HANKEL DETERMINANTS FOR CONVOLUTION
POWERS OF NARAYANA POLYNOMIALS

GUO-NIU HAN

ABSTRACT. We prove and generalize a conjecture of Johann Cigler
on the Hankel determinants of convolution powers of Narayana
polynomials. Our method follows a ”guess-and-prove” strategy,
relying on established techniques involving Hankel continued frac-
tions. While the final forms of our theorems are given by simple
closed expressions, the proofs require us to formulate and manage
extremely large and intricate explicit expressions at intermediate
stages. Most of the technically involved and lengthy formal ver-
ifications are carried out using a symbolic computation program,
whose code is available on the author’s personal webpage for in-
dependent verification. We emphasize that our program delivers
rigorous symbolic proofs, rather than merely verifying the initial
terms.

1. INTRODUCTION

The purpose of this paper is to establish and extend a conjecture
of Johann Cigler concerning the Hankel determinants of convolution
powers of Narayana polynomials [7]. Let 7, = n-lu (2:) denote the
n-th Catalan number (We avoid the traditional notation €', because
of possible confusion with some other object introduced later). Hankel
determinants formed from the Catalan sequence have been investigated
in [1, 12, 21, 25, 5, 3, 19]. In 2002, Cvetkovi¢, Rajkovié¢, and Ivkovié
[11] determined the Hankel determinants of the sequence whose entries
are sums of consecutive Catalan numbers:

(1) det (A,»H_j + A,»z‘-}-j-‘,—l)?’;:lo = F2n+17

where [, denotes the n-th Fibonacci number. Since then, this identity
has been extended in various directions [2, 22, 13, 4, 23, 26, 9, 24].
Motivated by (1), Cigler [7] studied the Hankel determinants associated
with convolution powers of Narayana polynomials. Recall that the
Narayana polynomials are given by

o =R e

k=0
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which specialize to the Catalan numbers when # = 1. The initial terms
of the sequence (7,()),>0 are

L1461 4+304+ 121460 +662 13,1410t + 2002 4+ 101% + 14, . ..
The generating function of the Narayana polynomials
Wt ) = vult)"
n>0

satisfies the quadratic relation
(3) ~1+ (1 —q+1q)y(t.q) — ta(t,9)* = 0.

The convolution powers of the Narayana polynomials ~ ) (1) are defined
via the following generating functions, depending on the parity of 7:

> A =G,
3 ()" =4 (t,q) Gt q)",

where G(t,q) = % denotes the generating function of the shifted
Narayana polynomial sequence. Observe that

. T 2n+ 71
=5 ()
n—+rT n

gives the 7-fold convolution power of the Catalan numbers. In [7],
Cigler investigated the Hankel determinants associated with the con-
volution powers of Narayana polynomials ~ {r )(z‘) and derived explicit
expressions for the cases 7 = 3 and 7 = 4. He also proposed a conjec-

ture for 7 = 6. We restate these results below. Let

() N-1
(4) Agm) = det <“/,,L.ijs(f)> .

1,j=0
Theorem 1 ([7], Theorem 5.2). We have

Lv/2]
N 4‘7\[ - ]{:

5 AP —12) 3 (-1 ’”< )t‘k’.
5) Py (",

Theorem 2 ([7], Theorem 7.4). We have

(©) A@ _ ) D n 4 1], if N = 2n,
O (=) 2 [+ 1), if N =2n+1,
where [n], is the standard notation for q-number:
[n](]:1+q+q2+"'+q”_1-

Conjecture 3 ([7], Conjecture 7.6). We have

(_1)71159”(”—1)/2 [n + 1][23, if N = 3n,
(7) A(()G) _ (_1)7’7/7L3TL(377/—1)/2|:7/L + 1][23’ Zf N = 3n + 1,
(_1)n+13f3n(3n+1)/2 [3]ﬂ'n(f), Zf N =3n+ 27
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where

2

5 1
+(”§)ﬁn+(n;)ﬁwm+~~+ﬁ”

1
() = 1433 + 615+ + (” + )[3(7,,_1)

For further references on these Hankel determinants, we refer the
reader to [26, 9, 10, 14, 16].

In this paper, we establish generalizations of Theorem 2 and Conjec-
ture 3. Rather than working with G(7,¢)™, we focus on the sequence
generated by (7(,¢) — 1)™, and derive closed-form expressions for the
Hankel determinants of this sequence as well as for its first, second,
and third shifted versions:

N _1\m (A/ <t7 Q) — 1)m (ﬁf (fw Q) — 1)m (A/’ (IL7 Q) — 1)m
((tq) = )", othe) 2D O D7
q q q
It is straightforward to see that the second shifted sequence coincides
with ~ 57,4)(#) when m = 2, and that the third shifted sequence coincides
with 7\¥ (1) when m = 3. We also set 7>™(#) = 0 for i < 0. Our main
theorems are presented below, where we write &, = (—1)"(m=1/2 for
short.

Theorem 4. For m > 1 we have

1, if N =0,
ACm) —&ytmn=Dmn=2/2ln 1], if N = mn,
"o (—1)m§1?‘m2"("71)/2 [n]im, if N =mn+1,
0, otherwise.

Theorem 5. For m > 1 we have

£1f7n,2n(7l—1)/2’ ZfN =mn,
0, otherwise.

A(Qm,) _

m—1

Theorem 6. For m > 2 we have

(—1)m”§1f7”2”(”*1)/2 [n+ 1]m, if N = mn,
Ag’_”% — (_1)mn—m—1£1lgm(n—l)(mn—Q)/Q [n]fm, Zf N = mn — 17
0, otherwise.

Theorem 7. For m > 3 we have

glf'm?n(n—l)/Q [n + 1]%”’ ’Lf N = mn,
A(Zm) _ (_1)mflglfm(nfl)(mnf2)/2R(Tn; t,n— 1)’ Zf N = mn — 1,
m—3 _gllrn(n—l)(m7z—4)/2 [n]IZm, if N =mn — 2,

0, otherwise.
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where
n . 2n .
7+ 2\ . 2n — i+ 2\ .
8 R ./ — /'NI,[, /'NI/[, .
) Rimitum)  mf], (z( e s () )

We see that Theorem 6 implies Theorem 7.4 of Cigler (6) when m =
2, and Theorem 7 confirmes his conjecture 7.6 (7) when m = 3.

Our method is essentially a “guess-and-prove” approach that relies
on established techniques involving Hankel continued fractions. While
the final forms of our theorems are quite simple and closed, the proof
process itself forced us to guess and manipulate extremely large and
intricate explicit expressions. For instance, the complete expression for
('s; given in Lemma 19 is

— d
Yo = —q° [l 5 + m m—1—d+i\[m—-1—1)\ ,
= (e ey S Gy (ot (),

=0
R(”L;f:j) m+1 []]/m [.] 1}/ m (1 +fm(J+1)) m+2
G+ +(m[m]‘R(m;f,y D Gt )

fm,j

- R(m;t,j — 1)(

where R(m;t,n) is defined in (8). Observe that in this formula, the
terms RR(m;?,n) appear both in numerators and in denominators.

)m+3

)

To establish our main theorems, we use the Hankel continued fraction
approach developed in [17]. The underlying idea is recalled in Section 3.
Our strategy proceeds as follows:

1. Derive a quadratic equation for each of the series
¢ ¢ '
To this end, we obtain a general formula in Section 5, Corollary 17.

and

2. Apply Algorithm NextABC to the initial coefficients appearing in
the quadratic equations derived above. This produces the initial terms
of a sequence of six-tuples (23)

(An+17 Bn+17 CnJrl; kna G, Dn)

Based on these initial terms, we formulate a conjectural closed-form
description of the sequence; see Lemmas 18 and 19.

3. Prove that the conjectured formulas are correct, i.e., that they sat-
isfy the relations specified in Algorithm NextABC, in Sections 7 and 8.
Because the proofs are very long and technically involved, we repro-
duce only the more accessible part in this paper. The more intricate
computational verifications are carried out by computer; the programs
are available on my homepage at

https://irma.math.unistra.fr/“guoniu/narayana.html
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We emphasize that our program delivers rigorous symbolic proofs,
rather than merely verifying the initial terms.

4. Construct the Hankel continued fraction from the resulting se-
quence of quantities; see Section 3, Lemmas 12-15.

5. Finally, compute the Hankel determinants from the Hankel con-
tinued fractions. This is carried out in Section 4.

2. NOTATIONS AND PROPERTIES

Since the expressions we obtain are rather lengthy, we first introduce
some notation to simplify the exposition.

Definition 8. For d =0,1,2,...,m, define

d : :
m(m — d) m—d+i\ [m—1i\ ,;
1d) = '
plm;t,d) Z(m—i)(m—d—i—i)( i )<d—i) ’

i=0
n 2n
. 7”(1 — fm) . 2,mi . 2,mi
S(m,f,,n):?<2(z—l—l)z‘, —I—'Z (2n —i+ 1)t ,
=0 i=n-+1
Blmst,q) =) plm;t,d)(—q)!
d=0
=1—-m(t+1)qg+ ((T;I) + m(m —2)t + (r;z) )+
Wl(l — f'm) m—1 m m
ﬁ(—@ + @+ ") (=)™
We also set )
a(m;t,q) = Z p(m;t,d)(—q)?,
d=0
so that
1 _ [771
B(m;t,q) — a(m;t, q) = %(—Q)m1 + @+ ") (=)™

For brevity, we write p(d) = p(m;t,d), R(n) = R(m;t,n),S(n) =
S(m;t,n), 5(q) = B(m;t,q),a(q) = a(m;t,q).

Remark. When d = m, we obtain p(m;t,m) = 1 +". For d =

0,1,2,...,m — 1, the function p(m;t,d) can be expressed as
d . .
m m—1—d+i\ (m-—1—1\ .
itd) = .

Recall that the Lucas polynomials are given by Lo(z,s) = 2 and, for

m>1,
[m/2] o — i m
Loz, s) = glgpm=2i
(x,s) Z ( . )—s x

: m—1
=0
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They satisfy
(9) Ly(x,s) =xL,,_1(x,8) + sLy_o(z,s)
with initial values Lo(x,s) =2 and Ly (z,s) = x.
Lemma 9. We have

B(m;t,q) = L(1 — q — tq,—1q").

Proof. Consider the right-hand side of the claimed identity:

[m/2] ,
m —1 m . .

RHS: — (1 — _f;mez _f2z
Z( ; > (1 —q—tg)" ™ (—tq")

, m—1

=0
_Lmz/?J m—1i\ m 7§i m — 24 (—(1 + D)) (~tg?)
B — i m—i £ 14 ! v

For 0 < d <m and 0 < j < d, we extract the coefficient of ¢/ from
the above expression. First,

("] RHS MZ/QJ m—4i\ m [m—2i (—(1 4 1)) (=)
¢ = - —
! [ m—1\d—21

1=0

ey () (S () e

=0

To obtain [¢?/] RHS, set £ = j — i in the last sum. The condition
0</¢<d—2ibecomes 0 < j—i<d—2iie,1<7<d—1i Hence
i <jandi<d—j,and in particular i < [d/2|. Therefore,

(10)

min{j,d—j} . . .
_ — m m—2i\ [d— 21 ,
LITRES — (1) m—1 m m i
[("Y]RHS = (=1)" Y~ P Il (R (—1)

=1
i=0 J

We now check that these coefficients coincide with the corresponding
coefficients in 3(m;1,q). For d < m — 1, we have

s = D M O [V

i=0
B (_de(m—l—i—j—d)! m—1—j
B Jlm —d)! d—j

= [¢“]p(m; t, d)(~q)%,

where the sum over i is evaluated using “The Methode of Coefficients”;
see [15].
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If d = m, then from (10) we obtain [¢"/°]RHS = [¢"/™]RHS =
(=1)". For d =m and 1 < j < m — 1, (10) specializes to

m minid,m=i} iN{m-—i—1
m/j HS = (-1 m_"" / g _11
oras = Y (D) (T e

i=0
(m—1—
=04W2(m ,j>:0. O
J\ m—j
Moreover, the quantities S(j) and R(j) are connected through the
following relationships:

m(L—1")  2R(j) —S(j)  —2t"R(j)+S(j+1)

1—t  +1E [+ 212
_ —2"R(j - 1)+ 5() _ R(j) — "R — 1)
[+ 1% [+ 1] ’

S() = R(G) +1"R(G —1).

Throughout this paper, we adopt the following rule, referred to as the
“index convention” [18]. It stipulates that, in any expression defined
by cases, each formula applies only to those integer indices that have
not already appeared as special values. For instant, in Lemma 12, the
formula for vg;41 is applicable for j > 1, but not for j = 0, because v,
has already been explicitly specified earlier.

3. HANKEL CONTINUED FRACTIONS

The Jacobi continued fraction is a useful tool for evaluating Han-
kel determinants when all of them are nonzero. Since, in our case,
some Hankel determinants vanish, we instead have to use the so-called
“Hankel continued fractions” developed in [17]. For further references,
see [20, 6, 8, 18]. We now briefly recall the definition and the basic
properties of Hankel continued fractions from [17].

Definition 10. For each positive integer 0, a super continued fraction
associated with 0, called super o-fraction for short, is defined to be a
continued fraction of the following form

ko+k1+96 ‘ ki1+ko+9d

ko . 29
voq ‘ v1q Uaq
11 F(q) = — —
(1) (@) [T+u(q)e  [1T4+ulg)s  [1+us(g)g
where v; # 0 are constants, k; are nonnegative integers and uj(q) are
polynomials of degree less than or equal to k;_1 +0 —2. By convention,
0 s of degree —1.

When 0 =1 (resp. ¢ = 2) and all k; = 0, the super o-fraction (11)
is the traditional S-fraction (resp. J-fraction). A super 2-fraction is
called Hankel continued fraction.
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Theorem 11. (i) Let § be a positive integer. Each super o-fraction
defines a power series, and conversely, for each power series I'(q), the
super O-fraction expansion of F'(q) exists and is unique. (ii) Let F'(q)

be a power series such that its H-fraction is given by (11) with 6 = 2.
Then, all non-vanishing Hankel determinants of F'(q) are given by
(12) Hy (F(q)) = (=1)7vg vy’ ™oy ™2 0377,

7j—1

where ¢; = Y70 ki(ky +1)/2 and s; = ko+ky -+ k1 +] for every
J=0.

By applying Theorem 11, the proof of our main results reduces to
explicitly determining the corresponding Hankel continued fractions.
This is exactly what we now proceed to do. The /H-fraction will be
given in the standard form
(13)

N ’Uo(]‘ ‘ U1 Vag
H(a; (ky), (v5), (u5) T+ w(e)g [T+ule)e  [1+us(g)q

with explict values for kj, v}, u;.

ko+k14+2 ‘ k1+ko+42

We are now prepared to write down the explicit //-fractions of

) ym OG- Ot - (g -1"
( / (t q) - ) ’ ) 2 ) 3 .
q q q

Lemma 12. For m > 1, the power series (7(t,q) — 1) has the fol-
lowing H -fraction expansion:

(v(tq) = )™ = H((k;), (v5), (1)),
where ko = m, kojr1 = m — 2, kgjio = 0,09 = 1,01 =1, and
g = == [l /1 + Lo,
Uagra = (=11 + 2o /[ + Lo
1+ ui(q)g = B(m;t,q),
1+ uzi42(q)q = B(mst, q) —

ug;1(q) = 0.

<_(I) ( + fm)?

Lemma 13. For m > 1, the power series (v(t,q) —1)"/q has the
following H -fraction expansion:

M = H((k;), (v3), (u3)),

where k; =m — 1,090 =1,0; =t", 1+ u;(q)q = S(m;t,q).

Lemma 14. For m > 2, the power series (7(1,q) — 1)™/q* has the
following H -fraction expansion:

(g 1)

5 ="H((k)), (v;), (u;)),

q
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where koj = m — 2, kojy1 = 0,09 = 1, and
vaj = —(=0)"[jlem /17 + 1im,
Vo1 = (=1)" g + 2im /[j + Upm,
L usya(0)a = S0mst,0) = (=) (1 + "),
uzi(q) = 0.

Lemma 15. For m > 3, the power series (7(1,q) — 1)™/¢® has the
following H -fraction expansion:

(g ="
g H((k;), (v5), (uy)),
where kgj =m — 3, k341 = 0, k340 = 0,090 = —1, and
vg; = (=1)" " R(G = 1)/[7 + ]2,
vgj1 = (=1)"R()/lF + 1),
vgive = =7+ 12 lj + 202,/ R(j)?,
usj(q) = —=[jlimlj + 1m /R(j — 1),
L+ uzjpa(q)g = a(q),
uzj2(q) = [J + U [j + 2]im /R(j).

4. PROOFS OF THE MAIN THEOREMS

In this section we prove the four main theorems using the four explicit
H-fraction given in the previous section.

Proof of Theorem 4. We apply the second part of Theorem 11 to the
H-fraction from Lemma 12 that corresponds to (7(,¢) — 1)". In this
setting, we obtain sg = 0,
Sojr1 =hko+ ki +--+ky+2j+1=m(j+1)+1,
Sojya = Soj41 + ko1 +1=m(G+1)+1+(m—2)+1=m(j+2),
and ¢y = 0,
2j
€2j+1 = m(m + ].)/2 + Z k1<kz -+ 1)/2
i=1
=m(m+1)/2+j(m—2)(m—1)/2,
€2j+2 = €541 + (m —2)(m —1)/2
=m(m+1)/24+ (7 +1)(m —2)(m—1)/2.

Since Vg = 1 and U2i42U2i+3 = tm , We have ]]0 = ]_, ]]81 = (_1)7n(m+1)/2’

; (L 1\€2j41,, 521751 Spjp1—s2  S2j41—S2;
HSQJ-H(F(Q)) = (-1 U1 Ug Ugj )
j—2
_ (_1)52j+1 (v5’2j+1_51 {'5’2j+1_32j (v52j+1_52i+2, 52/ 4152043
= 1 J9j '2i42 J2i43

1=0
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_ (_1)(j+1><m—2>(m—1>/2+m+<m+1>(j—1>fm2j

-2 .
S e 23
= (_1)(J+1)m(m71)/2+mfm J(G+1)/2 [ + 1],
and

H g (F(@)) = (L)t aiss s ma—saans,

j—1
_ (_1)F2j+2 52j+2—51 | 52j42752i42  S2j4252i+3
= U1 '2i42 2i+3
1=0
( 1)m(m+1 /24+(j+1)(m—2)(m— 1)/21Lm(mj+m 1)

1 7—1

771 3
(1 2i4+2U24 +3 =) | | 21+3
=0

m(m+1)/2+(j+1)(m,—2)(m—1)/2/’m,(m,j+m—1)

J
X

' .':1

o

-

~—

<.
—

X

—1 .
(fm)m(jfi) Jl_[ (_1)m+1[2 + 2]/’”

o+ 1
— (_1)(j+2)m(m—1)/2+1fm(j+1)(mj+2m—2)/2[j 4 1m. O

.

Proof of Theorem 5. Apply the second part of Theorem 11 to the /-
fraction from Lemma 13 corresponding to (7(#,¢) —1)"/q. Then we
obtain
5’0:(), Sj:ko‘{'lﬁ—i—+l€]71+j:j(m—1)+jzﬂl],

and

j—1

5= kilki +1)/2 = jm(m —1)/2.

i=0

Since vy = 1, we have Hy =1,
Hoy (F(q)) = (—1)50g oy~ ™ i3

( 1)jm m— 1)/2 jm ml%m 2m ly;:'ml—(j—l)m
( 1)jm m— 1)/2(]Lm)Jm m+4jm—2m+-+jm—(j—1)m
(—1)

1 jm(m— 1)/27077 i(—=1)/2 [

Proof of Theorem 6. We apply the second part of Theorem 11 to the
H-fraction from Lemma 14, corresponding to (7(7,q) —1)"/q¢?. This
yields so = 0,
52j+1 :k0+k1++k2]+2j+1
=(+Hm—=2)+2j+1=(G+1)m—1,
82j+2 :/f0+]{71+"'+]{72j+1+2j+2
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=(ko+ki+-+ky+2j+1)+1=(+1)m,

and ¢y = 0,

€2j41 = Zk(k +1)/2=(+1)(m—=2)(m—-1)/2,

€2j42 = (] + 1)(Wl — 2)<NZ — 1)/2
Since U = 1 and V2i41V2i42 = fm, we have HO = 1,
Har (F(@)) = (1o g,

j—1

j—1)m—1
=& H v éz+1) léji+2)

=0

j—1 Jj—1
B . ‘ (j—1)m =1
=& H (L 2i+1 1~2z‘+2) U2it2

i=0 =0

J—1 m+1 m
:SQH fm (3= Lm/H ¢ 2+1]/m

7 + 2 [m
=0

= (- 1)(m+1)(mj+m 2)/2fmj(mj+m 2)/2[j 1]

fTTL’
where &5 = (_1)(j+1)(m—2)(m—1)/2 and

Hs2j+2(F<q)) = (_1)62j+21 i2J+2 51152#2 e v ot 52J+17

2j+1
J—1
— (—1)%2i+2 ), 52j+2752i+1  52j+2752i+2 8242782541
N ( 1) ’ H U2it1 V2it2 X Vgt
=0
Jj—1 j—1
— , - - (j—i)m+1 1
= &2z (Vair102i12) Ugito
=0 i=0
il iz 1 m+1 m
_ 521'2'-&-1 H le (G- z)m-i-l H t Z + 1]
= 12
[i + 2]im
i=0 -0 +
= <_1)(J+1)m(m+1)/2fm FG+1) /2[] + 2. 0

Proof of Theorem 7. We apply the second part of Theorem 11 to the
H-fraction from Lemma 15 corresponding to (7(f,¢) — 1)"/¢3. In this
setting, we have so = 0,

sajar = Ko+ ko kg + 35+ 1
=0G+1Dm=3)+3j+1=({+1)m-2,
S3j42 = 53541 + ki1 + 1= (§ 4+ 1)m — 1,
53j43 = 53542 + kjpo + 1= (j 4+ 1)m,
and ¢y = 0,

€3j41 = €35+2 = €343
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3J

— Zk(k +1)/2=(j+1)(m —3)(m —2)/2.

i=0
We can verify that
U3i+1U3i4203i43 = 1,
V3i42V3i4 = —12" i+ 15 /[ + 2],
U3ianvaire = — [ + 205 /17 + 1
Since 1o = 1, we have Hy =1,

H gy (F(g)) = (S1) o070 =2,

j—1
_ (_1)53]~+1 83j+1783i+1 ) S3j+1753i+2  S3j+1753i+3
= Ugit1 Usiya 3i+3
i=0
j—1
_ pU=im, (=iym=1, (j—i)m~2
= &3 Ugir1l Uziy2 Usits
i=0
j—1 j—1
_ . o . (G—i)m =1 =2
= &3 H (L 3i+1U3i4+20 3i+3>> Ugi4+2U3i+3
=0 =0

i1 2m
o m (],Z —t L + 1]
= (t
€3 zlzol /H i+ 28,

= (—1)1FU+Dmlm= 1)/2fmj(mj+m D24 1)?

tm o

where &3 = (_1)(j+1)(m—:’>)(m—2)/27 and

H oy (F(q)) = (= L)oo o= sora=sasn

37+1 9
7j—1
= (_1>F3j+2 o3I 27831 58425342, SBjH42TS8I43 (o S3j 42T B 1
B it '3i42 3i+3 U+
=0
7—1
— £ C(g—iym+1 (j—iym_ (j—i)ym—1
= §303541 Usit1 Ugivs Usivg
1=0
_ y 7 ) ; (j—i)m+1 -1 -2
— §32,3j+1 H (137;_,'_1(,3,,;4_2?,37;_’_3) l’3i+22’3i+3
=0 i=0
J—1 2m
— s fm j—i)m+1 —1 Z -+ 1][,”
= {31 3j+1 | ( /

z—i—2

— (_1)771—1+(]+1)m (m—1) /QR(j)fmj(m]—i—m—Z)/Z

Y

and

Hesiis (F(q) = (_1)63]+3(,;3]+3—91( ;3J+3—e2 . [;3]—:23 ssivr
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7j—1
_ (_1>53j+3 SBIHBTIBIAL 5354375842, S3j 437 53143
3141 ‘3142 "3i+3
=0
% 193J+3 S3j+1, S3j+37535+2
3j+1 '3j+2
j—1 Jj—1
e 2 (V3it1V3i4203: )(J’*i)m+2 -1 -2
= 3055410342 U3i4+1V3i4+2U3i43 Ugit2V3i+3
=0 =0
. 2 J-1 2m
— 63 [j + Q]fm H "L (] 7 m+2/H _/ Z + 1 fm
- (_1)(J+1)m(m 1)/2ym? ](J+1)/2[j +2)%.. O

5. BASIC TRANSFORMATIONS FOR QUADRATIC POWER SERIES

Lemma 16. Let A, B,C, U be polynomials. Suppose ' is a quadratic
power series satisfying

0=A+ BF +CF?>.

Then the series UF, F'+ U, and '™ are also quadratic power series,
and they satisfy

0=AU*+ BU(UF) + C(UF)?,
0= (A—BU+CU»+ (B—-2CU)(F+U)+ C(F +U)?,
0=A"+ (=1)""'L, (B, —AC) ™ + C" 2",

Proof. The initial two situations, U/ and /' 4 U, are straightforward,

so we focus on the case G = .
Begin with the special case A = (' = 1, and assume

(14) 0=1+4 BF + [?,
(15) 0=1+ B, F"+ F*"
Clearly, Bp = —2 and B; = B. From (14) and (15) we derive

() (1)
<

1 1
Fn-i—l ) + (F + Fn—l)

n+1 Bn 1-

Comparing this with (9), we obtain
B, = (-1)""L,(B,~-1)

2 N
(10 (M)

k=0
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Now consider the general case, where
0=A+BF+CF?
(17) 0=A,+ B, F"+C,F".
Set /' = \/A/C G. Then the first relation becomes

2

A A

= A+ By = =
0=A+ CG+C< CG),

B
0=14+-—G+G"
VAC

By (16) it follows that
(18) 0=1+ B,G" + G*,
where By = —2 and

k=0
On the other hand, from (18) we get

= [\ \"
— Er F2n
0=1+B, < _A> + (_A)

= A" + B,(VAC)"F" + C"F?",
Comparing this with (17), we identify A, = A", C,, = C", and
B, = B,(VAC)"
RS (") (A vy
ko )n—Fk VAC

k=0

1n/2) N
= (_1)n+1 Z (TL ; k) (_1)an—2k(AC>k,

n—=k
k=0
= (—=1)""'L,(B,—-AC). O
Corollary 17. The power series
(g ="
P~ 00 =1

qmo
satisfies the following quadartic equation
O — _qumo + f,/f(’ﬂl; f, (])F _ fmqurmOFQ.

Proof. Invoking Lemma 16 in the case /' + U and applying it to (3),
we obtain

—q+ (1 —q—tq) (7(t,q) — 1) —ta (4(t,q) = 1)* = 0.
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Next, applying Lemma 16 once more, now in the case /", and using
Lemma 9, we deduce

—q" 4 B(mst, ) (v (1, @) — D)™ = (tg)™ (7(t,q) — 1)*" = 0.

The statement of the corollary follows by one further application of the
same lemma, this time in the case F'U. U

6. HANKEL CONTINUED FRACTION OF QUADRATIC SERIES

To derive the Hankel continued fraction of a quadratic series, we
recall the main idea presented in [17, 19]. Suppose F'(¢) is a power
series that satisfies the quadratic equation

A(9) + B(g)F(q) + C(a)F(9)* = 0.
Then /'(¢) can be expressed in the form
—agt
D(q) — 4" G(q)’

where ((¢) is another power series that satisfies a transformed qua-
dratic equation

A*(q) + B*(¢)G(q) + C*(9)G(q)* = 0.
Moreover, the quantities A*, B*, C* k,a, and D can be computed ex-
plicitly by means of the following algorithm.
Algorithm [NextABC] (for § = 2)
Prototype: (A*, B*,C*; k,a, D) = NextABC(A, B, ()
Input: A(q), B(q),C(q) € Q]g] three polynomials such that B(0) =
1, C(0) =0, C(q) # 0, A(q) #0;

Output: A*(q), B*(q),C*(q) € Ql¢], k € N*, a # 0 € Q, D(q) € Q¢
a polynomial of degree less than or equal to k& + 1 such that D(0) =1

Step 1 [Define k,a]. Since A(q) # 0, let A(q) = ag¢” + O(¢"*!) with
a # 0.
Step 2 [Define D]. Define D(q) by
aq”B B aq”C
A B

where D(q) is a polynomial of degree less than or equal to & + 1 such
that D(0) = 1.

Step 3. [Define A*, B*, C*|. Let
(20) A*(q) = (—D*A/a+ BDg" — Cag®) /4?2
(21) B*(q) = 2AD/(aq") — B;
(22) C*(q) = —Aq*/a.

Fq) =

(19) = D(q) + O(¢"*?),
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Remark. In Step 2, if C' = ¢>C’, then
aq"B B

A

Similarly, if A = ag”, then
B = D(q) + O(¢"*?).

By repeatedly applying Algorithm NextABC, we generate a sequence
of six-tuples

(23) (An+1, By1, Crpgts ks an, Dn),
satisfying, for each n,
(24) (Aps1, Bost, Crgts by an, Dy,) = NextABC(A,, B, Ch).
This yields an H-fraction expansion of /'(¢) of the form
F(q) = H((F5), (=a;), (u;),
where u; is determined by the relation 1+ u;(¢)g = D;_;.

D(q) + O(¢"*?).

We will employ this method to establish the /-fraction representa-
tions stated in Section 3. To do this, we first conjecture the sequence
(23) from computational data obtained experimentally, and then con-
firm its validity by verifying the relations (24). In other words, we must
check the three steps of the algorithm.

7. PROOF OF LEMMA 14
For m > 2, let
- D000
By Corollary 17, we have
0=—q" 2+ B(m,t,q)F —t™qg" 22
Thus, we run Algorithm NextABC starting from the initialization
Ag=—q"2%, Bo=p(m;t,q), Co=—t"¢g™2
Lemma 18. If we use A, B,,,C,, as the input to Algorithm NextABC,

then the outputs are
An—l—l; Bn—f—l; Cn+17 kna Qp, Dna
where A, B,,,C,, k,,a,, D, forn >0 are defined as follows:

’ —)ym mfZJ
Ay = _qm72’ A2j _ ( ) q 0

J ’
(—1)mJ2 ) 1—-2J, [m(jJrl)‘]? m
A2j+1 = J—ld(m; L, (]> + ( Jy B J% )(] ’

, 1
Byj = B(m;t,q) + 2(71 - (=)™,



CONVOLUTION POWERS OF NARAYANA POLYNOMIALS 17

, (m(+1) N
Boji1 = B(mst,q) — 2( ) +1)(=q)",
CO — _/m,qm+2’ 02j+1 _ _qm’
C ms ) — (= — 2 o)y
= m — (- —— —2)(—
27 35, 4)q Jl JO
lfzg =m —2, /f23+1 =0,
<_7L)m=]0 (_1)mJ2
ag = —1, a9j = —Jl , Aj+1 = —Jl ;

ng = J(m, f, q) - (—q)m(]_ + fm)7 D2j+1 = 1,
where, for brevity, we denote
Jo=1llem,  Ji=0+ e,  Ja=[42m

Proof. The values of k; and a; are straightforward to determine. For
D;, we distinguish two cases.

In the even case, we have ko; = m — 2. Since (', = O(¢?), it follows
that

. k;B . )
SLZE — Doj(g) + O™,
Ag;
which implies

Boj = D2j(f1> +0(¢"™)-

Thus, Dy; is simply the polynomial obtained from Bj; by truncating
its g-expansion at order ¢~ !.
In the odd case, we have kg1 = 0, and

CL2j+1 2j+1 _ D2j+1 + ()(q2)
A2j+1

Hence, D2j+1 =1.
The remaining three relations, (20), (21), and (22), are verified using
a computer algebra system. U

8. PrROOF OF LEMMA 15

For m > 3, let
F(q) = -3
q
By Corollary 17, we have
0=—q¢" 3+ B(m,t,q)F — t™g" T3 [2
So we run Algorithm NextABC starting from the initial values

Ao =—q¢"%  Bo=p(m;t,q), Co=—t"¢g""
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Lemma 19. If we input A, B,,C,, into Algorithm NextABC, then the
algorithm produces

An—l—l; Bn+17 Cn—f—h knu Up, Dna

where, for n > 0, the sequences A,, B,,C,, kn,,a,, D, are defined as
follows:

A= =g Ay = ()R - 1)
Asgjir = a(q) (u(j) + (=1)"J2J7"q)
— (=)™ u(g) + ws(f)g + 1" ¢?) "¢ IPR(G - 1),
—0(j)*Csj13
q? ’
Bsj = a(q) + wa(j), Bsj = a(q) — wa(j),
Bsjio = 2(1+ qu(j))wi(j) — aq) + wa(j),
Co = —t"q"™*,
Cyj = —a()*(1 4+ 0(j — 1)) — u(j)g"
+ws(7)(=q)" P =" R(j = 1) (=q)" ",

Asjpo =

Cajpr = —¢" Cyjpo = —q w1 (j),
k3j =m — 3, k3ji1 = k3jpe =0,
ag=—1, az = (=1)"R(j —1)J;?,
azjpr = u(j),  agiye = 0(5)%

ng = (\:((1), D3j+1 =1 + (]'L'(j), D3]+2 1-— qu (])
where, for brevity, we define
. (=)™ R(5) . J1Jo . Asja
uw(j) = ———=,  v(j)==5—=, wi(j) =——,
(j) J% (]) R(]) 1 (] a3j+1
wa(f) = (=a)" 1S + (=)™ (L + () I
wy(5) = m[mliv(j = 1) = (1 4+ ")

Proof. Turn (37). From Ag we derive the formulas for kg and aq. Using
(19), we obtain By = Dy + O(¢™ '), which validates the expression of
Dy. For j > 1, A, yields the expressions for ks; and as;. Again, by
(19), we have Bs; = D3; + O(¢™ '), which confirms the expression of
D3j.

Turn (3j+1). From the explicit forms of As; 1 and B3j11, we obtain
ksj+1 =0 and agj+q = u(j). Define

() = 2EE _ o g)(1 - v(f)g) + O(g™ ).

3541

Consequently,
Bsji1 1

wi(7)  L=0()g

+O0(g" ).
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Since m > 3, we have (3,41 = O(¢?), which implies D3; 1 = 1+ qu(j).
Turn (35 +2). We obtain k3ji2 = 0 and azj0 = v(j)®. Because
Csjpa = O(q?), we get
B3jia(q) = 2D351w1(j) — Bajna
=2(1+ v(j)a)e(a)(1 = v(5)a) — ala) + O(¢?)
=1—m(t+1)g+ O(¢?).

Thus,
1083, i
SIS — 1 —u(j)q + O(a?)
3j+2
Hence D3;19 = 1—¢qu(j). The remaining three relations (20), (21), and
(22) are verified using a computer algebra system. U

9. PROOF OF LEMMAS 12 AND 13

In this section, we obtain Lemma 12 as a consequence of Lemma 14,
and we establish Lemma 13 by a direct calculation.

Proof of Lemma 12. For m > 0, define F'(q) = (7(t,q) — 1)". By
Corollary 17, we have

0 — _qm 4 ))(m’ ZL7 q) F . tmqmFQ'

Hence

m m

_ q _ q

B(m;t,q) — tmgm(y(t,q) =)™ B(m;t,q) — f""q"”*?(ﬁ'(l’(g—;l)m'

Since the H-fraction of (7(f,q) — 1)™/¢* is determined in Lemma 14,
this directly yields the //-fraction expansion of /. Il

Proof of Lemma 13. Set

Y(t,q) —1)™
o Oo-n"
q
By Corollary 17, we obtain

m—1

q
3 (Tn; t, q) _ tmqm-i-lF'

This identity provides the //-fraction representation of /. U

F =
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