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Abstract
9

Legendre orthogonal moments have been widely used in the field of image analysis. Because their computation by a direct method is
very time expensive, recent efforts have been devoted to the reduction of computational complexity. Nevertheless, the existing algorithms11
are mainly focused on binary images. We propose here a new fast method for computing the Legendre moments, which is not only
suitable for binary images but also for grey level images. We first establish a recurrence formula of one-dimensional (1D) Legendre13
moments by using the recursive property of Legendre polynomials. As a result, the 1D Legendre moments of order p, Lp = Lp(0), can
be expressed as a linear combination of Lp−1(1) and Lp−2(0). Based on this relationship, the 1D Legendre moments Lp(0) can thus be15
obtained from the arrays of L1(a) and L0(a), where a is an integer number less than p. To further decrease the computation complexity,
an algorithm, in which no multiplication is required, is used to compute these quantities. The method is then extended to the calculation17
of the two-dimensional Legendre moments Lpq . We show that the proposed method is more efficient than the direct method.
� 2005 Published by Elsevier Ltd on behalf of Pattern Recognition Society.19
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1. Introduction

Since Hu introduced the moment invariants [1], moments23
and moment functions of image intensity values have been
successfully and widely used in the field of image analysis,25
such as object recognition, object representation, edge detec-
tion [2]. Orthogonal moments (e.g. Legendre moment and27
Zernike moment) can be used to represent an image with the
minimum amount of information redundancy [3]. Since the29
computation of orthogonal moments of a two-dimensional
(2D) image by a direct method involves a significant amount31
of arithmetic operations, some fast algorithms have been de-
veloped to reduce the computational complexity. However,33
the existing methods for fast computation of Legendre mo-
ments are mainly focused on binary images [4–6]. Because35
the moments of a grey level image are also used in many
applications, such as texture analysis [7], in this paper we37
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propose a fast algorithm for computing the Legendre mo- 39
ments for grey level images. The principle is as follows. The
recurrence formula of one-dimensional (1D) Legendre mo- 41
ments is firstly established by using the recursive property
of Legendre polynomials. The 1D Legendre moment of or- 43
der p, Lp = Lp(0), is expressed as a linear combination of
Lp−1(1) and Lp−2(0). Based on this relationship, the 1D 45
Legendre moments Lp(0) can thus be obtained from the ar-
rays of L1(a) and L0(a), where a is an integer number less 47
than p. An algorithm based on a systolic array in which no
multiplication is required is used to compute these quanti- 49
ties. We then propose an extension of this method to the 2D
Legendre moment Lpq computation. 51

The remainder of this paper is organized as follows. In
Section 2, we first describe a new approach for computing 53
the 1D Legendre moments of 1D signal, and then extend this
method to the 2D Legendre moment calculation. Section 3 55
gives the detailed analysis of the computational complex-
ity and some experimental results. Section 4 provides some 57
concluding remarks.
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2. Fast computation of 2D Legendre moments1

The (p + q)th-order Legendre moment of an image with
intensity function f (x, y) is defined by3

Lpq= (2p+1)(2q+1)

4

∫ 1

−1

∫ 1

−1
Pp(x)Pq(y)f (x, y) dx dy,

(1)

where Pp(x) is the pth-order Legendre polynomial given by5

Pp(x) = 1

2p

p/2∑
k=0

(−1)k
(2p − 2k)!

k!(p − k)!(p − 2k)!x
p−2k ,

x ∈ [−1, 1]. (2)

For a digital image of size N × N , Eq. (1) is usually7
approximated by

Lpq = (2p + 1)(2q + 1)

(N − 1)2

N∑
i=1

N∑
j=1

Pp(xi)Pq(yj )f (xi, yj ),

(3)9

with xi = (2i −N −1)/(N −1), yj = (2j −N −1)/(N −1).
The Legendre polynomial obeys the following recursive11

relation

Pp+1(x) = 2p + 1

p + 1
xP p(x) − p

p + 1
Pp−1(x), p�1, (4)13

with P0(x) = 1, P1(x) = x.
In the following, we present an algorithm for the fast cal-15

culation of the 2D Legendre moment for grey level images.
For the sake of simplicity, we first consider the computation17
of 1D Legendre moments.

For a 1D discrete signal f (xi), 1� i�N , the 1D Legendre19
moment is given by

Lp = 2p + 1

N − 1

N∑
i=1

Pp(xi)f (xi). (5)
21

Let us now introduce the following notation:

Lp(a) = 2p + 1

N − 1

N∑
i=1

xa
i Pp(xi)f (xi). (6)

23

It can be easily seen that Lp = Lp(0). Thus, we turn to the
fast computation of Lp(a) in the following:25

Substitution of Eq. (4) into Eq. (6) yields

Lp(a) = 2p + 1

N − 1

N∑
i=1

xa
i

[
2p − 1

p
xiPp−1(xi)

− p − 1

p
Pp−2(xi)

]
f (xi)27

= 2p + 1

p

2p − 1

N − 1

N∑
i=1

xa+1
i Pp−1(xi)f (xi)

− p − 1

p

2p + 1

2p − 3

2p − 3

N − 1

N∑
i=1

xa
i Pp−2(xi)f (xi)

(7)

therefore, we have the following recurrence relation for 29
p�2:

Lp(a) = 2p + 1

p

[
Lp−1(a + 1) − p − 1

2p − 3
Lp−2(a)

]
(8) 31

with

L0(a) = 1

N − 1

N∑
i=1

xa
i f (xi) = 1

N − 1
GN(a), (9)

33

L1(a) = 3

N − 1

N∑
i=1

xa+1
i f (xi) = 3

N − 1
GN(a + 1), (10)

GN(a) =
N∑

i=1

xa
i f (xi). (11)

35

The above discussion shows that the 1D Legendre mo-
ments Lp = Lp(0), for p�2, can be deduced from the val- 37
ues of L0(a) and L1(a) where a is an integer less than p,
L0(a) and L1(a) can be obtained by GN(a). The calculation 39
of Eq. (11) needs to distinguish two different cases: odd N
and even N. 41

(1) N = 2L + 1:
Since xi = (2i − N − 1)/(N − 1), we deduce from Eq. 43

(11) that

G2L+1(a) =
2L+1∑
i=1

(
2i − 2L − 2

2L

)a

f (xi)

= 1

La

2L+1∑
i=1

(i − L − 1)af (xi),

=




1

La

[−Laf (x1) − (L − 1)af (x2)

− · · · − f (xL) + f (xL+2) + 2af (xL+3)

+ · · · + Laf (x2L+1)
]

a is odd,

1

La

[
Laf (x1) + (L − 1)af (x2)

+ · · · + f (xL) + f (xL+2) + 2af (xL+3)

+ · · · + Laf (x2L+1)
]

a is even.

(12) 45

Eq. (12) can be rewritten as

G2L+1(a) =




1

La

L∑
i=1

iag1(xi) a is odd,

1

La

L∑
i=1

iag2(xi) a is even

(13)

47
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with1

g1(xi) = f (xL+i+1) − f (xL−i+1), i = 1, 2, . . . , L, (14)

g2(xi) = f (xL+i+1) + f (xL−i+1), i = 1, 2, . . . , L. (15)3

(2) N = 2L:
In this case, Eq. (11) becomes5

G2L(a) =
2L∑
i=1

(
2i − 2L − 1

2L − 1

)a

f (xi)

= 1

(2L − 1)a

2L∑
i=1

(2i − 2L − 1)af (xi),

=




1

(2L − 1)a

[−(2L − 1)af (x1)

−(2L − 3)af (x2) − · · · − f (xL)

+f (xL+1) + 3af (xL+2)

+ · · · + (2L − 1)af (x2L)
]

a is odd,

1

(2L − 1)a

[
(2L − 1)af (x1)

+(2L − 3)af (x2) + · · · + f (xL)

+f (xL+1) + 3af (xL+2)

+ · · · + (2L − 1)af (x2L)
]

a is even

(16)

or7

G2L(a) =




1

(2L − 1)a

L∑
i=1

(2i − 1)ag3(xi), a is odd,

1

(2L − 1)a

L∑
i=1

(2i − 1)ag4(xi), a is even

(17)

with9

g3(xi) = f (xL+i ) − f (xL−i+1), i = 1, 2, . . . , L, (18)

g4(xi) = f (xL+i ) + f (xL−i+1), i = 1, 2, . . . , L. (19)11

We discuss, in the following two subsections, the way
to efficiently calculate GN(a) given by Eqs. (13) or (17),13
according to the different modalities of the 1D signal f (xi).

2.1. f (xi) = 1 for i = 1, 2, . . . , N15

In this case, Eqs. (13) and (17) become

G2L+1(a) =



0, a is odd,

2

La

L∑
i=1

ia, a is even,
(20)

17

G2L(a) =




0, a is odd,

2

(2L − 1)a

L∑
i=1

(2i − 1)a

= 2

(2L − 1)a

×
(

2L∑
i=1

ia − 2a
L∑

i=1
ia

)
, a is even.

(21)

The above equations show that to obtain the values of 19
GN(a), we only need to calculate the following summation:

HM(a) =
M∑
i=1

ia . (22)
21

For the computation of Eq. (22), which is just the 1D
geometric moment of order a of a ‘binary’ signal, we use 23
the formulae proposed by Spiliotis and Mertzios [8]

HM(1) = M(M + 1)

2
, HM(2) = M(M + 1)(2M + 1)

6
,

HM(3) = M2(M + 1)2

4
,

HM(4) = M(M + 1)(2M + 1)(3M2 + 3M + 1)

30
, (23) 25

and for a�4, the recurrence formula(
a + 1

1

)
HM(1) +

(
a + 1

2

)
HM(2)

+ · · · +
(

a + 1
a

)
HM(a)

= (M + 1)a+1 − (M + 1), (24) 27

where(
i

j

)
= i!

j !(i − j)! 29

is a combination number.

2.2. f (xi) �= f (xj ) for some i �= j 31

Eq. (17) can be written as

G2L(a) =




1

(2L − 1)a

2L∑
i=1

iah1(xi), a is odd,

1

(2L − 1)a

2L∑
i=1

iah2(xi), a is even,

(25)

33

where

h1(xi) =
{

g3(x(i+1)/2) if i is odd,

0 otherwise
(26) 35

h2(xi) =
{

g4(x(i+1)/2) if i is odd,

0 otherwise.
(27)

Here g3(xi) and g4(xi) are given by Eqs. (18) and (19), 37
respectively.
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L0(0)

L2(1) L3(1) L4(1)

L3(0) L4(0) L5(0)

L1(0)

L2(0)

L1(1) L0(0) L1(3) L0(2) L2(3) L1(2)

L0(3)L1(4)

L1(2) L0(1) L2(2) L1(1) L3(2) L2(1)

L1(0) L2(0) L3(0)

Fig. 1. Computation process of Lp(0) with p from 0 to 5. Grey level boxes correspond to already computed coefficients and white boxes to coefficients
that will be computed from those which appear in grey level boxes.

Fig. 2. Algorithm for computing Lpq .

It can be seen from Eqs. (13) and (25) that we need to1
calculate the summation of the form

SM(a) =
M∑
i=1

iag(xi). (28)
3

Note that SM(a) is the 1D geometric moment of order a of
an arbitrary 1D signal. Since many algorithms are available5
in the literature to speed up the computation of Eq. (28), we
decided to choose the method proposed by Chan et al. [9].7
Their algorithm is able to efficiently compute the grey level
image moments. It makes use of a systolic array for com-9
puting the moments in which no multiplication is required.
We recently applied such a method to efficiently calculate11
the Zernike moments [10]. For a detailed description of this
algorithm, please refer to Ref. [10].13

Thus, the 1D Legendre moments Lp(0), for 0�p�M (M
denotes the maximal order we want to calculate), can be ef-15

ficiently obtained using the previously presented algorithm.
Fig. 1 shows the computation order of Lp(0) for p varying 17
from 0 to 5.

Let us now describe the method for fast computation of 19
the 2D Legendre moments Lpq . The double summation in
Eq. (3) can be split into the following separate form: 21

Lpq = (2p + 1)(2q + 1)

(N − 1)2

N∑
i=1

N∑
j=1

Pp(xi)Pq(yj )f (xi, yj )

= 2p + 1

N − 1

N∑
i=1

Pp(xi)


2q + 1

N − 1

N∑
j=1

Pq(yj )f (xi, yj )




= 2p + 1

N − 1

N∑
i=1

Pp(xi)Yiq , (29)
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where Yiq is the qth-order row moments of row i given by1

Yiq = 2q + 1

N − 1

N∑
j=1

Pp(yj )f (xi, yj ). (30)

These equations show that the computation of 2D Leg-3
endre moments of grey level images can be decomposed
into two steps. First, the 1D Legendre moments Yiq , for5
1� i�N and 0�q �M , are computed by using the algo-
rithm described in Sections 2.1 and 2.2, according to the7
different image modalities of f (xi, yj ). Then, the row mo-
ments Yiq are applied to compute the 2D Legendre moments9
Lpq . Thus, after the first step, the 2D Legendre moments
Lpq can be calculated as 1D moments by setting the image11
intensity function f (xi, yj ) to the Yiq previously computed.
The algorithm for computing the 2D Legendre moments is13
depicted in Fig. 2. It should be pointed out that such a strat-
egy can also be realized in parallel.15

3. Computation complexity and experimental results

Let the image size be N × N pixels, and M be the max-17
imum order of Legendre moments to calculate. The maxi-
mum order M is usually less than the image size N.19

The direct computation of Eq. (3) requires approximately
O

(
M2N2

)
additions and multiplications, respectively.21

3.1. Computational complexity of the proposed method for
binary images23

The computation of the geometrical moments up to the
order M of a binary image with N × N pixels, requires ap-25
proximately 4M power calculations, 2M2 multiplications,
and M2 additions (note that these numbers are not dependent27
on N) [8]. The computation of the 2D Legendre moments
Lpq , by using the recursive algorithm, needs O

(
NM3

)
addi-29

tions and O
(
M3

)
multiplications. Therefore, the algorithm

is very efficient compared with the direct method.31

3.2. Computational complexity of the proposed method for
grey level images33

The computational complexity of the method for grey
level images takes into account the parity of N.35

(1) For odd values of N:
Let us first consider the number of operations required37

in the computation of the ith row moments Yiq(0�q �M).
Note that the functions g1(x) and g2(x) defined by Eqs. (14)39
and (15) are used for odd values of N. To obtain the values of
Yiq , we must calculate GN(a) with Eq. (13) for 0 �a�M .41
This step needs only (M + 1)2(N/2 − 1) additions. The
computation of Yiq (for 0�q �M) from the pre-calculated43
GN(a), requires M(M − 1)/2 additions and 2M(M − 1)

multiplications. Therefore, the computation of N rows of45

Yiq (for 1� i�N ) needs approximately M2
(
N2 + N

)
/2

additions and 2M2N multiplications. 47
When all Yiq , for 1� i�N and 0�q �M , are obtained,

the 2D Legendre moments Lpq , for 0�p + q �M , can be 49
calculated in a similar way. The corresponding additions and
multiplications are M3N/12 + M2N and 2M3/3 + 2M2. 51

In conclusion, the overall computation makes use of
O

(
M2N2

)
additions and O

(
M2N

)
multiplications ap- 53

proximately for M �N .
(2) For even values of N: 55
The functions h1(x) and h2(x), which are defined by Eqs.

(26) and (27), will be used in the computation of GN(a). The 57
only difference between case (2) and case (1) is that Eq. (25)
is adopted instead of Eq. (13). The computation of Eq. (25) 59
requires additions twice more than that is needed in Eq. (13).
Thus, the total computational complexity is approximately 61
O

(
M2N2

)
additions and O

(
M2N

)
multiplications.

3.3. Experimental results and comparison 63

The computational complexities of the proposed algo-
rithm and the direct method are summarized in Table 1. 65
From this table, we can see that the number of additions
of the proposed method is in the worst case (N even and 67
M = N ) approximately twice of the direct method, but the
number of multiplications is smaller, with a ratio of 3/N 69
with regard to the direct method for M �N . For odd val-
ues of N, the number of additions of the proposed method 71
is approximately the same as that of the direct method, but
the number of multiplications decreases considerably. Table 73
2 shows the number of arithmetic operations and the CPU
elapsed time of the two methods for some values of N and 75
M (the program was implemented in C++ on PIII-M 1G,
384M). In order to further decrease the computation time for 77
even values of N, the image can be zero-padded to achieve
an odd N. Such a strategy was adopted by Yap et al. in the 79
computation of Krawtchouk moments [11]. Fig. 3(a) shows
the original grey level image of size 256 × 256. The recon- 81
struction results with M = 40 of the original image and its
zero-padded image of size 257 × 257 are depicted in Fig. 83
3(b) and (c), respectively. Fig. 3(d) shows the difference im-
age, �(x, y), between the two reconstructed images where 85
�(x, y) is defined as

�(x, y) =
∣∣∣∣
�

f 1(x, y) − �

f 2(x, y)

∣∣∣∣ , (31) 87

where
�

f 1(x, y) is the reconstructed result of original im-

age and
�

f 2(x, y) is the reconstructed result of zero-padded 89
image.

Note that in both cases, the reconstruction of the image 91
is performed by using the following formula:

f̂ (xi, yj ) =
M∑

p=0

p∑
q=0

Lp−q,qPp−q(xi)Pq(yj ). (32)
93
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Table 1
Comparison of computational complexity for the two methods

Addition Multiplication

Direct method M2N2/2 ≈ O(M2N2) M2N2 ≈ O(M2N2)

Our method N is even M2N2 + M3N/6 ≈ O(M2N2) 2M2N + 2M3/3 ≈ O(M2N)

N is odd M2N2/2 + M3N/12 ≈ O(M2N2) 2M2N + 2M3/3 ≈ O(M2N)

Table 2
Comparison of computation time for the two methods

Direct method Our method

Addition Multiplication Time (ms) Addition Multiplication Time (ms)

N = 40 M = 40 1 377 600 2 758 640 70 3 460 320 172 442 60
N = 41 M = 40 1 447 340 2 892 130 70 1 762 100 175 644 50
N = 80 M = 40 5 510 000 11 024 000 210 12 347 500 300 522 180
N = 81 M = 40 5 650 000 11 300 000 210 6 240 000 303 724 140
N = 256 M = 40 56 426 500 112 856 000 2113 115 256 000 864 074 1843
N = 257 M = 40 56 868 200 113 740 000 2103 57 891 400 867 276 1022

Fig. 3. Comparison of reconstruction results of the image with and without zero-padding (M = 40), (a) original image (256 × 256), (b) reconstruction
result of original image, (c) reconstruction result of zero-padded image (257 × 257), and (d) error image �(x, y).

It can be seen from Fig. 3(d) that the two reconstructed1
images only have a slight difference, but the computation
time required in the moment calculation process using the3
zero-padded strategy, which is 1022 ms (see Table. 2), is
much shorter than that of the moment computation based on5
the original image, which is 1843 ms.

4. Conclusion7

In this paper, a new fast algorithm for computing the 2D
Legendre moments of grey level images has been presented.9
The proposed method has the following advantages:

(1) The 1D Legendre moments can be obtained by a recur-11
rence relation. Moreover, the initial value used in the
iterative method can be calculated with additions only.13

(2) The 2D moment computation can be decomposed into
two 1D moment calculations.15

(3) It does not require as many multiplications as the direct
method, thus leads to a better efficiency in terms of17
computational time.

(4) The algorithm can be implemented in parallel.19
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