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Abstract

We study analytical properties of derivative polynomials for tangent and secant, including re-

currence relations, explicit formulas and expansion formulas. Firstly, we discuss the connections

between central binomial coefficients and trigonometric functions. Secondly, we explore the simi-

larity of derivative polynomials and Chebyshev polynomials. The idea is to choose the derivative

polynomials as basis sets of polynomial space. From this viewpoint, we give an expansion of the

derivative polynomials for tangent in terms of the derivative polynomials for secant as well as a

result in the reverse direction. Moreover, we get the Frobenious-type formulas for exterior peak

and left peak polynomials. Finally, we discuss the connections between derivative polynomials

and Eulerian polynomials.
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1. Introduction

Hoffman [17] once said in his paper on derivative polynomials: “ Sometimes problems nat-

urally occur in pairs, and it is best to tackle both at the same time.” This idea was fleshed

out in the paper of Hetyei [15]. The derivative polynomials for tangent and secant obey this

principle. Another classical pair of polynomials that naturally occurs in pairs is the pair of

Chebyshev polynomials of the first and second kinds. All polynomial sequences considered in

this paper form analogous pairs. This paper is motivated by exploring the similarity of derivative

polynomials and Chebyshev polynomials.

An elementary result in the theory of trigonometry says that{
d
dθ tan θ = 1 + tan2 θ,
d
dθ sec θ = tan θ sec θ.

(1)
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The derivative polynomials for tangent and secant are respectively defined as follows:

dn

dθn
tan θ = Pn(tan θ),

dn

dθn
sec θ = sec θ Qn(tan θ).

By Taylor’s theorem, we have

tan(θ + z) =

∞∑
n=0

dn

dθn
tan(θ)

zn

n!
=

∞∑
n=0

Pn(tan θ)
zn

n!
,

sec(θ + z) =
∞∑
n=0

dn

dθn
sec(θ)

zn

n!
= sec(θ)

∞∑
n=0

Qn(tan θ)
zn

n!
.

The tangent formula says that

tan(θ + z) =
tan(θ) + tan(z)

1− tan(θ) tan(z)
.

Since sec(θ + z) = 1
cos(θ+z) , it follows from cosine formula that

sec(θ + z) =
1

cos(θ) cos(z)− sin(θ) sin(z)
=

sec(θ) sec(z)

1− tan(θ) tan(z)
.

So we obtain

P (x; z) =

∞∑
n=0

Pn(x)
zn

n!
=

x+ tan z

1− x tan z
, Q(x; z) =

∞∑
n=0

Qn(x)
zn

n!
=

sec z

1− x tan z
. (2)

It should be noted that Carlitz and Scoville [8] deduced (2) by using the method of characteristics.

The study of derivative polynomials was initiated by Knuth and Buckholtz [21]. Using the

chain rule, they deduced that

Pn+1(x) = (1 + x2)
d

dx
Pn(x), Qn+1(x) = (1 + x2)

d

dx
Qn(x) + xQn(x). (3)

Below are these polynomials for n ⩽ 3:

P0(x) = x, P1(x) = 1 + x2, P2(x) = 2x+ 2x3, P3(x) = 2 + 8x2 + 6x4,

Q0(x) = 1, Q1(x) = x, Q2(x) = 1 + 2x2, Q3(x) = 5x+ 6x3.

Note that Pn(−x) = (−1)n+1Pn(x) and Qn(x) = (−1)nQn(−x). Hence Pn(x) and Qn(x) are

both alternately even and odd.

The derivative polynomials can be used to express some improper integrals and infinite series,

including Hurwitz zeta functions and Dirichlet L-series, see [1, 6, 12, 17, 18, 28]. For x > 0, the

gamma function Γ(x) and the digamma function ψ(x) are defined by

Γ(x) =

∫ ∞

0
e−ttx−1dt, ψ(x) =

d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
,

Let ψn(x) =
dn

dxnψ(x) be the polygamma functions for n ⩾ 1. It is well known that

ψn(x) = (−1)n+1n!
∞∑
k=0

1

(x+ k)n+1
= (−1)n+1n!ζ(n+ 1, x),
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where ζ(n, x) is the Hurwitz zeta function. Polygamma functions arise naturally in the study of

beta distributions, and they obey the reflection formula (see [2, 4]):

ψn(1− x) + (−1)n+1ψn(x) = (−1)nπ
dn

dxn
cot(πx) = πn+1Pn(cot(πx)),

where the last equality follows from the fact that dn

dxn cot(x) = (−1)nPn(cot(x)).

In the next section we collect the definitions, notation and preliminary results that will be

used in the rest of this work. In Section 3, we present the connections between central binomial

coefficients and trigonometric functions. In Section 4, we explore the similarity of derivative

polynomials and Chebyshev polynomials. In particular, we get the Frobenious-type formulas

for exterior peak and left peak polynomials. In Section 5, we establish the connection between

derivative polynomials and Eulerian polynomials.

2. Preliminaries

2.1. Chebyshev polynomials

The Chebyshev polynomials of the first kind are defined by

Tn(x) = cos(nθ), when x = cos(θ).

They are orthogonal on [−1, 1] with respect to the weight function 1√
1−x2

, see [9] for instance.

While the Chebyshev polynomials of the second kind are defined by

Un(x) =
sin((n+ 1)θ)

sin(θ)
, when x = cos(θ).

The polynomials Un(x) are orthogonal on [−1, 1] with respect to
√
1− x2. Explicitly, we have

Tn(x) =

⌊n/2⌋∑
k=0

(
n

2k

)
(x2 − 1)kxn−2k, Un(x) =

⌊n/2⌋∑
k=0

(
n+ 1

2k + 1

)
(x2 − 1)kxn−2k, (4)

which imply that Tn(x) and Un(x) are both alternately even and odd, see [26] for details. The

identity sin((n+ 1)θ)− sin((n− 1)θ) = 2 sin(θ) cos(nθ) leads to a well known relationship:

Tn(x) =
1

2
(Un(x)− Un−2(x)) . (5)

2.2. Explicit formulas of derivative polynomials

In [1], Adamchik solved a long-standing problem of finding a closed-form expression for the

higher derivatives of the cotangent function:

dn

dxn
cot(x) = (2ı)n(cot(x)− ı)

n∑
k=1

k!

2k

{
n

k

}
(ı cot(x)− 1)k,

where ı =
√
−1 and

{
n
k

}
are the Stirling numbers of the second kind, i.e., the number of ways

of partitioning the set [n] := {1, 2, . . . , n} into k blocks. Equivalently, we have

Pn(x) = (−2ı)n(x− ı)
n∑

k=1

k!

2k

{
n

k

}
(ıx− 1)k.
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Since then, there has been much progress in the coefficients of the derivative polynomials, see [6,

13, 20, 23, 28]. For example, in [6], Boyadzhiev obtained that

Qn(x) = ın
n∑

j=0

(−1)jj!

n∑
k=j

(
n

k

){
k

j

}
2k−j

 (x+ 1)j .

2.3. Permutation statistics, Eulerian polynomials, Euler numbers and Springer numbers

Let Sn denote the set of all permutations of [n] := {1, 2, 3, . . . , n}. For any π ∈ Sn, written

as the word π(1)π(2) · · ·π(n), the entry π(i) is called

• a descent if ∈ [n− 1] and π(i) > π(i+ 1);

• a double descent if i ∈ {2, 3, . . . , n} and π(i−1) > π(i) > π(i+1), where we set π(n+1) = 0;

• an interior peak if i ∈ {2, 3, . . . , n− 1} and π(i− 1) < π(i) > π(i+ 1);

• a left peak if i ∈ [n− 1] and π(i− 1) < π(i) > π(i+ 1), where we set π(0) = 0;

• an exterior peak if i ∈ [n] and π(i−1) < π(i) > π(i+1), where we set π(0) = π(n+1) = 0.

Let des (π) (resp. ddes (π), ipk (π), lpk (π), epk ) denote the number of descents (resp. double

descents, interior peaks, left peaks, exterior peaks) of π. For example, if π = 214356, then

des (π) = 2, ddes (π) = 0, ipk (π) = 1, lpk (π) = 2 and epk = 3.

The Eulerian polynomials An(x) first introduced by Leonhard Euler in the series summations:

∞∑
k=0

knxk =
xAn(x)

(1− x)n+1
.

A combinatorial interpretation of An(x) is given as follows (see [19, 25]):

An(x) =
∑
π∈Sn

xdes (π).

The Eulerian polynomial admits several remarkable expansions in terms of different polynomial

bases. Here is the classical Frobenious formula for Eulerian polynomials (see [11]):

xAn(x) =
n∑

k=0

k!

{
n

k

}
xk(1− x)n−k. (6)

In Corollary 9, we provide similar formulas for exterior peak and left peak polynomials.

We say that π ∈ Sn is alternating if π(1) > π(2) < π(3) > · · ·π(n), i.e., π(2i − 1) > π(2i)

and π(2i) < π(2i+ 1) for 1 ⩽ i ⩽ ⌊n/2⌋. A famous result of André [3] says that

∞∑
n=0

En
zn

n!
= tan z + sec z = 1 + z +

z2

2!
+ 2

z3

3!
+ 5

z4

4!
+ 16

z5

5!
+ · · · , (7)

where En is the number of alternating permutations in Sn. Since Euler used (7) as the definition

of En, the numbers En are called Euler numbers (sometimes they are called André numbers).
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Note that
∞∑
n=0

E2n+1
z2n+1

(2n+ 1)!
= tan z,

∞∑
n=0

E2n
z2n

(2n)!
= sec z.

For this reason, the numbers E2n+1 are sometimes called tangent numbers and E2n are called

secant numbers. The reader is referred to [31] for a survey on this subject. In [21], Knuth-

Buckholtz noted that

P2n+1(0) = E2n+1, Q2n(0) = E2n.

Hoffman [17] found that

Pn(1) = 2n(Pn(0) +Qn(0)) =

{
2nQn(0) = 22kE2k, if n = 2k is even;

2nPn(0) = 22k+1E2k+1, if n = 2k + 1 is odd.
(8)

He also noted that Qn(1) are the Springer numbers of root systems of type Bn, see [18,

Proposition 4.1]. A snake of type Bn is a sequence (x1, x2, . . . , xn) of integers such that

0 < x1 > x2 < · · ·xn and {|x1|, |x2|, . . . , |xn|} = [n], i.e., |x1||x2| · · · |xn| is an alternating

permutation in Sn. Let sn be the number of snakes of type Bn. Following [18, Theorem 4.2],

one has sn = Qn(1), and so
∞∑
n=0

sn
zn

n!
=

1

cos z − sin z
.

A main result obtained by Hoffman [18, Theorem 3.1] says that

Qn(1) = − sin
nπ

2
+

⌊n/2⌋∑
k=0

(
n

2k

)
(−1)kPn−2k(1), (9)

which is closely related to the computation of the Qn(1) from the numbers Pn(1) via Seidel

matrices. In [15], Hetyei showed that derivative polynomials are closely related to the face

enumerating polynomials of the Chebyshev transforms of the Boolean algebras. He also showed

that the zeros of Pn(x) and Qn(x) are pure imaginary, have multiplicity 1, belong to the line

segment [−ı, ı], where ı =
√
−1, see [15, Corollary 8.7].

2.4. Variants of (1)

Setting s(θ) = sec θ and t(θ) = tan θ, since 1 + tan2 θ = sec2 θ, an equivalent variant of (1)

is given as follows: {
d
dθs(θ) = s(θ)t(θ),
d
dθ t(θ) = s2(θ),

(10)

which can be used to study the interior and left peak polynomials (see [10, 22, 27] for details).

If we define f = sec(
√
qθ) and g =

√
q tan(

√
qθ), where q > 0 is a constant. Then d

dθf = fg and
d
dθg = qf2, which yield the differential system:{

f → fg,

g → qf2.
(11)
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For the differential system (10), Ma [22, Theorem 1] found that{
dn

dθn s(θ) =
∑

π∈Sn
s(θ)2lpk (π)+1t(θ)n−2lpk (π),

dn

dθn t(θ) =
∑

π∈Sn
s(θ)2ipk (π)+2t(θ)n−1−2ipk (π).

Note that
∑

π∈Sn
xepk (π) =

∑
π∈Sn

xipk (π)+1. Chen and Fu [10, Theorem 9] observed that

dn

dθn
t(θ) =

∑
π∈Sn

s(θ)2epk (π)t(θ)n+1−2epk (π).

We shall end this section by giving an application of (2). Let us put

a = P (x; z) =
x+ tan z

1− x tan z
, b = Q(x; z) =

1

cos z − x sin z
.

Consider the differentiations of a and b with respect to z while x is being fixed. We obtain

d

dz
a =

1 + x2

(cos z − x sin z)2
,

d

dz
b =

x cos z + sin z

(cos z − x sin z)2
.

So we get the following differential system:{
d
dza = (1 + x2)b2,
d
dz b = ab,

which gives a variant of (11).

3. Trigonometric functions and central binomial coefficients

In 1972, Beeler et al. [5] found an elegant identity:

tan(n arctan(t)) =
1

ı

(1 + ıt)n − (1− ıt)n

(1 + ıt)n + (1− ıt)n
,

which can be simplified to

tan(nx) =

∑
k⩾0(−1)k

(
n

2k+1

)
tan2k+1(x)∑

k⩾0(−1)k
(
n
2k

)
tan2k(x)

, (12)

where x = arctan(t) and ı =
√
−1. It is natural to further explore the connections between

central binomial coefficients and trigonometric functions.

Consider the following formal computations:(
d

dθ
sec(θ)

)n+1

=

(
d

dθ
sec(θ)

)n d

dθ
sec(θ),

(
sec(θ)

d

dθ

)n+1

=

(
sec(θ)

d

dθ

)n

sec(θ)
d

dθ
.

As a dual of (4), we can now present the following result.

Theorem 1. For n ⩾ 1, we have{ (
d
dθ sec(θ)

)n
(sec(θ)) = n!

∑
k⩾0

(
n+1
2k+1

)
tann−2k(θ) secn+2k+1(θ),(

d
dθ sec(θ)

)n
(tan(θ)) = n!

∑
k⩾0

(
n+1
2k

)
tann−2k+1(θ) secn+2k(θ).

In other words, we have{ (
sec(θ) d

dθ

)n
(sec2(θ)) = n!

∑
k⩾0

(
n+1
2k+1

)
tann−2k(θ) secn+2k+2(θ),(

sec(θ) d
dθ

)n
(tan(θ) sec(θ)) = n!

∑
k⩾0

(
n+1
2k

)
tann−2k+1(θ) secn+2k+1(θ).
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Proof. Set

M(n, k) = n!

(
n+ 1

2k + 1

)
, N(n, k) = n!

(
n+ 1

2k

)
.

Using the following recurrence relations(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
,

(
n

k

)
=
n− k + 1

k

(
n

k − 1

)
,

it can be easily verified that

M(n+ 1, k) = (n+ 2k + 2)M(n, k) + (n− 2k + 2)M(n, k − 1),

N(n+ 1, k) = (n+ 2k + 1)N(n, k) + (n− 2k + 3)N(n, k − 1).

Note that (
d

dθ
sec(θ)

)
sec(θ) =

d

dθ
sec2(θ) = 2 tan(θ) sec2(θ),(

d

dθ
sec(θ)

)
tan(θ) =

d

dθ
sec(θ) tan(θ) = tan2(θ) sec(θ) + sec3(θ).

So the expansions hold for n = 1. Assume that there exist nonnegative integers M̃(n, k) and

Ñ(n, k) such that(
d

dθ
sec(θ)

)n

(sec(θ)) =
∑
k⩾0

M̃(n, k) tann−2k(θ) secn+2k+1(θ),

(
d

dθ
sec(θ)

)n

(tan(θ)) =
∑
k⩾0

Ñ(n, k) tann−2k+1(θ) secn+2k(θ).

Then we have

d

dθ

(
sec(θ)

(
d

dθ
sec(θ)

)n

(sec(θ))

)

=
d

dθ

∑
k⩾0

M̃(n, k) tann−2k(θ) secn+2k+2(θ)


=
∑
k⩾0

(n− 2k)M̃(n, k) tann−2k−1(θ) secn+2k+4(θ)+

∑
k⩾0

(n+ 2k + 2)M̃(n, k) tann−2k+1(θ) secn+2k+2(θ),

so we get M̃(n+ 1, k) = (n+ 2k + 2)M̃(n, k) + (n− 2k + 2)M̃(n, k − 1). The numbers M(n, k)

and M̃(n, k) satisfy the same recurrence relation and initial conditions, so they agree. Similarly,

it is routine to verify that N(n, k) = Ñ(n, k). This completes the proof.

Corollary 2. For n ⩾ 1, we have(
sec(θ)

d

dθ

)n−1 d

dθ
(tan(θ) + sec(θ)) = (n− 1)! secn(θ)(tan(θ) + sec(θ))n.
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4. The similarity of derivative polynomials and Chebyshev polynomials

4.1. Derivative polynomial bases

Motivated by (5), we shall express Qn+1(x) in terms of {Pi(x)}ni=−1, where we set P−1(x) = 1,

since P−1(x), P0(x), P1(x), P2(x), . . . , Pn(x) form a basis for polynomials with degree less

than or equal to n+ 1. We can now present the first result of this section.

Theorem 3. We have

Q2n(x) = (−1)n +
n−1∑
k=0

(
2n

2k + 1

)
(−1)kP2n−2k−1(x), (13)

Q2n+1(x) =
n∑

k=0

(
2n+ 1

2k + 1

)
(−1)kP2n−2k(x). (14)

Proof. By using (2), we obtain

Q(x; z) =
sin2(z) + cos2(z)

cos(z)

1

1− x tan(z)

=

(
cos(z)− x sin(z) + x sin(z) +

sin2(z)

cos(z)

)
1

1− x tan(z)

=
cos(z)− x sin(z)

1− x tan(z)
+ sin(z)

x+ tan(z)

1− x tan(z)
.

After simplifying, we get

Q(x; z) = cos(z) + sin(z)P (x; z). (15)

So we get

∞∑
n=0

Q2n(x)
z2n

(2n)!
+

∞∑
n=0

Q2n+1(x)
z2n+1

(2n+ 1)!

=

∞∑
n=0

(−1)nz2n

(2n)!
+

∞∑
k=0

(−1)kz2k+1

(2k + 1)!
×

( ∞∑
n=1

P2n−1(x)

(2n− 1)!
z2n−1 +

∞∑
n=0

P2n(x)

(2n)!
z2n

)

Selecting the coefficients of z2n and z2n+1, we arrive at

Q2n(x)

(2n)!
=

(−1)n

(2n)!
+

n−1∑
k=0

(−1)k

(2k + 1)!

P2n−2k−1(x)

(2n− 2k − 1)!
,

Q2n+1(x)

(2n+ 1)!
=

n∑
k=0

(−1)k

(2k + 1)!

P2n−2k(x)

(2n− 2k)!
,

and so the proof is complete.

Example 4. In the case when n = 2 in Theorem 3, we have

Q4(x) = 5 + 28x2 + 24x4 = 4P3(x)− 4P1(x) + 1,

Q5(x) = 61x+ 180x3 + 120x5 = 5P4(x)− 10P2(x) + P0(x).
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It follows from Theorem 3 that

Q2n(1) = (−1)n +

n−1∑
k=0

(
2n

2k + 1

)
(−1)kP2n−2k−1(1),

Q2n+1(1) =
n∑

k=0

(
2n+ 1

2k + 1

)
(−1)kP2n−2k(1),

which differ from (9). Combining the above formulas with (8), we obtain the following result.

Corollary 5. For any n ⩾ 0, we have

s2n = (−1)n +

n−1∑
k=0

(
2n

2k + 1

)
(−1)k22n−2k−1E2n−2k−1,

s2n+1 =
n∑

k=0

(
2n+ 1

2k + 1

)
(−1)k22n−2kE2n−2k.

The Bernoulli numbers Bn can defined by the exponential generating function

z

ez − 1
=

∞∑
n=0

Bn
zn

n!
= 1− z

2
+

1

6

z2

2!
− 1

30

z4

4!
+

1

42

z6

6!
− 1

30

z8

8!
+ · · · .

In particular, B2n+1 = 0 for n ⩾ 1, since z
2 coth

(
z
2

)
is an even function and

z

2
coth

(z
2

)
=
z

2

ez/2 + e−z/2

ez/2 − e−z/2
=

z

ez − 1
+
z

2
.

The Bernoulli numbers appear often in the coefficients of trigonometric functions (see [14, Chap-

ter 6] for details). As illustrations, we have

z csc(z) = 1 +
∞∑
n=1

(−1)n+1(4n − 2)B2n
z2n

(2n)!
,

z cot(z) =
∞∑
n=0

(−4)nB2n
z2n

(2n)!
(0 < |z| < π).

It follows from (15) that P (x; z) = csc(z)Q(x; z)− cot(z). Thus

zP (x; z) = z csc(z)Q(x; z)− z cot(z).

So we have

∞∑
n=0

P2n(x)
z2n+1

(2n)!
+

∞∑
n=0

P2n+1(x)
z2n+2

(2n+ 1)!

=

(
1 +

∞∑
i=0

(−1)i+2(4i+1 − 2)B2i+2
z2i+2

(2i+ 2)!

)( ∞∑
n=0

Q2n(x)
z2n

(2n)!
+

∞∑
n=0

Q2n+1(x)
z2n+1

(2n+ 1)!

)
−

∞∑
n=0

(−4)nB2n
z2n

(2n)!
.

9



Equating the coefficients of z2n+1 and z2n+2, we see that

P2n(x)

(2n)!
=
Q2n+1(x)

(2n+ 1)!
+

n−1∑
i=0

(−1)i+2(4i+1 − 2)B2i+2

(2i+ 2)!

Q2n−2i−1(x)

(2n− 2i− 1)!
,

P2n+1(x)

(2n+ 1)!
=
Q2n+2(x)

(2n+ 2)!
+

n∑
i=0

(−1)i+2(4i+1 − 2)B2i+2

(2i+ 2)!

Q2n−2i(x)

(2n− 2i)!
− (−4)n+1B2n+2

(2n+ 2)!
.

Using these expressions, we get the following result.

Theorem 6. We have

(2n+ 1)P2n(x) = Q2n+1(x) +
n−1∑
i=0

(
2n+ 1

2i+ 2

)
(−1)i+2(4i+1 − 2)B2i+2Q2n−2i−1(x),

(2n+ 2)P2n+1(x) = Q2n+2(x) +

n∑
i=0

(
2n+ 2

2i+ 2

)
(−1)i+2(4i+1 − 2)B2i+2Q2n−2i(x)− (−4)n+1B2n+2.

4.2. Dual formulas of (4) and (6)

We now define four kinds of enumerative polynomials over the symmetric group Sn:

an(x) =
∑
k⩾1

a(n, k)xk, bn(x) =
∑
k⩾0

b(n, k)xk,

cn(x) =
∑
k⩾1

c(n, k)xk, dn(x) =
∑
k⩾0

d(n, k)xk,

where the coefficients are respectively defined by

a(n, k) = #{π ∈ Sn : epk = k, ddes = 0}, b(n, k) = #{π ∈ Sn : lpk = k},

c(n, k) = #{π ∈ Sn : epk = k}, d(n, k) = #{π ∈ Sn : ipk = k}.

As pointed out by Chen and Fu [10, Theorem 10], one has c(n, k + 1) = d(n, k). Hence

cn(x) = xdn(x). From [11, Propositions 3.4, 4.9] and [23, Theorem 1], we see that the numbers

a(n, k), b(n, k) and c(n, k) satisfy the following recursions:
a(n, k) = ka(n− 1, k) + (2n− 4k + 4)a(n− 1, k − 1),

b(n, k) = (2k + 1)b(n− 1, k) + (n− 2k + 1)b(n− 1, k − 1),

c(n, k) = 2kc(n− 1, k) + (n− 2k + 2)c(n− 1, k − 1).

with a(1, 1) = c(1, 1) = 1 and a(1, k) = c(1, k) = 0 if k ̸= 1, b(1, 0) = 1 and b(1, k) = 0 if k ̸= 0.

Using the above recursions, it is easy to verify that c(n, k) = 2n+1−2ka(n, k), and so

cn(x) = 2n+1an

(x
4

)
.

For convenience, we list the first few polynomials (see [30, A101280,A008971,A008303]):

a1(x) = x, a2(x) = x, a3(x) = x+ 2x2, a4(x) = x+ 8x2;

b1(x) = 1, b2(x) = 1 + x, b3(x) = 1 + 5x, b4(x) = 1 + 18x+ 5x2;

c1(x) = x, c2(x) = 2x, c3(x) = 4x+ 2x2, c4(x) = 8x+ 16x2.
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Theorem 7. For n ⩾ 1, we have

Pn(x) =

⌊(n+1)/2⌋∑
k=1

a(n, k)(1 + x2)k(2x)n+1−2k, Qn(x) =

⌊n/2⌋∑
k=0

b(n, k)(1 + x2)kxn−2k. (16)

Proof. When n = 1, 2, we have P1(x) = 1 + x2, P2(x) = 2x(1 + x2), Q1(x) = x and

Q2(x) = 1 + 2x2 = x2 + (1 + x2).

So the expansions hold for n = 1, 2. By induction, assume that they hold for n = m. Then

Pm+1(x) = (1 + x2)
d

dx
Pm(x)

= (1 + x2)
d

dx

∑
k

a(m, k)(1 + x2)k(2x)m+1−2k

=
∑
k

ka(m, k)(1 + x2)k(2x)m+2−2k +
∑
k

(2m+ 2− 4k)a(m, k)(1 + x2)k+1(2x)m−2k,

which yields that the coefficient (1 + x2)k(2x)m+2−2k of Pm+1(x) is given by

ka(m, k) + (2m− 4k + 6)a(m, k − 1) = a(m+ 1, k),

as desired. Similarly,

Qm+1(x) = (1 + x2)
d

dx
Qm(x) + xQm(x)

= (1 + x2)
d

dx

∑
k

b(m, k)(1 + x2)kxm−2k + x
∑
k

b(m, k)(1 + x2)kxm−2k

=
∑
k

(1 + 2k)b(m, k)(1 + x2)kxm+1−2k +
∑
k

(m− 2k)b(m, k)(1 + x2)k+1xm−2k−1,

which implies that the coefficient (1 + x2)k(2x)m+1−2k of Qm+1(x) is given by

(1 + 2k)b(m, k) + (m− 2k + 2)b(m, k − 1) = b(m+ 1, k).

This completes the proof.

The central factorial numbers of the second kind T (n, k) are defined in Riordan’s book [29,

p. 213-217] by

xn =
n∑

k=0

T (n, k)x
k−1∏
i=1

(
x+

k

2
− i

)
.

Using central difference operator, Riordan [29, p. 214] deduced that

k!T (n, k) =

k∑
j=0

(
k

j

)
(−1)j

(
k

2
− j

)n

.

We denote by U(n, k) = T (2n, 2k) and V (n, k) = 4n−kT (2n+ 1, 2k + 1) for all n, k ⩾ 0. These

numbers satisfy the recurrence relations{
U(n, k) = U(n− 1, k − 1) + k2U(n− 1, k),

V (n, k) = V (n− 1, k − 1) + (2k + 1)2V (n− 1, k),
(17)

with the initial conditions U(1, 1) = 1, U(1, k) = 0 if k ̸= 1, V (0, 0) = 1 and V (0, k) = 0 if k ̸= 0.
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Theorem 8. For n ⩾ 1, we have

P2n−1(x) =

n∑
j=1

(−4)n−j(2j − 1)!U(n, j)(1 + x2)j , P2n(x) = x

n∑
j=1

(−4)n−j(2j)!U(n, j)(1 + x2)j ,

Q2n(x) =
n∑

j=0

(−1)n−j(2j)!V (n, j)(1 + x2)j , Q2n+1(x) = x
n∑

j=0

(−1)n−j(2j + 1)!V (n, j)(1 + x2)j .

Proof. Note that

P1(x) = 1 + x2, P2(x) = 2x(1 + x2), P3(x) = −4(1 + x2) + 6(1 + x2)2,

Q1(x) = x, Q2(x) = −1 + 2(1 + x2), Q3(x) = x(−1 + 6(1 + x2)).

We proceed by induction. Assume that

P2m−1(x) =
m∑
j=1

(−4)m−j(2j − 1)!U(m, j)(1 + x2)j , Q2m(x) =
m∑
j=0

(−1)m−j(2j)!V (m, j)(1 + x2)j .

Using (3), we arrive at

P2m(x) = x
m∑
j=1

(−4)m−j(2j)!U(m, j)(1 + x2)j ,

Q2m+1(x) = x
m∑
j=0

(−1)m−j(2j + 1)!V (m, j)(1 + x2)j .

We proceed by induction. Note that

P2m+1(x) = (1 + x2)
d

dx
P2m(x)

=

m∑
j=1

(−4)m−j(2j)!U(m, j)(1 + x2)j+1 + x2
m∑
j=1

(−4)m−j(2j)!(2j)U(m, j)(1 + x2)j

=

m∑
j=1

(−4)m−j(2j)!U(m, j)(1 + x2)j+1 + (1 + x2 − 1)

m∑
j=1

(−4)m−j(2j)!(2j)U(m, j)(1 + x2)j

=
m∑
j=1

(−4)m−j(2j)!U(m, j)(1 + x2)j+1 +
m∑
j=1

(−4)m−j(2j)!(2j)U(m, j)(1 + x2)j+1−

m∑
j=1

(−4)m−j(2j)!(2j)U(m, j)(1 + x2)j

=
m∑
j=1

(−4)m−j(2j + 1)!U(m, j)(1 + x2)j+1 −
m∑
j=1

(−4)m−j(2j)!(2j)U(m, j)(1 + x2)j

=

m∑
j=1

(−4)m−j(2j + 1)!U(m, j)(1 + x2)j+1 +

m∑
j=1

(−4)m+1−j(2j − 1)!j2U(m, j)(1 + x2)j

Extracting the coefficient of (−4)m+1−j(2j − 1)!(1 + x2)j leads to

U(m, j − 1) + j2U(m, j) = U(m+ 1, j).
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So we get

P2m+1(x) =

m+1∑
j=1

(−4)m+1−j(2j − 1)!U(m+ 1, j)(1 + x2)j .

Similarly, one can verified that

Q2m+2(x) =
m+1∑
j=0

(−1)m+1−j(2j)!V (m+ 1, j)(1 + x2)j .

This completes the proof.

Remarkably, combining Theorems 7 and 8, substituting 1+x2

4x2 → y, we get the following

Frobenious-type formulas for exterior peak and left peak polynomials.

Corollary 9. For n ⩾ 1, we have

a2n−1(x) =
n∑

j=1

(2j − 1)!U(n, j)xj(1− 4x)n−j ,

a2n(x) =
n∑

j=1

(2j − 1)!jU(n, j)xj(1− 4x)n−j ,

b2n(x) =

n∑
j=0

(2j)!V (n, j)xj(1− x)n−j ,

b2n+1(x) =

n∑
j=0

(2j + 1)!V (n, j)xj(1− x)n−j ,

c2n−1(x) =
n∑

j=1

(2j − 1)!4n−jU(n, j)xj(1− x)n−j ,

c2n(x) = 2
n∑

j=1

(2j − 1)!j4n−jU(n, j)xj(1− x)n−j .

5. Möbius transformations of Eulerian polynomials

Let ±[n] = [n] ∪ {−1,−2, . . . ,−n}, and let Bn be the hyperoctahedral group of rank n.

Elements of Bn are signed permutations of ±[n] with the property that σ(−i) = −σ(i) for all

i ∈ [n]. The type B Eulerian polynomials are defined by

Bn(x) =
∑
σ∈Bn

xdesB(σ),

where desB(σ) = #{i ∈ {0, 1, 2, . . . , n− 1} : σ(i) > σ(i+ 1)} and σ(0) = 0 (see [7] for details).

It is well known that (see [16]){ ∑∞
n=0An(−1)x

n

n! = 1 + tanh(x),∑∞
n=0Bn(−1)x

n

n! = sech (2x).
(18)
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Consider the derivative polynomials for hyperbolic tangent and secant:

dn

dθn
tanh θ = P̃n(tanh θ) and

dn

dθn
sech θ = sech θ · Q̃n(tanh θ).

It follows from tanh θ = i tan(θ/i) and sech θ = sec(θ/i) that

P̃n(x) = in−1Pn(ix) and Q̃n(x) = inQn(ix).

By the chain rule, we see that{
P̃n+1(x) = (1− x2) d

dx P̃n(x), P̃0(x) = x

Q̃n+1(x) = (1− x2) d
dxQ̃n(x)− xQ̃n(x), Q̃0(x) = 1.

(19)

Motivated by (18), we find the following result.

Theorem 10. We have

(−1)nP̃n(x) = (x+ 1)n+1An

(
x− 1

x+ 1

)
, (−1)n2nQ̃n(x) = (x+ 1)nBn

(
x− 1

x+ 1

)
.

Proof. It is well known that{
An+1(x) = (nx+ 1)An(x) + x(1− x) d

dxAn(x),

Bn+1(x) = (2nx+ x+ 1)Bn(x) + 2x(1− x) d
dxBn(x),

(20)

with A0(x) = 1 and B0(x) = 1, see [11, 24]. Set

Ãn(x) = (x+ 1)n+1An

(
x− 1

x+ 1

)
, B̃n(x) = (x+ 1)nBn

(
x− 1

x+ 1

)
.

Substituting these two expressions into (20) and simplifying, we obtain{
Ãn+1(x) = (x2 − 1) d

dxÃn(x), Ã0(x) = x

B̃n+1(x) = 2(x2 − 1) d
dxB̃n(x) + 2xB̃n(x), B̃0(x) = 1.

By (19), we obtain Ãn(x) = (−1)nP̃n(x) and B̃n(x) = (−1)n2nQ̃n(x), as desired.
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