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The two-dimensional (2D) and three-dimensional (3D) orthogonal moments are
useful tools for 2D and 3D object recognition and image analysis. However, the prob-
lem of computation of orthogonal moments has not been well solved because there
exist few algorithms that can efficiently reduce the computational complexity. As is
well known, the calculation of 2D and 3D orthogonal moments by a straightforward
method requires a large number of additions and multiplications. In this paper, an
efficient algorithm for computing 2D and 3D Legendre moments is presented. First,
anew approach is developed for computing Legendre polynomials with one variable;
the corresponding results are then used to calculate 1D Legendre moments. Second,
we extend our method to calculating 2D Legendre moments, a more accurate ap-
proximation formula when an analog original image is digitized to its discrete form
is also discussed, and the relationship between the usual approximation and the new
approach is investigated. Finally, an efficient method for computing 3D Legendre
moments is developed. As one can see, the proposed algorithm improves the com-
putational efficiency significantly and can be implemented easily for high order of
moments. @ 2000 Academic Press

1. INTRODUCTION

Moment functions of image intensity values have been successfully used in object rec
nition [2-5], image analysis [6—8], object representation [9], edge detection [10-13],
texture analysis [14]. A survey of these applications can be found in Ref. [1]. Examp
of moment-based feature descriptors include Cartesian geometrical moments, rotati
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238 SHU ET AL.

moments, orthogonal moments, and complex moments. Moments with an orthogonal b
set (e.g., Legendre and Zernike polynomials) can be used to represent the image w
minimum amount of information redundancy. These orthogonal moments and their inve
transforms have been used in the field of pattern representation, image analysis, and ir
reconstruction with some success [6, 8, 14, 15]. As is well known, the difficulty in the u
of moments is due to their high computational complexity, especially when a higher orc
of moments is used. To solve this problem, many research works have been propose
improve the accuracy and efficiency of moment calculations [17-25], but these meth
mainly focus on 2D and 3D geometric moments. Orthogonal moments defined in term:
Legendre and Zernike polynomials have not been analyzed in detail from the point of vi
of reducing the number of computing operations. Recently, Mukundan and Ramakrish
[25] used Green's theorem and then proposed a recursive algorithm for computing the
Legendre moments. Their method is efficient, but not accurate enough, since Mukun
and Ramakrishnan used a trapezoidal integration rule to approximate the integral func
for Legendre moments. Liao and Pawlak [8] proposed a more accurate approximation
mula for computing the 2D Legendre moments of a digital image when an analog origi
image was digitized. Then they used an alternative extended Simpson’s rule to numn
cally calculate a double integral function for a higher order of Legendre moments in ec
pixel. These orthogonal moments have been successfully used to reconstruct some Ch
characters. The method proposed by Liao and Pawlak is accurate, but needs much |
computation.

In this paper, we present a new method for calculating 2D and 3D Legendre mome
that consists of transforming the Legendre moments as a combination of the geome
moments in which the coefficients can be easily derived. Then the existing algorithms
computing the geometric moments are applied to improve the computational efficiency in
calculation of the Legendre moments. The paper is organized as follows: We first descril
new approach for computing 1D Legendre moments; this is the object of Section 2. As
can see, the algorithm presented is very different from the known algorithms. In Sectior
we extend our method to calculating the 2D Legendre moments; the reduction of the nur
of additions and multiplications of the method proposed by Liao and Pawlak [8] will als
be discussed in the same section. The generalization of the method to 3D objects is g
in Section 4. Section 5 contains some discussions, and concluding remarks are give
Section 6.

2. CALCULATION OF 1D LEGENDRE MOMENTS

The 2D Legendre moment of ordpH- g of an object with intensity functiori (X, y) is
defined as [6]

2p+1 1) ot
Ly = DB [ [ Rp) 1. )y ®

where the kernel functio®,(x) denotes thepth-order Legendre polynomial and is given
by

p
Po(x) = > Cpil(1 — X)* + (=1)P(1 + x)"]. 2
k=0
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with

N G D R
P kT (p— K)I(K!)Z

Since Legendre polynomials are orthogonal over the interva) 1] [26], a square image
of N x N pixels with intensity functiorf (i, j),with1<i, j <N, mustbe scaled to be with-
in the region—1 < x,y < 1. When an analog original image is digitized to its discrete
form, the 2D Legendre moments,, defined by Eqg. (1) is usually approximated by the
formula

®)

N N
Lpg = %ZZ Po(x)Pa(y) (%, ), ()

i=1 j=1

wherex; = (21 — N —1)/(N —1) andy; =(2j — N —1)/(N — 1), and for a binary image,
f(xi, y;) is given as

_J1, if(i, j)isinthe original object
f(xi,yj) = 5
(1) {0, otherwise )

As indicated by Liao and Pawlak [8], Eq. (4) is not a very accurate approximation
Eq. (1). To improve the accuracy, they proposed to use the approximated form

. 204+ 1)2q+1) S N
Cpq = CPEDEED S~ 5™ g, 1) 06 1), ©)
i—1 j=1
where
Xi+AX/2  pyj+Ay/2
o ¥;) = / / Po(X)Pp(y) dx dy @)
X —AX/2 Jyj—Ay/2

with AX =% —X_1=2/(N—-1)andAy=y; —y;_1=2/(N - 1).

To evaluate the double integriapq(xi, y;j) defined by Eqg. (7), an alternative extended
Simpson’s rule was proposed by Liao and Pawlak. These values were then used to calc
the 2D Legendre momenfspq defined by Eq. (6). Therefore, this method requires a larg
number of computing operations. One goal of this paper is to give an efficient approach
computingl pg defined by Eq. (6). As one can sefepq can be expressed, with the help of
a useful formula that will be given below, as a linear combinatioh gf defined by (4),
with 0 <m < p, 0 < n < q. For this reason, we consider first the computatioh gf.

Equations (4) and (5) show that the main cost in Legendre moment computatior
calculatingPp(x;) Py(y;); therefore this is where we first concentrate our attention. Here w
discuss the following 1D Legendre moment witfx) = 1 in a giveninterval and (x) = 0
otherwise:

Lp=

2p+1¢
SEPILI) ®)

As is well known, a usual method for calculatifg(x;) is to utilize the recursive relation

20 +1 |
PLa(x) = I%lxa(x)—w—la,l(x), forl = 1 )

with Py(X) =1 andPy(x) = X.
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Using such a strateg@)(N) additions and multiplications are needed for computing
Another possible way is to express the Legendre moments, by substituting Eq. (2) into
as a function of the geometric moments, which can be calculated by means of effici
algorithms available. However, it is difficult to adopt such a strategy for computing a high
order of Legendre moments, due to the fact that the large value of coefficients appears ir
expression, and more importantly, these coefficients are not easily derived. To overcome
disadvantages mentioned above, we present a new algorithm that consists of transfori
the Legendre moments into a function of the geometric moments, whose coefficients
easily calculated. Then we utilize the existing algorithms for the geometric moments
reduce the computational complexity of Legendre moments. To do this, we will use t
following basic results.

For two real numbers anda, we want to expresB,(x + a) in the separable form

p
Po(x +a) = Y A£(a)Pp-k(X). (10)
k=0

As is easily seen, the key is the calculatiork§fa), so we turn to it in the following.
From Eg. (2), we have

p
Po(x +a) =Y Cpl(l —a—x)*+ (~1)P(1+a+x). (11)
k=0

Comparing the terms of the monomid! on the right-hand sides of Egs. (10) and (11), it
is easy to obtain

@) =1 (12)
Similarly, we have
@) = (2p - 1. (13)

To obtain the expression of (a) for any value ofk with k < p, two cases need to be
distinguishedk is odd andk is even.

2a k=2m-1

THEOREM 1. For a given integer pand for an odd number ¥ 2m — 1 less than or
equal to p A5, ;(a) can be deduced by the recursive relation

(p—2m+ 1)!
(2p —4m + 2!

2m-2
(-1) @p—1)! L .
{ Z Z T iEm = Dl T - @t

)‘*gm—l(a) =

2m-1 .
(=1 2p—1—2j - 1)
ZAZIH( ) 2 22m-1-1( — 2j —1)I2m—1 — 1)!(p—|)!} (14)

1=2j+1
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It is easily seen that the coefficient of the monomxi&t2™+1 on the right-hand

Proof.
side of Eq. (11) can be expressed as

2m-2
(- 1)9{ > CoptCl A+ — (1 -2 (15)

WhereCij is the combination number and is definedzs=i!/(j!(i — j)!)
On the other hand, the coefficient of the monomiBt?™?! on the right-hand side of

Eqg. (10) is given as

m-—1 2m-1
2-1)P1Y 25,4 D CpajapaCHNTh (16)
j=0 1=2j+1
By equating (15) and (16), we obtain
1 2m—
Am-1(8)Cp2ami1.p-2mi1 = > Z Cpp a1 CI (L — @™t — (14 2™ ']
1=0
m—2 2m-1
21+1(a) Z Cp-2j-1,p-1C,C m -t
j=0 1=2j+1
From Eq. (3), we have
CopiColi ™ _ (-1 (2p —I)! (p—2m+1)!
22n=1=1112m — 1 — DI(p = 1)! (2p — 4m 4 2)V’

Cp72m+1, p—2m+1

and
Cp2j-1p1CoN 1 (~1) 1 @p—1—2j—1) (p—2m+1)!
Coomitpamis 22" -1(1—2] — 1)i2m—1—1)i(p— )} (2p — 4m + 2)!

So we achieve the proof of theorem
We can easily deduce the following relations from Theorem 1

r1(@) = (2p - 1)a, (17)
25(a) = a—?(Zp —1)(2p - 3)(2p - 5)+ (2p - 5)a, (18)
M) = a—?(Zp - 1)(2p-3)(2p-5)(2p—7)(2p - 9)

(19)

. 3
+2(2p-3)2p—5)@2p—9)+ (2p— 9a.

By examining the expressions (17), (18), and (19), it is natural to suppose that

fo(p, m)a®™* + f1(p, a3+ ... + fi(p, ma®m -1
(20)

)‘gmfl(a) =
+ -+ fo_a(p, ma + f_1(p. ma.

The following theorem can then be used to calculfate, m)
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THEOREM?2. For a given integer mand forO <i < m— 1, we have

(p—2m+1) [ S (1) (2p—1)! 2
f; =
(P-M) = o am+2) g 211 [12m — 1 — Di(p — 1) ~2m-1-1
i—1 2m—1
o (=11
=Y fipm—i+j) > Sam 1
i=0 |=2m—2i+2j -1
@p—1—2m+2i —2j + 1)
“M—2mt2 —2j+D)iem—1—Di(p-N [ (21)
Proof. From Eg. (20), we have
j .
2@ =Y fs(p, j + 12>, (22)
s=0

Substitution of (20) and (22) into (14) yields

m—1

> fi(p,mpam2
i=0

_(p-2m4 1) [1T2 (-1) @2p—1)!
T @p—4m+2)) 2 g? 22m-1-1112m — | — 1)I(p — I)!
m-2 ]
x [(1 + a)melfl _ (1 _ a)melfl] _ Z Z fs(p, J + 1)a2j725+1
j=0 s=0

5 Zil (—1)-1 @p—1—2j— 1)
S, 2 =2 —iem =T = Di(p— ! |

The coefficient of the monomiaP™ 2~ on the right-hand side of this equation is

(p—2m + 1) ZZ (-1 (2p 1! i)
(2p — 4m+2)! 22m-I-1]12m —| — 1)i(p — Iyt 2m--1

1=0

m-2 2m-1 .
. (=1t @p—1-2j—1)
- fi—mtiva(p, j +1) . :
j:mz_:i_l JmmH+1 gjil 22m-1=1(| — 2] — 1)l2m — | — 1)i(p — I)!
Using the change of variable= j’+m—i — 1 in the last term of the above expression,
we can deduce expression (21

Theorem 2 shows that; (p, m) can be calculated by the recursive relation (21). Usinc
this relation, we have

1 1 (@p) (p—2m+1)
folP- M = G2t p (2p—dm+2) 23)
f,(p. m) = 2m-3 1 (2p-2)! (p—2m+ 1)! 1 (24)

2m—-3)122m-2 (p—1)! 2p—4m+2)!2p—4m+5
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f _@m-4)(@m-5) 1 (2p—4) (p—2m+1)

2P M) = o om B 273 (p—2) 2p—4m+ 2)]
1

“@p—4m+7)(2p—4m+5)

(25)

Obviously, it is hard to make use of Theorem 2 directly to calcufagp, m) for the large
value ofi, because Eq. (21) requires a large number of operations. However, by obsen
the expressions (23), (24), and (25), we find thdp, m) given by Eq. (21) can be much
simplified. That is, to calculate it, we have the following theorem:

THEOREM3. The function f(p, m), for 0<i <m—1, defined by Eq(21) can be sim-
plified as

Chmi 2 1 (2p—2)! (p—2m+1)! 1
fi(p, m): 2 i 1 22m—i—1 i (2 2) T7i-1 i ’
(2m—2i —1)! (p—0)! (2p—4m+2)! ]\ Z(2p — 4m+ 2] +5)
(26)
where G, ; , is a combination number.
It is easily seen that expression (26) is equivalent to
f(p.m) = 1 2p—4m+3 (2m—-i—-2)! 2p—-2)! (p—2m+i + 2)!
P M= S22 2m—2i —1)'2m—-2i —2)! (p—i)! (2p—4m+ 2i + 4)!
(27)

To prove Theorem 3, we should verify th&t(p, m) given by (26) or (27) satisfies
expression (21). For this purpose, we first introduce the notations

_ (p—2m+1)!
- (2p—4m+2)! (28)
(-1) (2p -1
B = 2
T 212l —)I2m—2i — D)i(p—1)! (29)
—1)-1 2p—1—2m+2i —2j +1)!
D, = (2 _)I_l ( p—l- i+1) _ (30)
22m (I —-2m+2 —-2j+1)!'2m—-1 -2 (p—-1)!
Using the above notations, Eq. (21) can be written as
2i i—1 2m-1
fi(p.m=A|> B =Y fi(p.m—i+j) >  Djl. (31)
1=0 j=0 |=2m—2i+2j—1
Then we give the following lemmas:
LEMMA 1. If fj(p, m) satisfies the relations
t
Bx = Z fi(p,m—i+j)Djomzisz—1, t=01...,1 —1,i (32)

j=0

t
th+l=Zf](p7m_l +J)D],2m—2|+2t? t:Oa 17'-'5i _1 (33)
j=0
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i—1
fi(p.m)=A|Bz — > fi(p.m—i+ j)Djom_1]. (34)
j=0

then f(p, m) satisfies Eq(21) or Eq. (31).
LEMMA 2. For a function Ht, j) defined by

Ft i) 2P —2H — 4] — 1)(p - 20) CiCs s, (35)
’ HI2t+ 1)@ +2)(p—H -2t - 1)l cpicai2, .-
where t p, and H are positive integershen we have
t
Y Ftj)=1 (36)
j=0
LEmmA 3. For a function Ht, j) defined by
F( )~ 2@p—2H —4j —(p—2 1) CiCoh s -
’ HI2t +2)2 +3)(p—H -2t —2)! cpHIcats,
where t p, and H are positive integersve have
t
S OF(t.j)=1 (38)
j=0

The proofs of Lemmas 1-3 and Theorem 3 are deferred to Appendix A.

2b. k=2m

Inthis case, we can obtain the corresponding results in a way similar to thatfam—1.
So we give the following theorems without proof.

THEOREM4. For a given integer pand for any even numberk 2m less than or equal
to p, Agm(a) can be deduced by the following recursive relation

*om(@)

[(1 + a)2m—l + (1 _ a)2m—|]

_om . (pm2m [1RS (-1 @y
= Tz (op amy | 2 £ 22T [i2m—)i(p—1)!

m-—1 2m .
(-1) @2p—1—-2j)
) j;)kg" @ .;,- 22n (1 =2))2m —1)!(p — ! } (39)

Then we decompose).(a) for m> 1 in the form

2m=2 4 ... 4 gm_1(p, m)@Z.

(40)

Am(@) = go(p, ma®™ + gi(p, ma®™ 2 + ... + gi(p, ma
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THEOREMS5. Foragiven mand forO<i <m-—1, we have

i—1

(p—2m)! [ (-1)  (@p-I)
g(p,m) = m{ ~ 2201 [12m — DI(p — 1! 2m | Zgj(p m—i+j)
2m . .
(-1) (2p—1—2m+2i —2j)!
I=2n§+2j 2201 (| —2m+2i — 2))!2m—D!(p —1)! } (41)

THEOREM6. Expressiorn(41) can be simplified as

Chnis 1 (2p—2)! (p—2m) 1
(2m —2i)1 2™ (p—i)! (2p —4m)! [T Z3(2p — 4m+ 2 +3)’

g(p,m)= (42)
Based on Theorems 3 and 6, we now propose our method to calculate the 1D Lege
moment defined by (8).
Using Eq. (10), the relatio,_x(—1) = (—1)P, and the notationx; = —1 + & with
a =2( —1)/(N — 1), we have

Lp = 2p+1zpp( 1+a)= 2p+1zzkk(au)|3p k(—1)
i=1 k=0
zp“ZZ( )P a(a) = 2"“Zupx @). (43)
i=1 k=0
where
Up=[(-1)°, (1P (-D)P, (-1, ..., -1,1]
and

WP@) = [18@). 1’@). ... h@)] .

HereT indicates transposition, andl, andiP(a ) are both ¢+ 1)-dimensional vectors.
By using the notation

AP(a) = MpAp(ay). (44)

where Ap(ai) =[1,&,a2, ..., all’, Mp is a (p + 1) x (p + 1) triangle matrix whose
elements depend only gn and the definition of the matriil,, for 0<| <k < p, is given
as

fm-j(p,m), ifk=2m—-21and =2j-1,j=12...,m
Mp(k,1) = ¢ gm—j(p, m), ifk=2mandl =2j,j=1,2,...,m (45)
0, otherwise

Then we have

Lpzz'{’_jl (ZAp( )) 2IO“u M,D,Gp. (46)
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whereDy is a (p + 1) x (p + 1) diagonal matrix whose diagonal elements Bggk, k) =
(2/(N = 1))<fork=0,1,..., p,and

N-1 N-1 N-1 N-1
Gp=[) LY iy i%....> iP
i=0 i=0 i=0 i=0

is a (p+ 1)-dimensional vector whose elements are 1D geometric moments of order
to p.

Soour strategy for computing the 1D Legendre moments of orderpipdao be described
as follows:

1. Use the Pascal Triangle Transform proposed by Li and Shen [21] to calculate
geometric moments of order upposo the vecto6 , can be obtained without multiplication.

2. Construct the matriiy with k < p by Eq. (45). The 1D Legendre moments of order
up to p can then be calculated by using Eq. (46).

Note that using the method proposed above, only the multiplication is needed in
construction of matriXVlk, and the product oMy andGy. Therefore, the number of mul-
tiplications depends no longer dd, but only onp. It should also be pointed out that
expressions (26) and (42) seem to be complex, but in fact, their final results can easil
derived for any giverp andm. A list of Af(a), for k < 20< p, is given in Appendix B.

3. CALCULATION OF 2D LEGENDRE MOMENTS

Based on the result obtained in Section 2, we are now in a position to express the
Legendre moments pq defined by Eq. (6) as a function &f,q defined by Eq. (4).
By using the relation

/ Po(x) dx = [Ppy1(X) — Pp_a(x)]/(2P + 1)

we can deduce from Eq. (7) that

(2p+ 1)(29 + 1)hpg(xi, Yj)
= [Pp+a(Xi + AX/2) — Ppa(Xi — AX/2) — Pp_1(Xi + AX/2) + Pp_1(Xi — Ax/2)]
[Pg+a(yj + AY/2) — Poralyj — Ay/2) — Pya(yj + Ay/2) + Py-a(y; — Ay/2)].
(47)
With the help of Eq. (10), we have

Pp1(Xi + AX/2) = Ppra(Xi — AX/2) — Pp_a(Xi + AX/2) + Pp_1(Xi — Ax/2)

p+1 p+1
= HAX/2)Ppia k() = Y AT (= AX/2)Ppiak(Xi)
k=0 k=0
p-1 p-1
= TN AX/2)Pp k() + DAL = AX/2)Pp1 k(%)
k=0 k=0

= 2{Zi’:xf“mx/zwmk(xi) ST AP (k)| (48)
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whereZ,E’il1 stands for summation with respect to the odd valueafried from 1 top+ 1.
Similarly, we have

Pat1(Yj + AY/2) — Pyya(y) — Ay/2) — Pa_1(yj + Ay/2) + Py_a(yj — Ay/2)

- 2[2?:xﬁ“my/z)Pq+l_.(y;)—Zlq MAY/2Pn ()| (49)

Substitution of Eqgs. (48) and (49) into Eq. (6) yields

Zp+1 Zq+1 p+1(AX/2))»q+1(Ay/2) ]
=1 (2p — 2k + 3)(2q — 2| + 3)AxAy P

p+1 L Aax/ 2007 (Ay)/2)
3 Zl -1(2p—2k+3)(2q— 2 -1)AxApr“ -1~

il AT (AX/2M T (Ay/2)
DI (2p —2k—1)(29 — 2 + 3)AxAy P

p—l q-1
(Ax/2)" " (Ay/2)
Z ZI l(2p 2k 1)(2q9 — 21 — 1)AxAy

L p—1-k,q—1—I- (50)

Note that Eq. (50) is of the form of the convolution operator. In fact, by introducing tt
sequences

90 (Ax/2n} (Ay/2
BRI — %ﬁ'ymy”, for all odd values ofK, 1) 51)
0, otherwise
Lk
B = 5o (52)
(2p+1)(20 + 1)

Eq. (50) can be written
Lpg= ka|+1.,q+1 * By — Bkﬁ“'q_l x By — Blg_l’q+1 * By + ka|—1,q—1 * B, (53)

whereB} x Ey denotes the 2[p x g-point discrete convolution operator.

Equation (53) shows that the 2D Legendre momefn;@ defined by Eq. (6) can be
deduced from the values bf,, with 0 < m < pand 0< n < q. For this reason, we turn to
the fast computation df ,q in the following. First, we give a list of relationships between
L pqandL pq for p+q < 3.

Loo= Loo

Ci0=L1 Loi=Los

- 5(AX)? - - 5(Ay)?
Loo= L2+ (8 ) Loo, Liz=Liu, Loo=Lo2+ (Sy) Loo
~ 35(Ax)? - 5(AXx)?

Lao= L3+ (24 ) Lo, Lor=Loai+ (4%) Loz

. 5(Ay)? ~ 35(Ay)?

Lio=Lio+ (4y) Lio, Loz=Loz+ @y) Lo1

24



248 SHU ET AL.

The first three leading terms in Eq. (50) are

~ @p+1(2p - 1)(AX)2
Lpg=Lpg+ >4 Lp-2q

LA+ D@ - 1)(Ay)?

>a Lp.g-2 + O((AxAY)?). (54)

The above equation shows that the difference betviggrandL pq could be important
when the moments of higher order are concerned. Note that the method discussed abc
an extension of research by Liao and Pawlak [8]. In fact, they adopted the same stratec
calculate the 2D geometric momeritgy based on the values of,q, wherermpg andmpg
are defined as

4 N N o
mpqzmzzxi yi (X, yj).

i=1 j=1

X +AXx/2 yj+Ay/2
PRICTT) / xPyddx dy.
Yi

N
i=1 Xi—AX/2 —Ay/2

N
Mpq Z
i=1

We now describe the algorithm for computing the 2D Legendre monigptsiefined
by Eq. (4). To do this, a new approach based on Eq. (10) is used to calBy(aeP,(y;).
Denotingx; = —144a;, y; = —1+Db;, with & =2( — 1)/(N — 1), bj =2(j — 1)/(N — 1),
we have

p q
Po(6)Pa(yj) = Pp(—1+a)Py(—1+bj) =Y > Ppi(—1)Pem(—DAP (@)1 (b))-
|=0 m=0

(55)
Introducing the notation
du(p, 1/2), if | is an even number
nu(p. 02 = { ¥ . (56)
fu(p, (I +1)/2), otherwise
where K] denotes the integer part &f for 0 < | < p, we have
[(1-1)/2]
M@)= > hu(p.[I/2D)a . (57)
u=0
Similarly, we have
[(m-1)/2]
M) = > hy(g. [m/2)b]?. (58)
v=0

Substitution of Egs. (57) and (58) into (55) yields

p q
Po(i)Pa(¥i) = D> > (-1 "R, by), (59)
I=0 m
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where
[(1-1)2] [(m-1)/2]
Fm(@, b)) = Y > hy(p,[I/2Dhy(a, [m/2])al~2'b]>". (60)
u=0 v=0

We now calculate the 2D Legendre momehtg,. We deduce from Eqgs. (59) and (60)
that

qu %(2:3;_1)22( 1)p+q 1= mZZHm(a b)f(xls yj) (61)

1=0 m=0 i=1 j=1
Equation (61) can be written
2p+1 +1 p a [(1-1)/2][(m-1)/2]
qu - M Z Z Z Z HUv(p» qv I’ m)G|72U,m72U’ (62)
=0 m=0 u=0 v=0
where

Hu(p, @, 1, m) = (=1)P*9"'"hy(p, [ /2Dh,(a, [m/2]) (63)

and G,p denoting the 2D + b)th order geometric moment except for a constant multi
plicative factor, is defined as

2 a+b+2 N—1N-1
Gap = (m) SO i (k. yy). (64)

i=0 j=0

Based on the above discussion, the algorithm for computing the 2D Legendre mom
L pq andL 4 can be described as follows.

1. The geometric momen@,, of order up toM are calculated by use of a fast method
proposed by Yang and Albregsten [23]. For an image of Blze N, this method needs
only O(N) additions and multiplications, respectively.

2. The coefficientd,(p, [1/2]), with0< p<M, 0<I| < p,and O<u <[(l — 1)/2], are
calculated using Egs. (26) and (42), in whish(M — 1)(2M — 1)/6 multiplications and
M(M —1)(2M — 1)/6 additions are needed, respectively. The valueslgip, q,!, m)
can then be deduced from Eq. (63).

3. Using Eq. (62) to calculate 2D Legendre momengg, with 0< p+q < M. When
all the values ofG,, andhy(p, [I /2]) have been obtained, this step needs approximate
2M3(M + 1)*/72? additions and M3(M + 1)3/722 multiplications, respectively.

4. The 2D Legendre momenfspq of order up toM can be calculated with the help of
Eq. (53) when the values af,q, with 0< p+q < M, have been obtained.

Note that Liao and Pawlak [8] adopted an alternative Simpson’s formula to calculate
double integrahyq(xi, y;) defined by Eqg. (7), in which different integration rules, with
| =3, 8, 13, 18, and 23, were employed. Herelenotes the number of points within a
given pixel required to evaluat,q(x;, y;). These values are then used to calculate the 2|
Legendre momentsyq. Itis obvious that the method used by Liao and Pawlak needs mu
more computation than the algorithm proposed in this paper. To illustrate the efficier
and the accuracy of our method compared with the methods described by Mukundan
Ramakrishnan [25], and by Liao and Pawlak [26] for computing the 2D Legendre momer
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FIG. 1. The two original Chinese characters and their patterns reconstructed using Mukundan :
Ramakrishnan’s method [25].

we use the three methods to reconstruct some Chinese characters with the help of the in
transform

M P
FO6, Y~ D> Loa.aPoa()Pa(y))- (65)
p=0 g=0

Figure 1 shows the two original Chinese characters and their reconstructed pattern f
the higher order of Legendre moments by using Mukundan and Ramakrishnan’s mett
The first column displays the two original characters. The second column to the seve
column illustrate the reconstructed patterns with order of up to 20, 24, 28, 32, 36, ¢
40, respectively. The results obtained with Eq. (6) using Liao and Pawlak’s method &
the method proposed in this paper are depicted in Figs. 2 and 3, respectively. Note th:
Figs. 2 and 3, the orders of the Legendre moments used in Eq. (65) are the same as 1
used in Fig. 1. Table 1 shows the CPU times needed to calculate the Legendre momer
order up to 20 and 40 for the three methods mentioned above, respectively. Note also
the programs have been implemented on an AMD K6/300 personal computer.

4. CALCULATION OF 3D LEGENDRE MOMENTS

In this section, we describe briefly an efficient method for computing 3D Legend
moment using the results obtained in Section 2. Similarly to the 2D Legendre moments,

AR AR R

;;- :E;- -t *‘Fs F
FIG. 2. The two original Chinese characters and their patterns reconstructed using Liao and Pawl:
method [8].
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B AR EAR AR
balle ) '

;f i.’i’ ?g'&' N
FIG. 3. The two original Chinese characters and their patterns reconstructed using the method present
this paper.

3D Legendre momerit ,q, of orderp+q+r of a 3D object is defined as

2 1 Dz +1 11
Lpoy = ZPH DAL IE )/_1/_1/_1Pp<x>Pq(y)Pr(z)f(x,y,z)dxdydz (66)

When an analog original imagi(x, vy, z) is digitized into its discrete version, Eq. (66)
is usually approximated by

N N N
Lpor = PO DS S PP YIR @) .3, 20 (67)

i=1 j=1 k=1

More accurately, we can approximaigg, by

. 2p+1)(2q+ 1)@ +1 NN
qur—( p )(2q8 ) ) o ST hpar(in i 20 F (XL yp. 2. (68)
i=1 j=1 k=1
where
Xi+AX/2 rYj+AY/2 pz+AZ/2
Mpar(Xi. Y. 20) = / / / PoX)Pa(y)P (D dxdydz  (69)
Xi—Ax/2 Jyj—Ay/2 Jz—Az/2

Like 2D Legendre momentk 4, 3D Legendre moments yqr can also be expressed
as a linear combination dfy, defined by Eq. (67), with&k<p,0<l<qg,0<m<r.
Therefore, we discuss here only the efficient computatidnggf defined by Eq. (67).

Introducing the notatiorx, =—-1+4a, yj=—-14+b;j, and ze=—-1+c, with g =
20 —1)/(N—=1), bj=2(j —1)/(N—-1), and ¢c=2(k—1)/(N — 1), respectively, and

TABLE 1
The CPU Times Needed to Calculate the Legendre Moments of Different Orders witiN =100

Mukundan and Ramakrishnan’s Liao and Pawlak’s
Maximum order method [25] method [8] Our method
M =20 0.05s 5.15s 0.8s
M =30 0.06s 105s 14s

M =40 0.11s 19s 2.7s
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using Eq. (10), we obtain

Po(Xi)Pq(yj) P (z) = Pp(—=1+ &) Py(—1+Dbj)P (=1 +c)
p

q r
D> Poa(=D)Pem(=1P _a(=1) AP (&) (b)) Ah(Ck)-

1=0 m=0 n=0

(70)

Using the functiorhy(p, [I /2]) defined by Eq. (56), we have

P q r
Pp(X)Pq(y;) P (20) =ZZZ( LpratmIn e (& by, ), (71)

|=0 m=0 n=0

where

Flmn(ai ’ b] ) Ck)

[(1-1)/2] [((m-1)/2] [(n—1)/2]
=Y S S hu(p [/2Dhu(@. Im/2Dh, (. [n/2)a bl (72)

u=0 v=0 w=0

We now turn to calculate 3D Legendre momehts,. Since (P + 1)(2q + 1)(2r + 1)/
(N — 1) appearing in Eq. (67) is a normalized factor, we neglect it in the following.
From Egs. (71) and (72), and by exchanging the order of the summation, we deduce

p q r N N N
Logr =D > > (1P 0NN "N Finn(ai. by 0 f (%, yj. 2. (73)

1=0 m=0 n=0 i=1 j=1 k=1

Equation (73) can be written as

p g r [(1-1)/2][(m-1)/2][(n-1)/2]
L pqar Z Z Z Z Z Huvw(pv q’ rv I’ m’ n)GI—zu,m—Zv,n—Zw, (74)
I=0 m=0n=0 u=0 =0 w=0

where

Huww(P, G, 1,1, m, n) = (=1)PF45=1=m="hy (p, [1/2])hy (g, [m/2])h, (. [n/2]) - (75)

andGgpc, denoting the geometric moment of ordarf b + c) except for a constant multi-
plicative factor, is defined by

5 atbic N—1N—1N—1
Gapo= (N—_1> SN Y iRk, v, 7). (76)

i=0 j=0 k=0

From Eqgs. (74), (75), and (76), we now describe our strategy to calculate 3D Legen
moments of order up t¥.

1. The geometric momen@,,, with 0<a, b, c < M, are calculated by use of the fast
method proposed by Yargf al [24]. Using such a method, this step needs dDfN?)
operations to calculat®,p, of order up toM.
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2. The coefficientdy(p, [1/2]), withO< p<M, 0<l <p,and O<u <[(I —1)/2], are
calculated with Egs. (26) and (42). The value$¥f.,(p, g, r, |, m, n) can then be deduced
from Eq. (75).

3. Using Eq. (74) to calculate 3D Legendre momengg, of order up toM. When all
Gancandhy(p, [I/2]) are calculated, the computatitfq, with0< p+q+r <M, needs
approximately f12(M + 1)/180% additions and 3(12(M + 1)/180F multiplications, re-
spectively.

Obviously, the number of computing operations of the method using the algorithm ¢
scribed above for calculating the 3D Legendre momegtg defined by Eq. (67) is less than
that of the direct method since this latter requi@vi®N?®) additions and multiplications,
respectively.

5. DISCUSSION

Since Hu [3] introduced the moment invariants, moment functions of image intens
values have been widely used in the field of image analysis and pattern recognition. Du
the past two decades, many works have been done, discussing the application an
efficient computation of the moment functions; most of them focus on Cartesian geome
moments. As is well known, orthogonal moments defined in terms of Legendre and Zerr
polynomials can be used to represent an image with minimum redundancy. Furtherm
these orthogonal moments and their inverse transforms are very useful tools for im
analysis, image reconstruction, and feature representation. However, the direct comput
of orthogonal moments requires a large amount of additions and multiplications, especi
where higher order moments are concerned; for this reason, the application of these mon
is limited.

Mukundan and Ramakrishnan [25] proposed to use Green’s theorem to transform
double integral into a boundary integral; then they just used the contour information
evaluate the 2D Legendre moments. Their method is efficient, but not accurate, since
adopted a trapezoidal integration rule to approximate the integral function for Legen
moments. Recently, Liao and Pawlak [8] proposed a more accurate approximation forn
for computing the 2D Legendre moments of a digital image; an alternative extenc
Simpson’s rule was then used to numerically calculate a double integral function for hig
order Legendre moments for each pixel. The method proposed by Liao and Pawlak
be used to reduce the discretization error, and it has been used successfully for in
reconstruction; however, their method requires a large number of computing operation

In this paper, a simple and efficient algorithm for computing 2D and 3D Legendre i
ments has been proposed. The main contribution of the paper is to establish the relatior
indicated by Eq. (10). Using this equation, we can express the 2D Legendre md}g@nts
defined by (6) as a linear combination lof,, given by (4). Therefore, to obtain the value
of I:pq, it suffices to calculate the 2D Legendtg,, with 0<m < p and 0<n <q; the
value ofI:pq can then be deduced from Eq. (53). Note that to reduce the computation tir
the relationship (53) can be found by the 2D fast Fourier transform for large valygs o
andq. With the help of Eq. (10), we still can transform the 2D Legendre momkpis
into a function of the geometric moments of the same order and lower, whose coefficie
appearing in the expression are easy to calculate. Since many efficient algorithms are &
able to compute the geometric moments, our method tremendously decreases the nu
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of computing operations compared with that of Liao and Pawlak, and the accuracy of
method is similar to theirs. The above discussion shows that Eq. (10) is very useful;
other application of this formula will be given in the near future.

As is well known, the usual way to express the Legendre moments as functions of
geometric moments consists of substituting Egs. (2) and (3) into (4). However, during |
programming, we found that it was difficult to obtain accurate coefficient values for high
order Legendre polynomials. For example, foe 30, the numeric result is not the same as
the theoretic value, and the difference becomes important with increasing order. In contt
the accurate coefficient values bf(a) defined by Egs. (20) and (40) can be obtainec
without difficulty for large value ofp; we have tested it up to 50. So our algorithm deserve
to be implemented much more.

6. CONCLUSION

In this paper, we have discussed the problems of accuracy and efficiency in 2D and
Legendre moment computing. Based on the improved moment computing techniques, s
Chinese characters have been used as the testimages in the image reconstruction proc
The comparison of the algorithm with known algorithms shows that our method is efficie
and accurate; therefore, it can be useful in image reconstruction and feature represente

APPENDIX A

Proof of Lemma 1. The last term on the right-hand side of Eq. (31) can be written as

i-1 2m-1
filpm—i+j) Y D
=0 I=2m72i+2j71
i—1 —2j
= fJ(pv _|+J)Z DJI+2m 2i+2j—-1
=0 1=0
i—1 i—j—1
= fi(p.m—i+j) Z (Dj24+2m—2i+2j—1 + Dj24om-2i42j) + Djom-1|. (Al)
i—0 =0
Furthermore,
i—1 i—j-1
fi(p,m—1i+]) Z Dj a4om—2i4+2j-1
i—0 =0
i—1 i—j-1
= fi(p.m—i+j) Z Dj2m 2.3 using the change of variable
=0 =0 l=i—j—1-1
i—1i-1-1

> fi(p.m—i+j)Djoma-3
j=0
|

gl

T
[S)

VB

fi(p,m—1i+ j)Djom-2+4+2-1 using the change of variable
j=0 [ =i—-1-1

i
[

= By by use of the assumption (32)(A2)
1=0
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Similarly, by using the assumption (33), we can deduce

i—j—1

Z fi(p.m—i+j) Z Dj 2 +2m-2i+2j = Z Bz 1. (A3)

From Egs. (A2) and (A3), the right-hand side of Eq. (31) can be written as

2i i—1 2m-1
ALY B =Y fit(pm—i+)) > Dy
1=0 j=0 |=2m—2i+2j -1

i=1
AlBy — Zf(pv _|+J)D12m 1]

j=0

= fi(p, m) by use of the assumption (34)
The proof is now complete.m
2p—2t

Proof of Lemma 2. Becausé:ri) =0for j <0andC;,_5; =0for j >t, we deduce from
(35) thatF(t, j)=0for j <0, andF(t, j) =0 for j > t. Therefore

ZF(t j) = Z F(t. ). (A4)

j=—00
Introducing the functions
R, j)=4p—1—pj—j +2jH +2j>—8t> — 4p’t — 4pjt — 3p?
+4j%t — 2jt —2H — 6t — 2pj? + 2p?j + 12pt? + 4ptH
+14pt — 6Ht? — 7tH + 3pH — 122 — 2pjH + 4jtH
and

1(2p—2j + DR, J)
(p—2t—1)(p—2t)2p—2H —4j — 1)t — j + 1)(& — 2j + 1)

Gt j)=- F(E J).

After a fair amount of mathematical manipulations, we obtain
Ft, j)—Ft+1,j)=0G(, ] +1)—G(t, j).

Using the relationss(t, t + 2)=G(t, —1) =0 (becausd-(t,t + 2)=F(t, —1)=0), we
have

t+1 t+1 t+1 t+1

SR - Y Ft+L)= Y 6t +1)- Y 6. i)

j=—1 j=—1 j=—1 j=—1
— G(t,t +2)— G(t, 1) =

We deduce from (A4)

SOFt+1j)= > F(tj). (A5)

j=—00 j=—00
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Equation (A5) shows thaE‘j’i_ooF(t, j) is independent oh. Then, by setting =0, we
obtain

[ee] [e¢]

Y Ft.j)= ) F0.j))=F(00)=1,

j=—o0 j=—c0
which completes the proof of Lemma 2m

Proof of Lemma 3. The proof of Lemma 3 is similar to that of Lemma 2 by introducing
the following functions

R(t, j) = 14p — 8 — 3pj — 2] +4jH + 4j% — 8> — 4p’t — 4pjt — 5p?

+4j% — 2jt — 7TH — 24t — 2pj® + 2p?] + 12pt® + 4ptH
+26pt — 6Ht* — 13tH + 5pH — 24t? — 2pjH + 4jtH

and

L i(2p - 2j + DR, ) .
St = a2 —D@p_2H —4) )i D@ -2 73 "I
| |

Proof of Theorem 3. Based on Lemma 1, it is sufficient to prove that the functior
fi(p, m) defined by Eq. (26) or Eq. (27) satisfies (32), (33), and (34). For this purpose, \
first prove thatf; (p, m) defined by Eq. (27) satisfies (32). Recall that Eq. (32) is written a

t
Bz:Zfj(pym_i'i_j)Dj,Zm*ZiJth*l’ t=0,1,..., i —1,i. (A6)
=0

From (29), (30), and (27), we have

(- (2p —2t)!

Ba = Som-z1 (2D)!2i — 2t)I(2m — 2i — 1)(p — 2t)! (A7)
D _(—ppmEae2 (2p —4m+4i — 2t — 2 + 2)! A8)

hammATAL T T oA (2t — 2)))(2i — 20)(p— 2m + 21 — 2t + 1)

and
_ o 1 (@2p—-4m+4i—-4j+3)2m—-2i +j—2)!
Gpm=i+D=gma2 jem-z—-11  (@n—2-2)

(2p—2j)! (p—2m+2i — j +2)! (A9)

(P—1J) @p—4m+4i —2j +4)"

Using (A7), (A8), and (A9), we deduce that (A6) is equivalent to the equation

2p — 2t)! ! .
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where

L o (2p — 4m+4i — 2t — 2] + 2)!
E(t 1) =20@p—am+ 4l = 4] + )5 o p—2m+ 2 — 2t + 1)

@m—2i+j—-2@2p—2j) (p—2m+2i —j+2)!

@m—-2 -2 (p—j) @Cp—4m+4i —2j+4) (A1)

By using the change of variablé¢ =2m — 2i — 2, we obtain

. . 2p—2H -2t — 2j — 2)!
E =2(2p—2H —4j -1
t.J)=20p =D e H 2 - D)

(H+r@p-2j) (p—H-J)

HL (p—D)! @p—2H 2] 12
Note thatH is a positive integer for=0, 1, 2, ..., m— 1. Setting
. 2)!(p — 2t)! .

F(t, j)= ——————E(t Al13
(t. J) 2p - 20)! (t. J) (A13)

and substituting (A12) into (A13) yields

. j ~2p—2
F gy 2@p-2H—4i -2t CiCy
’ HI(p—H —2t - D2t + 1)(2 +2) eI cats,

By using Lemma 2, we have

t
dOFtj)=1
j=0

So Eg. (A10) is demonstrated, and the proof of (A6), or that of Eq. (32) is achieved.
Equation (33) can be proven in a similar way by using Lemma 3. To prove (34), it suffic
to use Eq. (32) fot =i, we have

A

i—1
Ba — Z fi(p,m—i+j)Djam1
i—0

i—1

i
> fi(p.m—i+j)Djan1— Y fi(p.m—i+j)Djam
=0 =0

=A

= A- fi(p, m) - Dj 2m-1.

From (30), we have

D _(@2p—4m+2)! 1
T p—2m+ 1) A

The proof of Eq. (34) is now completem
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APPENDIX B
@) =1
*(a) = (2p—1)a
1E(e) = (20— (20 — I’
18(2) = 5,20~ )@ 3)(2p ~ 5)a° + (20 — 5)a
ra(@) = %(Zp —1)(2p—3)(2p - 5)(2p — 7)a* + (2p — 3)(2p — 7)a’

1E(@) = &, (2p — )@~ 3)(2p ~ 5)(2p — )2p — 9’

+5(2p—3)2p ~5)(20 — 9’ + (2p — 9a

A5@) = é(Zp —1)(2p — 3)(2p — 5)(2p — 7)(2p — 9)(2p — 11)a°

+31(2p — 3)(20— 5)(@p — 7)2p — 11" + 5(2p — 5)(2p — 1187
A(a) = %(Zp —1)(2p — 3)(2p — 5)(2p — 7)(2p — 9)(2p — 11)(2p — 13)a’

1
+2:(2P = 3)(2p —5)(2p — 7)(2p — 9)(2p — 13)°

+(2p—5)(2p — 7)(2p — 13)8° + (2p — 132
75(@) = é(zp —1)(2p — 3)(2p — 5)(2p — 7)(2p — 9)(2p — 11)(2p — 13)(2p — 15)8°
+ é(Zp —3)(2p — 5)(2p — 7)(2p — 9)(2p — 11)(2p — 15)a°

+ 5(2p — 5)(2p — )20 — 9)(2p — 15} + 2(2p — 7)(2p — 15K

17 . 1 .
A@) = o [[@p-2 +1a°+ A [@p -2 +1)2p - 17"
=1 Ti=2

6
+ % [I@p -2 +1)@2p—17R°+ g(Zp —7)(2p—9)(2p — 17)a°
i=3
+(2p—17)
10 1 8
[Iep-2i + 12"+ = [](2p - 2i + 1)(2p — 19)8°

10141 nil

)\fo(a) =

7 £ ) s 5 6 - .
+55 E(ZD— 2i +1)(2p — 19" + EE(ZD_ 2i +1)(2p — 19)%

+2(2p—9)2p - 19
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11

AP(a) = o [[@p-2+1at+ = H(Zp 2i +1)(2p — 21)a°
i=1 i=2
7
+15 OH(Zp 2i +1)(2p — 21)a’ + 2 H(Zp —2i +1)(2p — 21)a°
i=4
+ 5(2p —9)(2p — 11)(2p — 21)a° + (2p — 21)a
12 10
AD,(@) = i [[@p-2+1a%+ = H(Zp 2i +1)(2p — 23)a'°
i=1 i=2
8
+5o H(Zp 2i +1)(2p — 23)a° + % H(Zp —2i +1)(2p — 23)a°
i=4
- ‘;’—Z H(Zp —2i +1)(2p — 23)a% + 3(2p — 11)(2p — 23)a?
137 1 11
APy(@) = 3. H(Zp 2 +1)a®+ — 101 H(Zp 2i +1)(2p — 25)a'!
5 10
+ 5 [I@p -2 +1)2p — 25K° + 0 H(Zp —2i +1)(2p — 25)%7
i=3 i=4
7 _ 7
+1 i11(2p —2i +1)(2p — 25)° + 5(2p—11)(2p — 13)(2p — 25)a°
+(2p— 25)
14 1 12
AP(@) = i [I@p-2i + 12+ 0 [1@p -2 +1)(2p - 27)a*
=1 Ti=2
11 10
+5g1. H(Zp 2i +1)(2p — 27)a° + H(Zp 2i +1)(2p — 27)a®
H(Zp 2i +1)(2p — 27)°% + = H(Zp 2 +1)(2p — 27)a*
| =5 | =6
+ ;(Zp —13)(2p — 27)a?
15 13
APs(a) = 51 H(Zp 2i +1)a'® + ol H(Zp 2i +1)(2p — 29)a*®
12 5 11
+ o1 [[@p-2i +1)(2p — 298" + 38 [@p -2 +1)2p — 29)°
i=3 i=4

10

21
— _ 9 _ 7, 4" _ _ 5
+ >4 i|:5| 2p—-2 +1)(2p—29a" + 20 i|:6| 2p—-2 +1)(2p— 29

+ 1—34 (2p — 13)(2p — 15)(2p — 29)a° + (2p — 29)a
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1 16 1 14
A(@) = I6i [I@p-2i +1)a*+ el [I@p-2i +1)2p—31)a*
i=1 i=2
13 13 22 12
+ 5111 H(Zp 2i +1)(2p — 31)a? + !q(zp—zi +1)(2p — 31)a°®
| =
| 165 5, 7 e . 6
+ 7 H(Zp 2i +1)(2p — 31)a° + OH(Zp—ZI +1)(2p — 31)a
+5 H(Zp 2i +1)(2p - 31)a" + 4(2p — 15)(2p — 31)°
| =7
17 1 15
AP(a) = = H(Zp 2i +1)a’ + 2. H(Zp 2i +1)(2p — 33)a’®
7 14
+ 350 H(Zp 2i +1)(2p — 33" + 1 o' H(Zp 2i +1)(2p — 33)a't
5 12 9 11 . ,
H(Zp 2i +1)(2p — 33)a° + 'H(Zp—ZI +1)(2p — 33)
i=5 T i=6
7 10
+ - H(zp 2i 4+ 1)(2p — 33)a° + 6(2p — 15)(2p — 17)(2p — 33)a®
| =7
+(2p — 33
Ay(a) = s [[@p-2 + 12+ 15 [I@p -2 +1)(@2p - 35,
i=1 i=2
15 15
- 14 12
+ 5131 H(zp 2 +1)(2p - 38R + = H(Zp 2i +1)(2p - 35)
R H(zp 2 +1)(2p — 3510 + H(Zp 2+ 1)2p — 35)°
oo 1
H(Zp 2i +1)(2p—35)° + 5] [(2p — 2 + 1)(2p — 35)*
i=8
+ E(Zp —17)(2p — 35)a?
1 19 17
*1o(8) = 7g; H(Zp 2 +1a+ o H(Zp 2i +1)(2p — 37"
16 15
+ 1. H(Zp 2i +1)(2p — 37)a'® + ol H(Zp 2i +1)(2p — 37)al®

14 13
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12 11

+ 6—; [I@p-2 +1)(2p- 378" + %1 [@p -2 +1)@2p - 37)R°

i=7 i=8
15
+ ?(Zp —17)(2p — 19)(2p — 37)a% + (2p — 37)a

18

1 .
Aby(@) = 01 H(Zp 2i +1)a® + ﬁH(zp—z + 1)(2p — 39)a'®
=2
17 17
+ 5151 H(Zp 2i +1)(2p — 39)a'® + . H(Zp 2i +1)(2p — 39)a*
455 2002+
+ 7110, H(Zp 2i +1)(2p — 39)a? + ot H(Zp 2i +1)(2p — 39)a’®
L 429 5, 1 - . 6
+5 H(Zp 2i +1)(2p — 39)a® + 0H(2p—2| +1)(2p — 39)a
i=8
55 11
+—H(2p 2i +1)(2p — 39)a + 5(2p — 19)(2p — 39)a°.
i=9
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