σn−1(a)) for all
a ∈ Σ, n ≥ 1. If there is a letter a ∈ Σ such that σ(a) = aW for some W ∈ Σ∗, and |σn(a)| → ∞ when
n→ ∞, then we say that the morphism σ is prolongable on a. If σ is a prolongable morphism on a, then
the limit of σn(a), denoted by σ∞(a), always exists under the natural metric, i.e., σ∞(a) = limn→∞ σn(a).
Clearly, the sequence σ∞(a) is a fixed point of σ.

Let k ≥ 2 be an integer. We say a sequence {u(n)}n≥0 is k-automatic if u(n) is a finite-state function
of the base-k expansion of n. Two equivalent definitions can be found in [6]. One is that a sequence is
k-automatic if and only if it is the image, under a coding, of a fixed point of a k-uniform morphism. We
also call the fixed point of a uniform morphism a purely automatic (or, more generally, purely uniform
morphic) sequence. The other equivalent definition is that a sequence is k-automatic if and only if its
k-kernel is finite, where the k-kernel of the sequence {u(n)}n≥0, denoted by Kk(u), is defined as

Kk(u) = {{u(kin+ j)}n≥0 : i ≥ 0, 0 ≤ j ≤ ki − 1}.

Throughout the paper, unless otherwise stated, we have the following assumptions and notation.

(1) Let N denote the set of all non-negative integers. All the alphabets we considered are finite subsets
of N.

(2) The symbol ≡ means equality modulo 2.

(3) For any finite word U = u(0)u(1) · · ·u(n), V = v(0)v(1) · · · v(n), the symbol U ≡ V means that
u(i) ≡ v(i) for all i ∈ [0, n].
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(4) For any k-uniform morphisms σ, τ over Σ, the symbol σ ≡ τ means that σ(i) ≡ τ(i) for all i ∈ Σ.

(5) Let N be an integer. The symbol {u(n)}Nn=0 denote the finite word u(0)u(1) · · ·u(N) if N ≥ 0, and
the empty word otherwise. Hence, we also write that {u(n)}n≥0 = {u(n)}Nn=0 · {u(n)}n≥N+1.

(6) Let n ≥ 0 and b ≥ 2 be integers. The canonical base-b representation of n is denoted by the word

(n)b. For any wiwi−1 · · ·w0 ∈ {0, 1, · · · , b−1}∗, the integer
∑i

ℓ=0 wℓb
ℓ is denoted by [wiwi−1 · · ·w0]b.

3. Extension of the generalized Rueppel sequences

Recall that a {0, 1}-sequence {u(n)}n≥0 is apwenian if u(0) = 1 and u(n) ≡ u(2n+1)+ u(2n+2) for
all n ≥ 0. Assume {u(n)}n≥0 is apwenian and u(2n+1)u(2n+2) is viewed as an image of u(n) for some
map ψn for every n ≥ 0, i.e., ψn(u(n)) = u(2n+ 1)u(2n+ 2), then ψn maps 1 to 10 or 01 and maps 0 to
00 or 11 for each n.

Consider the following four 2-uniform morphisms:

τ0 : 1 7→ 10, 0 7→ 00; τ1 : 1 7→ 01, 0 7→ 00; τ2 : 1 7→ 10, 0 7→ 11; τ3 : 1 7→ 01, 0 7→ 11.

If ψn ∈ {τ0, τ1, τ2, τ3} for all n ≥ 0, then we can construct an apwenian sequence {u(n)}n≥0 by taking
u(0) = 1 and u(2n+ 1)u(2n+ 2) = ψn(u(n)) for all n ≥ 0, i.e.,

u(0)u(1)u(2) · · · = u(0)ψ0(u(0))ψ1(u(1))ψ2(u(2)) · · · .

In particular, given a sequence σ = σ0σ1σ2 · · · ∈ {τ0, τ1, τ2, τ3}N, taking ψn = σ⌊log2(n+1)⌋ for all n ≥ 0,
then the generated sequence {u(n)}n≥0, denoted by ϕ(σ), is called the sequence generated by σ. That is,

ϕ(σ) := u(0)σ0(u(0))σ1(u(1))σ1(u(2)) · · · = 1σ0(1)σ1(σ0(1))σ2(σ1(σ0(1))) · · · .

Let X0 = 1 and Xn+1 = σn(Xn) for all n ≥ 0. Then, we have

ϕ(σ) = lim
n→∞

X0X1 · · ·Xn =

∞∏
n=0

Xn = X0X1X2 · · · . (2)

The sequences ϕ(σ) can be viewed as generated by a map ϕ from the set {τ0, τ1, τ2, τ3}N to the set of
the apwenian sequences. We illustrate the construction of ϕ(σ) with three basic cases.

Example 1. [The characteristic sequence of the powers of 2] If σn = τ0 for all n ≥ 0, then
the sequence ϕ(σ) is the characteristic sequence of the powers of 2. Give a shift of indices by ϕ(σ) =
{v(n)}n≥1. Then, for all n ≥ 1, we have v(2n)v(2n + 1) = τ0(v(n)) = v(n)0. Hence, the sequence ϕ(σ)
satisfies that v(n) = 1 if n = 2k for some k ≥ 0, and v(n) = 0 otherwise.

Example 2. [The period-doubling sequence] If σn = τ3 for all n ≥ 0, then the sequence ϕ(σ) is the
period-doubling sequence. Let ϕ(σ) = {p(n)}n≥0. Note that p(0) = 1 and p(2n+1)p(2n+2) = τ3(p(n)) =
(1− p(n))1 for all n ≥ 0. Hence, the sequence ϕ(σ) satisfies that p(2n) = 1 and p(2n+ 1) = 1− p(n) for
all n ≥ 0. This implies that ϕ(σ) is the period-doubling sequence.

Example 3. [The generalized Rueppel sequences] If σn ∈ {τ0, τ1} for all n ≥ 0, then the sequence
ϕ(σ) is a generalized Rueppel sequence [15]. In fact, let σi = τbi with bi ∈ {0, 1} for all i ≥ 0 and let
ϕ(σ) = {v(n)}n≥1. Since v(2n)v(2n+1) = σin(v(n)) for all n ≥ 1, the sequence {v(n)}n≥1 can be defined
as follows:

v(n) =

{
1 if n = ni for some i ≥ 0,

0 otherwise.

where the integers ni are defined by n0 = 1 and ni+1 = 2ni + bi for all i ≥ 0.

Allouche et al. proved that the generalized Rueppel sequence ϕ((τbi)i) is 2-automatic if and only if
(bi)i is ultimately periodic [1]. We establish a similar result for the sequence generated by σ, as stated
in the following Theorem.

Theorem 1. Let σ = σ0σ1σ2 · · · ∈ {τ0, τ1, τ2, τ3}N. Then the sequence ϕ(σ) is 2-automatic apwenian if
and only if σ is ultimately periodic.
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To prove Theorem 1, we need some lemmas. Let us recall some properties of automatic sequences
(see, e.g. [3]) firstly.

Lemma 1. (1) If a sequence differs only in finitely many terms from a k-automatic sequence, then it
is k-automatic.

(2) Let u be a k-automatic sequence, and let ρ be a ℓ-uniform morphism for some ℓ ≥ 1. Then the
sequence ρ(u) is also k-automatic.

(3) Let {u(n)}n≥0 and {v(n)}n≥0 be k-automatic sequences. Then {u(n)+v(n)}n≥0 and {u(n)v(n)}n≥0

are k-automatic.

(4) Let m ≥ 1 be an integer. Then a sequence is k-automatic if and only if it is km-automatic.

Lemma 2. Let {u(n)}n≥0 be a k-automatic sequence and j be an integer, then the subsequence {u(kn +
j)}n≥0 is ultimately periodic. Moreover, the subsequences {u(kn + j)}n≥0 have the same period for all
j ≥ 0.

Proof. The periodicity of {u(kn + j)}n≥0 follows from Theorem 5.5.2 in [3]. In fact, for any j ≥ 0, let
(j)k = W , then (kn + j)k = 10n−|W |W for any n ≥ |W |. Hence, for any j ≥ 0, (kn + j)k have the same
periodic prefix when n is large enough. This implies that the subsequences {u(kn+ j)}n≥0 have the same
period.

Lemma 3. Let S : Σ∗ → Σ∗ be a k-uniform morphism and W ∈ Σ∗ be a finite non-empty word. Then
the sequence

∏∞
n=0 S

n(W ) is k-automatic.

Proof. For each i ∈ {0, 1, · · · , k − 1} and a ∈ Σ, let Si(a) be the (i + 1)-th element of S(a), then Si are
codings from Σ to Σ, and S(a) = S0(a)S1(a) · · ·Sk−1(a) for all a ∈ Σ. Let |W | = M with M ≥ 1, and
{v(n)}n≥0 =

∏∞
n=0 S

n(W ), then v(kn +M + i) = Si(v(n)) for all n ≥ 0 and i ∈ {0, 1, · · · , k − 1}. Let
i ≥ 1 and j ∈ [0, ki − 1], then, for any n ≥ 0, we have

v

(
kin+ j +

ki − 1

k − 1
M

)
= Sj0 ◦ · · · ◦ Sji−2

◦ Sji−1
(v(n)),

where [ji−1ji−2 · · · j0]k = j.
Note that Sj0 ◦ · · · ◦ Sji−2 ◦ Sji−1 are also codings from Σ to Σ for each j ≥ 0, and there are finitely

many codings from Σ to Σ. Hence, the set

{{
v
(
kin+ j + ki−1

k−1 M
)}

n≥0
: i ≥ 1, 0 ≤ j ≤ ki − 1

}
is finite.

For any i ≥ 1, j ∈ [0, ki − 1], there exist integers N ≥ 0 and j′ ∈ [0, ki − 1] such that ki−1
k−1 M − j =

kiN − j′. So, we have

{v(kin+ j)}n≥0 = {v(kin+ j)}0≤n≤N−1 · {v(kin+ j)}n≥N

= {v(kin+ j)}0≤n≤N−1 · {v(ki(n+N) + j)}n≥0

= {v(kin+ j)}0≤n≤N−1 ·
{
v(kin+ j′ +

ki − 1

k − 1
M)

}
n≥0

.

Since N =
j′−j+ ki−1

k−1 M

ki ≤ ki+ ki

k−1M

ki ≤ 1 + M
k−1 , there are finitely many terms {v(kin + j)}0≤n≤N−1.

Hence, the set {{v(kin+ j)}n≥0 : i ≥ 0, 0 ≤ j ≤ ki − 1} is finite. This completes the proof.

The proof of Lemma 3 also can be found in [12]. Now, let us prove Theorem 1.

Proof of Theorem 1. (i) The “if” part. Assume σ is ultimately periodic, i.e., there exist integers N ≥
0, p ≥ 1 such that σn = σn+p for all n ≥ N. Then, by Formula (2), we have

ϕ(σ) =

N−1∏
i=0

Xi

∞∏
n=0

(µn
0 (XN )µn

1 (XN+1) · · ·µn
p−1(XN+p−1)),

where µi = σN+p−1+i ◦ σN+p−2+i ◦ · · · ◦ σN+i for i ∈ [0, p− 1].
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For any i ∈ [0, p− 1], n ≥ 0, let ri,n, si,n be the length of the word µn
0 (XN ) · · ·µn

i−1(XN+i−1) and the
word µn

i+1(XN+i+1) · · ·µn
p−1(XN+p−1) respectively. That is, for all n ≥ 0,

r0,n = 0 and ri,n = |µn
0 (XN ) · · ·µn

i−1(XN+i−1)|(1 ≤ i ≤ p− 1),

sp−1,n = 0 and si,n = |µn
i+1(XN+i+1) · · ·µn

p−1(XN+p−1)|(0 ≤ i ≤ p− 2).

Define a {0, 1}-sequence u(i) =
∏∞

n=0(0
ri,nµn

i (XN+i)0
si,n), then

u(0) + u(1) + · · ·+ u(p−1) =

∞∏
n=0

(µn
0 (XN )µn

1 (XN+1) · · ·µn
p−1(XN+p−1)).

Hence, we have
ϕ(σ) = X0X1 · · ·XN−1(u

(0) + u(1) + · · ·+ u(p−1)).

Note that the morphisms µi are 2p-uniform for all i ∈ [0, p − 1]. Hence,
ri,n+1

ri,n
=

si,n+1

si,n
= 2p for all

n ≥ 0. Let Wi = xri,0XN+ix
si,0 be a finite word over {0, 1, x} and S be a 2p-uniform morphism over

{0, 1, x} defined by S(x) = x2
p

and S(y) = µi(y) for y ∈ {0, 1}. Then, we have u(i) = ρ(
∏∞

n=0 S
n(Wi)),

where ρ is a coding defined by ρ(x) = 0, ρ(y) = y with y ∈ {0, 1}. Hence, by Lemma 3 and Lemma 1, the
sequences u(i) are 2-automatic for all i ∈ [0, p− 1]. This implies that ϕ(σ) is 2-automatic.

(ii) The “only if” part. Consider the following two cases.
Case 1: ∃ M ≥ 0 such that σk ∈ {τ0, τ1} for all k ≥ M. Let ϕ(σ) = {v(n)}n≥1, we see that

v(2n)v(2n + 1) = σ⌊log2 n⌋(v(n)) for all n ≥ 1. Note that τ0(a) = a0 and τ1(a) = 0a for all a ∈ {0, 1}.
Hence, when n ≥ 2M , we have v(2n)v(2n + 1) = v(n)0 or v(2n)v(2n + 1) = 0v(n). Let {bi}i be a
{0, 1}-sequence and σi = τbi for all i ≥ M. Define Li = {(n)2 : 2M+i ≤ n < 2M+1+i, v(n) = 1} for all
i ≥ 0. Then Li+1 = LibM+i = {wbM+i : w ∈ Li} for all i ≥ 0. Hence,

{(n)2 : v(n) = 1} = {(n)2 : 0 ≤ n < 2M+1, v(n) = 1} ∪
∞⋃
i≥1

Li

= {(n)2 : 0 ≤ n < 2M+1, v(n) = 1} ∪ L0{bMbM+1 · · · bM+i : i ≥ 0}.

Note that a binary sequence {v(n)}n≥1 is 2-automatic if and only if {(n)2 : v(n) = 1} forms a regular
set. Since the sets {(n)2 : 0 ≤ n < 2M+1, v(n) = 1} and L0 are finite, the automaticity of {v(n)}n≥1

implies the regularity of the set {bMbM+1 · · · bM+i : i ≥ 0}. An easy classical result in [14, 18] asserts that
the set of all prefixes of an infinite word is regular if and only if that word is ultimately periodic. Hence,
if ϕ(σ) is 2-automatic, we conclude that the sequence {bM+i}i≥0 is ultimately periodic. This implies that
the sequence σ = {σn}n≥0 is ultimately periodic.

Case 2: There exist infinitely many k such that σk ∈ {τ2, τ3}. For any finite word W and integer i
with 0 ≤ i < |W |, let fi(W ) denote the (i+ 1)-th letter of W . Let ϕ(σ) = {v(n)}n≥0. Then, by Formula
(2), we have fi(Xn) = v(2n − 1 + i) for any n ≥ 0, i ∈ [0, 2n − 1]. Since {v(n)}n≥0 is 2-automatic, by
Lemma 2, we see that the sequences {fi(Xn)}n are ultimately periodic with the same period P for all
i ≥ 0. Hence, for any fixed i and sufficiently large n, we have

σn(fi(Xn)) = f2i(σn(Xn))f2i+1(σn(Xn))

= f2i(Xn+1)f2i+1(Xn+1)

= f2i(Xn+1+P )f2i+1(Xn+1+P )

= f2i(σn+P (Xn+P ))f2i+1(σn+P (Xn+P ))

= σn+P (fi(Xn+P ))

= σn+P (fi(Xn)). (3)

Now, we claim that {fi(Xn) : 0 ≤ i ≤ 2P+2} = {0, 1} for all large enough n. Note that if there exists
an integer N such that fi(XN ) = 1 for all i ∈ [0, 2P+2], then fi(XN−1) = 0 for all i ∈ [0, 2P+1]. Hence,
if the claim is false, then there exist infinitely many N such that fi(XN ) = 0 for all i ∈ [0, 2P+1]. This
implies f0(XN−i)f1(XN−i) = 00 for all i ∈ [0, p]. But this case can not happen. Since τ2(0) = τ3(0) =
11, σk(1) ∈ {10, 01} for all k and σk ∈ {τ2, τ3} for infinitely many k, the sequence {f0(Xn)f1(Xn)}n has
infinitely many terms 01 or 10. Note that the sequence {f0(Xn)f1(Xn)}n is periodic with period P . So,
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we have {f0(Xn)f1(Xn) : j ≤ n ≤ j + P} = {0, 1} for all large enough j. This is a contradiction. Hence,
our claim holds.

Fix i with i ∈ [0, 2P+2], then by this claim and Formula (3), we have σn(a) = σn+P (a) for all a ∈ {0, 1}
and for all large enough n. This completes the proof.

Although the sequence ϕ(σ) contains a large class of automatic apwenian sequences, this map ϕ is not
a bijection.

Example 4. Let p = {p(n)}n≥0 be the period-doubling sequence which satisfies p(2n) = 1, p(2n + 1) =
1 − p(n) for all n ≥ 0. Let ρ : 1 7→ 11, 0 7→ 00 be a 2-uniform morphism. Then it is easy to check from
Formula (1) that the sequence ρ(p) is apwenian. But, the first few terms of the sequence

{u(n)}n≥0 = ρ(p) = 1100111111001100 · · · ,

show that u(7)u(8) · · ·u(14) = X3 ̸= σ(X2) = σ(u(3)u(4)u(5)u(6)) for all σ ∈ {τ0, τ1, τ2, τ3}. Hence, by
Formula (2), the sequence ρ(p) can not be generated by any σ ∈ {τ0, τ1, τ2, τ3}N.

Let Σ ⊂ N be a finite set and σ be a k-uniform morphism over Σ. For any a ∈ Σ, let σ[i](a) be the
(i+1)-th element of σ(a). If a k-uniform morphism σ satisfies that a ≡ σ[0](a)+σ[1](a)+ · · ·+σ[k−1](a)
for all a ∈ Σ, then we call it sum-equivalent. Given a finite alphabet Σ ⊂ N, define a finite set

A(Σ) = {σ : σ is a 2-uniform sum-equivalent morphism over Σ}.

It is clear that A({0, 1}) = {τ0, τ1, τ2, τ3}. Assume 1 ∈ Σ and σ = σ0σ1σ2 · · · is a sequence over A(Σ).
We can construct an apwenian sequence in the following way. Define X0 = 1 and Xn+1 = σn(Xn) for all
n ≥ 0, then we obtain a sequence ϕ(σ) over Σ that

ϕ(σ) = lim
n→∞

X0X1 · · ·Xn =

∞∏
n=0

Xn = X0X1X2 · · · .

Let {u(n)}n≥0 = ϕ(σ), then u(2n + 1)u(2n + 2) = σk(u(n)) for all n ≥ 0 with k = ⌊log2(n + 1)⌋. Since
each σk is 2-uniform sum-equivalent, we have u(2n + 1) + u(2n + 2) ≡ u(n) for all n ≥ 0. Hence, the
sequences ϕ(σ) are apwenian over Σ. Similarly, the “if” part of Theorem 1 also holds for A(Σ). That is,
if σ = σ0σ1σ2 · · · is ultimately periodic over A(Σ), then the sequence ϕ(σ) is 2-automatic over Σ.

Example 5. Let τ : 1 7→ 30, 0 7→ 31, 3 7→ 01 be a 2-uniform morphism and σ = τττ · · · be a periodic
sequence over A({0, 1, 3}). Then the sequence ϕ(σ) molulo 2 is just the sequence ρ(p) defined in Example
4, i.e., ϕ(σ) (mod 2) = ρ(p).

To see this, we assume that {u(n)}n≥0 = ϕ(σ). Since u(2n+ 1)u(2n+ 2) = τ(u(n)) for all n ≥ 0 and
τ [0](a) ∈ {0, 3}, τ [1](a) ∈ {0, 1} for all a ∈ {0, 1, 3}, we have u(2n) ∈ {0, 1} and u(2n + 1) ∈ {0, 3} for
all n ≥ 0. By the definition of τ , we see that if a ∈ {0, 1}, we have τ [0](a) ≡ 1, τ [1](a) ≡ 1 + a, and if
a ∈ {0, 3}, we have τ [0](a) ≡ 1 + a, τ [1](a) ≡ 1. Hence, the fact τ(u(2n)) = u(4n + 1)u(4n + 2) tells us
that for all n ≥ 0,

u(4n+ 1) ≡ 1, u(4n+ 2) ≡ 1 + u(2n). (4)

Similarly, the fact τ(u(2n+ 1)) = u(4n+ 3)u(4n+ 4) and u(0) = 1 implies that for all n ≥ 0,

u(4n+ 3) ≡ 1 + u(2n+ 1), u(4n) ≡ 1. (5)

Thus, by Formula (4) and (5), we see that the sequence {u(n) (mod 2)}n≥0 = ρ(p), where ρ : 1 7→
11, 0 7→ 00 and p is the period-doubling sequence.

Example 4 and Example 5 tell us that, although a 2-automatic apwenian sequence over {0, 1} can not
be generated by a sequence σ over A({0, 1}), it can be generated by a sequence σ over A({0, 1, 3}) with
projection mod 2. Hence, we have the following conjecture.

Conjecture 1. Let {u(n)}n≥0 be a 2-automatic apwenian sequence over {0, 1}. Then there exist a finite
alphabet Σ ⊂ N and a sequence σ over A(Σ) such that

{u(n)}n≥0 = ϕ(σ) (mod 2).
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4. Automatic apwenian sequences over {0, 1, 2}

In this section, we consider the automatic apwenian sequences over the alphabet {0, 1, 2}. Let p ≥ 2
be an integer. We define a p-uniform morphism over {0, 1, 2} by

σ : 1 7→ u(0)u(1) · · ·u(p− 1), 0 7→ v(0)v(1) · · · v(p− 1), 2 7→ w(0)w(1) · · ·w(p− 1), (6)

where u(0) = 1 and u(i), v(i), w(i) ∈ {0, 1, 2} for all i. If σ∞(1) = {a(n)}n≥0, then for all n ≥ 0,

σ(a(n)) = a(np)a(np+ 1) · · · a(np+ p− 1). (7)

Clearly, the purely p-uniform morphic sequences σ∞(1) defined in (6) are purely p-automatic sequences
starting with 1 over {0, 1, 2}. It is interesting that the purely automatic apwenian sequence over {0, 1, 2}
is the period-doubling like sequence. We say a sequence {a(n)}n≥0 is a period-doubling like sequence if
a(n) ≡ p(n) for all n ≥ 0, where {p(n)}n≥0 is the period-doubling sequence σ∞(1) given by σ : 1 7→
10, 0 7→ 11.

Theorem 2. Let {a(n)}n≥0 be a purely automatic sequences over {0, 1, 2}. Then the sequence {a(n)}n≥0

is apwenian if and only if {a(n)}n≥0 is a period-doubling like sequence.

One direction is clear. This is because that if {a(n)}n≥0 is a period-doubling like sequence over
{0, 1, 2}, then a(2n) = 1 and a(2n+1) ≡ 1−a(n). So, the sequence {a(n)}n≥0 is apwenian, i.e., a(0) = 1
and a(n) ≡ a(2n + 1) + a(2n + 2) for all n. Now, we turn to the other direction. Assume the sequence
{a(n)}n≥0 is an apwenian sequence and can be generated by the morphism defined in (6). We will prove
that {a(n)}n≥0 is a period-doubling like sequence by the following two key steps.

(1) Show that u(0) = v(0) = w(0) = 1 (Lemma 6);

(2) Show that u(p− 1) ̸≡ v(p− 1) ≡ w(p− 1) (Lemma 8).

Before doing this, we need some lemmas. Since the exchange of even numbers in the alphabet do not
change the sequence {a(n) (mod 2)}n≥0, we always assume that 0 is the first even letter that appears in
{a(n)}n≥0, i.e., min{n ≥ 0 : a(n) = 0} < min{n ≥ 0 : a(n) = 2}.

Lemma 4. Let {a(n)}n≥0 be a purely automatic apwenian sequence over {0, 1, 2}, then a(0)a(1)a(2) =
101.

Proof. Assume {a(n)}n≥0 is defined in (6). Since {a(n)}n≥0 is apwenian, we have a(0) ≡ a(1) + a(2).
Note that a(0) = 1. Hence, either a(1)a(2) = 01 or a(1)a(2) = 10. Now, we prove that the second case
will not happen. Assume a(1)a(2) = 10. Then, we claim that for any n ≥ 1,

1) a(2n − 1) = 1,

2) a(2np+ 2m − 1) + a(2np+ 2m) + · · ·+ a(2np+ 2m+1 − 2) ≡ 0 (0 ≤ m ≤ n− 1),

3) a(2np+ 2n − 1) + a(2np+ 2n) + · · ·+ a(2np+ 2n+1 − 2) ≡ 1.

We prove this claim by induction on n. Since a(0) = a(1) = 1, by Formula (7), we have 1 = a(p) ≡
a(2p + 1) + a(2p + 2) and a(p − 1) = a(2p − 1). Note that a(p − 1) ≡ a(2p − 1) + a(2p). So, we have
a(2p) ≡ 0. This implies that this claim holds for n = 1. Suppose that this claim holds for n ≤ k, we
consider the case n = k + 1.

Note that a(n) ≡ a(2n + 1) + a(2n + 2) for all n. Hence, by induction, we have a(2k+1p + 2m −
1) + a(2k+1p+ 2m) + · · ·+ a(2k+1p+ 2m+1 − 2) ≡ 0 for m ∈ [1, k] and a(2k+1p+ 2k+1 − 1) + a(2k+1p+
2k+1)+ · · ·+ a(2k+1p+2k+2 − 2) ≡ 1. So, the assertion 2) holds for m ∈ [1, k] and the assertion 3) holds.
When m = 1, we have a(2k+1p + 1) + a(2k+1p + 2) ≡ 0. This implies that a(2k+1) ̸= 1 by Formula (7).
So, we have a(2k+1) ≡ 0. Hence, by induction, we have a(2k+1 − 1) ≡ a(2k+1) + a(2k − 1) = 1 which
implies that the assertion 1) holds. Since σ(a(2k − 1)) = σ(a(2k+1 − 1)) = σ(1), by Formula (7), we have
a(2kp − 1) = a(2k+1p − 1). So, we have a(2k+1p) ≡ 0. Hence, the assertion 2) holds for m = 0. This
completes our claim.

Since the sequence {a(n)}n≥0 defined in (6) is also be generated by σi for all i ≥ 1, we always assume
p is large enough. Then, by Formula (7), the claim shows that σ(a(2n)) are different for each n. Hence,
a(2n) are different which contradicts the fact that a(n) takes finitely many values.
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Lemma 5. Let {a(n)}n≥0 be a purely automatic sequence over {0, 1, 2} and {p(n)}n≥0 be the period-
doubling sequence. For any integer N ≥ 1, if a(n) ∈ {0, 1} for all n ≤ 2N , then a(n) = p(n) for all
n ≤ 2N .

Proof. By Lemma 4, we see that the conclusion holds for N = 1. Now, assume the conclusion holds
for n ≤ 2N and a(n) ∈ {0, 1} for all n ≤ 2N + 2. We need to prove that a(2N + i) = p(2k + i) for
i = 1, 2, i.e., a(2N +1) = 1− a(N) and a(2N +2) = 1. Assume {a(n)}n≥0 is defined in (6). By Formula
(7), we note that if a(n) ∈ {0, 1}, then a(np) = 1. Hence, we have a(2(N + 1)p) = 1. So, we have
a((N + 1)p − 1) ≡ a(2(N + 1)p − 1) + a(2(N + 1)p) ≡ a(2(N + 1)p − 1) + 1 ̸= a(2(N + 1)p − 1). Since
a((N + 1)p− 1) is the last letter of σ(a(N)) and a(2(N + 1)p− 1) is the last letter of σ(a(2N + 1)), we
have a(N) ̸= a(2N + 1). Since a(N), a(2N + 1), a(2N + 2) ∈ {0, 1} and a(N) ≡ a(2N + 1) + a(2N + 2),
we have a(2N + 2) = 1 and a(2N + 1) = 1− a(N). This completes the proof.

Lemma 6. Let {a(n)}n≥0 be an apwenian sequence defined in (6), then u(0) = v(0) = w(0) = 1.

Proof. By Lemma 4, we see that u(0) = a(0) = a(2) = 1 and a(1) = 0. So, by Formula (7), we have
a(2p+ i) = a(i) for all i ∈ [0, p− 1] and v(0) = a(p). Hence, we have

v(0) = a(p) ≡ a(2p+ 1) + a(2p+ 2) = a(1) + a(2) ≡ a(0) = 1.

Now, we prove that w(0) ≡ 0 can not happen. If w(0) ≡ 0, by Formula (7), we see that a(n) = 2 if and
only if a(np) = w(0) ≡ 0. Note that a(np) ≡ a(2np+1)+a(2np+2) for all n, and a(np+1)+a(np+2) ≡ 1
when a(n) ∈ {0, 1}. Hence, we have

a(n) = 2 if and only if a(2n) = 2. (8)

This implies that min{n : a(n) = 2} is odd. Suppose that N is the least number such that a(2N +1) = 2.
Then a(j) ∈ {0, 1} for all j ≤ 2N , and a(N) = a(2N + 2) ∈ {0, 1}. By Lemma 5, we have a(n) = p(n)
for all n ≤ 2N , where {p(n)}n≥0 is the period-doubling sequence.

(1) Case 1: p is even. Assume p = 2q. Then, by Formula (7), we see that for any n ≥ 0,

σ(a(n)) = a(2nq)a(2nq + 1) · · · a(2nq + 2q − 1). (9)

Since a(2N) = p(2N) = 1 = a(0) and σ(a(2N + 1)) = σ(2) is starting with an even number w(0),
by Formula (9), we have a(4Nq + 2q − 1) = a(2q − 1) and a(4Nq + 2q) = w(0) ≡ 0. Hence, we have
a(2Nq + q − 1) ≡ a(4Nq + 2q − 1) + a(4Nq + 2q) ≡ a(2q − 1).

• If a(2N + 2) = 1, then a(N) = 1. Since a(N) = a(0) and σ(0) = σ(a(1)) is starting with 1, by
Formula (9), we have a(2Nq + q − 1) = a(q − 1) and a(2q) = 1. So, a(2Nq + q − 1) = a(q − 1) ≡
a(2q − 1) + a(2q) ≡ a(2q − 1) + 1. This is a contradiction.

• If a(2N + 2) = 0, then a(N) = 0.

– When N = 1. We have a(3) = 2, a(4) = 0. Then a(6q) = 0 and a(3q−1) ≡ a(6q−1)+a(6q) ≡
a(6q − 1) = a(2q − 1). Since a(0) = a(2) = 1 and a(1) = a(4) = 0, by Formula (9), we have
a(5q − 1) = a(q − 1) = a(2q − 1) + 1 and a(10q − 1) = a(4q − 1) = a(2q − 1) + a(2q) =
a(2q − 1) + 1. So, we have a(10q) ≡ a(5q − 1) + a(10q − 1) ≡ 0. This implies that a(5) = 2.
Hence, a(12q − 1) = a(8q − 1). Note that a(8q) = 1 and a(6q − 1) = a(2q − 1). We see that
a(12q−1) = a(8q−1) ≡ a(4q−1)+a(8q) = a(2q−1) and a(12q) ≡ a(12q−1)+a(6q−1) ≡ 0.
This implies that a(6) = 2. So, we have a(5) = a(6) = 2. This contradicts the fact that
1 = a(2) ≡ a(5) + a(6).

– When N ≥ 2. Since a(2) = 1 and a(n) = p(n) ∈ {0, 1} for all n ≤ 2N , we have a(3) =
p(3) = a(4) = p(4) = 1. Since a(6q) = 1, we have a(3q − 1) ≡ a(6q − 1) + a(6q) = a(6q −
1) + 1 = a(2q − 1) + 1. Note that σ(a(N)) = σ(a(1)) = σ(0). Hence, by Formula (9), we have
a(2Nq + q − 1) = a(3q − 1) ≡ a(2q − 1) + 1, which is a contradiction.

(2) Case 2: p is odd. We will obtain a contradiction that there exists an odd number M ≥ 1 such
that a(M) = 1 and a(2n + 1)a(2n + 2) ̸= 10 for all n ≥ 0. In fact, if a(M) = a(0) = 1 for some odd
numberM ≥ 1, by Formula (7), we have a(Mp)a(Mp+1) = a(0)a(1) = 10. Note thatMp is odd. Hence,
there exists n such that a(2n+ 1)a(2n+ 2) = 10, which is a contradiction.

8



• If a(2N + 2) = 1, then a(N) = 1. By Lemma 4, we see that N ≥ 2. Hence, a(3) = p(3) = 1. This
implies that there exists an odd number M ≥ 1 such that a(M) = 1. Denote a(p − 1) = x and
x̄ = x+1. Then a(2p−1) ≡ a(p−1)+a(2p) = x+1 = x̄. Since a(N) = a(2N+2) = 1, a(2N+1) = 2
and σ(2) is starting with an even number w(0), we have a(2(N + 1)p − 1) ≡ a((N + 1)p − 1) +
a(2(N + 1)p) = a(p− 1) + 1 = x̄. Hence, we have

σ(1) = 1Ux, σ(0) ≡ 1V x̄, σ(2) ≡ 0Wx̄, (10)

where U, V,W are finite words with length p− 2. Now, we prove that a(2n+ 1)a(2n+ 2) ̸= 10 for
all n ≥ 0. If a(2n+ 1)a(2n+ 2) = 10 for some n, then a(n) = 1. Thus, we have the following cases.

– When a(n) = 1, a(n + 1) ∈ {0, 1}. Note from Formula (8) that a(2(n + 1)) ∈ {0, 1}. By
Formula (7), we have a((n + 1)p − 1) = x and a(2(n + 1)p) = 1. Hence, a(2(n + 1)p − 1) ≡
a((n+1)p−1)+a(2(n+1)p) = x+1 = x̄. Since a(2(n+1)p−1) is the last letter of σ(a(2n+1)),
by Formula (10), we see that a(2n + 1) ∈ {0, 2}. So, we have a(2n + 2) = 1 which implies
a(2n+ 1)a(2n+ 2) ̸= 10.

– When a(n) = 1, a(n + 1) = 2. Similarly, from Formula (8), we have a(2(n + 1)) = 2. Hence,
we have a(2n+ 1) = 1, i.e., a(2n+ 1)a(2n+ 2) = 12 ̸= 10.

• If a(2N + 2) = 0, then a(N) = 0. Similarly, denote a(p− 1) = x and x̄ = x+ 1. Then a(2p− 1) ≡
a(p−1)+a(2p) = x+1 = x̄. Since a(N) = a(2N+2) = 0, a(2N+1) = 2 and σ(2) is starting with an
even number w(0), we have a(2(N +1)p− 1) ≡ a((N +1)p− 1)+a(2(N +1)p) = a(2p− 1)+1 ≡ x.
Hence, we have

σ(1) = 1Ux, σ(0) ≡ 1V x̄, σ(2) ≡ 0Wx, (11)

where U, V,W are finite words with length p− 2. Now, we show that a(2n+ 1)a(2n+ 2) ̸= 10 for
all n ≥ 0. If a(2n+ 1)a(2n+ 2) = 10 for some n, then a(n) = 1. We have the following cases.

– When a(n) = 1, a(n + 1) ∈ {0, 1}. Similarly, from Formula (8), we have a(2(n + 1)) ∈ {0, 1}.
By Formula (7), we have a((n+1)p− 1) = x and a(2(n+1)p) = 1. Hence, a(2(n+1)p− 1) ≡
a((n + 1)p − 1) + a(2(n + 1)p) = x + 1 = x̄. Since a(2(n + 1)p − 1) is the last letter of
σ(a(2n + 1)), by Formula (11), we see that a(2n + 1) = 0. So, we have a(2n + 2) = 1 and
a(2n+ 1)a(2n+ 2) = 01 ̸= 10.

– When a(n) = 1, a(n + 1) = 2. Similarly, from Formula (8), we have a(2(n + 1)) = 2. Hence,
we have a(2n+ 1) = 1, i.e., a(2n+ 1)a(2n+ 2) = 12 ̸= 10.

To end this proof, we need to find the odd number M ≥ 1 satisfying a(M) = 1. Consider the
number N .

– When N = 1. Then a(3) = 2. Note from Formula (8) that if a(n)a(n + 1) = 12, then a(2n +
1)a(2n+ 2) = 12. Hence, a(2)a(3) = 12 implies that a(5)a(6) = 12. Thus, we have a(5) = 1.

– When N ≥ 2. Then a(3) = p(3) = 1.

Therefore, our assumption that w(0) ≡ 0 is false. Hence, w(0) = 1.

Lemma 7. Let {a(n)}n≥0 be an apwenian sequence and {p(n)}n≥0 be the period-doubling sequence.
Let k ≥ 1 be an integer. Then a(n) ≡ p(n) for all n ∈ [0, 2k+1] if and only if a(2k+1) = 1 and
a(2k + n) ≡ a(2k + 2k−1 + n) ≡ a(n) for all n ∈ [0, 2k−1 − 1].

Proof. Let {p(n)}n≥0 be the period-doubling sequence generated by the morphsim ψ with ψ(1) =
10, ψ(0) = 11. If a(n) ≡ p(n) for all n ∈ [0, 2k+1], then a(2k+1) = 1 and a(0)a(1) · · · a(2k+1 − 1) ≡
ψk+1(1). Since ψk+1(1) = ψk(10) = ψk−1(1011) = ψk−1(1)ψk−1(0)ψk−1(1)ψk−1(1), we have a(2k + n) ≡
a(2k + 2k−1 + n) ≡ a(n) for all n ∈ [0, 2k−1 − 1].

Now consider the ‘if’ part. Assume a(2k+1) = 1 and a(2k + n) ≡ a(2k + 2k−1 + n) ≡ a(n) for all
n ∈ [0, 2k−1 − 1]. We claim that a(2k−1 + n) ≡ a(2k−1 + 2k−2 + n) ≡ a(n) for all n ∈ [0, 2k−2 − 1]. To
prove this claim, we consider the following two cases.
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• If 0 ≤ n ≤ 2k−2 − 2, then 0 ≤ 2n + 1 < 2n + 2 ≤ 2k−1 − 2 < 2k−1 − 1. Hence, by the hypothesis,
we have

a(2k + 2n+ 1) ≡ a(2k + 2k−1 + 2n+ 1) ≡ a(2n+ 1),

a(2k + 2n+ 2) ≡ a(2k + 2k−1 + 2n+ 2) ≡ a(2n+ 2).

So, by the apwenian property of the sequence {a(n)}n≥0, we have

a(2k−1 + n) ≡ a(2k + 2n+ 1) + a(2k + 2n+ 2) ≡ a(2n+ 1) + a(2n+ 2) ≡ a(n),

a(2k−1 + 2k−2 + n) ≡ a(2k + 2k−1 + 2n+ 1) + a(2k + 2k−1 + 2n+ 2)

≡ a(2n+ 1) + a(2n+ 2) ≡ a(n).

• If n = 2k−2 − 1, then

a(2k + 2n+ 1) = a(2k + 2k−1 − 1) ≡ a(2k−1 − 1),

a(2k + 2n+ 2) = a(2k + 2k−1) ≡ a(0).

Note that a(2k−1) ≡ a(2k + 1) + a(2k + 2) ≡ a(1) + a(2) ≡ a(0) = 1. Hence,

a(2k−1 + 2k−2 − 1) ≡ a(2k + 2k−1 − 1) + a(2k + 2k−1)

≡ a(2k−1 − 1) + a(0)

≡ a(2k−1 − 1) + a(2k−1)

≡ a(2k−2 − 1).

a(2k−1 + 2k−2 + 2k−2 − 1) ≡ a(2k + 2k−1 + 2k−1 − 1) + a(2k + 2k−1 + 2k−1)

≡ a(2k−1 − 1) + a(2k+1)

≡ a(2k−1 − 1) + 1

≡ a(2k−1 − 1) + a(2k−1)

≡ a(2k−2 − 1).

Therefore, this claim holds. Repeating the argument of this claim, we know that for any ℓ ∈ [1, k] and
n ∈ [0, 2ℓ−1 − 1], a(2ℓ + n) ≡ a(2ℓ + 2ℓ−1 + n) ≡ a(n). This implies that a([10w]2) = a([11w]2) = a([w]2)
for any w ∈ {0, 1}∗ with |w| ≤ k − 1. Note that a([10]2) = a(2) = 1 = a(0) = a([00]2). Hence, a(2n) = 1
for all n ≤ 2k. So, a(2n + 1) ≡ a(n) + a(2n + 2) ≡ a(n) + 1 for all n ≤ 2k. Thus, a(n) ≡ p(n) for all
n ∈ [0, 2k+1].

Lemma 8. Let {a(n)}n≥0 be an apwenian sequence defined in (6), then u(p− 1) ̸≡ v(p− 1) ≡ w(p− 1).

Proof. Denote u(p − 1) = a(p − 1) = x and x̄ = x + 1. By Lemma 4, we have v(p − 1) = a(2p − 1) ≡
a(p− 1) + a(2p) = x+ 1 = x̄. Now, assume v(p− 1) ̸≡ w(p− 1). Then, by Lemma 6, we have

σ(1) = 1Ux, σ(0) ≡ 1V x̄, σ(2) ≡ 1Wx, (12)

where U, V,W are finite words with length p− 2.
By Formula (12), we note that a(np) = 1 for all n ≥ 0, and a(np+p−1) ≡ x if and only if a(n) ∈ {1, 2}.

Hence, a(n) ∈ {1, 2} if and only if a(2(n+ 1)p− 1) ≡ a(np+ p− 1) + a(2(n+ 1)p) = a(np+ p− 1) + 1 =
x+ 1 = x̄. Note that a(2(n+ 1)p− 1) is the last letter of σ(a(2n+ 1)). Hence, by Formula (12), we have

a(n) ∈ {1, 2} if and only if a(2n+ 1) = 0. (13)

Since {a(n)}n≥0 is apwenian, by Formula (13), we see that a(n) = 1 implies a(2n+ 1)a(2n+ 2) = 01. If
p is odd, then, by Lemma 4 and Formula (7), we have a(p)a(p + 1) ≡ 10 ̸= 01. This is a contradiction.
Hence, p is even. Assume p = 2q. Then, σ(a(n)) = a(2qn)a(2qn+ 1) · · · a(2qn+ 2q − 1) for all n ≥ 0.

Now, we show firstly that a(2n) ∈ {1, 2} for all n. Since a(0) = a(2) = 1 and a(1) = 0, by Lemma 4, we
see that a(q− 1) ≡ a(3q− 1) ≡ x̄. Hence, a(2qn+ q− 1) ≡ x̄ when a(n) ∈ {0, 1}. Note from Formula (13)
that min{n : a(n) = 2} is odd. Assume N is the least number satisfying a(2N+1) = 2. Then a(n) ∈ {0, 1}
for all n ≤ 2N. By Lemma 5, we have a(2N) = p(2N) = 1. Hence, a(4N + 1)a(4N + 2) = 01. So, by
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Formula (7) and the apwenian property of {a(n)}n≥0, we have a(2q(2N + 1) + q − 1) ≡ x̄. That is,
a(2qn+ q − 1) ≡ x̄ when a(n) = 2. Thus, we have a(2qn+ q − 1) ≡ x̄ for all n ≥ 0. Since a(2qn) = 1 for
all n ≥ 0, we have a(2q2n+2q−1) ≡ a(2qn+q−1)+a(2q2n+2q) ≡ x̄+1 = x for all n ≥ 0. This implies
that the last letter of σ(a(2n)) equals to x molulo 2. By Formula (12), we have a(2n) ∈ {1, 2} for all n.

Define a coding ρ from {0, 1, 2} to {0, 1} by ρ(0) = 0, ρ(1) = ρ(2) = 1. Then, ρ(a(2n)) = 1 for
all n. Moreover, by Formula (13), we have ρ(a(2n + 1)) = 1 − ρ(a(n)). Hence, {ρ(a(n))}n≥0 is the
period-doubling sequence which is 2-automatic. So, by Lemma 1, the p-automatic sequence {a(n)}n≥0

must satisfy that p = 2k for some k.
Then, we claim that a(2k + i) ≡ a(2k + 2k−1 + i) ≡ a(i) for all i ∈ [0, 2k−1 − 1]. Since a(1) = 0, by

Formula (13), we see that a(3) ∈ {1, 2}. Hence, we have the following cases.

• If a(3) = 1, then σ(a(0)) = σ(a(2)) = σ(a(3)) = σ(1). Since p = 2k, by Formula (7), we have
a(i) = a(2 · 2k + i) = a(3 · 2k + i) for all i ∈ [0, 2k − 1]. Note that a(np) = a(n · 2k) = 1 for all
n ≥ 0. Hence, we have a(i) = a(2 · 2k + i) = a(3 · 2k + i) for any i ∈ [0, 2k]. Now fix i satisfying
i ∈ [0, 2k−1 − 1]. Since 0 ≤ 2i+ 1 < 2i+ 2 ≤ 2k, we have

a(2k + i) ≡ a(2 · 2k + 2i+ 1) + a(2 · 2k + 2i+ 2) = a(2i+ 1) + a(2i+ 2) ≡ a(i),

a(2k + 2k−1 + i) ≡ a(3 · 2k + 2i+ 1) + a(3 · 2k + 2i+ 2) = a(2i+ 1) + a(2i+ 2) ≡ a(i).

Hence, we have a(2k + i) ≡ a(2k + 2k−1 + i) ≡ a(i) for all i ∈ [0, 2k−1 − 1].

• If a(3) = 2, then by Formula (13), we have a(7) = a(5) = a(1) = 0. So, a(6) = a(2) = a(0) = 1.
Hence, by Formula (7), we have a(i) = a(2 · 2k + i) = a(6 · 2k + i) and a(2k + i) = a(7 · 2k + i) for
all i ∈ [0, 2k]. When i ∈ [0, 2k−1 − 1], then 0 ≤ 2i+ 1 < 2i+ 2 ≤ 2k and

a(3 · 2k + i) ≡ a(6 · 2k + 2i+ 1) + a(6 · 2k + 2i+ 2) ≡ a(2i+ 1) + a(2i+ 2) ≡ a(i).

When i ∈ [2k−1, 2k − 1], then 2k + 1 ≤ 2i+ 1 < 2i+ 2 ≤ 2 · 2k and

a(3 · 2k + i) ≡ a(6 · 2k + 2i+ 1) + a(6 · 2k + 2i+ 2)

= a(7 · 2k + 2i+ 1− 2k) + a(7 · 2k + 2i+ 2− 2k)

= a(2k + 2i+ 1− 2k) + a(2k + 2i+ 2− 2k)

= a(2i+ 1) + a(2i+ 2) ≡ a(i).

Thus, we see that a(3 · 2k + i) ≡ a(i) for all i ∈ [0, 2k − 1], i.e., σ(2) ≡ σ(1). So, we have σ(a(0)) =
σ(a(2)) ≡ σ(a(3)). By a similar discussion of case ‘a(3)=1’, we have a(2k+i) ≡ a(2k+2k−1+i) ≡ a(i)
for all i ∈ [0, 2k−1 − 1].

Therefore, our claim holds. Then, by Lemma 7, we have a(n) ≡ p(n) for all n ∈ [0, 2k+1]. Note that
the sequence {a(n)}n≥0 defined in (6) is also generated by the morphism σi for all i ≥ 1. So, for all i ≥ 1,
a(n) ≡ p(n) for all n ∈ [0, 2 · 2ki]. Let i tends to infinity, we conclude that {a(n) (mod 2)}n≥0 is the
period-doubling sequence. Hence, if a(n) = 0, we have a(2n+1) = a(2n+2) = 1. But, the minimality of
N shows that a(N) = 0 and a(2N + 1) = a(2N + 2) = 2. This is a contradiction. Thus, the assumption
that v(p− 1) ̸≡ w(p− 1) is false.

Proof of Theorem 2. Let {a(n)}n≥0 be an apwenian sequence defined in (6). By Lemma 6, we know that
a(np) = 1 for all n ≥ 0. Hence, for any n ≥ 0, a((n + 1)p − 1) ≡ a(2(n + 1)p − 1) + a(2(n + 1)p) ≡
a(2(n+1)p− 1)+ 1. So, we have a((n+1)p− 1) ̸≡ a(2(n+1)p− 1). Note that a((n+1)p− 1) is the last
letter of σ(a(n)) and a(2(n+ 1)p− 1) is the last letter of σ(a(2n+ 1)). Hence, by Lemma 8, we see that
a(n) ̸≡ a(2n+ 1), i.e., a(2n+ 1) ≡ 1 + a(n). Thus, a(2n) = 1 for all n ≥ 0. This implies that {a(n)}n≥0

is the period-doubling like sequence.

When Σ = {0, 1}, the authors in [9] shows that the only purely automatic apwenian sequence over Σ
is the period-doubling sequence. When Σ = {0, 1, 2}, Theorem 2 shows that the only purely automatic
apwenian sequence over Σ is the period-doubling like sequence. A natural extension is that how many
purely automatic apwenian sequences are there over other alphabets Σ. The numerical experiment
suggests that, when Σ contains only one odd number, the purely automatic apwenian sequence over Σ is
also just the period-doubling like sequence. We propose the following conjecture.

Conjecture 2. Let Σ = {1, n1, n2, · · · , nk−1} and ni be even numbers for all i ∈ [1, k−1]. Let {a(n)}n≥0

be a purely automatic sequence over Σ. Then the sequence {a(n)}n≥0 is apwenian if and only if {a(n)}n≥0

is a period-doubling like sequence.
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5. Automatic apwenian sequences over other alphabets

In this section, we list some automatic apwenian sequences over other alphabets. Firstly, we consider
the 2-automatic apwenian sequences in terms of 2-uniform morphisms. Next, we give two 3-automatic
apwenian sequences.

5.1. 2-automatic apwenian sequences

Assume Σ = {n1, n2, · · · , nk} ⊂ N satisfying n1 < n2 < · · · < nk. If the morphism σ is defined on
Σ, we denote the morphism σ by a k-tuple (σ(n1), σ(n2), · · · , σ(nk)) for convenience. For example, the
morphism σ = (12, 21) defined over {1, 2} means that 1 7→ 12, 2 7→ 21, and the morphism ρ = (1, 0, 1)
defined over {1, 2, 3} means that 1 7→ 1, 2 7→ 0, 3 7→ 1.

Recall that a sequence u ∈ {0, 1}∞ is 2-automatic if and only if there exist an alphabet Σ ⊂ N+ and a
2-uniform morphism σ on Σ such that u = σ∞(a)( mod 2) for some a ∈ Σ. For example, the characteristic
sequence u of the powers of 2 can be generated by the morphism σ = (13, 22, 23) on Σ = {1, 2, 3}, i.e.,
u = σ∞(1) (mod 2).

Unless otherwise stated, we assume that 1 ∈ Σ ⊂ N+ and the 2-uniform morphism σ is prolongable
on 1. Let σ be a 2-uniform morphism on Σ. For any a ∈ Σ and i ∈ {0, 1}, let σ[i](a) be the (i + 1)-th
element of σ(a). Then σ[i] are codings on Σ and σ(a) = σ[0](a)σ[1](a) for all a ∈ Σ.

Theorem 3. Let σ be a 2-uniform morphism on Σ. The sequence σ∞(1)(mod2) is apwenian if and only
if for any k ≥ 0

σ[1]k ◦ σ[0] ≡ σ[0]k+1 ◦ σ[1] + σ[1]k+1 ◦ σ[0]. (14)

Proof. Let σ∞(1) = {u(n)}n≥0. Then {u(n)}n≥0 is a fixed point of σ. Hence, for any n ≥ 0, we have
σ(u(n)) = u(2n)u(2n+ 1). Since σ(a) = σ[0](a)σ[1](a) for all a ∈ Σ, it follows that

u(2n) = σ[0](u(n)), u(2n+ 1) = σ[1](u(n)) (n ≥ 0).

Hence, for any k ≥ 0, u(2k+1n+2k − 1) = σ[1]k ◦ σ[0](u(n)) and u(2k+2n+2k+1) = σ[0]k+1 ◦ σ[1](u(n)).
Note that u(0) = 1, and the sequence {u(n)(mod 2)}n≥0 is apwenian if and only if u(n) ≡ u(2n +

1) + u(2n+ 2) for all n ≥ 0. Hence, for any k ≥ 0 and n ≥ 0,

σ[1]k ◦ σ[0](u(n)) ≡ u(2k+1n+ 2k − 1)

≡ u(2k+2n+ 2k+1 − 1) + u(2k+2n+ 2k+1)

≡ σ[1]k+1 ◦ σ[0](u(n)) + σ[0]k+1 ◦ σ[1](u(n)).

So, we obtain Formula (14).
Conversely, if Formula (14) holds, then u(2k+1n+2k−1) ≡ u(2k+2n+2k+1−1)+u(2k+2n+2k+1) for

all n, k ≥ 0. Since for every integer m ≥ 0, there exist integers n ≥ 0, k ≥ 0 such that m+1 = 2k(2n+1)
i.e., m = 2k+1n+ 2k − 1. Hence, for all m ≥ 0, we have u(m) ≡ u(2m+ 1) + u(2m+ 2). This completes
the proof.

Remark 1. In fact, the sequence σ∞(1)(mod 2) is apwenian if and only if Formula (14) holds for finitely
many terms k. This is because that there are finite codings on Σ and the sequences {σ[0]k ◦ σ[1](a)}k,
{σ[1]k ◦ σ[0](a)}k are ultimately periodic.

Using Theorem 3, we can check for some 2-automatic sequences whether they are apwenian or not.
We give some examples.

Example 6 (The period-doubling sequence). Let Σ = {1, 2} and σ = (12, 11). Then the fixed point
σ∞(1) (mod 2) is the period-doubling sequence. Since σ[0] = (1, 1) and σ[1] = (2, 1), we have

σ[0]k ◦ σ[1] =

{
(2, 1) k = 0,

(1, 1) k ≥ 1,
and σ[1]k ◦ σ[0] =

{
(1, 1) k is even,

(2, 2) k is odd.

By Theorem 3, we see that the period-doubling sequence is apwenian.
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Example 7 (The characteristic sequence of the powers of 2). Let Σ = {1, 2, 3} and σ = (13, 22, 23).
Then the fixed point σ∞(1) (mod 2) is the characteristic sequence of the powers of 2. Let {v(n)}n≥1 =
σ∞(1) (mod 2), then v(n) = 1 if n = 2k for some k ≥ 0 otherwise v(n) = 0. Since σ[0] = (1, 2, 2) and
σ[1] = (3, 2, 3), we have

σ[0]k ◦ σ[1] =

{
(3, 2, 3) k = 0,

(2, 2, 2) k ≥ 1,
and σ[1]k ◦ σ[0] =

{
(1, 2, 2) k = 0,

(3, 2, 2) k ≥ 1.

By Theorem 3, we see that the characteristic sequence of the powers of 2 is apwenian.

Example 8. Let Σ = {1, 2, 3} and σ = (13, 13, 22). Then σ[0] = (1, 1, 2) and σ[1] = (3, 3, 2). Hence, for
any k ≥ 0, we have

σ[0]k ◦ σ[1] =


(3, 3, 2) k = 0,

(2, 2, 1) k = 1,

(1, 1, 1) k ≥ 2,

and σ[1]k ◦ σ[0] =


(1, 1, 2) k = 0,

(3, 3, 3) k is odd,

(2, 2, 2) k ≥ 2 is even.

By Theorem 3, we see that the fixed point σ∞(1) (mod 2) is apwenian.

Example 9 (The characteristic sequence of the integers of the form (2k−1)). Let Σ = {1, 2, 3, 4}
and σ = (12, 32, 44, 44). Then the fixed point σ∞(1) (mod 2) is the characteristic sequence of the integers
of the form (2k − 1). Let {v(n)}n≥1 = σ∞(1) (mod 2), then v(n) = 1 if n = 2k − 1 for some k ≥ 1
otherwise v(n) = 0. Since σ[0] = (1, 3, 4, 4) and σ[1] = (2, 2, 4, 4), we have

σ[0]k ◦ σ[1] =


(2, 2, 4, 4) k = 0,

(3, 3, 4, 4) k = 1,

(4, 4, 4, 4) k ≥ 2,

and σ[1]k ◦ σ[0] =

{
(1, 3, 4, 4) k = 0,

(2, 4, 4, 4) k ≥ 1.

By Theorem 3, we see that the characteristic sequence of the integers of the form (2k − 1) is apwenian.

Example 10 (The Rudin-Shapiro sequence). Let Σ = {1, 2, 3, 4} and σ = (13, 43, 12, 42). Then
the fixed point σ∞(1) (mod 2) is the Rudin-Shapiro sequence on {0, 1}. Since σ[0] = (1, 4, 1, 4) and
σ[1]1 = (3, 3, 2, 2), we have

σ[0]k ◦ σ[1] =

{
(3, 3, 2, 2) k = 0,

(1, 1, 4, 4) k ≥ 1.
and σ[1]k ◦ σ[0] =


(1, 4, 1, 4) k = 0,

(3, 2, 3, 2) k is odd,

(2, 3, 2, 3) k ≥ 2 is even.

By Theorem 3, we see that the Rudin-Shapiro sequence is not apwenian.

Example 11 (The Baum-Sweet sequence). Let Σ = {1, 2, 3, 4} and σ = (13, 34, 23, 44). Then the
fixed point σ∞(1) (mod 2) is the Baum-Sweet sequence. Since σ[0] = (1, 4, 1, 4) and σ[1] = (3, 3, 2, 2),
we have

σ[0]k ◦ σ[1] =

{
(3, 4, 3, 4) k is even,

(2, 4, 2, 4) k is odd.
and σ[1]k ◦ σ[0] =

{
(1, 3, 2, 4) k = 0,

(3, 3, 4, 4) k ≥ 1.

By Theorem 3, we see that the Baum-Sweet sequence is not apwenian.

Example 12. Let Σ = {1, 2, 3, 4} and σ = (13, 14, 24, 23). Then σ[0] = (1, 1, 2, 2) and σ[1] = (3, 4, 4, 3).
Hence, for any k ≥ 0, we have

σ[0]k ◦ σ[1] =


(3, 4, 4, 3) k = 0,

(2, 2, 2, 2) k ≥ 1,

(1, 1, 1, 1) k ≥ 2,

and σ[1]k ◦ σ[0] =


(1, 1, 2, 2) k = 0,

(3, 3, 4, 4) k = 2n+ 1,

(4, 4, 3, 3) k = 2n+ 2.

By Theorem 3, we see that the fixed point σ∞(1) (mod 2) is apwenian.
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Given a 2-uniform morphism σ on Σ, Theorem 3 provides a method to verify whether the sequence
σ∞(1) (mod 2) is apwenian or not. In the following table we list all 2-automatic apwenian sequences o 2
for Σ = {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 5} and {1, 2, 3, 4, 6}.

Σ sequence (mod 2) σ
{1, 2} 10111010101110111011 · · · (12, 11)
{1, 2, 3} 11001111110011001100 · · · (13, 13, 22)

11010001000000010000 · · · (13, 22, 23)
{1, 2, 3, 4} 11001001110110001100 · · · (13, 14, 24, 23)

10100010000000100000 · · · (12, 32, 44, 44)
10100100000100000000 · · · (12, 34, 43, 44)

{1, 2, 3, 5} 11010111011011010110 · · · (15, 23, 12, 21)
11010111011101010111 · · · (13, 25, 25, 33)
10111100101011111011 · · · (12, 35, 11, 22)
10111100110011111100 · · · (12, 35, 35, 22)
11001111101010101011 · · · (15, 33, 32, 22)

{1, 2, 3, 4, 6} 11001001110000001100 · · · (13, 14, 26, 26, 43)
10100100000101100110 · · · (12, 34, 43, 62, 43)
11010001011000010001 · · · (13, 34, 43, 62, 43)

5.2. 3-automatic apwenian sequences

Many 2-automatic apwenian sequences have been found. An interesting question, asked in [1], is that

“are there PLCP/apwenian sequences that are d-automatic for some d not a power of 2?”

In the following, we give two 3-automatic apwenian sequences over {1, 2, 3}.

Example 13. Let σ = (121, 132, 132) be a morphism on Σ = {1, 2, 3}. Then the fixed points σ∞(1)
(mod 2) is apwenian.

Proof. Let {u(n)}n≥0 = σ∞(1). It is easy to check that the sequence {u(n)}n≥0 can be generated by the
following recurrences:

u(3n) = u(9n+ 2) = 1;
u(9n+ 1) = u(9n+ 5) = 2;

u(9n+ 4) = 3;
u(9n+ 7) = u(3n+ 1);
u(9n+ 8) = u(3n+ 2).

(15)

Now, we prove that the sequence {u(n)}n≥0 satisfies u(n) ≡ u(2n + 1) + u(2n + 2) for all n ≥ 0
by induction on n. The first few terms of {u(n)}n≥0 can be checked directly. Aassume that u(n) ≡
u(2n+1)+ u(2n+2) for all n ≤ 9k− 1 for some k ≥ 1. We will check the equation holds for n ≤ 9k+8.

• By Formula (15), we see that u(9k) = 1, u(18k + 1) = 2 and u(18k + 2) = 1. Hence, u(9k) ≡
u(18k + 1) + u(18k + 2).

• By Formula (15), we see that u(9k+1) = 2, u(18k+3) = 1 and u(18k+4) = 3. Hence, u(9k+1) ≡
u(18k + 3) + u(18k + 4).

• By Formula (15), we see that u(9k+2) = 1, u(18k+5) = 2 and u(18k+6) = 1. Hence, u(9k+2) ≡
u(18k + 5) + u(18k + 6).

• By Formula (15), we see that u(9k + 3) = 1, u(18k + 7) = u(6k + 1) and u(18k + 8) = u(6k + 2).
By induction, u(6k + 1) + u(6k + 2) ≡ u(3k) = 1. Hence, u(9k + 3) ≡ u(18k + 7) + u(18k + 8).

• By Formula (15), we see that u(9k + 4) = 3, u(18k + 9) = 1 and u(18k + 10) = 2. Hence,
u(9k + 4) ≡ u(18k + 9) + u(18k + 10).

• By Formula (15), we see that u(9k + 5) = 2, u(18k + 11) = 1 and u(18k + 12) = 1. Hence,
u(9k + 5) ≡ u(18k + 11) + u(18k + 12).
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• By Formula (15), we see that u(9k + 6) = 1, u(18k + 13) = 3 and u(18k + 14) = 2. Hence,
u(9k + 6) ≡ u(18k + 13) + u(18k + 14).

• By Formula (15), we see that u(9k + 7) = u(3k + 1), u(18k + 15) = 1 and u(18k + 16) = u(6k + 4).
By induction, u(3k+1) ≡ u(6k+3)+u(6k+4) = 1+u(6k+4).. Hence, u(9k+7) ≡ u(18k+15)+
u(18k + 16).

• By Formula (15), we see that u(9k+ 8) = u(3k+ 2), u(18k+ 17) = u(6n+ 5) and u(18k+ 18) = 1.
By induction, u(3k+2) ≡ u(6k+5)+u(6k+6) = u(6k+5)+1.. Hence, u(9k+8) ≡ u(18k+17)+
u(18k + 18).

Therefore, the sequence σ∞(1) (mod 2) = {u(n)(mod 2)}n≥0 is apwenian.

Example 14. Let τ = {132, 121, 121} be a morphism on Σ = {1, 2, 3}. Then the fixed points τ∞(1)
(mod 2) is apwenian.

Proof. Let {u(n)}n≥0 = τ∞(1). Then the sequence {u(n)}n≥0 can be generated by the following recur-
rences:

u(3n) = u(9n+ 5) = u(27n+ 8) = 1;
u(9n+ 2) = u(9n+ 4) = u(27n+ 7) = u(27n+ 17) = 2;

u(9n+ 1) = u(27n+ 16) = 3;
u(27n+ 25) = u(3n+ 1);
u(27n+ 26) = u(3n+ 2).

(16)

Using Formula (16), we can prove similarly that the sequence {u(n)}n≥0 satisfies u(n) ≡ u(2n +
1) + u(2n + 2) for all n ≥ 0 by induction on n. This implies that the sequence τ∞(1) (mod 2) =
{u(n)(mod 2)}n≥0 is apwenian. We omit the details here.

In the following table, we list all k-automatic apwenian sequences modulo 2 over Σ = {1, 2, 3} for
k ∈ [2, 9]. Two different 3-automatic apwenian sequences are also found in the last row.

k sequence (mod 2) σ
2 10111010101110111011 · · · (12, 13, 12)

11001111110011001100 · · · (13, 13, 22)
11010001000000010000 · · · (13, 22, 23)

3 10111010110111011010 · · · (121, 132, 132)
11010110111010111011 · · · (132, 121, 121)

4 11010111011011010110 · · · (1321, 2112, 2113)
5 None
6 None
7 None
8 None
9 10111011010111010110 · · · (121132132, 121132121, 121132121)

11010111011010110111 · · · (132121132, 132121121, 132121121)
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