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Abstract. We prove and generalize a conjecture of Johann Cigler
on the Hankel determinants of convolution powers of Narayana
polynomials. Our method follows a ”guess-and-prove” strategy,
relying on established techniques involving Hankel continued frac-
tions. While the final forms of our theorems are given by simple
closed expressions, the proofs require us to formulate and manage
extremely large and intricate explicit expressions at intermediate
stages. Most of the technically involved and lengthy formal ver-
ifications are carried out using a symbolic computation program,
whose code is available on the author’s personal webpage for in-
dependent verification. We emphasize that our program delivers
rigorous symbolic proofs, rather than merely verifying the initial
terms.

1. Introduction

The purpose of this paper is to establish and extend a conjecture
of Johann Cigler concerning the Hankel determinants of convolution
powers of Narayana polynomials [7]. Let γn = 1

n+1

(
2n
n

)
denote the

n-th Catalan number (We avoid the traditional notation Cn because
of possible confusion with some other object introduced later). Hankel
determinants formed from the Catalan sequence have been investigated
in [1, 12, 21, 25, 5, 3, 19]. In 2002, Cvetković, Rajković, and Ivković
[11] determined the Hankel determinants of the sequence whose entries
are sums of consecutive Catalan numbers:

(1) det (γi+j + γi+j+1)
n−1
i,j=0 = F 2n+1,

where F n denotes the n-th Fibonacci number. Since then, this identity
has been extended in various directions [2, 22, 13, 4, 23, 26, 9, 24].
Motivated by (1), Cigler [7] studied the Hankel determinants associated
with convolution powers of Narayana polynomials. Recall that the
Narayana polynomials are given by

(2) γn(t) =
n∑

k=0

(
n

k

)(
n− 1

k

)
1

k + 1
tk,
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which specialize to the Catalan numbers when t = 1. The initial terms
of the sequence (γn(t))n≥0 are

1, 1, 1 + t, 1 + 3t+ t2, 1 + 6t+ 6t2 + t3, 1 + 10t+ 20t2 + 10t3 + t4, . . .

The generating function of the Narayana polynomials

γ(t, q) =
∑
n≥0

γn(t)q
n

satisfies the quadratic relation

(3) −1 + (1− q + tq) γ(t, q)− tq γ(t, q)2 = 0.

The convolution powers of the Narayana polynomials γ
(τ)
n (t) are defined

via the following generating functions, depending on the parity of τ :∑
γ(2τ)
n (t)qn = G(t, q)τ ,∑

γ(2τ+1)
n (t)qn = γ(t, q)G(t, q)τ ,

where G(t, q) = γ(t,q)−1
q

denotes the generating function of the shifted

Narayana polynomial sequence. Observe that

γ(τ)
n (1) =

τ

2n+ τ

(
2n+ τ

n

)
gives the τ -fold convolution power of the Catalan numbers. In [7],
Cigler investigated the Hankel determinants associated with the con-

volution powers of Narayana polynomials γ
(τ)
n (t) and derived explicit

expressions for the cases τ = 3 and τ = 4. He also proposed a conjec-
ture for τ = 6. We restate these results below. Let

(4) ∆(m)
ε = det

(
γ
(m)
i+j−ε(t)

)N−1

i,j=0
.

Theorem 1 ([7], Theorem 5.2). We have

∆
(3)
0 = t(

N
2 )

⌊N/2⌋∑
k=0

(−1)k
(
N − k

k

)
t−k.(5)

Theorem 2 ([7], Theorem 7.4). We have

∆
(4)
0 =

{
(−1)nt2n(n−1)[n+ 1]t2 , if N = 2n,

(−1)nt2n
2
[n+ 1]t2 , if N = 2n+ 1,

(6)

where [n]q is the standard notation for q-number:

[n]q = 1 + q + q2 + · · ·+ qn−1.

Conjecture 3 ([7], Conjecture 7.6). We have

∆
(6)
0 =


(−1)nt9n(n−1)/2[n+ 1]2t3 , if N = 3n,

(−1)nt3n(3n−1)/2[n+ 1]2t3 , if N = 3n+ 1,

(−1)n+13t3n(3n+1)/2[3]trn(t), if N = 3n+ 2,

(7)
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where

rn(t) = 1 + 3t3 + 6t6 + · · ·+
(
n+ 1

2

)
t3(n−1)

+

(
n+ 2

2

)
t3n +

(
n+ 1

2

)
t3(n+1) + · · ·+ t6n.

For further references on these Hankel determinants, we refer the
reader to [26, 9, 10, 14, 16].

In this paper, we establish generalizations of Theorem 2 and Conjec-
ture 3. Rather than working with G(t, q)m, we focus on the sequence
generated by (γ(t, q)− 1)m, and derive closed-form expressions for the
Hankel determinants of this sequence as well as for its first, second,
and third shifted versions:

(γ(t, q)− 1)m,
(γ(t, q)− 1)m

q
,
(γ(t, q)− 1)m

q2
,
(γ(t, q)− 1)m

q3
.

It is straightforward to see that the second shifted sequence coincides

with γ
(4)
n (t) when m = 2, and that the third shifted sequence coincides

with γ
(6)
n (t) when m = 3. We also set γ

(2m)
i (t) = 0 for i < 0. Our main

theorems are presented below, where we write ξ1 = (−1)nm(m−1)/2 for
short.

Theorem 4. For m ≥ 1 we have

∆(2m)
m =


1, if N = 0,

−ξ1t
m(n−1)(mn−2)/2[n− 1]tm , if N = mn,

(−1)mξ1t
m2n(n−1)/2[n]tm , if N = mn+ 1,

0, otherwise.

Theorem 5. For m ≥ 1 we have

∆
(2m)
m−1 =

{
ξ1t

m2n(n−1)/2, if N = mn,

0, otherwise.

Theorem 6. For m ≥ 2 we have

∆
(2m)
m−2 =


(−1)mnξ1t

m2n(n−1)/2[n+ 1]tm , if N = mn,

(−1)mn−m−1ξ1t
m(n−1)(mn−2)/2[n]tm , if N = mn− 1,

0, otherwise.

Theorem 7. For m ≥ 3 we have

∆
(2m)
m−3 =


ξ1t

m2n(n−1)/2[n+ 1]2tm , if N = mn,

(−1)m−1ξ1t
m(n−1)(mn−2)/2R(m; t, n− 1), if N = mn− 1,

−ξ1t
m(n−1)(mn−4)/2[n]2tm , if N = mn− 2,

0, otherwise.
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where

R(m; t, n) = m[m]t

(
n∑

i=0

(
i+ 2

2

)
tmi +

2n∑
i=n+1

(
2n− i+ 2

2

)
tmi

)
.(8)

We see that Theorem 6 implies Theorem 7.4 of Cigler (6) when m =
2, and Theorem 7 confirmes his conjecture 7.6 (7) when m = 3.

Our method is essentially a “guess-and-prove” approach that relies
on established techniques involving Hankel continued fractions. While
the final forms of our theorems are quite simple and closed, the proof
process itself forced us to guess and manipulate extremely large and
intricate explicit expressions. For instance, the complete expression for
C3j given in Lemma 19 is

C3j = −q2
(
1 +

[j]tm [j + 1]tmq

R(m; t, j − 1)

)m−2∑
d=0

(−q)dm

m− d

d∑
i=0

(
m− 1− d+ i

i

)(
m− 1− i

d− i

)
ti

− R(m; t, j)

[j + 1]2tm
(−q)m+1 +

(
m[m]t

[j]tm [j + 1]tm

R(m; t, j − 1)
− (1 + tm(j+1))

[j + 1]tm

)
(−q)m+2

− tmj

R(m; t, j − 1)
(−q)m+3,

where R(m; t, n) is defined in (8). Observe that in this formula, the
terms R(m; t, n) appear both in numerators and in denominators.

To establish our main theorems, we use the Hankel continued fraction
approach developed in [17]. The underlying idea is recalled in Section 3.
Our strategy proceeds as follows:

1. Derive a quadratic equation for each of the series

(C(t, q)− 1)m

q2
and

(C(t, q)− 1)m

q3
.

To this end, we obtain a general formula in Section 5, Corollary 17.

2. Apply Algorithm NextABC to the initial coefficients appearing in
the quadratic equations derived above. This produces the initial terms
of a sequence of six-tuples (23)

(An+1, Bn+1, Cn+1; kn, an, Dn).

Based on these initial terms, we formulate a conjectural closed-form
description of the sequence; see Lemmas 18 and 19.

3. Prove that the conjectured formulas are correct, i.e., that they sat-
isfy the relations specified in Algorithm NextABC, in Sections 7 and 8.
Because the proofs are very long and technically involved, we repro-
duce only the more accessible part in this paper. The more intricate
computational verifications are carried out by computer; the programs
are available on my homepage at

https://irma.math.unistra.fr/~guoniu/narayana.html
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We emphasize that our program delivers rigorous symbolic proofs,
rather than merely verifying the initial terms.

4. Construct the Hankel continued fraction from the resulting se-
quence of quantities; see Section 3, Lemmas 12–15.

5. Finally, compute the Hankel determinants from the Hankel con-
tinued fractions. This is carried out in Section 4.

2. Notations and properties

Since the expressions we obtain are rather lengthy, we first introduce
some notation to simplify the exposition.

Definition 8. For d = 0, 1, 2, . . . ,m, define

ρ(m; t, d) =
d∑

i=0

m(m− d)

(m− i)(m− d+ i)

(
m− d+ i

i

)(
m− i

d− i

)
ti,

S(m; t, n) =
m(1− tm)

1− t

(
n∑

i=0

(i+ 1)2tmi +
2n∑

i=n+1

(2n− i+ 1)2tmi

)
,

β(m; t, q) =
m∑
d=0

ρ(m; t, d)(−q)d

= 1−m(t+ 1)q +
((m

2

)
+m(m− 2)t+

(
m

2

)
t2
)
q2 + · · ·

+
m(1− tm)

1− t
(−q)m−1 + (1 + tm)(−q)m.

We also set

α(m; t, q) =
m−2∑
d=0

ρ(m; t, d)(−q)d,

so that

β(m; t, q)− α(m; t, q) =
m(1− tm)

1− t
(−q)m−1 + (1 + tm)(−q)m.

For brevity, we write ρ(d) = ρ(m; t, d), R(n) = R(m; t, n), S(n) =
S(m; t, n), β(q) = β(m; t, q), α(q) = α(m; t, q).

Remark. When d = m, we obtain ρ(m; t,m) = 1 + tm. For d =
0, 1, 2, . . . ,m− 1, the function ρ(m; t, d) can be expressed as

ρ(m; t, d) =
m

m− d

d∑
i=0

(
m− 1− d+ i

i

)(
m− 1− i

d− i

)
ti.

Recall that the Lucas polynomials are given by L0(x, s) = 2 and, for
m ≥ 1,

Lm(x, s) =

⌊m/2⌋∑
i=0

(
m− i

i

)
m

m− i
sixm−2i.
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They satisfy

(9) Lm(x, s) = xLm−1(x, s) + sLm−2(x, s)

with initial values L0(x, s) = 2 and L1(x, s) = x.

Lemma 9. We have

β(m; t, q) = Lm(1− q − tq,−tq2).

Proof. Consider the right-hand side of the claimed identity:

RHS =

⌊m/2⌋∑
i=0

(
m− i

i

)
m

m− i
(1− q − tq)m−2i(−tq2)i

=

⌊m/2⌋∑
i=0

(
m− i

i

)
m

m− i

m−2i∑
ℓ=0

(
m− 2i

ℓ

)
(−(1 + t)q)ℓ(−tq2)i.

For 0 ≤ d ≤ m and 0 ≤ j ≤ d, we extract the coefficient of qdtj from
the above expression. First,

[qd] RHS =

⌊d/2⌋∑
i=0

(
m− i

i

)
m

m− i

(
m− 2i

d− 2i

)
(−(1 + t))d−2i(−t)i

= (−1)d
⌊d/2⌋∑
i=0

(
m− i

i

)
m

m− i

(
m− 2i

d− 2i

) d−2i∑
ℓ=0

(
d− 2i

ℓ

)
tℓ(−t)i.

To obtain [qdtj] RHS, set ℓ = j − i in the last sum. The condition
0 ≤ ℓ ≤ d − 2i becomes 0 ≤ j − i ≤ d − 2i, i.e., i ≤ j ≤ d − i. Hence
i ≤ j and i ≤ d− j, and in particular i ≤ ⌊d/2⌋. Therefore,

[qdtj] RHS = (−1)d
min{j,d−j}∑

i=0

(
m− i

i

)
m

m− i

(
m− 2i

d− 2i

)(
d− 2i

j − i

)
(−1)i.

(10)

We now check that these coefficients coincide with the corresponding
coefficients in β(m; t, q). For d ≤ m− 1, we have

[qdtj] RHS = (−1)d
m(m− 1 + j − d)!

j!(m− d)!

min{j,d−j}∑
i=0

(
j

i

)(
m− i− 1

d− i− j

)
(−1)i

= (−1)d
m(m− 1 + j − d)!

j!(m− d)!

(
m− 1− j

d− j

)
= [qdtj]ρ(m; t, d)(−q)d,

where the sum over i is evaluated using “The Methode of Coefficients”;
see [15].
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If d = m, then from (10) we obtain [qmt0] RHS = [qmtm] RHS =
(−1)m. For d = m and 1 ≤ j ≤ m− 1, (10) specializes to

[qmtj] RHS = (−1)m
m

j

min{j,m−j}∑
i=0

(
j

i

)(
m− i− 1

m− i− j

)
(−1)i

= (−1)m
m

j

(
m− 1− j

m− j

)
= 0. □

Moreover, the quantities S(j) and R(j) are connected through the
following relationships:

m(1− tm)

1− t
=

2R(j)− S(j)

[j + 1]2tm
=

−2tmR(j) + S(j + 1)

[j + 2]2tm

=
−2tmR(j − 1) + S(j)

[j + 1]2tm
=

R(j)− tmR(j − 1)

[j + 1]2tm
,

S(j) = R(j) + tmR(j − 1).

Throughout this paper, we adopt the following rule, referred to as the
“index convention” [18]. It stipulates that, in any expression defined
by cases, each formula applies only to those integer indices that have
not already appeared as special values. For instant, in Lemma 12, the
formula for v2j+1 is applicable for j ≥ 1, but not for j = 0, because v1
has already been explicitly specified earlier.

3. Hankel continued fractions

The Jacobi continued fraction is a useful tool for evaluating Han-
kel determinants when all of them are nonzero. Since, in our case,
some Hankel determinants vanish, we instead have to use the so-called
“Hankel continued fractions” developed in [17]. For further references,
see [20, 6, 8, 18]. We now briefly recall the definition and the basic
properties of Hankel continued fractions from [17].

Definition 10. For each positive integer δ, a super continued fraction
associated with δ, called super δ-fraction for short, is defined to be a
continued fraction of the following form

(11) F (q) =
v0q

k0

1 + u1(q)q
− v1q

k0+k1+δ

1 + u2(q)q
− v2q

k1+k2+δ

1 + u3(q)q
− · · ·

where vj ̸= 0 are constants, kj are nonnegative integers and uj(q) are
polynomials of degree less than or equal to kj−1+ δ−2. By convention,
0 is of degree −1.

When δ = 1 (resp. δ = 2) and all kj = 0, the super δ-fraction (11)
is the traditional S-fraction (resp. J-fraction). A super 2-fraction is
called Hankel continued fraction.
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Theorem 11. (i) Let δ be a positive integer. Each super δ-fraction
defines a power series, and conversely, for each power series F (q), the
super δ-fraction expansion of F (q) exists and is unique. (ii) Let F (q)

be a power series such that its H-fraction is given by (11) with δ = 2.
Then, all non-vanishing Hankel determinants of F (q) are given by

(12) Hsj(F (q)) = (−1)ϵjv
sj
0 v

sj−s1
1 v

sj−s2
2 · · · vsj−sj−1

j−1 ,

where ϵj =
∑j−1

i=0 ki(ki + 1)/2 and sj = k0+k1+ · · ·+kj−1+j for every
j ≥ 0.

By applying Theorem 11, the proof of our main results reduces to
explicitly determining the corresponding Hankel continued fractions.
This is exactly what we now proceed to do. The H-fraction will be
given in the standard form
(13)

H(q; (kj), (vj), (uj)) :=
v0q

k0

1 + u1(q)q
− v1q

k0+k1+2

1 + u2(q)q
− v2q

k1+k2+2

1 + u3(q)q
−· · ·

with explict values for kj, vj, uj.

We are now prepared to write down the explicit H-fractions of

(γ(t, q)− 1)m,
(γ(t, q)− 1)m

q
,

(γ(t, q)− 1)m

q2
,

(γ(t, q)− 1)m

q3
.

Lemma 12. For m ≥ 1, the power series (γ(t, q)− 1)m has the fol-
lowing H-fraction expansion:

(γ(t, q)− 1)m = H((kj), (vj), (uj)),

where k0 = m, k2j+1 = m− 2, k2j+2 = 0, v0 = 1, v1 = tm, and

v2j+1 = −(−t)m[j]tm/[j + 1]tm ,

v2j+2 = (−1)m+1[j + 2]tm/[j + 1]tm ;

1 + u1(q)q = β(m; t, q),

1 + u2j+2(q)q = β(m; t, q)− (−q)m(1 + tm),

u2j+1(q) = 0.

Lemma 13. For m ≥ 1, the power series (γ(t, q)− 1)m/q has the
following H-fraction expansion:

(γ(t, q)− 1)m

q
= H((kj), (vj), (uj)),

where kj = m− 1, v0 = 1, vj = tm, 1 + uj(q)q = β(m; t, q).

Lemma 14. For m ≥ 2, the power series (γ(t, q)− 1)m/q2 has the
following H-fraction expansion:

(γ(t, q)− 1)m

q2
= H((kj), (vj), (uj)),
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where k2j = m− 2, k2j+1 = 0, v0 = 1, and

v2j = −(−t)m[j]tm/[j + 1]tm ,

v2j+1 = (−1)m+1[j + 2]tm/[j + 1]tm ,

1 + u2j+1(q)q = β(m; t, q)− (−q)m(1 + tm),

u2j(q) = 0.

Lemma 15. For m ≥ 3, the power series (γ(t, q)− 1)m/q3 has the
following H-fraction expansion:

(γ(t, q)− 1)m

q3
= H((kj), (vj), (uj)),

where k3j = m− 3, k3j+1 = 0, k3j+2 = 0, v0 = −1, and

v3j = (−t)m+1R(j − 1)/[j + 1]2tm ,

v3j+1 = (−1)mR(j)/[j + 1]2tm ,

v3j+2 = −[j + 1]2tm [j + 2]2tm/R(j)2,

u3j(q) = −[j]tm [j + 1]tm/R(j − 1),

1 + u3j+1(q)q = α(q),

u3j+2(q) = [j + 1]tm [j + 2]tm/R(j).

4. Proofs of the main theorems

In this section we prove the four main theorems using the four explicit
H-fraction given in the previous section.

Proof of Theorem 4. We apply the second part of Theorem 11 to the
H-fraction from Lemma 12 that corresponds to (γ(t, q)− 1)m. In this
setting, we obtain s0 = 0,

s2j+1 = k0 + k1 + · · ·+ k2j + 2j + 1 = m(j + 1) + 1,

s2j+2 = s2j+1 + k2j+1 + 1 = m(j + 1) + 1 + (m− 2) + 1 = m(j + 2),

and ϵ0 = 0,

ϵ2j+1 = m(m+ 1)/2 +

2j∑
i=1

ki(ki + 1)/2

= m(m+ 1)/2 + j(m− 2)(m− 1)/2,

ϵ2j+2 = ϵ2j+1 + (m− 2)(m− 1)/2

= m(m+ 1)/2 + (j + 1)(m− 2)(m− 1)/2.

Since v0 = 1 and v2i+2v2i+3 = tm , we haveH0 = 1, Hs1 = (−1)m(m+1)/2,

Hs2j+1
(F (q)) = (−1)ϵ2j+1v

s2j+1−s1
1 v

s2j+1−s2
2 · · · vs2j+1−s2j

2j ,

= (−1)ϵ2j+1v
s2j+1−s1
1 v

s2j+1−s2j
2j

j−2∏
i=0

v
s2j+1−s2i+2

2i+2 v
s2j+1−s2i+3

2i+3
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= (−1)(j+1)(m−2)(m−1)/2+m+(m+1)(j−1)tm
2j

× [j + 1]tm

[j]tm

j−2∏
i=0

tm(mj−m+1)−im2−m

j−2∏
i=0

[i+ 2]tm

[i+ 1]tm

= (−1)(j+1)m(m−1)/2+mtm
2j(j+1)/2[j + 1]tm ,

and

Hs2j+2
(F (q)) = (−1)ϵ2j+2v

s2j+2−s1
1 v

s2j+2−s2
2 · · · vs2j+2−s2j+1

2j+1 ,

= (−1)ϵ2j+2v
s2j+2−s1
1

j−1∏
i=0

v
s2j+2−s2i+2

2i+2 v
s2j+2−s2i+3

2i+3

= (−1)m(m+1)/2+(j+1)(m−2)(m−1)/2tm(mj+m−1)

×
j−1∏
i=0

(v2i+2v2i+3)
m(j−i)

j−1∏
i=0

v−1
2i+3

= (−1)m(m+1)/2+(j+1)(m−2)(m−1)/2tm(mj+m−1)

×
j−1∏
i=0

(tm)m(j−i)

j−1∏
i=0

(−1)m+1[i+ 2]tm

tm[i+ 1]tm

= (−1)(j+2)m(m−1)/2+1tm(j+1)(mj+2m−2)/2[j + 1]tm . □

Proof of Theorem 5. Apply the second part of Theorem 11 to the H-
fraction from Lemma 13 corresponding to (γ(t, q)− 1)m/q. Then we
obtain

s0 = 0, sj = k0 + k1 + · · ·+ kj−1 + j = j(m− 1) + j = mj,

and

ϵj =

j−1∑
i=0

ki(ki + 1)/2 = jm(m− 1)/2.

Since v0 = 1, we have H0 = 1,

Hsj(F (q)) = (−1)ϵjv
sj
0 v

sj−s1
1 v

sj−s2
2 · · · vsj−sj−1

j−1

= (−1)jm(m−1)/2vjm−m
1 vjm−2m

2 · · · vjm−(j−1)m
j−1

= (−1)jm(m−1)/2(tm)jm−m+jm−2m+···+jm−(j−1)m

= (−1)jm(m−1)/2tm
2j(j−1)/2 □

Proof of Theorem 6. We apply the second part of Theorem 11 to the
H-fraction from Lemma 14, corresponding to (γ(t, q)− 1)m/q2. This
yields s0 = 0,

s2j+1 = k0 + k1 + · · ·+ k2j + 2j + 1

= (j + 1)(m− 2) + 2j + 1 = (j + 1)m− 1,

s2j+2 = k0 + k1 + · · ·+ k2j+1 + 2j + 2
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= (k0 + k1 + · · ·+ k2j + 2j + 1) + 1 = (j + 1)m,

and ϵ0 = 0,

ϵ2j+1 =

2j∑
i=0

ki(ki + 1)/2 = (j + 1)(m− 2)(m− 1)/2,

ϵ2j+2 = (j + 1)(m− 2)(m− 1)/2.

Since v0 = 1 and v2i+1v2i+2 = tm, we have H0 = 1,

Hs2j+1
(F (q)) = (−1)ϵ2j+1v

s2j+1−s1
1 v

s2j+1−s2
2 · · · vs2j+1−s2j

2j ,

= ξ2

j−1∏
i=0

v
(j−i)m
2i+1 v

(j−i)m−1
2i+2

= ξ2

j−1∏
i=0

(v2i+1v2i+2)
(j−i)m

j−1∏
i=0

v−1
2i+2

= ξ2

j−1∏
i=0

(tm)(j−i)m /

j−1∏
i=0

(−1)m+1tm[i+ 1]tm

[i+ 2]tm

= (−1)(m+1)(mj+m−2)/2tmj(mj+m−2)/2[j + 1]tm ,

where ξ2 = (−1)(j+1)(m−2)(m−1)/2, and

Hs2j+2
(F (q)) = (−1)ϵ2j+2v

s2j+2−s1
1 v

s2j+2−s2
2 · · · vs2j+2−s2j+1

2j+1 ,

= (−1)ϵ2j+2

j−1∏
i=0

v
s2j+2−s2i+1

2i+1 v
s2j+2−s2i+2

2i+2 × v
s2j+2−s2j+1

2j+1

= ξ2v2j+1

j−1∏
i=0

(v2i+1v2i+2)
(j−i)m+1

j−1∏
i=0

v−1
2i+2

= ξ2v2j+1

j−1∏
i=0

(tm)(j−i)m+1 /

j−1∏
i=0

(−1)m+1tm[i+ 1]tm

[i+ 2]tm

= (−1)(j+1)m(m+1)/2tm
2j(j+1)/2[j + 2]tm . □

Proof of Theorem 7. We apply the second part of Theorem 11 to the
H-fraction from Lemma 15 corresponding to (γ(t, q)− 1)m/q3. In this
setting, we have s0 = 0,

s3j+1 = k0 + k1 + · · ·+ k3j + 3j + 1

= (j + 1)(m− 3) + 3j + 1 = (j + 1)m− 2,

s3j+2 = s3j+1 + k3j+1 + 1 = (j + 1)m− 1,

s3j+3 = s3j+2 + k3j+2 + 1 = (j + 1)m,

and ϵ0 = 0,

ϵ3j+1 = ϵ3j+2 = ϵ3j+3
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=

3j∑
i=0

ki(ki + 1)/2 = (j + 1)(m− 3)(m− 2)/2.

We can verify that

v3i+1v3i+2v3i+3 = tm,

v3i+2v
2
3i+3 = −t2m[i+ 1]2tm/[i+ 2]2tm ,

v23j+1v3j+2 = −[j + 2]2tm/[j + 1]2tm .

Since v0 = 1, we have H0 = 1,

Hs3j+1
(F (q)) = (−1)ϵ3j+1v

s3j+1−s1
1 v

s3j+1−s2
2 · · · vs3j+1−s3j

3j ,

= (−1)ϵ3j+1

j−1∏
i=0

v
s3j+1−s3i+1

3i+1 v
s3j+1−s3i+2

3i+2 v
s3j+1−s3i+3

3i+3

= ξ3

j−1∏
i=0

v
(j−i)m
3i+1 v

(j−i)m−1
3i+2 v

(j−i)m−2
3i+3

= ξ3

j−1∏
i=0

(v3i+1v3i+2v3i+3))
(j−i)m

j−1∏
i=0

v−1
3i+2v

−2
3i+3

= ξ3

j−1∏
i=0

(tm)(j−i)m /

j−1∏
i=0

−t2m[i+ 1]2tm

[i+ 2]2tm

= (−1)1+(j+1)m(m−1)/2tmj(mj+m−4)/2[j + 1]2tm ,

where ξ3 = (−1)(j+1)(m−3)(m−2)/2, and

Hs3j+2
(F (q)) = (−1)ϵ3j+2v

s3j+2−s1
1 v

s3j+2−s2
2 · · · vs3j+2−s3j+1

3j+1 ,

= (−1)ϵ3j+2

j−1∏
i=0

v
s3j+2−s3i+1

3i+1 v
s3j+2−s3i+2

3i+2 v
s3j+2−s3i+3

3i+3 × v
s3j+2−s3j+1

3j+1

= ξ3v3j+1

j−1∏
i=0

v
(j−i)m+1
3i+1 v

(j−i)m
3i+2 v

(j−i)m−1
3i+3

= ξ3v3j+1

j−1∏
i=0

(v3i+1v3i+2v3i+3)
(j−i)m+1

j−1∏
i=0

v−1
3i+2v

−2
3i+3

= ξ3v3j+1

j−1∏
i=0

(tm)(j−i)m+1 /

j−1∏
i=0

−t2m[i+ 1]2tm

[i+ 2]2tm

= (−1)m−1+(j+1)m(m−1)/2R(j)tmj(mj+m−2)/2,

and

Hs3j+3
(F (q)) = (−1)ϵ3j+3v

s3j+3−s1
1 v

s3j+3−s2
2 · · · vs3j+3−s3j+2

3j+2 ,
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= (−1)ϵ3j+3

j−1∏
i=0

v
s3j+3−s3i+1

3i+1 v
s3j+3−s3i+2

3i+2 v
s3j+3−s3i+3

3i+3

× v
s3j+3−s3j+1

3j+1 v
s3j+3−s3j+2

3j+2

= ξ3v
2
3j+1v3j+2

j−1∏
i=0

(v3i+1v3i+2v3i+3)
(j−i)m+2

j−1∏
i=0

v−1
3i+2v

−2
3i+3

= ξ3
[j + 2]2tm

[j + 1]2tm

j−1∏
i=0

(tm)(j−i)m+2 /

j−1∏
i=0

−t2m[i+ 1]2tm

[i+ 2]2tm

= (−1)(j+1)m(m−1)/2tm
2j(j+1)/2[j + 2]2tm . □

5. Basic transformations for quadratic power series

Lemma 16. Let A,B,C, U be polynomials. Suppose F is a quadratic
power series satisfying

0 = A+BF + CF 2.

Then the series UF , F + U , and F n are also quadratic power series,
and they satisfy

0 = AU2 +BU(UF ) + C(UF )2,

0 = (A−BU + CU2) + (B − 2CU)(F + U) + C(F + U)2,

0 = An + (−1)n+1Ln(B,−AC)F n + CnF 2n.

Proof. The initial two situations, UF and F + U , are straightforward,
so we focus on the case G = F n.

Begin with the special case A = C = 1, and assume

0 = 1 +BF + F 2,(14)

0 = 1 +BnF
n + F 2n.(15)

Clearly, B0 = −2 and B1 = B. From (14) and (15) we derive

BBn =

(
1

F
+ F

)(
1

F n
+ F n

)
=

(
1

F n+1
+ F n+1

)
+

(
F n−1 +

1

F n−1

)
= −Bn+1 −Bn−1.

Comparing this with (9), we obtain

Bn = (−1)n+1Ln(B,−1)

= (−1)n+1

⌊n/2⌋∑
k=0

(
n− k

k

)
n

n− k
(−1)kBn−2k.(16)
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Now consider the general case, where

0 = A+BF + CF 2,

0 = An +BnF
n + CnF

2n.(17)

Set F =
√

A/C G. Then the first relation becomes

0 = A+B

√
A

C
G+ C

(√
A

C
G

)2

,

0 = 1 +
B√
AC

G+G2.

By (16) it follows that

(18) 0 = 1 + B̄nG
n +G2n,

where B̄0 = −2 and

B̄n = (−1)n+1

⌊n/2⌋∑
k=0

(
n− k

k

)
n

n− k
(−1)k

(
B√
AC

)n−2k

.

On the other hand, from (18) we get

0 = 1 + B̄n

(√
C

A

)n

F n +

(
C

A

)n

F 2n

= An + B̄n(
√
AC)nF n + CnF 2n.

Comparing this with (17), we identify An = An, Cn = Cn, and

Bn = B̄n(
√
AC)n

= (−1)n+1

⌊n/2⌋∑
k=0

(
n− k

k

)
n

n− k
(−1)k

(
B√
AC

)n−2k

(
√
AC)n

= (−1)n+1

⌊n/2⌋∑
k=0

(
n− k

k

)
n

n− k
(−1)kBn−2k(AC)k

= (−1)n+1Ln(B,−AC). □

Corollary 17. The power series

F (q) =
(γ(t, q)− 1)m

qm0

satisfies the following quadartic equation

0 = −qm−m0 + β(m; t, q)F − tmqm+m0F 2.

Proof. Invoking Lemma 16 in the case F + U and applying it to (3),
we obtain

−q + (1− q − tq) (γ(t, q)− 1)− tq (γ(t, q)− 1)2 = 0.
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Next, applying Lemma 16 once more, now in the case F n, and using
Lemma 9, we deduce

−qm + β(m; t, q)(γ(t, q)− 1)m − (tq)m (γ(t, q)− 1)2m = 0.

The statement of the corollary follows by one further application of the
same lemma, this time in the case FU . □

6. Hankel continued fraction of quadratic series

To derive the Hankel continued fraction of a quadratic series, we
recall the main idea presented in [17, 19]. Suppose F (q) is a power
series that satisfies the quadratic equation

A(q) +B(q)F (q) + C(q)F (q)2 = 0.

Then F (q) can be expressed in the form

F (q) =
−aqk

D(q)− qk+δG(q)
,

where G(q) is another power series that satisfies a transformed qua-
dratic equation

A∗(q) +B∗(q)G(q) + C∗(q)G(q)2 = 0.

Moreover, the quantities A∗, B∗, C∗, k, a, and D can be computed ex-
plicitly by means of the following algorithm.

Algorithm [NextABC] (for δ = 2)

Prototype: (A∗, B∗, C∗; k, a,D) = NextABC(A,B,C)

Input: A(q), B(q), C(q) ∈ Q[q] three polynomials such that B(0) =
1, C(0) = 0, C(q) ̸= 0, A(q) ̸= 0;

Output: A∗(q), B∗(q), C∗(q) ∈ Q[q], k ∈ N+, a ̸= 0 ∈ Q, D(q) ∈ Q[q]
a polynomial of degree less than or equal to k + 1 such that D(0) = 1.

Step 1 [Define k, a]. Since A(q) ̸= 0, let A(q) = aqk + O(qk+1) with
a ̸= 0.

Step 2 [Define D]. Define D(q) by

(19)
aqkB

A
− aqkC

B
= D(q) +O(qk+2),

where D(q) is a polynomial of degree less than or equal to k + 1 such
that D(0) = 1.

Step 3. [Define A∗, B∗, C∗]. Let

A∗(q) =
(
−D2A/a+BDqk − Caq2k

)
/q2k+2;(20)

B∗(q) = 2AD/(aqk)−B;(21)

C∗(q) = −Aq2/a.(22)
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Remark. In Step 2, if C = q2C ′, then

aqkB

A
= D(q) +O(qk+2).

Similarly, if A = aqk, then

B = D(q) +O(qk+2).

By repeatedly applying Algorithm NextABC, we generate a sequence
of six-tuples

(23) (An+1, Bn+1, Cn+1; kn, an, Dn),

satisfying, for each n,

(24) (An+1, Bn+1, Cn+1; kn, an, Dn) = NextABC(An, Bn, Cn).

This yields an H-fraction expansion of F (q) of the form

F (q) = H((kj), (−aj), (uj)),

where uj is determined by the relation 1 + uj(q)q = Dj−1.

We will employ this method to establish the H-fraction representa-
tions stated in Section 3. To do this, we first conjecture the sequence
(23) from computational data obtained experimentally, and then con-
firm its validity by verifying the relations (24). In other words, we must
check the three steps of the algorithm.

7. Proof of Lemma 14

For m ≥ 2, let

F (q) =
(γ(t, q)− 1)m

q2
.

By Corollary 17, we have

0 = −qm−2 + β(m, t, q)F − tmqm+2F 2.

Thus, we run Algorithm NextABC starting from the initialization

A0 = −qm−2, B0 = β(m; t, q), C0 = −tmqm+2.

Lemma 18. If we use An, Bn, Cn as the input to Algorithm NextABC,
then the outputs are

An+1, Bn+1, Cn+1, kn, an, Dn,

where An, Bn, Cn, kn, an, Dn for n ≥ 0 are defined as follows:

A0 = −qm−2, A2j =
(−t)mqm−2J0

J1

,

A2j+1 =
(−1)mJ2

J1

β(m; t, q) + (
1− 2J2

J1

− tm(j+1)J2

J2
1

)qm,

B2j = β(m; t, q) + 2(
1

J1

− 1)(−q)m,
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B2j+1 = β(m; t, q)− 2(
tm(j+1)

J1

+ 1)(−q)m,

C0 = −tmqm+2, C2j+1 = −qm,

C2j = −β(m; t, q)q2 − (
1

J1

− tmj

J0

− 2)(−q)m+2

k2j = m− 2, k2j+1 = 0,

a0 = −1, a2j =
(−t)mJ0

J1

, a2j+1 =
(−1)mJ2

J1

,

D2j = β(m; t, q)− (−q)m(1 + tm), D2j+1 = 1,

where, for brevity, we denote

J0 = [j]tm , J1 = [j + 1]tm , J2 = [j + 2]tm .

Proof. The values of kj and aj are straightforward to determine. For
Dj, we distinguish two cases.

In the even case, we have k2j = m− 2. Since Cn = O(q2), it follows
that

a2jq
kB2j

A2j

= D2j(q) +O(qm),

which implies

B2j = D2j(q) +O(qm).

Thus, D2j is simply the polynomial obtained from B2j by truncating
its q-expansion at order qm−1.

In the odd case, we have k2j+1 = 0, and

a2j+1B2j+1

A2j+1

= D2j+1 +O(q2).

Hence, D2j+1 = 1.
The remaining three relations, (20), (21), and (22), are verified using

a computer algebra system. □

8. Proof of Lemma 15

For m ≥ 3, let

F (q) =
(γ(t, q)− 1)m

q3
.

By Corollary 17, we have

0 = −qm−3 + β(m, t, q)F − tmqm+3F 2

So we run Algorithm NextABC starting from the initial values

A0 = −qm−3, B0 = β(m; t, q), C0 = −tmqm+3.
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Lemma 19. If we input An, Bn, Cn into Algorithm NextABC, then the
algorithm produces

An+1, Bn+1, Cn+1, kn, an, Dn,

where, for n ≥ 0, the sequences An, Bn, Cn, kn, an, Dn are defined as
follows:

A0 = −qm−3, A3j = (−t)mqm−3R(j − 1)J−2
1 ,

A3j+1 = α(q)
(
u(j) + (−1)mJ2J

−1
1 q
)

−
(
(−1)m+1u(j) + w3(j)q + tmjq2

)
tmqm−1J−2

1 R(j − 1),

A3j+2 =
−v(j)2C3j+3

q2
,

B3j = α(q) + w2(j), B3j+1 = α(q)− w2(j),

B3j+2 = 2(1 + qv(j))w1(j)− α(q) + w2(j),

C0 = −tmqm+3,

C3j = −α(q)q2(1 + v(j − 1)q)− u(j)qm+1

+ w3(j)(−q)m+2 − tmjR(j − 1)−1(−q)m+3,

C3j+1 = −qm−1, C3j+2 = −q2w1(j),

k3j = m− 3, k3j+1 = k3j+2 = 0,

a0 = −1, a3j = (−t)mR(j − 1)J−2
1 ,

a3j+1 = u(j), a3j+2 = v(j)2,

D3j = α(q), D3j+1 = 1 + qv(j), D3j+2 = 1− qv(j),

where, for brevity, we define

u(j) =
(−1)m+1R(j)

J2
1

, v(j) =
J1J2

R(j)
, w1(j) =

A3j+1

a3j+1

,

w2(j) = (−q)m−1S(j)J−2
1 + (−q)m(1 + t(j+1)m)J−1

1 ,

w3(j) = m[m]tv(j − 1)− (1 + tm(j+1))J−1
1 .

Proof. Turn (3j). From A0 we derive the formulas for k0 and a0. Using
(19), we obtain B0 = D0 +O(qm−1), which validates the expression of
D0. For j ≥ 1, A3j yields the expressions for k3j and a3j. Again, by
(19), we have B3j = D3j + O(qm−1), which confirms the expression of
D3j.

Turn (3j+1). From the explicit forms of A3j+1 and B3j+1, we obtain
k3j+1 = 0 and a3j+1 = u(j). Define

w1(j) =
A3j+1

a3j+1

= α(q)
(
1− v(j)q

)
+O(qm−1).

Consequently,
B3j+1

w1(j)
=

1

1− v(j)q
+O(qm−1).
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Since m ≥ 3, we have C3j+1 = O(q2), which implies D3j+1 = 1+ qv(j).
Turn (3j + 2). We obtain k3j+2 = 0 and a3j+2 = v(j)2. Because

C3j+2 = O(q2), we get

B3j+2(q) = 2D3j+1w1(j)−B3j+1

= 2(1 + v(j)q)α(q)(1− v(j)q)− α(q) +O(q2)

= 1−m(t+ 1)q +O(q2).

Thus,
a3j+2B3j+2

A3j+2

= 1− v(j)q +O(q2).

Hence D3j+2 = 1−qv(j). The remaining three relations (20), (21), and
(22) are verified using a computer algebra system. □

9. Proof of Lemmas 12 and 13

In this section, we obtain Lemma 12 as a consequence of Lemma 14,
and we establish Lemma 13 by a direct calculation.

Proof of Lemma 12. For m ≥ 0, define F (q) = (γ(t, q) − 1)m. By
Corollary 17, we have

0 = −qm + β(m; t, q)F − tmqmF 2.

Hence

F =
qm

β(m; t, q)− tmqm(γ(t, q)− 1)m
=

qm

β(m; t, q)− tmqm+2 (γ(t,q)−1)m

q2

.

Since the H-fraction of (γ(t, q)− 1)m/q2 is determined in Lemma 14,
this directly yields the H-fraction expansion of F . □

Proof of Lemma 13. Set

F =
(γ(t, q)− 1)m

q
.

By Corollary 17, we obtain

F =
qm−1

β(m; t, q)− tmqm+1F
.

This identity provides the H-fraction representation of F . □
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