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Zernike polynomials have been widely used to describe the aberrations in wavefront sensing of the eye. The
Zernike coefficients are often computed under different aperture sizes. For the sake of comparison, the same
aperture diameter is required. Since no standard aperture size is available for reporting the results, it is im-
portant to develop a technique for converting the Zernike coefficients obtained from one aperture size to an-
other size. By investigating the properties of Zernike polynomials, we propose a general method for establish-
ing the relationship between two sets of Zernike coefficients computed with different aperture sizes. © 2006

Optical Society of America
OCIS codes: 330.4460, 220.1010, 000.3870.

1. INTRODUCTION

In the past decades, interest in wavefront sensing of the
human eye has increased rapidly in the field of oph-
thalmic optics. Several techniques have been developed
for measuring aberrations of the eye.l’2 In general, these
techniques typically represent the aberrations as a wave-
front error map at the corneal or pupil plane. Zernike
polynomials, due to their properties such as orthogonality
and rotational invariance, have been extensively used for
fitting corneal surfaces.>® Moreover, the lower terms of
the Zernike polynomial expansion can be related to
known types of aberrations such as defocus, astigmatism,
coma, and spherical aberration.” When the Zernike coef-
ficients are computed, an aperture radius describing the
circular area in which the Zernike polynomials are de-
fined must be specified. Such a specification is usually af-
fected by the measurement conditions and by variation in
natural aperture size across the human population. Since
the Zernike coefficients are often obtained under different
aperture sizes, the values of the expansion coefficients
cannot be directly compared. Unfortunately, this type of
comparison is exactly what needs to be done in repeatabil-
ity and epidemiological studies. To solve this problem, a
technique for converting a set of Zernike coefficients from
one aperture size to another is required.

Recently, Schwiegerling® proposed a method to derive
the relationship between the sets of Zernike coefficients
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for two different aperture sizes, but he did not provide a
full demonstration for his results. Campbell® developed
an algorithm based on matrix representation to find a
new set of Zernike coefficients from an original set when
the aperture size is changed. The advantage of Campbell’s
method is its easy implementation. In this paper, by in-
vestigating the properties of Zernike polynomials, we
present a general method for establishing the relation-
ship between two sets of Zernike coefficients computed
with different aperture sizes. An explicit and rigorous
demonstration of the method is given in detail. It is
shown that the results derived from the proposed method
are much more simple than those obtained by Schwieger-
ling, and moreover, our method can be easily imple-
mented.

2. BACKGROUND

Zernike polynomials have been successfully used in many
scientific research fields such as image analysis,10 pattern
recognition,11 and astronomical telescopes.12 Some effi-
cient algorithms for fast computation of Zernike moments
defined by Eq. (7) below have also been reported.'>® Re-
cently, Zernike polynomials have been applied to describe
the aberrations in the human eye.1 There are several dif-
ferent representations of Zernike polynomials in the lit-
erature. We adopt the standard Optical Society of
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America notation. The Zernike polynomial of order n with
index m describing the azimuthal frequency of the azi-
muthal component is defined as

Ny'R} (p)cos(m 6)
- N'R"™(p)sin(m6) form <0 ’

form =0
Zy(p,0) =
|m|=n, n-|m|even, (1)
where the radial polynomial R)'(p) is given by
(n~|m|)/2 (- 1)%(n - s)!

" _ n—2s
R} (p) = Zo s\ [(n+|m)2—-s[(n-|mh2—sit”

and N is the normalization factor given by

A [2(n+1)

= . 3
" 1+ 5m’0 ( )
Here 6, is the Kronecker symbol.

Equations (2) and (3) show that both the radial polyno-
mial R}'(p) and the normalization factor N;' are symmet-
ric about m, ie., R} (p)=R,"(p), N=N,", for m=0.
Thus, for the study of these polynomials, we can only con-

sider the case where m=0. Let n=m+2k with £=0; Eq.
(2) can be rewritten as

k
(=1)*(m + 2k —3s)!
Rzmk(P) = E

oslk=s)!(m+k-s)!

m+2k-2s

O (=1 (m +k+9)!

— 2
_2 ' pm+s

o slk=s)l(m+s)!

(making the change of variables =% —s)

k
— E c;erfspm+23, (4)
s=0
where
i (m+k+s)!
Crs=(=1)*" (5)

slk=s)!(m+s)!

Since the Zernike polynomials are orthogonal over the
unit circle, the polar coordinates (r, §) must be scaled to
the normalized polar coordinates (p,6) by setting p
=r/rmax, Where rp.. denotes the maximum radial extent
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of the wavefront error surface. The wavefront error,
W(r, ), can thus be represented by a finite set of the
Zernike polynomials as

N
W(r,0) = 2, >, @y mZi (11 max, 0), (6)

n=0 m

where N denotes the maximum order used in the repre-
sentation, and a, ,, are the Zernike coefficients given by

Tmax 2
Cpm = f f Z(rIr pax, OW(r, O)rdrd 6. (7)
0 0

Equation (7) shows clearly that the coefficients a,, ,, de-
pend on the choice of r,,,. This dependence makes it dif-
ficult to compare two wavefront error measures obtained
under different aperture sizes. To surmount this difficulty,
it is necessary to develop a method that is capable of com-
puting the Zernike coefficients for a given aperture size ry
based on the expansion coefficients for a different aper-
ture size r{. Without loss of generality, we assume that r;
takes a value of 1, and the problem can be formulated as
follows.

Assume that the wavefront error can be expressed as

N
W(r,0) = > > a,mZr(r,0), 8)

n=0 m

where the coefficients a,, ,, are known. The same wave-
front error must be represented as

N
W(r,6) = >, D by mZ(\r,6), 9)

n=0 m

where \ is a parameter taking a positive value. We need
to find the coefficient conversion relationships between
two sets of coefficients {b,, ,,} and {a,, ,,}.

3. METHODS AND RESULTS

In this section, we propose a general method that allows a
new set of Zernike coefficients {b,, ,,} corresponding to an
arbitrary aperture size to be found from an original set of
coefficients {a, ,,}. As indicated by Schwiegerling,® the
new coefficients b,, ,,, depend only on the coefficients a,, ,,
that have the same azimuthal frequency m. Thus, we con-
sider a subset of terms in Eq. (8), all of which have the
same azimuthal frequency m:

K
(E am+2k,mMnZ+2kR%+2k(r)>Cos(m 0)’ form =0
k=0
Wm(r> 0) = K s (10)
- (E a—m+2k,mN:$+2kR:%+2k(r)>Sin(m (9); form <0
k=0
where K is given by
(N - |ml)/2, if N and m have the same parity "
T |(N-1-|m|)/2, otherwise (1)

Similarly, the subset of terms in Eq. (9) with the same azimuthal frequency m can be expressed as
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W6 =1 "

By equating Eqs. (10) and (12), the sine and cosine depen-
dence immediately cancels, and this leads to the following
relation:

K K
D bosok N B ok NF) = % @ N B o (7).
k=0 k=0

(13)

Note that we have taken into account only the case of m
=0; the case where m <0 can be treated in a similar man-
ner. Let

R on(r) =Ny bRy o (7). (14)
Equation (13) can be rewritten as
K K
2 bm+2k,mRﬁ+2k()\r) = E am+2k,mR%+2k(r) . (15)
k=0 k=0

To solve Eq. (15), we will use the following basic re-
sults.
Lemma 1. Let a function f(r) be expressed as

K K
fr) = 2 a,Py(r) = 2, buPy(Nr), (16)
n=0 n=0
where P,(r) is a polynomial of order n given by
Py(r) =2 cppr”s con#0; (17)
k=0
then we have
1 K& copds
biz—i[ai+ > (2 ——la, |, i=0,1,2,...,K,
N ne=itl \k=i A

(18)

from which Cg=(c,;), with 0=k=n=K, is a (K+1)xX(K
+1) lower triangular matrix, and Dg=(d, ) is the inverse
matrix of Ck.

The proof of Lemma 1 is deferred to Appendix A.

We are interested in a special case of Lemma 1 for
which each polynomial order n can be expressed as n
=m+qk where m and ¢ are given positive integers, &
=0,1,...,K. The corresponding result is described in the
following corollary.

Corollary. Given the positive integer numbers m, g,
and K, let P}'(r) be a set of polynomials defined as

Pl (ry=Pp

k
m k(1) = D e, £=0,1,2,... K.
s=0

(19)

Let f(r) be a function that can be represented as

K
(E bm+2k,mm+2ka+2k<xr>)cos(m 0),

K
- <E b—m+2k,m :ﬁ+2kR:Z+2k()\r)>Sin(m 0)’
k=0
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form=0
(12)
for m <0.
[
K K
fir) = % Uil mPr e qp(7) = % BomsahmPrsgn(NT); (20)

then we have

£=0,1,2,... K, (21)

from which Dg=(d;") is the inverse matrix of C¢=(c));
both matrices are a (K+1) X (K+1) lower triangle matrix.

Both Lemma 1 and Corollary are valid for any type of
polynomials. To apply them, an essential step consists of
finding the inverse matrix Dy or D7 when the original
matrix Cg or C¥ is known. For the purpose of this paper,
we are particularly interested in the use of Zernike poly-
nomials. For the radial polynomials R, ,,,(r) defined by
Eq. (4), we have the following proposition.

Proposition 1. For the lower triangular matrix Cy
whose elements czl)s are defined by Eq. (5), the elements of
the inverse matrix D} are given as follows:

(m+2s+1)k!(m+k)!

BT s (m+k+s+ 1)

(22)

The proof of Proposition 1 is deferred to Appendix A.

For the normalized radial polynomials R ,,(r) defined
by Eq. (14), it can be rewritten as

R ior(r) = Ny op R 101, (1)

[2(m + 2k + 1) k
] —Rm — =m m+237
1 + 5m,0 m+2k(r) g Ck,sr

(23)
where
. [2(m + 2k + 1) .
Crs= ___1_175217__ck§
2m +2k +1) (m+k+s)!
— (_ 1)k—s .
1+68,0 s!k-s)!(m+s)!

(24)

Since the normalization factor N ,, depends only on m
and k&, by using Proposition 1, we can easily derive the fol-
lowing result without proof.
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Proposition 2. For the lower triangular matrix C’%
whose elements EZS are defined by Eq. (24), the elements

of the inverse matrix D are given as follows:

_ 1+38,0
b=\ 57 5. 1 %hs
’ 2m+2s+1) ™

(1+8,0)(m+2s+1) k! (m+k)!
2 (F-s)!m+Ek+s+1)!"
(25)

We are now ready to establish the relationship between
the two sets of Zernike coefficients {b,, ,,,6m+2.m>
bm+4,m PR ’bm+2K,m} and {am,m’am+2,m s Am+dms -+
Gmiok,m) that appear in Eq. (13). Applying the Corollary
to the normalized radial polynomials R™ maop(r) with g=2
and using Eqgs. (24) and (25), we have Theorem 1.

Theorem 1. For given integers m and K, and real posi-
tive number X, let {b,, 1,0m42m>0m+dms -+ - »Omsok,mt and
{CmmsCms2.m>Qmsams -+ »Cmsok,m) De two sets of Zernike
coefficients corresponding to the aperture sizes 1 and A,
respectively; we then have

1 —m mk
l:/ J»
bm+2k,m = N2k Am+2k,m + 2 E )\2(] k) Am+2i,m

i=k+1 j=k
1 K
= N2k Api2km t 2 C(m,k,l)am+2i,m ,

i=k+1

k=0,1,...,K, (26)

where

Cim+2L,k-1i-1)=

-l ( 1)1 1-j
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Cim,k,i)=+(m+2i+1)(m + 2k + 1)
i -1 i—j
w (-1

SONB (=G —R) (m+j+E+ 1)
fori=k+1,k+2,...,0. (27)

(m+i+))!

The relationship established in Theorem 1 is explicit,
and the coefficient b,,,9; ,, depends only on the set of co-
efficients {49k m>@m+2k+1)m> - - - »@m+2k,m}; thus, it is
more simple than that given by Schwiegerling.® Note also
that even though the above results were demonstrated for
the case m=0, they remain valid for m <0 due to the
symmetry property of the radial polynomials R} (r) about
m.

Table 1 shows the conversion relationship between the
coefficients b, ,, and a,, ,, for Zernike polynomial expan-
sions up to 45 terms (up to order 8). The results are the
same as those given by Schwiegerling8 except for by ,,.

As correctly indicated by Schwiegerling,® an interesting
feature can be observed from Table 1: For a given radial
polynomial order n, the conversion from the original to
the new coefficients has the same form regardless of the
azimuthal frequency m. This can be demonstrated as fol-
lows.

Theorem 2. Let C(m,k,i) defined by Eq. (27) be the co-
efficient of a,,,9;,, in the expansion of b,,,9;,, given by
Eq. (26), and let C(m+2l,k-1,i—1) be the coefficient of
@pm+2im+21 0 the expansion of b,,,9z ;49 Where [ is an in-
teger number less than or equal to %&; then we have

C(m,k,i)=C(m+2L,k-1,i-1). (28)
Proof. From Eq. (27), we have

(m+1+i+))!

(m+2z+1)(m+2k+1)2

-1

_\,(m+2z+1)(m+2k+1) 2

N L) G—k+D) (m+1+j+Ek+1)

(m+1i+))!

NGB G-k (m+j+E+ 1) (29)

Table 1. Coefficient Conversion Relationships for Zernike Polynomial Expansions up to Order 8

n m New Expansion Coefficients b, ,,
0 0 b =00 =\3(1= )+ \B(1= i+ Flay = \T(1
_§+___)a6m+3( )\2+__)\__+)\8)a8m
1 -1,1 b1m=1la1n-2\2(1-F)ag,, +\8(3- 5+ F)as - 4(2
_1o E_lh
)\2 )\4 )\6 7,m
2 _2?072 b2,m }\z[a2m \15(1__)a4m+\21(2 )\2+f4)a6,m
[q 45
-\3(10—p+p—z)03m]
3 -3,-1,1,3 bsm=r51a5,n—2V6(1-F)as ., +2\2(5- 3+ )az ]
4 -4,-2,0,2,4 bymn=5lasm-2185(1-S)ag,+3\5(3-5+H)as]
5 -5,-3,-1,1,3,5 bs = 5las,—4\3(1-Has,]
6 -6,-4,-2,0,2,4,6 be.m=r5Lt6,n=3\T(1-5)ag ]
7 -7,-5,-3,-1,1,3,5,7 b1m=501m
8 -8,-6,-4,-2,0,2,4,6,8 A
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Comparing Egs. (27) and (29), we obtain the result of the
theorem.

Another interesting feature was also observed that is
summarized in the following theorem.

Theorem 3. For a fixed value of N, let N=m+2K=m'
+2K'; from Theorem 1, we have

K

1
brsak-ym = 53| Gms2k-ym+ > Clm,K
A i=K1+1

1 -1
- l7i)am+2i,m:| =5 |:am+2(K—l),m + > C(m,K
1=0

_lyi+K_l+l)aN+2i—2l+2,m]5 l=0’17 ""Ky

(30)
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1
b2k - m = N5l 21| G2 =)

K
+ Z C(m/,K/ —l,i)am/+2i’m/

i=K'-1+1

-1
1
! ’
N |:am’+2(K’—l),m’ + 2} C(m',K
i

-Li+K -1+ 1)aN+2i—Zl+2,m’] ,

[=0,1,... K. (31)
Then
Cm,K-1,i+K-1+1)=C(m',K'-1,i+K' -1+1).

fori=0,1,...,l-1,71=0,1, ... min(K,K'). (32)

Proof. From Eq. (27), we have

Cm,K-1,i+K-1+1)=\(m+2i+2K-2l+3)(m+2K-2]+1)

i+K-1+1 (- 1)i+K+1—l—j

m+i+K-1+j+1)!

>

e NED (4 K-1+1-)1G-K+D)!(m+j+K-1+1)!
H- 1)l+1J (N+i-20+j+1)
=N +2i-20+3)(N-21+1), , . , : (33)
0 N G+ 1-)I(N+j-1+ 1)

Similarly,

Cm',K' -1Li+K —1+1)=\(m' +2i +2K' - 21 +3)(m + 2K' - 2] + 1)

i+K'-1+1 (- 1)i+K'+1—l—j

m'+i+K -1l+j+1)!

>

Jj=k' -1

N2U-K'+1)

(+K —1+1-)1G-K +1)!(m' +j+K —1+1)!

HeDtY (N+i-20+j+1)!

=N+2i-20+3)(N-2+1)D

Table 2. Coefficient Conversion Relationships for
Different Values of m and K Where N=m +2K="7

m K New Expansion Coefficients b,, ,,
5 1 br5=5015
bss—)\5[ass—4\3( )075]
3 2 b7,3=ﬁa7,3 _
bs3= %[05,3—4\53(1 - )\_12 as, 3
1 Iy 1
bss=15las3-2\6(1- F)as 3+212(6- 5+ Flag ]
b7,1:)\_17f17,1 _
55,1:)\_15[‘15,1—4\55(1 117,1]
1 3 bs 1= s[as 1—2y ‘6(1—l)115 142y ‘2(5 z+ )a7 1

)\2
511 )\[all 2+/2 ( —%)031"'\3( + )(151—4(2
——+——l)a71]

(34)

2N GG+ 1-)I N+l DY

[
Comparison of Egs. (33) and (34) shows that Eq. (32) is
valid.

Table 2 shows the case of N=m +2K="7 for different val-
ues of m and K.

4. CONCLUSION

We have developed a method that is suitable to determine
a new set of Zernike coefficients from an original set when
the aperture size is changed. An explicit and rigorous
demonstration of the proposed approach was given, and
some useful features have been observed and proved. The
new algorithm allows a fair comparison of aberrations,
described in terms of Zernike expansion coefficients that
were computed with different aperture sizes. The pro-
posed method is simple, and can be easily implemented.
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Note that the formulas derived in this paper are math-
ematically correct for all values of A=r/ry, where r; and
ro represent the original and new aperture sizes. But for
application purposes, it is still recommended to make ry
less than r;. In the case where ry is greater than rq, the
wavefront error data must be extrapolated outside the re-
gion of the original fit. It is worth mentioning that such a
process could produce erroneous results since the Zernike
polynomials are no longer orthogonal in this region and
they have high-frequency variations in the peripheries.®

APPENDIX A

Proof of Lemma 1. Equation (16) can be expressed in
matrix form as

[ Py(r)
P1(7")

f(r) = (ao,al,ag, . ,aK) Pg(r)

_PK(Y‘)

[ Py(\r)
Pl()\r)
= (bO’blyb% o ’bK) P2O\r) . (Al)
_PK()\T')
Using Eq. (17), we have
Po(r) 1
Py(r) r
Py(r) | =Cgl 7 |, (A2)
Pg(r) £
Py(\r) 1 1
Pi(\r) \r r

Py(\r) | = C| N27% | = Cx diag(1,\ N2, ... \E)| 72

Pr(\r) NEPK rX

(A3)
Substitution of Egs. (A2) and (A3) into Eq. (A1) yields
1
r
(ag,aq,as, -..,ag)Cxg r’
K
1
r

=(bg,b1,by, ... ,br)Crdiag(1,\\2, ... \E)| 72 [ (A4)
I'K
Thus
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(bg,b1,bg, ... ,bg)
= (ag,a1,as, ... ag)Cx (diag(1,\,\2, ... N))T1CE
=(ag,01,09, ... ,ax)Cx diag(L, A" N2, ... AN E)Dy.
(A5)
I?Su)ation (18) can be easily obtained by expanding Eq.
(A5).

Proof of Proposition 1. To prove the proposition, we
need to demonstrate the following relation:

k
Ec;erfsd;r,llz‘sk,l, 0=l=k=K. (AB)

s=l
For k=[, by using Egs. (5) and (22), we have

(m + 2k)!

o (m+2k+ Dk (m +k)!
= e )l -

(m+2k+1)!

(A7)
For [ <k, we have
F (=1 s(m+20+ 1)(m+k+s)!

k
Z;C’“ sfé -D1(k-9)(m+s+i+1)
k

= (=D m + 21+ 1) F(m,k,l,s), (A8)

s=l

where
(=1)¥m+Ek+s)!
F(m,k,l,s) = . (A9
(s=D!'k-s)!'m+s+I1+1)!
Let
G(m,k,L,s)

(-1 Y m+Ek+s)! (F+1-s)(s=1)
=(s—l)!(k+l—s)!(m+l+s)!(k—l)(m+k+l+1)'
(A10)

It can then be easily verified that
F(m,k,l,s)=G(m,k,l,s+1)-G(m,k,l,s). (All)

Thus

k k
> F(m,k,Ls) = 2, [G(m,k,l,s + 1) — G(m,k,1,5)]
s=l s=l

=G(m,k,Lk+1)-G(m,k,l,l)=0.
(A12)

We deduce from Eq. (A8) that

k
Sepdr=0 forl<k. (A13)

s=l

The proof is now complete.
Note that the proof of Proposition 1 was inspired by a
technique proposed by Petkovsek et al 1
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