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Introduction
The inverse Laplace transform maps each formal power series > a(n)u”
n>0
in one variable u into another series Y (a(n)/n!)u™, whose coefficient of
n>0

order n is normalized by the factor n! We then obtain the so-called ezpo-
nential generating function for the sequence (a(n)) (n > 0). The normal-
ization has numerous advantages: the derivative is obtained by a simple
shift of the coefficients; the exponential of a series can be explicitly calcu-
lated; there are closed formulas for the exponential generating functions for
several classical orthogonal polynomials, ... However the algebra of expo-
nential generating functions cannot be regarded as the universal panacea.
Further kinds of series are needed, for instance to express some generating
series for the symmetric groups by certain statistics.

In the middle of the eighteenth century Heine introduced a new class of
series in which the normalized factor n! was replaced by a polynomial of
degree n in another variable, more precisely, the series where the coefficient
of order n is normalized by the polynomial denoted by (g; q),, in another
variable ¢, defined by

1, if n =0;
(O.l) (q;Q)n ::{<1_q)(1_q2)...(1—qn), ifn>1.

The algebra of those series has been largely developed by Jackson in the
beginning of the twentieth century. It has then fallen into disuse, except
perhaps in the field of Partition Theory, but has vigorously come back
in several mathematical domains, in particular in the theory of Quantum
Groups and naturally in Combinatorics.

Those series have been named ¢-series. They are simply formal power
series in two variables, say, u and ¢, where the latter variable ¢, used for
the normalization, plays a privileged role. Let Q[[u, ¢]] denote the algebra
of formal series in two variables u and ¢, with coefficients in a ring (2. Each
element of that algebra can be expressed as a series

(0.2) a= Z a(n,m)u"q™,

n>0,m>0
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where, for each ordered pair (n, m), the symbol a(n, m) belongs to Q2. Such
a series can be seen as a series in one variable u, with coefficients in the
ring 2[[¢]] of series in one variable ¢, i. e.,

(0.3) a= Zu”( Z a(n,m) qm>.

n>0 m>0

For each integer n > 0 the expression (q; q), is a polynomial in ¢, which
is invertible in Q[[¢]], since its constant coefficient is 1. Thus the series a
can be rewritten as

n

(0.4) a=Y

=5 (@ @)n

where b(n; q) is the formal series in the variable ¢

(0.5) b(n; q) := (¢ @n - ( > aln,m) qm>-

m>0

b(n;q),

Each formal series a written in the form (0.4) is called a g-series. The
coefficient 4™ /(q; q), is then a formal series in the unique variable q.

The purpose of this memoir is to give a basic description of the
algebra of those series and describe the use that has been made of them
in Combinatorics, in particular for expressing the generating functions
for certain statistics defined on permutations, words, multipermutations,
signed permutations and other finite structures. It has been customary to
regroup all the techniques that have been developed under the name of
Permutation Statistic Study, even though the group of permutations is not
the only group structure involved. The statistics themselves can be uni-
or several-variable, or even set-valued. As will be seen, the g-series enter
into the picture in a very natural way.

The q-binomial theorem, which is stated and proved in the first section,
is the basic tool in g-Calculus. It opens the door to all the g-series identities
and also gives rise to two expansions of the g-exponential, as a g-series
itself, and also as an infinite product.

The polynomial (g; q),,, defined above, is next studied in a combinatorial
context. This leads to a discussion of the so-called Mahonian statistics,
especially the Major Inder and the Inversion Number that will play an
essential role in this memoir. One of our goals, indeed, is to try to
understand why the so-called natural q-analogs of various numbers or
polynomials can be derived by means of either one of those statistics.

The Major Index is strongly related to the combinatorial theory of
the representation of finite groups, particularly when dealing with various
tableaux (standard, semi-standard, ... ). The inversion number requires

6



INTRODUCTION

other techniques, in particular the so-called g-iteration method, that will
be used on several occasions.

The g-binomial coefficients or Gaussian polynomials that appear in
many identities on g¢-series are studied in several combinatorial environ-
ments, as is done in section 4. With the study of the ¢g-multinomial co-
efficient we are led to introduce the statistic “number of inversions” for
classes of permutations with repetitions. We prefer to use the term “rear-
rangement” (of a given finite sequence) or “word.” This is the content of
section 5.

The MacMahon Verfahren, introduced in section 6, is the first tool
that makes possible the transcription of properties of certain statistics
defined on the symmetric group or on some classes of rearrangements to
the algebra of g-series. As a first application, it is shown that the Major
Index has the same distribution as the number of inversions on each class
of rearrangements.

A careful study of the MacMahon Verfahren serves to find a g-extension
of the traditional Eulerian polynomials, namely the Euler-Mahonian poly-
nomials Am(t,q), that appear to be generating polynomials for classes of
rearrangements by the bivariable statistic (des, maj). The statistic “des”
is the number of descents that has been studied in several combinatorial
contexts and “maj” is the Major Index.

As shown in section 8, there are four equivalent definitions of the
Euler-Mahonian polynomials. The proofs of those equivalences are based
on fundamental techniques in ¢-Calculus, finite difference and iterative
methods. The insertion technique that looks so natural when dealing with
univariable statistics on the symmetric group becomes intricate for several-
variable statistics. A marked word technique is presented in section 9 and
appears to be successful for deriving a recurrence relation for the Euler-
Mahonian polynomials Ay, (¢, q).

When the class of rearrangements is reduced to the symmetric group,
the Euler-Mahonian polynomials become the so-called ¢-maj-Fulerian
polynomials ™A, (t,q), as they form a first g-analog of the traditional
Eulerian polynomials A, (¢) in one variable ¢t. However, when the expo-
nential generating function for the latter polynomials is g-analogized in
a proper way, another g-analog of those polynomials, namely the ¢-inv
Eulerian polynomial ™A, (¢, q) appears. As shown in the notations, “inv”
plays for "VA, (¢, q) the role that “maj” does for ™®A,,(t, q).

The Major Inder and the Inversion Number, that can be defined for
each rearrangement of a given finite sequence of integers, are equidis-
tributed over each rearrangement class. Section 11 contains the construc-
tion of a bijection ® of the class onto itself such that inv ®(w) = majw.
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The bijection has several other properties, in particular when the under-
lying class is the symmetric group.

With section 12 we start the study of permutation statistics that
involve both the permutation and its inverse. Besides “maj” we are led
to introduce “imaj” that is nothing but the Major Index of the inverse

permutation. We then see the first occurrence of the classical infinite

1
product J] ————, that is to be expanded, once the substitutions

i>1,j>1 1 — uxiy;
T; qi_l, Yj qg_l are made. The resulting series are series in two
bases, normalized by denominators of the form (q1;q1)n (¢2;G2)n-

In section 13 a further extension of the MacMahon Verfahren leads
to the derivation of the distribution of a four-variable statistic on the
symmetric group.

The theory of symmetric functions hides too many useful identities
and too many combinatorial algorithms not to appear in this memoir.
In particular, the infinite product mentioned above has a celebrated
expansion in terms of products of Schur functions. As those functions
have a handy combinatorial interpretation—as shown in section 17—it
was essential to give the main properties of those functions. This is the
content of sections 15, 16, and 17.

In the expansion of a Schur function we find monomials that are coded
by the so-called semi-standard tableaux. In their turn, those tableaux can
be further coded by standard tableaux and sequences of numbers. This
coding has several applications. In particular, it serves to express a Schur
function, in which variables are replaced by powers of a variable ¢, as a
generating function for standard tableaux by a certain statistic. This is
the content of section 18.

In section 19 we find an overview of the Robinson-Schensted correspon-
dence that enables the transfer of geometric properties on tableaux to
analogous properties on permutations. As an application, a bibasic gener-
ating function for polynomials in several variables defined on symmetric
groups is derived.

The next four sections 20, 21, 22 and 23 deal with Fulerian Calculus,
that is, the study of geometric properties of the Eulerian polynomials
and its various extensions. By “extensions” we mean three aspects: (i)
extension to the group of the signed permutations, (ii) g-extension, that
is, the introduction of a suitable Mahonian statistic “inv” or “maj,”
(iii) the study of generating polynomials for pairs or finite sequences
of permutations or signed permutations. The combination of those three
extensions leads to the combinatorial study of some Bessel functions, g¢-
Bessel functions and finite analogs of Bessel functions.



1. THE ¢-BINOMIAL THEOREM

The crucial step in Eulerian Calculus is to find the appropriate g-analog
for the generating polynomial for the signed permutations by their number
of descents. Our analytic choice (see section 21) forces us to find a suitable
definition of inversions for signed permutations. This leads to a coherent
study of all the extensions described above. Notice that the length, as
defined in the theory of Coxeter groups, does not conduct to an elegant
derivation in the algebra of ¢-series.

In our last section on Eulerian Calculus (section 23) we introduce the bi-
indexed Eulerian polynomials and explain how the Désarménien Verfahren
makes possible the study of congruences of those polynomials with respect
to the cyclotomic polynomials. The section ends with a short study on
signed Eulerian Numbers.

We end these Lecture Notes with a combinatorial study of the basic
trigonometric functions, especially the tangent and secant functions. The
coefficients in their g-expansions are the generating polynomials for the
so-called alternating permutations by number of inversions. The same
combinatorial set-up is used to interpret the coefficients in the p,q-
expansions of the bibasic tangent and secant.

1. The ¢-Binomial Theorem

Take up again the notations (0.3)—(0.5). When, for each n > 0, the
ratio b(n + 1;¢)/b(n; q) is a rational fraction in ¢", equal to 1 for ¢ = 0
and such that b(0;q) = 1, we get what is called a basic hypergeometric
series. In the analytic expression of such a series the following notation is
used that extends the notation (0.1): for each element w in the ring define
the g-ascending factorial in w by

1, if n=0;
(1.1) (W@n:{(pﬂwﬂ—w@”,ﬂ—wWAL if n > 1

in its finite version and

(1.2) (W5 qQ)oo :=limy (w; q)y = 1;[0(1 —wq");

in its infinite version.

When the underlying ring ) is the complex field, the rational fraction
b(n+ 1;q)/b(n; q) can be written as

bn+1;9)  (1—oa1g")...(1—arg")

b(n;q) (1—51g") ... (1= Bsq)’
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where a1, ... , a,, f1, ... , Bs are complex numbers. By iteration,

b(n;q) b(2;q) b(1;q)

vina) = b(n—1iq) b(ler) b(0; q)
_ (1—ag™H...(1-a.q" )
(1—31¢g" 1) ...(1—Bsq™ 1)
v x (l-—a1q)...(1—arq) 1—a1)...(1 —ay)
(1_61Q>"'(1_6SQ> (1_61>"‘(]‘_/88),
that is
(1.3) b(n;q) = (@13 @n - (Ar; @In

(Bﬁ(])n s (6S§Q>n .

For an arbitrary ring € the expression of b(n; ¢) given in (1.3) is taken as a
definition. As each g-ascending factorial (/3;; ¢), has a constant coefficient
equal to 1, it is invertible in the ring [[¢]], so that b(n;¢) as shown in
(1.3) is well-defined. Then call basic hypergeometric series each g-series of
the form

Ly ey Qe o @ @n (@) u
00 ey ) = G G

n

Such a series can be defined in each algebra Q[[u, q]] of formal series in
two variables u and ¢, whatever the underlying ring €2 is. When r = 0
(resp. s = 0, resp. » = 0 and s = 0), the following notations are used:

a1,...,0p S
osos( ;q,U) (resp. rcpo( ;q,U>, resp. 0%0(7;61,“))-
Bi,.. .y Bs o

In the g-binomial theorem which is stated next, the series 14,00(3 i q, u)
has a closed expression in terms of an infinite product.

Theorem 1.1 (¢-Binomial Theorem). The following identity holds:

n

I S e i | e

= GO (W o 1—ugh

or, equivalently:

Before giving the proof of the theorem it matters to make several
remarks.

10



1. THE ¢-BINOMIAL THEOREM

(a) The order o(a) of a formal series a = >, < ,,>0a(n, m)u™¢™ is
defined to be the smallest integer k > 0 such that the polynomial

Z a(n,m)u"q™,

n+m==k

called the homogeneous polynomial of degree k of a (in u and ¢), is not zero.
Consider a countable family (as) (s > 0) of formal series in two variables.
As for the series in one variable, it is readily seen that if the order of a,
tends to infinity with s, then the infinite product [[,.,(1 — ay) is a well-
defined series. In the infinite product (au; )0, with a # 0, the term o u g™
is a series (reduced to a monomial) of order (n 4+ 1). As o(auq™) tends
to infinity with n, the infinite product (o u;q)~ is well-defined. The same
property holds for the product (u;q)~ occurring in the denominator.

(b) Within the coefficient («;q),/(¢; q)n of u™ in formula (1.5), make
the substitution a < ¢® to obtain (¢%;¢)n/(q; ¢)n; then let ¢ tend to 1.
We get () /n!. The ratio (¢%;¢)n/(q; q)n is said to be the g-analog of the
ascending factorial («),/n!, where

() = 1, if n =0;
Yr=Vale+1)--(a+n—1), ifn>1

But the series > u™ (a),/n! is the hypergeometric series 1Fo( % ;u), that
n>0
safisfies the identity

(1.7) Fo(Mu) = (1 —w)e

which is known to be the binomial identity. Notice that (1.7) is used to
extend the definition of (1 — u)~® when « is not an integer (positive or
negative). Identity (1.6) is said to be the g-analog of (1.7).

The main difference between (1.6) and (1.7) is the following: when
dealing with the algebra of formal series, formula (1.7) is a definition of
(1 —u)~® whenever « is not an integer, while (1.6) is an identity.

However, when considering the series 1F0(f;u) and 1900(f;q,u) as
power series of the complex variables u and ¢, the two formulas (1.6) and
(1.7) are identities, if the moduli of u and ¢ are less than 1. The first
proof of (1.6) given below is directly inspired from the classical proof of
(1.7) in the analytic case. However, the end of the proof uses a topological
argument on formal series and not on analytic series.

(c) In view of the proof of Theorem 1.1 let us mention the following
identity, easy to derive:

(1.8) (@)n — (@ 0)n = (@ q; Qn-1a(¢" = 1) (n>1).

11
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There exist numerous relations on the g-ascending factorials. Among the
most frequent let us quote the associativity property

(1.9) (@ Qnrie = (5 @)n (g™ Q)
and the reverse formula
(1.10) (@' " q)n = (@;@)n (—a 1) g T2,

No comment for (1.9). The latter can be proved as follows. For n > 1 we
have

(@) = (1= a)(1 = ag) (1 - ag" ™)

(~a)(1 - a Y (—ag)(1 = a~lg Y+ (—ag" (1 —a”lg" D)
(~a)"q" " DA —a (1 —alg ) (1 - a7l )
(-

)nqn(n—l)/Z(a lql n’q)

a formula that still holds for n = 0.
Finally, notice that the relation

_ (@@)w

(™5 q) oo
can be used to define the g-ascending factorial («;q), for every real
number n.

(d) Let a = ¢ in (1.5). We get

M_ w )<l = N. u
(1.12) (45 @)oo = (wa)y _Z:O(q ’Q)”(q;q)n'

(1.11) (@ q)n

n

But, if u and g are regarded as complex variables with modulus less than 1
and if we let ¢ tend to 1, we obtain the identity

n

(1 =u)™N =D (N)u o

n>0
that is, the usual binomial identity.

First proof of Theorem 1.1. Start with the series 1g00(f;q,u) =
> u™ (a;9)n/(q; ¢)n and evaluate the g-difference

n>0
ol el (G Dn n (G Dn
100( 5q,u) —100( 5q,qu) = u'(1—q") =) ——u
(Lia) - ) ; (¢ @)n T;(Q§Q>n—1
1—a <1+Z (JCIn 1 U 1)
n>2 QQn 1
aq
(1.13) = (1—uipo( " 5qu).

12



1. THE ¢-BINOMIAL THEOREM

By using (1.8) we get:

1900(iQQ,u) — IWO(Q_q;q,u) _ Z (5 9)n — (aq;q)nun

(1.14) = —aulgoo(a_q;q,u).

From (1.13) and (1.14) it follows that

1 —
o( ") = 1 _auu wo( "4, qu),

and by iteration

(115)  1po("qu) = (0% @) wo(“iaqmu) (m=0).

(u; @) m

If 1 o ( *:q, u) is considered as an analytic series of the complex variable wu,

it suffices to say that 1<p0(f i q, u) is continuous inside the unit disk. As
the series is equal to 1 for v = 0, identity (1.6) follows from (1.15) by
letting m tend to infinity.

With the topology of formal series we may use the following argument:
consider a pair (7, j) of nonnegative integers such that i + j > 1. As soon
as m > j + 1 the coefficients of u ¢’ in

(au;q)so and in (au; q)m
@ " g,

are equal. But ;¢ ( Yiq,q™ u) is of the form 1+¢™ u a, where a is a formal
series in the two variables u and q. It follows that for every i the coefficients
of u' ¢/ in

% and if %(1+qmua) = 1<P0(f§(bu)

(u; @) m (u; @) m

are the same. Hence, identity (1.6) is proved. []

Second proof of Theorem 1.1. The right-hand side of identity (1.6) is
a formal series that can be written as

by q) = ealg)

n>0

13
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where, for every n > 0, the coefficient ¢,(q) is a formal series in the
variable q. But

l1—au (1-—auqq™) 1-—au
b(u,q) = = b(ug, q);
(u,q) 1—unl;[o(1—uqq”) 1—u ( )
therefore
and then

(1—au)) calq) q"u" = (1—u) Y _ calq)u™
n>0 n>0
Looking for the coefficient of u™*! on each side provides:

n+1

Cn—|—1(q>q - OMJ” Cn(Q) = Cn—|—1(Q> - Cn(Q) ;

so that
1—aq”
cnt+1(q) = cn(qQ) ———.
(0) = eu(0) ] — o

As co(q) = 1, the right expression

is found by induction on n. []

Let « =0 in (1.6). We get
" 1
(1.16) 3 ( A

S (@dn (4d)e

Now consider the infinite product (—u; q) o and again take the argument
developed in the second proof. If we let (—u;q)e = > cn(q) u™, we find

cn+1(q)q”+1 + ¢n(9)q" = cn+1(q). Hence, =0
q"cn(q)
cnt1(q) = A=)
As co(q) = 1, we get
q(n—|—1)n/2
O
and then the identity
uTL
(1.17) "2 = (—u; ) s
nz;; (¢ @)n

The two series appearing in (1.16) and (1.17) are respectively denoted
by eq(u) and E,(u) and are referred to as the first and the second g-
exponential.

14



2. MAHONIAN STATISTICS

2. Mahonian Statistics

For each integer n > 0 let S,, be a set of cardinality n! (for example,
the permutation group &,,). By statistic on S,, we simply mean a mapping
f S, — N with nonnegative integral values. The polynomial

a(n) = Z g’

sES,

is called the generating polynomial for S, by the statistic f; or, sometimes,
the generating polynomial for f. The series

a(n)
(2.1) a:= u"
7;0 (4 On

is called the g-generating function for the polynomials (a(n)) (n > 0). If,
for each n > 0, the polynomial a(n) has the form

(45 @)n
(1—g)™

we say that f is a Mahonian statistic on the family (S,) (n > 0).
With each positive integer n is associated its g-analog defined by

(22) a(n) = =(1+q+-+¢" ") L+q+*)1+0q),

23) [ly= T =gt g
and its g-factorial
(24)  [nlg! = [nlgln —1]q - [2]q [1]q

(1-¢")(1-¢""H (1-¢°)(1-gq)

(1-q¢ (1-9 (1-q) (1-9q)
_ (@9
(1—q)"

=(+g++¢" HA+g+ 44" (1+0).

Consequently, the generating polynomial defined in (2.2) is equal to the
g-factorial of n and the g-generating function has the simple form

I o U S C X)L ST
(25) “=2 (¢ q)n (1 —q)™ <1 1—q> '

n>0

In this section our purpose is to introduce several Mahonian statistics
that are of constant use in the study of the g¢-series. Some of their
properties are being derived.

15
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The first one of these statistics is denoted by “tot” (“tot” for “total”).
Although its definition is straightforward, it is very useful in many
calculations. For each n > 0 let SE,, denote the set of the subexcedent

sequences * = (z1,Z2,...,%,). By subexcedent we mean a sequence of
integers x;, of length n, that satisfy the inequalities 0 < x; <7 — 1 for all
1 =1,2,...,n. The cardinality of SE,, is of course n! For each sequence

x = (x1,x2,...,2,) € SE,, define
(2.6) totz :=x1 + 22+ -+ .

Proposition 2.1. The statistic “tot” on SE,, is Mahonian, that is, for
each n > 1 we have:

(27> Z qtotx: (q;Q)n

veSE, (1 — q)n

Proof. The result is banal for n = 1. By induction on n:

Z qtot T _ Z qtot z’ Z qwn

reSE, ' e€SE,_1 0<zx,<n—1

- <§—qiqc)1;n_—fl<1+Q+-~-+Q”‘1>

(¢ Dn
(- -

The next three Mahonian statistics that are being introduced are
defined on the permutation group &,; they are called the Inversion
Number “inv”, the Major Index “maj” and the Denert statistic “den”.

Let 0 = o(1)...0(n) be a permutation, written as linear word. It is
traditional to define the Inversion Number, inv o, of the permutation o as
the number of ordered pairs of integers (i, j) such that 1 <1i < j <n and
o(i) > o(j).

The Major Indexr majo of o is defined to be the sum of the positions i
where a descent o (i) > o(i + 1) occurs. We can also write

(2.8) majo = Z ix{o(i) >o(i+1)},

1<i<n—1

by making use of the x-notation. Remember that for each statement A we
write x(A) =1 or 0 depending on whether A is true or not.

16



2. MAHONIAN STATISTICS

The definition of “den” is based on the notion of cyclic interval. Let ¢, j
be two positive integers; the cyclic interval ﬂi,jﬂ is then

T 5]+ )iy oo, i >

The Denert statistic, deno, of the permutation o is defined as the
number of ordered pairs (4, j) such that 1 <i < j < nand o (i) € |o(4), j].

To show that those three statistics are Mahonian on &,,, we construct
three bijections o — x of &,, onto SE,, having the properties

inve =totx, majo =totx, denoc =totz,

respectively. The construction of those three bijections makes use of three
different codings of the permutations. The image x of ¢ under each of those
bijections is called the inv-coding, the maj-coding and the den-coding of o,
respectively.

2.1. The inv-coding (also called Lehmer coding). Let o = o(1)...0(n)
be a permutation. For each ¢ = 1,...,n define x; as being the number of
terms o(j) to the left of o(i) which are greater than o(i), that is,

x; = Z x(o(j) > o(4)).

J:1<5<i—1

The sequence = := (x1,...,%,) just defined is obviously subexcedent.
Furthermore, the correspondence o — x is bijective. Moreover, the sum
tot x of the x;’s is precisely equal to the Inversion Number invo of the
permutation o.

In the following example, under every element o(i) is written the
corresponding z; of the inv-coding.

(123456789)
7154926 38
r= 011204251

In particular, invo = tot z = 16.

To reconstruct o from its inv-coding x, proceed as follows: first let
o(n) := n—x,. Once the elements o(k+1), ..., o(n) have been obtained,
eliminate all the terms of the sequence (n,n —1,...,2,1) equal to one of
the o(l)’s for a certain [ > k + 1. Then, o(k) is equal to be the (zj + 1)-st
term of the sequence (n,n—1,...,2,1), when reading that sequence from
left to right.

17
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For example, start from the subexcedent sequence
x=(0,1,1,2,0,4,2,5,1)

of length n = 9; first, get 0(9) := n —x, = 9 —1 = 8. Then, form
the sequence (9,7,6,5,4,3,2,1), where 8 has been deleted. Then, o(8)
is equal to the (zg + 1) = (5 + 1) = 6-th term of the sequence, that
is, 0(8) := 3. The running sequence becomes (9,7,6,5,4,2,1), whose
(x7 +1) = (24 1) = 3-rd term is 6; hence, o(7) := 6. Next, consider
(9,7,5,4,2,1) whose (zg + 1) = (4 + 1) = 5-th term is 2; then o(6) := 2,
and so on.

2.2. The maj-coding. Starting with a permutation ¢’ € &,,_1, written
as a word o’(1)...0'(n — 1), we can generate n permutations o € &,
by inserting the letter n to the left of the word, or between two letters
o'(i) and o’(i + 1) for 1 < i < n — 2, or to the right of the word, say,
in position i = 0,1,2,...,(n — 1), respectively. Thus, every permutation
o € 6, is characterized by an ordered pair (0’,%), where o/ € &,,_; and
0 < i < n — 1. The surjection 9 : o — ¢’ of &,, onto &,,_1 consists of
removing the letter n from the word o = o(1)0(2)...0(n).

For describing the maj-coding we relabel the n possible positions
where n can be inserted into ¢’ = ¢’(1)...0'(n — 1) in the following
manner: label 7 = 0 is given to the insertion of n to the right of the word o’;
suppose that o’ has d descents, that is to say, d positions o’(i)o’(i + 1)
such that o’(i) > o'(i + 1). We label those descents j =1, j =2, ... |
j = d, from right to left; the insertion of n to the left of ¢’ is given label
j = d+1 and the labels j = d+2,d+3,...,n—1 are given to the (n—2—d)
insertions into the other positions when reading the word o’ from left to
right.

If the letter n in the original permutation ¢ is in position j for the
relabelling just described, we adopt the notations:

op-1 =0 =P(0); Tn =

(2.9) Op 1= 0 :=[0p_1,Ty).

In the same manner, to 0,1 there corresponds a pair [0,,_2, Z,—1] and
by iteration we obtain a sequence of pairs [0, 3, Zp—2], ... , [00, 1], where
o0 is the void permutation and x; = 0. This yields a sequence, necessarily
subexcedent x = (x1, 2, ..., ,), that is called the maj-coding of o.

Ezample. Consider the permutation 0 = 7154926 38. The permuta-
tions 01, 02, ... , 0g, 09 are simply the subwords reduced to the letter 1, to
the letters 1,2, ... , tothe letters 1,2, ..., 8, finally to the letters 1,2,...,9.

18



2. MAHONIAN STATISTICS

At each step of the construction we have to maj-label the inserting
positions as was indicated before. In Table 2.1 the maj-labellings appear
as subscripts of the permutations written in the third column. The maj-
coding of ¢ is then z = (0,0,0,2,3,5,4,0,2). Notice that majo = totx =
16.

Permutation maj-coding maj-labelling
o1 = 1 Tr1 = 0 110
0'2:12 .’L‘QZO 11220
0'3:123 $3:O 1122330
04 = 1423 Ty = 2 213412430
05 = 15423 Is =3 31452412530
Og — 154263 Tg — 5 4155342266130
o7 = 7154263 Ty = 4 574165342276130
g = 71542638 Trg = 0 57416534227613880
09 =715492638| x¢ =2

Table 2.1

To reconstruct the permutation o from a subexcedent sequence x =
(x1,22,...,2,), we put o7 := 1, then obtain o9 := [07,z2] (with the
notations (2.9)), ... , until we reach o := 0, = [0,_1, Tp].

Proposition 2.2. Let 1) : 0 — ¢’ be the surjection of &,, onto &,,_1 that
consists of removing the letter n from the word o(1)...0(n). For n > 2
and for each permutation ¢’ € &,,_1 the generating polynomial for the
class 1~ (a') by the Major Index “maj” is given by

(2.10) g =g (L g P Y,
oc€yp~1(a’)

Moreover, with the notation (2.9)

(2.11) maj(o,—1,%,] = majo,_1 + Tp.

Finally, if x = (21,22, ...,2y,) is the maj-coding of o, then

(2.12) majo =x; + 22+ -+ x, = totx.

Proof. Identities (2.10) and (2.12) follow from (2.11) that is now being
proved. When n is inserted to the right of ¢/ = o,,_1, into the position
maj-labelled 0, we have maj[o’,0] = majo’. If n is inserted into the z,,-
th descent (1 < z, < d = deso’) (labelled from right to left), the z,
descents occurring on the right are shifted one position to the right; the
other descents remain alike. Hence, (2.11) holds. In the same manner,
(2.11) holds for z, = d + 1, since the maj-labelling corresponds to an
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insertion of n at the beginning of the word. Now if ¢/(i) < ¢’/(i + 1) is the
k-th non-descent when o is read from left to right (1 < k < n—d—2), the
left factor ¢’(1)0’(2)...0'(i) contains ¢ — k descents and the right factor
o'(i+1)o’'(i+2)...0'(n — 1) exactly d — i + k descents. The insertion
of n between o¢’(i) and ¢’(i 4+ 1), into a position maj-labelled d + k + 1,
increases the Major Index by (i + 1)+ (d—i+k) = d+ k+ 1, since a new
descent is created between o’ (i) and o’(i + 1) and the (d — i+ k) descents
of the right factor ¢’(i + 1)o’(i +2)...0'(n — 1) are shifted one position
to the right. []

2.3. The den-coding. The Denert statistic, den o, of a permutation o €
G, can be calculated by means of its den-coding, defined as follows. For
each integer j (1 < j < n) define z; as the number of integers ¢ such that

(2.13) 1<i<j—1 and o(i) € Jo(4). ]

The den-coding of o is defined to be the sequence x := (z1,x2,...,%y),
which is obviously subexcedent. Clearly, deno = 1 + 22+ -+, = totx
and the mapping o — x is injective and then bijective. Let us illustrate
the calculation of the den-coding with an example.

In the example below the first row shows the integers j from 1 to 9, the
second row the value of o(j), the third row the value of the cyclic interval
Jo(4), 4], the fourth row the value of z; (which is the number of integers i
such that 1 <i < j—1and (i) € [o(j),5]).

J 2 3 4 5 6 7 8 9
a(j) 7 1 5 4 9 2 6 3 8

i|:|0'(]),]:|:| {17879} {2} {67778797 17273} 0 {172737475} {3?4a 5a6} {7} {4’ 5a6a 7’8} {9}
Y 0 0 2 0 3 2 1 4 1
The den-coding of o is then x = (0,0,2,0,3,2,1,4,1). In particular,
deno = 13.

To recover o from x, first define o(n) := n —x,,. Suppose that o(j + 1),
.., 0(n) have been determined from z;1, ... , ,. Write the sequence

5 G=1),...,2,1,n,(n—=1),...,(j+1).

From that list remove all the elements equal to o(!) for a given I > j + 1.
Then o(j) is the (z; + 1)-st letter in the sequence when reading it from
left to right.

Three bijections ¢V, ¢™a, ¢den of &, onto SE,, have so been con-
structed with the following properties:

invo = tot ¢ (), majo = totp™¥(c), deno = tot " (o).
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3. THE ALGEBRA OF THE ¢-BIMOMIAL COEFFICIENTS

By taking the composition products of ¢V, ¢™® and ¢9°", together with
their inverse bijections, we can explicitly construct one-to-one correspon-
dences of &,, onto itself, that map “inv” onto “maj”, “inv” onto “den”
and “maj” onto “den.”

3. The algebra of the g-binomial coefficients

Consider the product ¢ = a - b of two formal series in the variable u
written in the form
u' u’
azzﬁa(i) and bzzﬁb(j).
i>0 §>0
If we want to express the product ¢ in the form
n

c= Z%c(n),

n>0
we are led to the identity

= 3 (7)atrl) oo

120,720
i+j=n
ny . . . ) n!
where | . | is the binomial coefficient ———.
i il (n—1)!

Now if we replace the factorials i!, j!, n! occurring in the denominators
by their g-analogs (¢; q)i, (¢;9);, (¢; @)n, as they were defined in (0.1) and if
the coefficients a(i), b(j), c(n) are replaced by formal series a(i, q), b(J, q),
c(n, q) in the variable ¢, we obtain the identity

)= Y [Mationa),

i>0, >0
where Hi=n
n (¢ Dn ,
3.1 o= 0<1<n).
(3.1) H (:9)i (4 @) n—i ( )

We can also write :

m _ @@ (@)

(3.2) (G Dn—i  (©:9)

n
The expression | | is called g-binomial coefficient or Gaussian polynomial.
i

It is a remarkable fact that this coefficient is a polynomial in ¢, with
nonnegative integral coefficient. This can be derived in an algebraic
manner.
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In definition (3.1) make the convention that the g-binomial coefficient
[ﬂ is zero when condition 0 < i < n does not hold. First, we have

[ -
-

We also have two Pascal Triangle formulas
n n—1 n—1
3.5 = et ;
6 ARl R (e}
(3.6) n _n—1+in—1_
' il T li-1) T ]

that can be derived by mimicking the traditional calculus of the binomial
coefficients:

ny n—1 B (QQQ)H—l oony (1 o n—i
M { i ]_(%Q)i(q;(l)n—i((l )= (=)
(G Dn-1q"""(1—¢")

(q;.Q)i (@3 @) n—i

"G Dy e {n— 1}
(0 9)i—1 (¢ @)n—i i—1

In the same manner,

S P e ] I
[0

Finally, the limit lim ln] = (n) is straightforward.
g—1 |1 1

Relation (3.3) and one of the relations (3.5), (3.6) show that the g¢-
binomial coefficient [7:] is a polynomial in g, with nonnegative coefficients,

of degree i(n — i). The first values of the g-binomial coefficients [TZL] are
shown in Table 3.1.

Ll =0l=1 [l=0Gl=1 [=1+¢ [J=[(=1

o =1+a+d [J=[]=1 [[J=0=1+0+¢+¢%
+a+2¢°+a 4k [ =[] =1 [ =[] =1+e+a+a’+d"
o =14 q+2¢>+2¢° +2¢* + ¢° + ¢°.

Table 3.1
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3. THE ALGEBRA OF THE ¢-BIMOMIAL COEFFICIENTS

In (1.16) and (1.17) we have obtained two expressions for each one of
the two g-exponentials e,(u) and E,(u), first as infinite products, then as
g-series :

n

(3.7) qtt) = — =Z(“—,

G n

(3.8) BEy(u) = Y e

= (¢; q)n

By means of the ¢-binomial coefficients we can obtain the expansions
of the finite products 1/(u;q)ny and (—u;q)yN, where N is a nonnegative
integer. Those two products can be regarded as finite versions of the two
g-exponentials e, (u) and E,(u).

Proposition 3.1. We have the identities:

(3.9) 1 :ZlNJrn—l] "

(won n

(3.10) (—wn =) [ﬂ g D2

0<n<N

Proof. To derive (3.9) go back to (1.12). We have:

N’LL' Uu
L sde Z(qN;q)n

n

(way (e S (¢ D
N+n-—1
—1e 3 e = N
n>1 (a)N-1( ">0
To derive (3.10) make use of the g-binomial theorem:
(—us g) = (@) _ (N (—ug"); @)
’ (—ug™; @) (—ug™; @)oo
Nyn
_ —ugq _ —ugq
— S n7>>: Z(qNsQ)n%-
n>0 q 9)n 0<n<N q;4)n
N

The summation is finite, since (¢~
use (1.10) for a = ¢~ ¥, that is,

:q)n is zero for every n > N + 1. Now

N+1—n.

(q On = (N Q)n (V) g D/2,
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We get
—n n(n— un
(—us)n = > (e
et (¢ O
N — n
_ Z |:n:| qn(n 1)/2'LL ,
0<n<N

because of (3.2) with the substitutions n <~ N and i < n. []

We can also prove (3.9) and (3.10) by induction on N, using the Pascal
Triangle formulas (3.5) and (3.6).

4. ¢-Binomial Combinatorial Structures

For an easy handling of the ¢g-binomial coefficients in Combinatorics it is
essential to be familiar with the basic combinatorial structures that admit
those coefficients as generating polynomials. For each pair of integers
(N,n) we give the description of several pairs (A4, f), where A is a finite
set of cardinality (]Z) and f is a statistic defined on A having the property
that

(4.1) S = [N-I—n}.

n
acA

Four of those structures are introduced below: the partitions of integers,
the nondecreasing sequences of integers, the binary words, the ordered
partitions in two blocks. Each of these structures has its own geometry
and its specific underlying statistic.

4.1. Partitions of integers. Formula (3.9) reads

1 - N+nun
(42) <1—u><1—uq>---<1—qu>‘Z[ n } |

n>0

The left-hand side of (4.2) can be expressed as a formal series in the two

variables ¢ and u
Y u" > pm,n,N)g™,

n>0 m>0

where p(m,n,N) is equal to the number of sequences (mg, m1, ma, ..., my)
of nonnegative integers such that

(4.3) mp+mi+---+my=n and 1.m;+2my+---+ N.my =m,
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4. ¢-BINOMIAL COMBINATORIAL STRUCTURES

or, in an equivalent manner, to the number of partitions 1™12™2 ... N™N
of the integer m whose number of parts is at most equal to n (because of
the occurrence of the coefficient my). Hence,

p(m,n, N) is equal to the number of partitions of m in at most n parts,
all the parts being at most equal to N.

Notice that p(m,n, N) = 0 for m > nN + 1. Let P(n, N) be the set
of partitions in at most n parts, all of them being at most equal to N
(their Ferrers diagrams are then contained in a rectangle of basis N and
height n). Let ||7|| denote the weight of a partition m € P(n, N), that is,
||| = m if 7 is a partition of m. Accordingly,

(4.4) {NJF"}: S plman,Nygm= 3 gl

n
0<m<nN weP(n,N)

The first g-binomial model is then the pair (P(n, N), | -|).

N N
First kind Second kind

Fig. 4.1

There is another way to derive identity (4.4), by using induction on
N + n, the formula being trivial for N +n = 1. We use (3.6), that can be
rewritten as

{Nwﬂ _ [N%—(n—l)} MH{(N—;)M}

n n—1

But the factor [Ntb(fl_ 1)} is the generating polynomial for the partitions
in at most (n — 1) parts, all of them being at most equal to N. Call them
of the first kind. The factor [(N _i)Jr"] is the generating polynomial for the
partitions 7 whose Ferrers diagram is contained in the rectangle (N —1) xn.
Add a column of height n to the left of the Ferrers diagram of each 7. We
obtain the Ferrers diagram of a partition 7’ having n parts exactly, all
of them being at most equal to N. Say that those partitions 7’ are of
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the second kind. Their generating polynomial is equal to ¢" [(N_$)+”} by
induction. But, every partition in at most n parts, all at most equal to IV,
is either of the first kind, or of the second kind (see Fig. 4.1). []

4.2. Nondecreasing sequences of integers. This model will appear to
be extremely convenient, for a great many of combinatorial objects can be
easily coded by sequences of integers. For each pair (N,n) of integers
let NDS(N,n) (resp. IS(IV,n)) be the set of the nondecreasing (resp.
increasing) sequences of nonnegative integers b = (by, ba, ..., by ) such that
0<b; <by<---<by<ni(resp.0<b <by<---<by <n). As above,
let JCOth: bl—l—bg—l——l—b]\[

Proposition 4.1. For each pair of integers (N, n) we have:

(4.5) {N:L_ n} = Y ger= Y gt

beNDS(N,n) beNDS(n,N)
_ n+1 o
BeIS(N,n)

Proof. Notice the symmetry of formula (4.5) in N and n. To derive
(4.5) we construct a bijection 7 +— b of P(n, N) onto NDS(n, N) that has
the property that ||7| = totb. Let m = (mqy > 7o > --- > m, > 0) be a
partition in at most n parts, all of them at most equal to N. The bijection
is simply given by

= (T, ..., T2, 1) = b.

Suppose n > N — 1. To prove (4.6) we use the traditional bijection B + b
that maps each increasing sequence B € IS(N,n) onto a nondecreasing
sequence b € NDS(N,n — N + 1), defined by

(OSBl<BQ<"-<BN§’I”L>>—)(0§Z)1Sbgg---SbNS’rL—N-l-l),

where b1 = Bl, bQ = Bg—l, bg = 33—2, ,bN = BN—N+1 It
follows that
N(N —1
and
thotB _ qN(N—l)/2 Z qtotb
BeIS(N,n) bENDS(N,n—N+1)
_ N2 N+m-N+1)] _ V=12 n+1 i
N N |

The second ¢-binomial model is (NDS(V, n), tot).
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4.3. Binary words. Let BW(N, n) denote the set of all words of length
(N 4 n) having exactly N letters equal to 1 and n letters equal to O.
If 2 = zq29... N4y is such a word, the inversion number, inv z, of the
word z is defined as the number of subwords (not simply factors) 10 of the
word .

Ezxample. We can also write the number of 1’s that appear to the left
of each letter equal to 0, as shown below for the word .

r=100101001
-11-2-33-

Henceinve =14+14+24+34+3=10.

Proposition 4.2. For each pair of integers (N,n) we have:

(4.17) {NJF"] = Y g

n
rEBW(N,n)

Proof. Again, we construct a bijection ©# +— x of P(N,n) onto

BW(N,n), such that [|7|| = invz. Every partition # € P(N,n) can
be, in its multiplicative version, described as a monomial }'i5? ...,
where 0 < i1 <o < -+ <t. <N, ny >1,n,>1,... ,n. >1and

ni+ngo+- - -+mn, = n. If the number of parts [(7) of 7 is strictly less than n,
let ny := n —I(mw) and 4; := 0. Then the partition 7 has its parts only
equal to ig, ... , i, repeated ng, ... , n, times, respectively. If I(7) = n,
then 1 <14; and 7 has its parts equal to ¢1, ... , i,, repeated ny, ... , n,
times, respectively.

With the partition 7 associate the word z

e S U Kt (S Kl (Ve K VS R

The word x has i1 + (ig —41) + (i3 —i2) + -+ (ip —ip—1) + (N — i) = N
letters equal to 1 and ny +n9 +ng+---+n,_1 +n, = n letters equal to 0.
Moreover, ||| = i1.n1 + i2.n2 + -+ -+ ip.np = i1.07 + (i1 + (i2 —41)).n2 +
<o+ (i1 + (i —i1) + - - + (4 — 4p—1)).n, = inv . Finally, the mapping
7+ x is obviously injective, and then bijective. []

Remark. There is a geometric manner to see the bijection 7 +— =z
described in the previous proof. Put the Ferrers diagram of the partition m
inside a triangle of basis N and height n. The rim of the Ferrers diagram
is a polygonal line, made of vertical and horizontal steps of length 1,
starting from the point whose coordinates are (0, n) down to the point with
coordinates (IV,0). The rim has exactly n vertical steps and N horizontal
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n=7 10
1110
0
1110
0
110
110
N =26
Fig. 4.2

steps. Now read the rim of 7 from top to bottom and from left to right
and give label 0 (resp. label 1) to each vertical (resp. horizontal) step.
The word x thereby obtained is the binary word described in the previous
bijection (see Fig. 4.2).

Ezample. Consider the partition = = (6,5,4,4,2,2) belonging to
P(6,7). In its multiplicative version it can be expressed as the monomial
0'22425'6!. The word x corresponding to that monomial is the word
r = 190'12-90214-2021°-40'16-50*16-6 = 0,1,1,0,0,1,1,0,0,1,0,1,0,
which is the word we can read on the rim of its Ferrers diagram using the

previous labelling.
The third g-binomial model is then (BW (N, n),inv).

4.4. Ordered Partitions into two blocks. The word “partition” used
in this subsection will refer to (set) partitions. The (set) partition of a
finite set S is a collection of subsets (called blocks) of S, two by two
disjoint, whose union is S. By ordered partition of a set it is meant a (set)
partition into blocks, together with a linear ordering of those blocks. For
convenience, we may assume that some of those blocks are empty.

Now consider the set [N + n| of the (N + n) integers 1,2, ..., N +n. If
(A, B) is an ordered partition of [NV +n] into two blocks, y(A) (resp. v(B))
will designate the increasing word whose letters are the elements of A (resp.
of B) written in increasing order. There is no inversion of letters in each of
the words v(A), v(B), so that the number of inversions inv(y(A)y(B)) in
the juxtaposition product v(A)vy(B) is equal to the number of pairs (a,b)
such that a € A, b € B and a > b.

Proposition 4.3. For each pair of integers (N, n) we have

N+n| _ inv(v(A)y(B))
{n]_zq ,

(A,B)

where the sum is over the set OP(N,n) of all the ordered partitions (A, B)
of the set [N + n] into two blocks such that |A| = N and |B| = n.
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5. THE ¢-MULTINOMIAL COEFFICIENTS

Proof. 1t follows from Proposition 4.2 that the g-binomial coefficient
[N:n} is the generating function for the binary words = = 122 ... 2N1n
having N letters equal to 1 and n letters equal to 0, by the inversion
number. With such a binary word x associate the ordered partition (A, B)
of [N + n] defined by: i € A or i € B depending on whether x; = 0 or
x; = 1. The inversion z; = 1, ;; = 0, j < j' in the word z will then
correspond to the inversion j° > j between the element j° € A and the
element j € B. []

The fourth ¢-binomial model is then (OP(N,n),inv).

5. The g-multinomial coefficients

They form a natural g-extension of the multinomial coefficients and
can be introduced as follows. For each integer » > 1 and each sequence of

nonnegative integers (mq,mao, ..., m,) let
mip+mg+--+me| (6 Dy tmattm,
(5.1) —
mi,ma, .My | (G Dm (G Dms - (G D,

If there is no ambiguity the subscript ¢ is suppressed. In case r = 2 we
recover the expression of the Gaussian polynomial studied in the previous
section. The fact that the ¢g-multinomial coefficient is a polynomial in ¢
with positive integral coefficients follows from the combinatorial interpre-
tations given in the sequel

When ¢ tends to 1, the g-multinomial coefficient tends to the multino-
mial coefficient (m;i”:rf: +mT) as is readily verified. We can then expect
that the g-multinomial coefficient is the generating polynomial for a set of
cardinality (m;j”;f:" ;T’") by a certain statistic.

The two combinatorial interpretations of the g-binomial coefficient in
terms of classes of partitions and nondecreasing sequences are difficult
to be extended to the multinomial case. However, when going from the
binary words, studied in the previous subsection, to the words whose
letters belong to an alphabet of cardinality r (r > 2) and when the
statistic “inv” is extended to those words, the ¢g-multinomial coefficient
can easily be interpreted in a combinatorial way. In the sequel the word
“rearrangement” of a word w, with or without repeated letters, means any
word derived from w by permuting its letters in some order.

For r > 1 and for each sequence m = (my,ms, ..., m,) of nonnegative
integers let R(m) denote the class of all the words of length m =
mi1 + mo + --- + m, which are rearrangements of the nondecreasing
word 1™12™2 . r™r_ The number of such rearrangements is equal to the

multinomial coefficient (m;ltﬂgfj“';mr)_
’ yeeey My
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Let w = z125 ... 2, be a word belonging to the class R(m). The number
of inversions, inv w, of w is defined to be the number of pairs (i,7) such
that 1 <4 < j < m and z; > ;. For each word w = z1x2...2,, it is
convenient, for each j = 1,...,m, to determine the number z; of letters
x; lying to the left of x; such that x; > x;. Then invw = 21 + - -+ + 2.

In the following example the number of inversions of w is determined
from the sequence of the z;’s:

w= 313412543
2= 010033013

so that invw =totz=1+3+3+1+3=11.

Theorem 5.1. The g-multinomial coefficient [m;lfrgfj'“;mr

erating polynomial for the set R(m) by the number of inversions. In other
words,

(52) (AR D DI
mi,mo, ..., My
wE R(m)

is the gen-
] g

Proof. Relation (5.2) is banal for » = 1 and holds for » = 2 by
Proposition 4.2. Consider the factorization

[ml +mg+ -+ mr+1:| . (% Dmatmattmeia
mi,ma, .. Megt | (G Dmy (G ODmg -+ (G Dy
(45 Dy tmottmog (% Dmatmattm,
(@ Dmatmat-tme (G Dmeir (G Dma (G Dms -+ - (G Dim,
B mi+mo+ -+ Mypgq my +mg + -+ My
N |:m1 +m2+-~-+m7~,m¢+1} [ mi, Mo, ..., My

and take a word w = x125...2,, from the set R(mi,ma, ..., myy1), SO
that its length is m’ = mi+ms+- - -+m,11. The inversions z; > zj (i <j)
of w fall into two classes: (i) the inversions of the form z; = r+1 > s = 2,
where s is one of the integers 1, 2, ... , r; (ii) the inversions of the form
T;=8>t=ux;, wherer > s>1t>1.

Let wy denote the word of length m’ derived from w by replacing all the
letters less than or equal to 7 by 1 and all the letters equal to (r+1) by 2.
Likewise, let wy denote the subword of length m = mqy +mo + -+ + m,
obtained from w by deleting all the letters equal to (r + 1).

The map w +— (wy, ws) is obviously a bijection of R(my, ma, ..., my41)
onto R(my + mg + « -+ + my, my41) X R(my, ma, ..., m,). Moreover,
(5.3) invw = inv wy + inv ws.
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But by induction on r we have:

S <[ et ],
o my+mg+ - My, My

Zqinvwg _ |:m1+m2++mr:|
my, M2, ..., My
w2

The identity (5.2) is then a consequence of those identities and of (5.3). []

6. The MacMahon Verfahren

PRENAA

The German word Verfahren means “procedure,” “way of doing,” ...
This term applies to the rearrangement method of sequences of numbers,
imagined by MacMahon when he was dealing with g-series in a combina-
torial context.

Obviously, the fraction 1/(q;q)., is the generating function for the
partitions of integers in at most m parts. If we write such a partition
in its classical form 7 = (71 > my > -+ > m,, > 0), then the sequence
b = (b1,...,b;m—1,bm) := (Tm,...,m2,m) is a nondecreasing sequence
of m nonnegative integers. Extending our previous notation we write
b € NDS(m), so that

1
(6.1) D

(@ @)m beNDS(m)

where totb = by + -+ - + b,y

In section 2 we have introduced the Mahonian statistic on a set of
cardinality n! and more essentially on the symmetric group &,,. We now
extend the definition of that statistic to arbitrary rearrangement classes.
A statistic “stat” is said to be Mahonian, if for every class R(m) the
following identity holds:

1
(@ Dmytetm,

1
(G Dmy (G Dm,

stat w —

(6.2) q

w€ R(m)

Theorem 5.1 says nothing but that the inversion number “inv” is a
Mahonian statistic. By using (6.1), identity (6.2) can be rewritten in the
form

tot btstatw _ tot b ... 4-tot (7
(6.3) > q = > g ,

bENDS(m), we R(m) b ,...,b(r)
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where b)) € NDS(my), ... , b"™) € NDS(m,). Hence, we can also say that a
statistic “stat” is Mahonian, if to every pair (b, w) € NDS(m)x R(m) there
corresponds a unique sequence (b, ..., b)) € NDS(mq) x - - -x NDS(m,.)
such that

(6.4) tot b+ stat w = tot b + - - - + tot b,

The purpose of this section is to use that definition for making the Major
Index appear as a Mahonian statistic, not only for permutations, but for
rearrangements of arbitrary words.

Each sequence (b, ..., b(’")) can be mapped, in a bijective way, onto
a two-row matrix

(6.5) O R A YA A I R A
1 ... 1 2 ...2 ...r ...1r )

where, on the first row, the nonincreasing rearrangements bﬁz . .bgl),
bﬁﬁi .. .b§2), cee b%i .. .bgr) of the sequences b1, b2 . b(") have
been in that order.

The idea of the MacMahon Verfahren is to rearrange the columns of
the latter matrix in such a way that the elements on the top row will be in
nonincreasing order (when read from left to right), this being made in a
one-to-one manner. The bottom row will then go from 1™12™2 .. . r™ to a
rearrangement of that word. To realize the rearrangement of the columns
we make use of the following commutation rule:

/

(6.6) two columns (2) and (2/) commute if and only if ¢ # .

The commutation rule being given, to each matrix of type (6.5) there
corresponds, in a bijective manner, a matrix

(6.7) (yl Y2 ym),

1 I2 B 7%

whose top row is nonincreasing and if yr = yx41, then zp < xg4q, or, in
an equivalent way,

(6.8) T > Tpi1 = Yk > Ykil-

In other words, if there is a descent on the bottom row, there is also a
descent on the top row, the converse being not necessarily true.
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For example, let 7 =3, mq = 6, mg = 2, mg = 4, b)) = (0,0,1,1,5,6),
b2 = (1,3), b® = (1,1,4,5), so that m = m; + mg + m3 = 12. The
matrix of type (6.5) reads:

651100315411
111111223333)°

Using the commutation rule (6.6) the matrix is transformed into a matrix
of type (6.8):
655431111100
(113321123311)'

The coefficients on the bottom row that are greater than their successors
are written in bold-face. We see that the corresponding coefficients on the
top row are greater than their successors (property (6.8)).

Go back to the general case and let v := yy¥2 ...y, denote the word
appearing on the top row of the matrix (6.7). It is the unique nonincreasing
rearrangement of the juxtaposition product b ... b("). Next, let w :=
ZT1T2...T;, be the word appearing on the bottom row of (6.7). It is a
well-defined word belonging to R(m).

For £ = 1,2,...,m let 2z be the number of descents in the right
factor xxxpyq ... 2, of w, that is, the number of subscripts j such that
k<j<m-—1andx; >x11; next let by :=yr — 2, (1 <k <m). If
T > Tr+1, then zx = 211 + 1 by definition of z; and also yx > yx11 + 1
by (6.8). It follows that by = yr — 2k > yYr+1 + 1 — (2Zr+1 + 1) = br41-
However, if xj, < xg41, we always have yx > yr+1, since v is nonincreasing
and also zp = zx4+1. Hence by, = yr — 2k > Yk41 — 2k+1 = bk+1-

We conclude that the sequence b defined by b := (b, . . ., ba, by) satisfies
the relations 0 < b,,, < --- < by < by, so that b € NDS(m). Finally, if z(w)
designates the sequence (21, 22, . .., 2m ), we have:

tot b + - 4 tot b =y +ya + -+ + Ym
= (b1 4+ 21) + (b2 + 22) + -+ - 4 (b + 21)
(6.9) = tot b + tot z(w).

Comparing the last identity with (6.4) we see that totz(w) is a new
Mahonian statistic, if it can be verified that the mapping (b™), ..., (")) —
(b,w) is bijective. But the construction that has just been made is
perfectly reversible: starting with a word w € R(m) and a sequence
b= (bm,...,b2,b1) € NDS(m), we first determine the sequence z(w) =
(#1,---52m). We know that the word v = yi...Ym—1Ym defined by
yi := b; + z; (1 < i < m) is nonincreasing. We next form the two-row
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matrix (;;) and by applying the commutation rule (6.6) we define the
sequences b, ... | b(") by (6.5). Relation (6.9) obviously holds.

Let us take again the previous example. We had obtained:
(v)_<655431111100)
w 113321123311)°
We now get
v =655431111100
w =113321123311

2(w)=333321111100
322110000000 =5 (read from right to left)

and can verify that
tot b 4+ Ftot b = (64+5+1+1)+ B+ 1)+ (5+4+1+1) =28
=totb+totz(w) =(3+2+2+1+1)+(124+2+5) =28.

Going back to the general case the problem is to characterize the new
Mahonian statistic “tot z(w)” in a more direct way. It is, indeed, the Major
Index, “maj”, already introduced in section 2 in the case of permutations.
Its definition can be extended to the case of arbitrary words.

Definition. Let w = z1x2...2,, be a word whose letter are taken
from the alphabet {1,2,...,7}. The Major Index, “majw”, of the word w
is defined by

(6.10) majw := Z ix(z; > xiqq1).

1<i<m—1

Thus, for calculating the Major Index of a word, we determine its
descents and their positions. The Major Index is the sum of the positions
of its descents.

Proposition 6.2. For every word w we have: majw = tot z(w).

Proof. 1If w = z129...2,, and 1 < 7 < m, we have defined z;
as being the number of descents in the right factor z;z;41...2,,, and
z(w) as being the sequence of the z;’s. If w is of length 1, obviously
majw = totz(w) = 0. If w is of length greater than 1, define w’ :=
1T ... Ty and let z(w') = (24,...,2,,1). If zp,1 < a4, then
majw = majw'z,, = majw’ = totz(w') = tot z(w'z,,) = tot z(w). If
Tm—1 > Ty, then majw = majw’ + (m — 1), since there is a descent in
position (m — 1). On the other hand, z(w) = ((2] + 1),..., (2,1 + 1));
hence tot z(w) = tot z(w') + (m —1). []

In the next theorem we state the results derived in this section about
the Major Index.
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7. A REFINEMENT OF THE MACMAHON VERFAHREN
Theorem 6.3. The Major Index is a g-multinomial statistic; that is, for
each rearrangement class R(m) the identity

mi+mo+ -+ my ;
6.11 = mayw
( ) my, Mo, ..., My :| Z 4

weER(m)

holds.

The right-hand side of (6.11) is the generating polynomial for the class
R(m) by the Major Index, a polynomial that will be denoted by A(q).
Relation (6.11) can also be rewritten as

1 1

(¢; Q)mAm(Q) T (@G Dmy (G D,

(6.12)

which is (6.2) with “maj” replacing “stat.”
Now introduce the algebra of power formal series in the variables uy, us,
oy U Let u™ = wfMug? o oou also (U5 ¢) 0o = (U159) 00 -+ (Urs @)oo
and remember that m = my + -+ + m,. Next, multiply (6.12) by u™
and sum the two sides of the equation with respect to all the sequences
m = (mq,...,m,) of r nonnegative integers. By using the ¢-Binomial

Theorem (Theorem 1.1) we get the equivalent identity

(6.13) 3" Am(a) (;;:m N

(W)

7. A refinement of the MacMahon Verfahren

Re-examine the inverse mapping of the bijection

(7.1) bW, 0 = (b, w)

of NDS(my) x --- x NDS(m,) onto NDS(m) x R(m), described in the

previous section. Each term z; in the sequence z(w) = (z1,22,...,2m)

counts the number of descents in the right factor x;x;41...x,, of the

word w. Let desw := > x(#; > x;41) denote the number of descents
1<i<m—1

of the word w, so that
(7.2) 21 = desw.

As y1 = by, + 21 and since y; is the maximum term in the sequence b,
..., b we also have:

(7.3) b < by +desw, ... ,blr) < b+ desw.
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Take a nonnegative integer s’ and a nondecreasing sequence b = b,, . .. bab;
such that 0 < b, <--- < by <&, ie., be NDS(m,s'); further take a word
w € R(m) and let

(7.4) s:= s +desw.

It follows from the inequalities (7.3) that

(7.5) b € NDS(my, s),...,b") € NDS(m,, s).

The bijection constructed in the previous section also has the property
stated in the next proposition.

Proposition 7.1. To each triple (s’,b,w) such that s’ > 0, b €

NDS(m, s’) and w € R(m) there corresponds, in a bijective manner, a se-

quence (5,6, ... b(")), where s = s'+des w and where b") € NDS(my, s),
., b") € NDS(m,., 5), having the property:

tot b + -+ + tot b = tot b+ maj w.

Let Am(t,q) denote the generating polynomial for R(m) by the bi-
statistic (des, maj):

(7.6) Am(t,q) = Y ti=wgmiv.
wE R(m)
Then L
r|1m S
At q) = s Aml(t, by (3.9
et YD DU VA PN by (3.9)

s'>0

=Dt > g Am(t,q) by (4.5)]
s’>0 beNDS(m,s’)
_ Z ts'—|—des wqtot b+maj w

s'>0,beNDS(m,s’),
w€E R(m)

_ Z 15 Z qtot b+maj w

$>0  s'>0,b€NDS(m,s’),
weR(m), s’ +des w=s

_ tot b1 ... 4tot ("
D LD D' :

520 p(MeNDS(m1,s),...,
b(") eNDS(m.,s)

[in view of Proposition 7.1]
so that

(7.7) Am(t,q) =3t {mlj 8} . {mT + 5} by (4.5)].

(& O = 5
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As at the end of the previous section, we can express (7.7) as an identity
between formal power series in r variables uq, us, ..., u,. However, those
series will be normalized by denominators of the form (¢; ¢),,+1. Again, let
u™ = uitug? .. u;””“ and let (u;q)sy1 = (U1;q)s+1 - (Ur; q)st1. Next,
multiply (7.7) by u™ and sum over all sequences m = (mq,...,m,) of r
nonnegative integers. Then,

ZA (t,q) ——— th {mljs}...[mrjs}
_Zts<z ml[mH-SD (Z“ |:m7"+8:|>7

s>0 mi

tq1—|—m

so that by using (3.9),

(7.8) ZA tq s :Z

s—l—l

Remark. Identities (7.7) and (7.8) appear to be “t-extensions” of
identities (6.12) and (6.13) derived in the previous section.

8. The Euler-Mahonian polynomials

In the previous section the polynomials Ay, (%, ¢) have been introduced
as generating polynomials for the class R(m) by the bi-statistic (des, maj).
In formula (7.7) they appear as numerators of rational fractions whose
series expansion in t has an explicit form. In fact, formula (7.7) is only
another way of looking at their (¢, ¢)-generating function, as obtained in
(7.8). However there are other ways of expressing the polynomials without
any reference to any combinatorial interpretation, as shown in this section.
First, we state a definition that will be made valid, once we prove that
the four items (1)—(4) are equivalent. For proving the equivalence of those
statements we use two methods: a finite difference q-calculus and a g-
iteration that are developed afterwards.

For each multi-index m = (mqy, ma, ..., m,_1,m;) let |m| := mj+mo+

-+ 4+ my,_1 +m, (a quantity that has been denoted by m in the previous
section) and m+1, := (mq, ma,...,m._1,m,+1). Also keep the notations
u, u™, (u;q)s41; also [0];:=0and [m],:=14+qg+ - +q¢™ 1 (m>1).

Definition 8.1. Let r be a fixed positive integer. A sequence

(Am(t, q) = ZtSAm,s(q)>

s>0
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of polynomials in two variables ¢t and ¢, indexed by a multi-index m =
(my,...,m,) of r nonnegative integers, is said to be Fuler-Mahonian, if
one of the following equivalent four conditions holds:

(1) For all m we have:

Am(t,q) = t° [mlj ‘1 {mT: S]

s>0

®1) (t; @) m1

(2) The (t,q)-generating function for those polynomials A (t,¢q) is
given by:

(8.2) 3 Am(t q) 7o =

(3) The recurrence relation holds:

(8.3) (1—¢™*H)Amy1,(t,q)
= (1—tq" "™ An(t q) — ¢ (1 — t) Aml(ta, ).

(4) The recurrence relation holds for the coefficients A s(q):

(8'4> [mr + 1](1 Am—|—1r,s(Q>
- [mr + 1 + S]q Am,s(Q) + qS—qu«[l + |m| — S mr]q Am,s—l(Q>'

For the equivalence (1) < (2) see the previous section. To verify
(3) < (4) notice that (8.3) is equivalent, for each s > 0, to

(1 =™ ) Ams1,,5(q)
= Am,s(0) =a" 1™ A s 1(0) =™ T A (@) g™ A 1 (g),
which, in turn, is equivalent to (8.4) by dividing by (1 — ¢). We next prove

(2) = (3) (resp. (3) = (2)) by means of the finite difference q-calculus
(resp. the g-iteration) given next.

8.1. A finite difference q-calculus. Let

(8.5) A(t,q;u) = A(t, g uq, ..oy uy) 1= ZAm(t7 9)#

m 14|m|

denote the left-hand side of (8.2) and form the g¢-finite difference applied
to the sole variable u,.:

Dur = A(t7Q7 ut, - - '7“7’) - A(t7q;u17 < '7ur—17u7’Q)'
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We get
’I’)’Ll ze
D= Y% 4 - Y At O
Uy — m
— ()14 m| — (5 @) 14 |m|
m.>1 m.>1
um—|—1r
N v
; et q)(t;Q)2+|m\
ul™ T (ueg) ™
- A +1'r(t7q) - — )
%: - (024 |m|
so that
(52) Duy = 30— ") A, (1) -
. Up — m+1,.\0, .
(t; Q)24 |m|

m

Now use the right-hand side of (8.2):

D=yt

$>0 (ula q)s—l—l o (Ur, q)s—l—l s>0 (ul) Q)s—l—l ce e (uTq; Q)s—l—l

Z |: 1-— Uy :|
B s—l—l 1— u?“q5+1

5>0

- ts [1 _ qs+1l—7ur]

= Ur (A(t7 q;uy, ... 7u7“> - qA(tQ7 q; Uy, ..., Up—1, u?"Q))
This yields:
(8.6) A(t,q;ury...,up) — Alt,q;us, ...y Up—1,Urq)
= Up (A(tv q;u1, - -, ur) - qA(t(L q;uty ..., Ur-1, UTQ))
Re-write every term on the right-hand side by means of the polynomials

Am(t,q). We get:
m-+1,

At,¢;u ZA tqtq)

t; Q)2+|m\ .

1+|ml|
um—l—lr

In the same manner,

ul™ ol ()™
urqA(t(Lq;ul? .- '7u7‘Q) = Am<tQ7q)
; (t¢; Q)14 |m|
um—l—lr
(8.5) => "1 - 1) Am(tq, @) ———.
2 (t; @) 2+ |m|

Taking (8.5)—(8.7) into account we deduce the recurrence relation (8.4).
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8.2. A g-iteration method. By using the notation (8.5) we see that the
recurrence relation (8.3) can be rewritten:

(8.8) A(t,qg;u) — A(t,q;ury ..., uiq. .., uy)
= Uy A(t7Qv LI) - quA(tQ7q7u17 N 21! PR 7u7“>'

Let A(t,q;u) := > t°Gs(u, q). We deduce:

s>0

S (1 - u)Gau,q) = 3P — uig G (s, ).

s>0 s>0

Now take the coeflicient of t* on each side. We obtain:

1 —u;g®tt

(89> GS(“?Q)_ GS(ulv"'vuiQw"7u7“77q>7

1——ui
fori =1,...,r. Then, let Fy(u,q) := Gs(u,q)(u;q)s+1 and use (8.9). For
1 =1,...,r we obtain the equation

(8.10) Fs(u,q) = Fs(uq, ..., uiq, ..., Up, q).

But we can write Fs(u,q) = > u™F, m(q), where F; n(q) is a (positive)
power series in ¢q. Fix the multi-index m and let m; be a nonzero
component of m. Relation (8.10) implies: Fsm(q) = ¢ Fs m(q). Hence,
Fsm(q) = 0 and Fs(u,q) = Fs0(q), a quantity that remains to be
evaluated. But, by definition of F(u, q), we have:

Foolg) = Fwg) | _ = Guo@aa | _ =G0,0=1
1
since ZtsGs(O,q) = A(t,q;0) = = Zts. Thus Gs(u,q) =
= o
1

I

(W;q)s41

Remark 8.2. 1f o is a permutation of the set {1,...,r}, denote by om
the sequence (Mg (1),...,Mq(r)). In particular, R(cm) is the class of all
the rearrangements of the word 1"« ... r™e@ . As the product of the
binomial coefficient on the right-hand side of (8.1) is symmetric in mq,

., m,, we conclude that for every permutation ¢ we have:

(8.11) Aom(t,q) = Am(t, q).
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Remark 8.3. The relations (8.3) and (8.4) provide the evaluations of
the first values of the polynomials A, (¢, ¢). Because of the previous remark
it suffices to make the calculations for the nonincreasing sequences m.

Table of the polynomials A,,(t,q) :

Ay =1 Aqn =1+t Ap =1 Agin=1+t2q+2¢°) +t°¢*);
Ay =1+t(q+ 7); Aiy =1;

A = 1+tB3q+5¢° +3¢°) +12(3¢° + 5¢" + 3¢°) + °¢";

A1) =1+1(2¢+ 3¢° +2¢°) + % (¢° + 24" + ¢°);

Ao2) = 14+t(g+2¢° +¢°) +1°¢"; Agny =1+tq+d*+¢°); Aw =1

9. The insertion technique

In section 7 we have shown that the Euler-Mahonian polynomial
Am(t,q) was the generating polynomial for the class R(m) by the bi-
statistic (des, maj). To derive the result we made use of the MacMahon
Verfahren and obtained identity (8.1). The natural question is whether
we can prove the same result by using one of the two recurrence relations
(8.3), (8.4). If we dealt with the symmetric group (i.e., with all the m;’s
equal to 1), we would try the traditional insertion technique: start with
a permutation of order r and study the modification brought to the
underlying statistic when the letter (r+ 1) is inserted into the (r+1) slots
of the permutation. The technique can be applied without any difficulty.
Identity (8.4)—with all the m;’s equal to 1— is then easily derived.

With words with repeated letters the derivation is not straightforward.
A transformation called word marking must be made on the initial word.
The word marking goes as follows. This time we consider the polynomial

(9.1) Am(t,q) =Y Am(Q)t°

s>0

as being the generating polynomial for R(m) by the bi-statistic (des, maj),
so that A s(¢) is the generating polynomial for the words w € R(m) such
that desw = s by the Major Index. Again use the notations [s], := 14+¢+
@++¢* 7 Im| == my+- - -+m, and m+1; := (mq,...,m;+1,...,m,)
for each j =1,2,...,r and each sequence m = (mqy,ms, ..., m;).

Proposition 9.1. Let 1 < j < r and let An(t,q) be the generating
polynomial for R(m) by the bi-statistic (des, maj). Then the following
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relations hold:

(9.2) (1- qmj+1)Am+1j (t,q)
= (1 —tq" ™) A (t, q) — ¢™ (1 — t) Aml(ta, q);
(9'3) [mj + 1]qu+1j,S(Q)
=[m; + 14 slg Am,s(q) + ¢°T™ 1+ |m| — s —m;lq Am s—1(q).

Proof. The latter identity is equivalent to the former one, so that
only (9.3) is to be proved. From Remark 8.3 this relation is equivalent to
the relation formed when j is replaced by any integer in {1,...,r}. It is
convenient to prove the relation for j = 1 which reads

(94) (I4+q+--+¢")Aci1,,5(q)
_ (1+q+-~-+qm1+5)z4m,s(q) + (qm1+s +"~+q|m‘)Am,s_1(q).

Consider the set R*(m+ 11, s) of 1-marked words, i.e., rearrangements
w* of 111 | r™r with s descents such that exactly one letter equal to 1
has been marked. Each word w € R(m+1;) that has s descents gives rise
to my + 1 marked words w(®, ..., w(™) . Define

maj* w® := majw + nq,

where n; is the number of letters equal to 1 to the right of the marked 1.
Then clearly

m1
Zmaj*w(i) =(1+qg+---+¢™)majw.
i=0

Hence

At+g+ 40 Ami sl = > ™
weER*(m+11,s)

Let m = |m| and let the word w = z125 ... x,, € R(m) have s descents.
Say that w has m + 1 slots z;x;11, i = 0,...,m (where xg = 0 and
Tm+1 = 00 by convention). Call the slot x;z;y1 green if either x;x;1 is a
descent, x; = 1, or : = 0. Call the other slots red. Then there are 1+s+mq
green slots and m — s —my red slots. Label the green slots 0,1,...,m; +s
from right to left, and label the red slots m; + s+ 1,..., m from left to
right.

For example, with » = 3, the word w = 2,2,1,3,2,1,2,3,3 has three
descents and ten slots. As m; = 2, there are eight green slots and two red
slots, labelled as follows

slot 0[2]2]|1|3|2]1]2]|3|3]|x
5

[2[1[312]1]2[3]3]
label 6 4 3 2107 8 9
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i w® des w® maj* w®
0 2 271 37271 1 2 3 3 3 11
1 2 271 372711 2 3 3 3 12
2 2 271 371 271 2 3 3 3 13
3 2 2711 37271 2 3 3 3 14
4 2 2711 37271 2 3 3 3 15
5} 1 2 271 37271 2 3 3 3 16
6 271 271 37271 2 3 3 4 17
7 2 271 37271 271 3 3 4 18
8 2 271 37271 2 371 3 4 19
9 2 271 37271 2 3 371 4 20

Table 9.1

Denote by w® the word obtained from w by inserting a marked 1 into
the i-th slot. Then it may be verified that

(i) _ des w, ifi <mq+s;
(9-5) desw { desw + 1, otherwise.
(9.6) maj* w® = majw + i.

Ezxample. Consider the above word w. In Table 9.1 the values of “des”
and “maj*” on w(?. Descents are indicated by —~ and the marked 1 is
written in boldface.

So each word w € R(m) with s descents and majw = n gives rise

to my + s + 1 marked words in R*(m + 1y,s) with maj* equal to

n,n+1,...,n+mi+s; and to m—s—mj marked words in R*(m+1;,s+1)
with maj* equal to n+mj+s+1,...,n+m. Hence a word w in R(m) with
s — 1 descents gives rise to m — s+ 1 —my marked words in R*(m+ 17, s)
with maj* equal to majw-+mi+s, ..., majw-+m. This now proves relation

(9.4). []

10. The two forms of the ¢g-Eulerian polynomials

When the multi-index m is of the form (1") = (1,1,...,1), the Euler-
Mahonian polynomial A, (¢, q) will be denoted by ™#A,.(¢, ¢) and referred
to as the g-maj-FEulerian polynomaial. 1t also follows from the previous two
sections that ™®A,.(t,q) is the generating polynomial for the symmetric
group &, by the bi-statistic (des, maj). As for the polynomial A,y (¢, q) for
an arbitrary m, the new polynomial ™®A,.(t,q) can be characterized in
four different ways, as shown in the next definition.

43



D. FOATA AND G.-N. HAN

Definition 10.1. A sequence (™#A,.(t,q)) of polynomials in two vari-
ables t and ¢, indexed by the integers r > 0, is said to be g-maj-FEulerian,
if one of the following equivalent four conditions holds:

(1) For every integer r > 0 we have:

1
10.1 o maig ( t° ([s+1
1o (t @)1 ; )

(2) The ordinary (resp. exponential) generating function for the ratios

maIAL (L, q).

is given by:
(t; @)rs1
10.2a u” P
( ) ;0 () e ;} 1—uls+ ]
u” maJA .
(10.20) ;OF o Zt exp(u[s + 1)

(3) The recurrence relation holds:

(10.3)  (1—q) ™A, (t,q) = (1—tq") ™A, _1(t, q) —q(1—1t) ™4, _1(tq, q).

(4) With ™84, (¢, q) := Y t5 ™A, ((q) the coefficients ™A, ;(q) satisfy

the recurrence: >0
(10'4> majAr,s(Q) = [8 + 1](1 majAr—l,s(Q) + qs [T - S]q majAr—l,s—l(Q>'

In the above definition (10.1), is the specialization of (8.1). However
(8.2a) and (8.2b) have no immediate counterparts, but the exponential

1 .
generating function for the ratios ————"%A4,(t,q) has an interesting

s qd)r+1
closed form, as written in (10.2). Fin;]llyf (10.3) and (10.4) are straight-
forward specializations of (8.3) and (8.4) when m = 1"~
When ¢ = 1 in (10.1), (10.2) and (10.4), we recognize some familiar
definitions for the so-called Fulerian polynomials. Let us introduce them
following the same pattern as above.

Definition 10.2. A sequence (A,(t)) of polynomials in one variable ¢,
indexed by the integers r > 0, is said to be Eulerian, if one of the following
equivalent five conditions holds:

(1) For every integer r > 0 we have:

1 S
(1—t7“+1 =D t(s+1

s>0

(10.5)
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Ar
(2) The exponential generating function for the ratios T is
given by:

(10.6) Z Z—T % = Zts exp(u(s+1)) = : —ete“'

(3) The following recurrence relation holds:
(10.7) An(t) =1+ (r—1Dt) Aea () +t(1 — 1) Al (1),
where A/ _,(t) denotes the derivative of the polynomial A, _1(t).

(4) With A,.(t) :== > t* A, 5 the coeflicients A, s satisfy the recurrence:
s>0

(108) AT:S = (8 —|— 1) Ar—l,s —|— (7’ — 8) AT—1,5—1~
(5) The exponential generating function for the polynomials reads:
u” 1-1

2 7l Ar(t) = —t +exp(u(t —1))

r>0

(10.9)

Notice that (10.1), (10.2) and (10.4) that define the ¢g-maj Eulerian
polynomials are reduced to their counterparts (10.5), (10.6) and (10.8)
that define the Eulerian polynomials, when ¢ is given the value 1. On
the other hand, we go from recurrence (10.8) to the g-recurrence (10.4)
by replacing the integers (s + 1) and (r — s) occurring in the relation
by their g-counterparts [s + 1], = 1 + ¢+ --- + ¢° and ¢°[r — 5], =
q 5 +q" 5t 4. 4 ¢" 1, respectively. We then say that the g-maj Eulerian
polynomial A, (t,q) is a g-analog of the Eulerian polynomial A,.(t).

Also notice that there is no specialization of (10.3) for ¢ = 1. To obtain
a recurrence for the polynomials A, (¢) themselves, as shown in (10.7),
we start from (10.8) and make the appropriate identifications. Finally,
observe that (10.9) is simply derived from (10.6) with the substitution
u < u/(1—t). The Eulerian polynomial A,(¢) is the generating polynomial
for G,- by the number of descents “des.”

Another g-extension of the Eulerian polynomials can be achieved by
using the defining relation (10.9) or the exponential generating function
for the polynomials t A,,(¢), that can be directly derived from (10.9) and

reads
1—t

T 1—texp((1-tu)

u’l’L
Y —t An(t)

n>1
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In the above fraction make the substitution exp(u) < e4(u) and express
the fraction so derived as a g-series

un

(45 @)n

(10.10)

>

n>0

™A, (L, q) =

1-—1

1—te,((1—t)u)’

where the ™A, (¢, q)’s are coefficients to be determined. Identity (10.10)

can be rewritten as

n

n

. u U —1
>t = (1= D=0 )
= (4 Dn = (¢ @)n

so that the identity

A u’l’L u’l’L
S (1Y ) =1
= (4 Dn = (¢ @)n

provides the recurrence: ™A(t,q) = 1 and

1011) ™A hg = Y [Z}%(t,qw(l—w"—l—k (n>1),

0<k<n—1

so that the coefficients ™A, (¢, q) are polynomials in the two variables t
and ¢ with integral coefficients. Let ¢ tend to 1 in (10.11) and let
t By (t) :="™A,/(t,q) ‘q _ 1 (n>1). This yields

t B, (1) > (Z)tBk(mu—t)“—l—k (n>1),

0<k<n—1

which, in turn, is equivalent to

u" 1-1¢
1 tB,(t)— = .
+7§1 (>n' 1—texp(u(l—1))
Hence
1+Y B 0L = Lt
~ "l —t 4+ exp(u(t — 1))

which is the right-hand side of (10.9). Hence B,,(t) = A,(t) and t A, () is
the generating polynomial for &,, by the statistic 14 des. Now what can
be said about the polynomial ™A,,(t, q)?
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Theorem 10.1. For n > 1 the polynomial "VA,,(t, q) in the expansion

1—-1 inv u
(10.12) 1 —te,(1—tu) nz;; Anlts ) (4 9)n

is the generating polynomial for &,, by the bi-statistic (1 4 des, inv), i.e.,

(1013) in%n(t,q) _ Z tl—i—desaqinva.
oe6,

To prove Theorem 10.1 we will show that the induction formula (10.11)
holds for the polynomial defined by (10.13). For k = 0,1,...,(n — 1) let

Up = [Z} VA (t, q) t; then, by iteration on k =0,1,2, ..., (n — 1), define

(10.14) G_1:=0; Gk i =ur + (1 —t)Gg_1.
We see that for proving the theorem it suffices to show that:
(10.15) A (t,q) = Gt

But (10.15) follows immediately from the following lemma.

Lemma 10.2. For each k = 0,1,...,(n — 1) the polynomial Gy, defined
by the recurrence (10.14) is the generating polynomial, by the bi-statistic
(1+des, inv), for the set of the permutations of order n, whose longest in-
creasing right factor is of length at least equal to (n—k), i.e., permutations
o=o0(l)...0(n) such that o(k+1) < o(k+2) <--- < a(n).

Proof. By Proposition 4.3 we have

n .
M = Y gman),

(A,B)

where the sum is over all ordered partitions (A, B) of [n] into two blocks
such that |A| = k and | B| = n—k. Recall that 7(A) and «(B) designate the
increasing words whose letters are the elements of A and of B, respectively.
With & 4 denoting the group of the permutations of A we have

inv _ inv(v(A)y(B))+inv 7 1+des T
M Antig)= Y Y ™0 t
(A,B) ’TGG]C

_ Z Z qinv('y(A)'y(B))—l—inv’rtl—l—deST7
(A,B) TEG 4
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since A is of cardinality k. As the (n — k) terms of «(B) are in increasing
order, the mapping (v(A)y(B),7) + o defined by o := 7y(B) is a
bijection onto the set of the permutations o, whose longest increasing
right factor is of length at least equal to (n — k). Moreover invo =
invy(A)y(B)+inv T and deso = des7+ x(o(k) > o(k+1)). Let G,,  be
the set of the permutations whose longest increasing right factor is exactly
of length (n — k) and Fj be the generating polynomial for &,, ; by the
bi-statistic (1 + des, inv). Then

1 iny _ invoyl+deso—x(o(k)>o(k+1))
M Ax(t, q) = > g™t X

€S, 0U UG, &

_ § : qlnvat1+desa+t—1 § : qlnvat1+desa
€6, 0U--- UG, k_1 o€,k

=Fy+- -+ F,_ +t 'F,.
Hence, by letting G := Fy+- - -+ F} and by multiplying the identity by ¢,

up =tGr—1+ (G — Gr—1) = G + (t — 1)Gg—1
and then
Gr = ug + (1 — t)Gk_l,

which is precisely the induction relation (10.14). []

The polynomials ™¥A4,,(¢,q) and ™A, (t,q) form two g-analogs of the
Eulerian polynomial A, (t). The polynomials t™®A,,(t,q) and ™A, (t,q)
already differ for n = 4. Notice that Theorem 10.1 implies that ™A, (, q)
is a polynomial with nonnegative integral coefficients.

Table of the polynomials ™%A,,(t,q) and ™A, (¢, q).
MaIA (t,q) = 1; ™Ay (t, q) = 1+ tq; ™MA3(t, q) = 1+ 2tq(q + 1) + t°¢°;
majA,(t,q) = 1+ tq(3¢® + 5q + 3) + t2¢3(3¢* + 5q + 3) + 3¢C.
At q) =t A (t,q) =t + 2q; MA3(t ) =t + 2t%q(g + 1) + 007
A (t,q) =t +17(¢* +3¢° +4¢° +3¢) +13(3¢° +4¢* +3¢° + ¢°) +°¢°.

11. Major Index and Inversion Number

mo,

Again, let R(m) be the set of all rearrangements of 17122 . r
In theorems 6.1 and 6.3 it was proved that the generating polynomial
for R(m) by the Inversion Number “inv”, on the one hand, and by the
Major Index “maj”, on the other hand, was equal to the g-multinomial
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coefficient [ml m’: " ], where m = mq +mso + - - - +m,.. If we write those
two generating polynomials under the form

qu\{weR(m):invw:k}\ and qu\{wER(m):majw:kH,
k>0 k>0
we see that for every k > 0 we have:

(11.1) Hwe R(m) :invw = k}| = {w € R(m) : majw = k}|.

Hence, for every k > 0 there exists a bijection of the set {w € R(m) :
invw = k} onto the set {w € R(m) : majw = k}; this is equivalent
to saying that there exists a bijection ® de R(m) onto R(m) with the
property that

(11.2) majw = inv ®(w),

for every w € R(m). This brings up the problem of constructing such a
bijection, that is to say, of inventing an explicit algorithm that transforms
a word w € R(m) into a word w’ € R(m) such that majw = invw’ in a
one-to-one manner.

Of course, when all the m;’s are equal to 1 and the rearrangement
class R(m) is simply the symmetric group &,., the construction of such a
bijection can be made by means of the maj- and inv-codings introduced in
section 2. For arbitrary rearrangement classes we have to follow another
route, but the route will be richer, as further properties will be given for
free, in particular when we restrict ourselves to the symmetric group.

11.1. How to construct a bijection. The proofs of Theorems 6.1 and
6.3 were so different in nature that there was no hint for imagining any
immediate construction. However, if we make up a table of the first values
of the Major Index and Inversion Number for small classes R(m), we
observe a further property. Let L(w) (“L” for “last”) be the last letter of
the word w. Then, for every k > 0 and x € X = {1,2,...,r} we have:

(11.3) [{w € R(m) : invw = k, L(w) = z}|
= [{w € R(m) : majw = k, L(w) = z}|.

In Fig. 11.1 the values of those two statistics have been calculated for
the words of the set R(2,1,1), the rearrangements of the word 1,1, 2, 3. In
the first, second, third table the words ending by 1, 2, 3 are respectively
listed. We can observe that the distribution of “maj” and “inv” in each
table is the same.
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w maj | inv w maj | inv w maj | inv
1,2,3,1| 3 2 1,1,3,2] 3 1 1,1,2,3| O 0
1,3,2,1| 5 3 1,3,1,2] 2 2 1,2,1,3] 2 1
2,1,3,1| 4 3 3,1,1,2| 1 3 2,1,1,3| 1 2
2,3,1,1| 2 4
3,1,2,1| 4 4
3,2,1,1| 3 5

Fig. 11.1

For each letter z belonging to a linearly ordered alphabet X and each
word w let bot, (w) (resp. top, (w), resp. |w|,) denote the number of letters
in w which are less than or equal to (resp. greater than, resp. equal to) =.
In particular,

(11.4) bot, (w) 4 top, (w) = |w| (length of w).

Further, let R(m)z be the set of words wz, where w € R(m). If v’ is a
rearrangement of w, the following properties hold:

(11.5)  invwz = invw + top, (w);
majw, if L(w) <z ;

11.6 j =
(116)  majuwe { majw + bot,(w) + top, (w), if L(w) > .

Suppose that property (11.3) holds for every class R(m). Then there
exists a bijection w — w’ of R(m) onto itself such that majw = inv w’
and L(w) = L(w'). In the same manner, the letter x being given, there
also exists a bijection w — w” such that majwz = invw” .

If L(w) < z, we then have:

L(w') = L(w);

invw’ = majw

= majwz [by (11.6)]
=invw”x
= invw” + top, (w') [by (11.5)].
If L(w) > x, we also have:
L(w') = L(w);
invw = majw
= majwz — bot,(w) — top, (w) [by (11.6)]
= invw”x — bot, (w) — top, (w)
= invw” — bot,(w’) [by (11.5)].
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Consequently, if property (11.3) holds, there exists a bijection -y, of
R(m) onto itself, namely w’ — w”, having the property

invw’ — top, (w'), if L(w') <z ;

11.7 inv 5, (w') =
( ) v 7, (w') { invw’ + botg (w'), if L(w’) > z.

Conversely, if there exists a bijection 7, : w’' — w” that sastisfies (11.7),
we can define a bijection ® of each class of rearrangements of words onto
itself by letting

(11.8) O(w) == w,

if w is of length 1, and for each nonempty word w and each letter x by
letting

(11.9) O(wz) = v, (P(w))x.

Thus by induction we determine the image ®(w) of w, then apply the
bijection v, to ®(w), finally the letter x is juxtaposed at the end of the
word.

Theorem 11.1. The following two statements are equivalent:

(a) Property (11.3) holds for every class.

(b) For every letter x there exists a bijection v, : w’ — w" such that
property (11.7) holds; moreover, the bijection ® defined by (11.8) and
(11.9) has the properties:

(11.10) majw = inv ®(w) and L(w)= L(®(w)).

Proof. The implication (b) = (a) is straightforward. To prove the
converse it suffices to verify (11.10). First, L(w) = L(®(w)) by the
definition of ® given in (11.9). Then, for each nonempty word w and
each letter z such that L(w) < x we have:

inv ®(wz) = inv v, (®(w))z

= inv 7, (®(w)) + top, (w) by (11.5)]
— (inv &(w) — top, ((w))) + top, (w) [by (11.7)]
=majw

= maj wx.

If L(w) > x, we have:

inv ®(wzx) = inv v, (P (w)) + top, (w)
= (inv ®(w) + bot, (w)) + top,,(w)
= majw + |w|

= majwz. []
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Thus, the construction of a bijection ® boils down to the constructions of
bijections 7y, having property (11.7).

11.2. The binary case. Let a,b be two elements of the alphabet such
that a < b and consider a (binary) word w’ of the class R(mg,,my) with
Mg, mp > 1. We have

0, if z < a;
bot,(w') = ¢ W', ifa <z < b
lw'|, ifb<um
lw'|, ifx <a;
top, (w') = ¢ |w'|p, ifa <z <b;
0, if b <.

Condition (11.7) can be rewritten as

invw’, if z < a;
invw' — W'y, if L(w') =a <z <b;
invw + W', ifa<z<Lw)=b;
invw’, if b=L(w') <.

(11.11) inv v, (w') =

We can take the identity map for v, when x < a or b = L(w') < z. Let vy
belong to R(mg,my) with y the last letter equal to a or b. The most
straightforward transformation we can think of for ~, in the remaining
two cases is

(11.12) Yz (vy) == yv,

which is obviously bijective and satisfies (11.11). The next theorem is then
a consequence of Theorem 11.1.

Theorem 11.2. Let {a,b} be a two-letter alphabet (a < b) and for each
x = a, b let v, be defined, for every binary word v in the letters a,b, by

(11.13) Ya(va) =av and ,(vb) = vb.

Then, the transformation ®, as defined in (11.8) and (11.9), is a bijection
of every rearrangement class onto itself having the property:

majw = inv ®(w) and L(w)= L(P(w)).

Ezample. Starting with w = 0,0,1,0,1,1,0,so that majw = 3+6 = 9,
we successively have:
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v D(v)
0 0
0,0 Y0(0) =0 0,0
0,0, 1 71(0,0) = 0,0 0,0,1
0,0,1,0 70(0,0,1) = 1,0,0 1,0,0,0
0,0,1,0,1 v1(1,0,0,0) = 1,0,0,0 1,0,0,0,1
0,0,1,0,1,1 71(1,0,0,0,1) = 1,0,0,0,1 1,0,0,0,1,1
0,0,1,0,1,1,0|~0(1,0,0,0,1,1,) =1,1,0,0,0,1|1,1,0,0,0,1,0

Thus ®(w) =1,1,0,0,0,1,0 and inv ®(w) = 9 = majw.

11.3. From the binary to the general case. The next step is to start
with the natural bijection 7,, introduced in (11.13) and see how it can be
extended to arbitrary words while keeping property (11.7).

For each n > 1 let F,, := {0,1,2,...,n} and let E denote the set of
all finite words whose letters belong to F,,. For z,x; € E,, define

0, ifx; <ux;
(11.14) B (i) == {17 i 2, >

and for each word w = z129...2,, € E}; let

U = ﬁm(xl)ﬁm(xZ) .- ﬁr(xm)

If i3 <ig < -+ < iy (resp. j1 < j2 < -+ < Jp) is the sequence of the
subscripts ¢ such that z; < x (resp. subscripts j such that z; > z), let wy,
wy be the subwords: wg = zj, x4, ... x;, and wy = xj,j, ... x;. Also let

(11.15) B, (w) := (u, wp, wy).

Proposition 11.3. For each = € E,, the mapping B, defined in (11.15)
is a bijection of E onto the set of triples (u,wq,w1) such that |w| = |u],
|ulo = |wo| and |u|y = |w1| having the further property that

(11.16) invw = invu + inv wy + inv w; .

Proof. Relation (11.16) simply indicates a sorting of the inversions
within the word w. The bijective property is obvious. []

Now, let w be a word in E and let x be a letter. Form the chain

—1

(1117> w & (U,U]O,wl) = (’)/x(u>,w0,'lU1) — wla

where B, ! designates the inverse of B, and define 7, (w) := w'.
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When w is a binary word, 7. e. n = 1, the above chain gives back the
value of 7, (w) defined in the previous subsection. Assume n > 2 and
let w = z122...2,, be an arbitrary word. If all its letters are greater
than (resp. less than or equal to) z, then B, (w) = (1™,e,w) (resp.
B, (w) = (0™, w,e)), so that v, (w) = w. Condition (11.7) holds.

If L(w) < z and there is at least one letter of w greater than x, then
L(u) = 0 and inv 7y, (w) = inv y,u+inv wo+inv wy = inv u—|ul; +inv we+
invw; = invu — top, (w) + invwg + invw; = invw — top, (w).

If L(w) > z and there is at least one letter of w less than or equal to z,
then L(u) =1 and inv v, (w) = inv y,u + inv wg + invw; = invu + |ulp +
invwy + invw; = invu + bot, (w) + invwy + invw; = invw + bot, (w).
Thus, condition (11.7) always holds.

Accordingly, our program is fulfilled: by means of the bijections defined
in (11.13) for binary words, then, the bijections B, defined in (11.15) and
finally the chain (11.17), we hold a family of bijections =y, that, when
incorporated in the definition of ® given in (11.9), provide a bijection
having properties (11.10).

The three steps (11.13), (11.15), (11.17) can be combined and described
more quickly by making use of the z-factorisation defined as follows: let x
be a letter and w a word. If the last letter L(w) of w is less than or equal
to (resp. greater than) z, the word w admits the unique factorization:

(U1y1702y27 ce e 7vpyp)7

called its z-factorisation having the following properties:

(i) each y; (1 <i < p)is a letter verifying y; < x (resp. y; > ) ;

(ii) each v; (1 < i < p) is a factor which is either empty or has all its
letters greater than (resp. smaller than or equal to) x.
We then let:

(11.18) Yz (W) = Y1v1Y202 . . . YpUp.

We see again that 7, is a bijection of each class R(m) onto itself, since it
maps each z-factorisation (v1y1,vays2, ..., vpYp), obtained by cutting the
word after every letter less than or equal to (resp. greater than) = onto
the factorisation (yv1, y2v2, . .., ypv,p) obtained by cutting the word before
every letter less than or equal to (resp. greater than) x.

The transformation ® itself, as defined in (11.9), can also be described
in the following algorithmic manner:
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Algorithm for ®. Let w = x122...2Tp;

1. Puti:=1, w} := x1;

2. If i = m, let ®(w) := w, and stop; else continue;

3. If the last letter of w} is less than or equal to (resp. greater than)
xiy1, cut w, after every letter less than or equal to (resp. greater than)
Lit1 ;5

4. In each compartment of w; determined by the previous cuttings,
move the last letter in the compartment to the beginning of it; let v’ be
the word obtained after all those moves; put w;,, := v'x;41; replace i by
1+ 1 and go to 2.

For example, the image of w =4,3,5,1,1,3,4,2,3 under ® is obtained
as follows:

w) =4

why =413
wy =413[5]
wy =4351 |

wh=1[43|51]
wh=1]3]4]1]|53]
wh=13]4]13|5|4]
wh=3|1]43|1]542]
O(w) =wh =3,1,3,4,1,2,5,4, 3.

The descents in the word w = 4, 3,5,1, 1, 3,4, 2,3 are in position 1, 3 and 7,
so that majw = 11. But ®(w) = 3,1,3,4,1,2,5,4,3 has inv ®(w) = 11
inversions. Finally, w and ®(w) end with the same letter, namely 3.

11.4. Further properties of the transformation. As we now see, the
transformation ® just defined preserves other statistics, first, the set-
valued statistic inverse ligne of route and also the subword-valued statis-
tics right-to-left minimum letter subword and right-to-left maximum letter
subword we now define.

If a multiplicity m reads m = (my,...,m;,0,...,0,m;,...,m,) with
1<i<j<randm;,m; > 1, we say that j is the succcessor of i in m
and we write j = succi. Of course, if all the components of m are positive,
the successor of each i (1 <i <7 —1)is (i 4+ 1). Let w be a word in the
class R(m).

Definition. The inverse ligne of route of w is defined to be the set,
denoted by Iligne w, of all the letters ¢ such that the rightmost occurrence
of succ(i) lies to the left of the rightmost occurrence of i. In an equivalent
manner, the letter 7 is said to belong to the inverse ligne of route of w,
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if w can be written vsucc(i) v’ iv”, where the factor " contains no letter
equal to succ(i).

For example, consider the rearrangement w = 436113423 of the
nondecreasing word 12233426. The inverse ligne of route of w is Ilignew =
{3,4}. Notice that 4 € Ilignew, since succ(4) = 6 is located on the left of
the rightmost occurrence of 4. Also 1 ¢ Iligne w, since there is a letter 2
on the right of the rightmost occurrence of 1.

Remark. The expression “line of route” is classical; we have added
the letter “g” making up “ligne of route,” thus bringing a slight touch
of French. The ligne of route of a word w = x125...x,, is defined to be
the set, denoted by Lignew, of all the ¢’s such that 1 < i < m — 1 and
Ti > Tig1-

Definition. Let w = z1xo...2,, be a word of length m; denote by
1 <41 <ig <--- <1, the sequence of all the ¢’s such that ¢, = m and
x; < xy for all k > 1. The right-to-left minimum place subword and the
right-to-left minimum letter subword of w are respectively defined by:

Rmip(w) :=iqig . .. i4;

Rmﬂ(w) =Ty Ly - - T, -

a

In the same manner, let 1 < j; < jo < --- < jp be the sequence of the
integers j’s such that j, = m and x; > x;, for all & > j. The right-to-left
mazimum place subword and right-to-left maximum letter subword of w
are defined by

Rmap(w) := j1jo2 - .. Jb;

Rmals(w) := xj, 2, . .. xj,.
For example,

12345678910

Rmap(w) = 3 7 10
Rmip(w) = 45 8910

w= 4351134233
Rmil(w) = 11 233
Rmals(w) = 5 4 3

Notice that the words Rmip(w) and Rmap(w) are always strictly
increasing, as they are subwords of the increasing word 12 ... m; also
observe the discrepancy between Rmals(w), which is strictly decreasing
and Rmil(w), which is increasing in the large sense. This explains the
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presence of the “s” in our notation for “Rmals.” Finally, let y := z;,, then
Rmilw = y™vv, where v has no letter equal to y.

Four other analogous definitions “Lmip,” “Lmap,” “Lmil” and “Lmals”
can be introduced by considering the subwords from left to right, instead
of right to left. We will do it later on for permutations only.

Remark. For a permutation w the numerical statistics # Lmilw and
# Lmals w have been considered long ago by probabilists under the names
of lower records and upper records.

Theorem 11.3. Let ® be the transformation constructed in subsec-
tion 11.3. Then, the following properties hold for every word w:

(a) majw = inv ®(w);

(b) ®(w) is a rearrangement of w and the restriction of ® to each
rearrangement class R(m) is a bijection of R(m) onto itself;

(c) lignew = Iligne ®(w);

(d) Rmilw = Rmil ®(w);

(e) Rmalsw = Rmals ®(w).

The next corollary is an immediate consequence of Theorem 1.2.

Corollary 11.4. Let A be a finite set of integers, u, v be two words and
R(m) be a rearrangement class. Then, the statistics “maj” and “inv” are
equidistributed on the subclass

{w € R(m) : (Iligne, Rmil, Rmals) w = (4, u,v)}.

In Fig. 11.2 the values of these statistics have been calculated for the
words belonging to the class R(2,1,1), the rearrangements of the word
1,1, 2,3. There are five tables corresponding to five subclasses character-
ized by a value (A,u,v) of the triple (Iligne, Rmil, Rmals). Notice that
within each subclass the statistics “inv” and “maj” are equidistributed.

When @ is restricted to &,,, the group of permutations of 1,2,... n,
i.e., the rearrangement class R(1™), several properties can also be derived.
For each permutation w let

imajw := sz(z € lligne w).
It is immediate to verify '
imajw = majw !,
where w™! denotes the inverse permutation of w. We then deduce the
following corollary that is proved in section 5.
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w maj | inv | Iligne | Rmil | Rmals w maj | inv | Iligne | Rmil | Rmals
1,2,3,1| 3 2 1 1,1 3,1 1,1,3,2| 3 1 2 1,1,2| 3,2
2,1,3,1| 4 | 3| 1 | 1,1] 31 1,3,1,2] 2 [ 2] 2 |1,1,2| 3,2
2,3,1,1| 2 4 1 1,1 3,1 3,1,1,2| 1 3 2 1,1,2| 3,2

w maj | inv | Iligne | Rmil | Rmals w maj | inv | lligne| Rmil |Rmals

1,3,2,1] 5 | 3| 1,2 | 1,1 3,21 |1,1,2,3] 0o |0 | 0 |1,1,2,3| 3

3,1,2,1| 4 | 4| 1,2 | 1,1 |3,2,1

w maj | inv | lligne| Rmil |Rmals
3,2,1,1| 3 51 1,2 | 1,1 |3,2,1

L,2,1,3 2 | 1] 1 1,1,3 3

2,1,1,3| 1 | 2| 1 1,1,3 3

Fig. 11.2
Corollary 11.4. The two statistics “inv” and “imaj” are equally dis-
tributed on each set of permutations having a given ligne of route A, a
given left-to-right maximum place subword C' and a given right-to-left
maximum place subword D. In other words, let

S:={weGq,: Lignew =A, Lmapw = C, Rmapw = D};

then Z qinvw _ Z qimajw.

weS weS

The preceding corollary is an extension of the classical result (see, e.g.
[Lo02, Theorem 11.4.4]), where no restriction is made neither on “Lmap,”
nor on “Rmap”, but only on “Ligne.”

Proof of Theorem 11.3. Properties (a) and (b) have been proved with
Theorem 11.1. For the remaining ones we proceed as follows:

Proof of Property (c).

Consider the mapping wz +— @®(wz) defined by (11.9), where wz
belongs to the rearrangement class R(m). Let z a letter of wz having
a successor z' := succ(z) in m. Suppose L(w) < z (resp. L(w) > x).
There are four cases to be considered:

(i) z < 2/ < x; let P be the property “the rightmost occurrence of 2’
is to the left of the rightmost occurrence of z.” Then, all the following
properties are equivalent: (1) P holds for wx; (2) P holds for w; (3) P
holds for ®(w) [by induction]; (4) P holds for yiys...yp; (resp. (4) P
holds for vyvy ... vp;) (5) P holds for y1v1y2vs . .. ypvp = Y2 (P(w)); (6) P
holds for ®(wz) = v, (P(w))x.

(ii) x < z < 2’; same proof, only property (4) is to reverse: (4) P holds
for vivy ... vp; (resp. (4) P holds for y1ya ... yp;)
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(iii) z = 2z < then z € Ilignewz and z € Iligne ®(wx), since

L(®(w)) = L(w)

/

Z';
= .
(iv) z < 2/ = z; then z ¢ llignewz and z ¢ Tligne ®(wz). []

Proof of Property (d).

Assume that (d) holds for a nonempty word w and let x be a letter.
If all the letters of wz are equal, the result is banal. Otherwise, let
Rmil(w) := x;, x4, .. . x;,, so that, by induction Rmil ®(w) = z;, x;, . .. x;,
Notice that L(w) = L(®(w)) = z,, = x;, and the smallest letter of w is
equal to z;;.

If all the letters of w are less than x, then Rmil(wz) = 2 = Rmil ®(wx).
If it is not the case, but still if L(w) < z, then

Tiy Tiy - - - i, = Rmil(wx)
= Rmil(®(w)x) [by induction]
= Rmil(y1y2 . .. ypx) [by definition of the z-factorization]
= Rmil(y;v1y202 . . . ypvpx)
= Rmil ®(wz). [by definition of ®]

If L(w) > x, there is a unique integer k such that 1 < k < a — 1 and
Ty <<y, <x <z, << x4,. Then

Tiy ... Ty x = Rmil(wz)
= Rmil(®(w)x) [by induction]
= Rmil(vyvy .. .vpx) [by definition of the x-factorization]
= Rmil(y1v1y2v2 . . . ypup)
= Rmil ®(wz). [] [by definition of ®]

Proof of Property (e).

Again, the result is banal if all the letters of wx are identical. Otherwise,
let Rmals(w) = zj,xj,...2;,, so that Rmals ®(w) = zjzj,...x;. If
all the letters of w are less than or equal to x, then Rmalswx = = =
Rmals ®(wz). If it is not the case, but still L(w) < z, there is a unique
integer k such that 1 <k <b—-landz; >--->xj >x>x5,, > >
z;,- Then

zj, ...2;.« = Rmals(wz)
= Rmals(®(w)x) [by induction]
= Rmals(vvs ... vpx) [by definition of the z-factorization]
= Rmals(y1v1y202 . . . ypvpx)
= Rmals ®(wzx). [by definition of ]
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If L(w) > z, then

xj, ...x;,« = Rmals(wz)
= Rmals(®(w)x) [by induction]
= Rmals(v1vz ... v,x) [by definition of the z-factorization]
= Rmals(y1v1y202 . . . yppT)
= Rmals ®(wz). [] [by definition of @]

This achieves the proof of Theorem 11.3.

11.5. Application to permutations. Consider the classes R(m) of words
without repeated letters (all the m;’s are equal to 1), i.e., the permutations.
The inverse ligne of route of a permutation w = x1z5 ...z, (of the word
12...7) is then the set of all the integers j such that 1 < j <r — 1 and
(7 + 1) is to the left of j within the word z125 . .. x,.

The ligne of route of a permutation w is the set, Lignew, of the
integers j such that x; > x;,1, so that

desw = |Lignew| and majw = Zj (j € Lignew).
J
It is readily seen that

(11.19) Ilignew = Lignew ™",
where w™! designates the inverse of the permutation w. Also let

idesw := | Ilignew| and imajw := Zj (j € Nlignew).
J

The statistic “imaj” is called the Inverse Major Index of w. Also let i(w)
denote the inverse w1 of the permutation w. As invi(w) = invw, it
follows from the property (c) that the chain

wéwl?—?wgéwggwyLer)
has the properties:
Ligne w = Iligne wy; = lligne wy = Ligne ws;
des w = idesw; = ides wy = desws;
majw = imajw; = imajws = majws = invwy = inv ws;

Invw = invw; = majwsy = lmajws = imajwy = maj ws.
This result has several consequences that are now stated.
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Corollary 11.5.  The six pairs (maj,inv), (imaj,inv), (imaj, maj),
(maj,imaj), (inv,imaj), (inv, maj) are equally distributed on each sym-
metric group G, i.e., with w running over &,, we have:

maj w 1nv w maj w mv w imaj w maJ w
(11.20) E a1 a3 E a4 a3 E 0 ds
majw imajw invw lmaJ w invw maJ w
= E aq q; E a1 E a1

Corollary 11.6. With w running over &,, we have:

(1121) 111\714 thesw invw __ theswqimajw.

Proof. Consider the bijection w +— ws. []

Corollary 11.7. The two statistics “inv” and “imaj” have the same
distribution on each set of permutations having a given ligne of route. In
other words, for every subset A C [n — 1] the following identity holds:

Zqinvw _ Zqimajw (w € &, Lignew = A)
w w

Proof. Again consider the bijection w +— ws. []

We make a further use of the transformations, i, ¢, r of the dihedral
group. Recall that c is the complement to (n+ 1) and r the reverse image
that map the permutation w, written as a linear word w = z1 ... x,, onto

rw:.: ==y, ...2T22T7.

As inviw = invw and also Rmapiw = Rmalsw, Lmapiw = Rmilw
(easy to verify), it follows from Theorem 11.3 that the chain

w Wi > Wo BN w3

has the properties:

Ligne w = Iligne w; = Iligne wy = Ligne ws;

Lmap w = Rmil w; = Rmil wes = Lmap ws;

Rmap w = Rmalsw; = Rmalsws = Rmap ws;
imajw = majw; = invwy = inv ws.

Hence, for each triple (A, B,C) the bijection w — w3 maps each set
of permutations w such that (Ligne, Lmap, Rmap)w = (A4, B,C) onto

itself with the property that imajw = invws. This proves the following
corollary.
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Corollary 11.8. The two statistics “inv” and “imaj” are equally dis-
tributed on each set of permutations having a given ligne of route A, a
given left-to-right maximum place subword C' and a given right-to-left
maximum place subword D. In other words, let

S:={we€ G, : Lignew = A, Rmapw = C, Lmapw = D};

then Z qinvw _ Z qimajw‘

wesS weS

There are other consequences we can deduce from Theorem 11.3 by
taking the composition product of ® with other operations of the dihedral
group. First, we can verify that invrcw = invw and Lignercw =
n — Lignew := {n — i : i € Lignew}, so that

majrcw = Z(n —i)x(x; > Tiy1),
i

a statistic that will be denoted by comajw. Let Lmilw (resp. Lmalsw)
denote the left-to-right minimum (resp. maximum) letter subword of the
permutation w. Again, it is easy to verify that

Lmilrcw =n+1— Rmalsw, Lmalsrcw =n+1— Rmilw.

Consider the sequence:

Then
llignew = n — lligne w; = n — Iligne wy = Iligne ws;
Lmilw =n+1— Rmalsw; =n + 1 — Rmalswy; = Lmil ws;
Lmalsw =n+1— Rmilw; =n + 1 — Rmilwy = Lmals ws;

comajw = majw; = INVwy = 1INV ws.

This implies the following corollary.

Corollary 11.9. The two statistics “inv” and “imaj” are equally dis-
tributed on each set of permutations having a given inverse ligne of
route A, a given left-to-right minimum letter subword C and a given left-
to-right maximum letter subword D. In other words, let

S:={we G, : llignew = A, Lmilw = C, Lmalsw = D}.

Z qinvw _ Z qcomajw;

weS weS

then
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that can also be expressed as:

Z qinvw _ Z qcomajw,

we S’ weS’
where S’ := {w € &,, : Lignew™! = A, Lmipw™! = C, Lmapw~! = D}.

12. Major Index and Inverse Major Index

For each n > 0 let A,,(q1,g2) be the generating polynomial for &,, by
the pair (maj,imaj) :

(121) Q1,Q2 Z qmaJJ 12maja
ceS,

Corollary 11.3 shows that there are five other ways of expressing such a
polynomial. By analogy with the one-basis g-ascending factorials, intro-
duce the following notations:

1, if r or s is zero;

(W q1,q2)rs i= (1—ugiql ifr.s>1
quQ ) ) )

0<i<r—10<<s—-1

(12.2) (45 q1, g2)s000 = limy s(u; g1, g2)rs = [ [ JJ(1 - uaidd).
1>0352>0

The purpose of this section is to prove the following theorem.

Theorem 12.1. The bibasic generating function for the polynomials
Au(q1,g2) is given by:

u" 1
(123) A C]1 QQ = .
nz>0 Q1QQ1)n(Q2;Q2)n (U; q17q2)oo,oo

The term “bibasic” refers to the normalization (q1;q1)n (¢2; ¢2)n of the
denominator as a product of two g-ascending factorials. A priori, there was
no evidence that such a normalization was to be introduced. In fact, the
infinite product on the right-hand side preexisted in the literature, ready
to be unearthed for combinatorial purposes. It could also be regarded as
a specialization of the celebrated Cauchy infinite product

1
Il ==

121,521
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with the substitutions z; < qi_l, Yj q? ~! for which several expansions
are known, in particular in terms of Schur functions. That method will be
exploited more in detail in subsequent chapters.

In the proof of Theorem 12.1 the starting point is the infinite product
1/(u; g1, G2) 00,00 that is first expanded as an infinite series and shown to be
the generating function for pairs of finite sequences, called biwords. This is
the “manipulatorics” part of the proof. The next step, the “combinatorics”
part, consists of mapping each such a biword onto a triple (o,b,¢),
where o is a permutation and where (b',¢’) is another biword that is
precisely counted by the product 1/(q1;q1)n (¢2; g2)n- The construction of
that mapping may be regarded as another application of the MacMahon
Verfahren. Accordingly, let us decompose the proof into those two parts.

12.1. The biword expansion. On the right-hand side of (12.3) each
fraction 1/(1 — uq! ¢3) expands into a geometric series Eaijm(uqi q)%,
whose first nonconstant term is the monomial ug! qg. Hence, the coefhi-
cient of the monomial u®q] ¢) in the expansion of the infinite product
1/(u;q1,G2)00,00 18 equal to the coefficient of the same monomial in the
finite product [ 1/(1 — ug! ¢5). We can then write 1/(u;q1,42) 00,00

1<a,j<f
as the series

1 ] . o Xias; 2] agq
(12.4) > T (ugt @)™ = uPag" ™ gy,
A i A

where A runs over the set of all matrices of the form A = (a;;)
(¢ > 0,7 > 0), whose entries a;; are integers which are all zero except
finitely many of them. Beside the null matrix we can then express each
such matrix as a bounded matrix having at least one nonzero entry on its
rightmost column and its lowest row.

For example,

w N~ O

SO = O O
_ o O o
N OO~ N
OO WO Ww
N O O N =~

is such a matrix.
Now with each matrix A we associate a two-row matrix or biword

b = b = bu..bn , with integral entries such that
C Cl1 ...Cp
(125) Zaij:n,Ziaij:b1+~-~+bn, Zjaij:cl+~-~+cn;
%] ,J %]
(12.6) (b1,e1) < (b2 c2) < -+ < (b, cn)
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with respect to the lexicographic order. We then say that the biword b is
nondecreasing.
The sum in (12.4) is then replaced by:

_ Z thotb totc

n>0

12.7 —_—
( ) (’LL Q17QQ 00,00

where b runs over all nondecreasing biwords (whose biletters are pairs
of nonnegative integers) of length n. To fulfill the relations (12.5) start
with matrix A, read its rows from left to right and top to bottom and, for

each positive entry a;; write down a;; biletters *) one after another. The

number of biletters written in this way is then equal to ) _, j @ij- Moreover,
on the top (resp. bottom) row of b each number i (resp. j) is repeated a;j
times. Consequently, the last two conditions of (12.5) hold.

Finally, as the biletters <b7’) were written starting with the first row

7

from left to right, then the second row, ... those biletters are in increasing
lexicographic order when the biword b is read from left to right, so that
the relations (12.6) hold. Conversely, when starting with a nondecreasing
biword, we can reconstruct the matrix A in a unique manner.

For example, to the matrix A above there corresponds the nondecreas-

ing biword
b— by (000111133333
“\e) \244033312244)
a biword of length n = 12 and such that tot b = 19, tot ¢ = 32.

12.2. Another application of the MacMahon Verfahren. For conve-
nience define the Comajor Index of a permutation o € &,, by

(12.8) comajo = Z (n—i)x(o(i) > o(i+1)).

1<i<n—1

We now construct a bijection b — (o, ', ¢’) that maps each nondecreasing
biword b = (ZC)) of length n onto a triple (o,¥,¢’), where ¢ € &,, and

b, ¢ € NDS(n), that is, o is a permutation of order n and b, ¢’ are both
nondecreasing words of length n whose letters are nonnegative integers.
Moreover, the bijection has the properties:

(12.9) tot b = comajo + totb’, totc = comajo !+ totc.
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To do so start with a nondecreasing biword b = (ZC)) Since the biletters
7f are written in nondecreasing order with respect to the lexicographic
ordler, the following property holds:

(12.10) c;i > ciy1 = by < bjyq.

For each i =1,2,...,n let

(1211) o)) ={j:1<j<n,¢;<c}H+|{j:1<j <14, ¢ =¢}

In other words, o(7) is equal to the number of letters in ¢ which are less
than ¢;, plus the number of letters equal to ¢;, but lie to the left of ¢;,
with ¢; included. This defines a permutation o of order n.

By construction ¢; > ¢;11 if and only if (i) > o(i+1). For 1 <i<n
let y; be the number of integers j such that 1 < j < i —1 and o(j) >
o(j + 1), which is also the number of integers j such that 1 < j <i—1
and ¢; > ¢j41. The word y = y; ...y, is nondecreasing. Moreover,

(12.12) comajo=toty=y1+---+yn

and (12.10) implies

(12.13)  y; <yiy1 < 0o(i)>o(i+1) ¢ > cip1 = by < bita.
As y; = 0, the relations (12.13) imply that

(12.14) yi <b (1<i<n).
We then define a nondecreasing word b’ = b} ...b! by
(12.15) by i=b;—y; (1<i<n).

Finally, because of (12.12) the first of the relations (12.9) holds.

b
Again use the previous example. Under the nondecreasing word )
we have written the values of o, of y and of b’ = b — y. ¢

b= 00011113333 3
c= 24403331224 4
o= 3910167824511 12
y= 00011112222 2
Y=00000001111 1

: b ~
c
range its biletters ( '] in increasing ordér. We obtain a biword b whose
i
top row is the nondecreasing rearrangement of the word c.

b
We can also start with the biword (C) (and not b = < )) and rear-
c

With the running example we get:

b 012223334444
- \130331110033)/"
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Let us go back to the general case. By definition of ¢ given in (12.11),

b.
there are exactly o (i) biletters < j) such that 1 < j < n and ¢; < ¢
Cj
or such that 1 < j < ¢ and ¢; = ¢;. As in the biword b we have sorted
the biletter (zj ) in increasing order, the biletter <Z7’) will be found in
j i

b in the o(i)-th position. Hence b = Comi(1) - g"fl(”) . Let 7 be the
o=1(1) - Ug=1(n)
permutation defined as in (12.11) when the counting is applied to the

nondecreasing biword b, i.e.,

7)) = {71 <J < n, bo-1(g) < o1}
+ |{j 1< J < i, bafl(j) = bafl(i)}|‘
We also have:
To(i)={j:1<j<n b <b}|+{j:1<5<0(4), bo—1() = bi}

But by definition of o, if by, = b;, we have o(k) < o(l) < k < l. Therefore,
if by—1(jy = by, we have j < o(i) < o~ '(j) < i. Since b is nondecreasing,
we obtain:

To(i)={j:1<j<n by <bi}|+{j:1<07'(j) <i, by-1¢) = bi}|
={j:1<7<d,b; <b}[+|{j:1<7<4, b = b}
=

Therefore, 7 = o~ 1.

Under the same procedure, to the nondecreasing biword b there corre-
sponds a pair (7,¢’), in a one-to-one manner, where 7 = o~ and where ¢/
is a nondecreasing word. Moreover, the second relation of (12.9) holds.

Keeping the same example we determine o~ !, y and ¢/, where this time

the word y serves to calculate comajo!:

= 01222333444 4
b= 13033111003 3
c7l= 4819105672311 12
y= 00111222333 3
d= 00111111111 1

Now by using the bijection b — (o,b’, ) just obtained we can derive:

n totb totc __ n comajo+tot b’ comajo~l4totc’
E u E 9 492 = E u E aq ds ,
b

n>0 n>0 ceS,
’,c’ENDS(n)

and then by (6.1):
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tot b tot c comajo comajo !
IO WILTEE W _ 5 g

n>0 n>0 (q15q1)n (QQ’QQ " e,

There remains to show that the polynomial A, (q1,¢2), defined in (12.1),

comaj o COInaJO’ -1
E q ds

is also equal to . This can be proved by means of

ceG,
the bijection rc that maps the permutation o onto the permutation rc o

defined by
rco(i):=n+1—ocn+1—-14) (1<i<n).

It is easily seen that
comajrco = majo.

This completes the proof of Theorem 12.1.

13. A four-variable distribution

In section 7 we have introduced the FEuler-Mahonian polynomial
Am(t,q) as a t-extension of the polynomial A,,(q) by noticing that the
combinatorial correspondence used in the calculation of the generating
function for the Ap,(¢)’s had a further property. We will do the same for
the bijection constructed in the previous section and derive what could be
called a t1, t2-extension of formula (12.3).

Consider the inverse bijection (o,d’,¢’) + b described in 12.2. The
nondecreasing word y defined just before (12.12), such that toty =
comaj o, has the further property

(13.1) yn = deso.

Now consider the finite product

=1 1 =0

(w1, Q2)r+1 st1 0Zi<ro<j<s L Wth

It can be expanded into the series
 Siag; Siags
> T (ugi gd)ss = w9 g7 ",
A iy A

but this time the matrices A are (r+1) X (s+1)-matrices. The nondecreas-

ing biword b = (i) = <b1 b”) that corresponds to such a matrix

Cl1 ...Cp
has the further property:

maxb; = b, <r and maxc; <s.
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Properties (12.15) and (13.1) imply: b/, = b, — y, < r — deso, with an
analogous property for the c;’s, that is ¢}, < s — deso 1.
Start with a quintuple (o,r’, s, ', ¢’), where

(13.2) ce6,, r,s>0 b eNDS(n,r), ¢ eNDS(n,s).
Under the inverse bijection (o,b’,¢) — b the quintuple is mapped onto a

c
b € NDS(n,r) and ¢ (the nondecreasing rearrangement of ¢) in NDS(n, s).
We can then write

Z tl t2 _ Z tr t2 Z u™ Z qiot bqtot c

u;
r,szo( 01,42)r 41,541 7,5>0 n>0  beNDS(n,r),
cENDS(n,s)

n r’4+des o s’—l—de5071 comaj o+totd’ Comaja_1+tot c
= E E u E (2] ly a, qs )

r,820n>0 (o,r',s',b,c’)

triple (7, s,b) such that r = r' +deso, s = s’ +deso™ 1, b = <b> with

where the relations (13.2) hold and also r = 7/ + deso, s = s’ + deso L.
Let

-1
(133) An<t1,t2,Q1,QQ) — Z tiles atgesa q;omaJ Uqgomaja )
ce6,

It follows that

Z (i it ZU An(t1,t2,q1,G2) Z 7 git? Z t5 g5t

u
rs>0 V0 q1, QQ)r+1,s—|—1 n>0 >0 s'>0
b’ eNDS(n,r’) c’eNDS(n,s")

1
13.4 =Y u"Ay(t,te, v, ’
(13.4) Z (1, t2, @1 q2)(t1;Q1)n+1 (t25 42)n+1

by (3.9) and (4.5).

Formula (13.4) provides an expression for the generating function for
the polynomials A,,(t1,t2, g1, g2). Observe the nature of the denominators.
They are products of a ¢-ascending factorial by g¢o-ascending factorial.
There remains to verify that

(13.5) An(ti,te, q1,q2) = Z tesogileso gnal o gimal e,
occG,

where, by analogy with “imaj”, the symbol “ides” means
(13.6) ides o := deso L.
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Again this is proved by means of the bijection rc that maps each permu-
tation o onto the permutation rc o defined by

rco(i):=n+1—ocn+1—-1i) (1<i<n).
Clearly, we have
comajrco =majo, desrco =deso.

We have then proved the following result.

Theorem 13.1. The bibasic generating function for the polynomials
Ay (ty,ta,q1,q2), as defined in (13.5), is given by

U’I’L

13.7 A, (t1,ta, qq,
( ) HZN) (1 2,41 q2)(t1;q1)n+1 (tQ;QZ)n-H

-y b
rs>0 (U; q1, QZ)T—l—l,s—l—l

Specializations. The right-hand side of (13.7) is symmetric in the
pairs (t1,41), (t2,q2), so that the polynomial A, (t1,q1,t2,¢2) is also
symmetric in (t1,¢1), (t2, g2). This can also be seen by using the bijection
o — o~ ! of G, on itself. In particular, both specializations A, (¢,1,q,1)
and A, (1,t,1,q) are equal. Moreover,

(13.8) An(t,1,q,1) = A, (1,¢,1,q) = ™¥A(t, q),

where M¥A(t, q) is the g-maj-Eulerian polynomial defined in section 10.
On the other hand, it follows from Corollary 11.4 that

(13.9) tAL(t,1,1,q9) =t A, (1,t,1,q) = ™A(t, q),

where ™A(t, q) is the g-inv-Eulerian polynomial, also defined in section 10.

Tables of the polynomials A, (t1, q1,t2,q2) for n = 3,4,5 are shown in
Fig. 13.1. Keeping in mind (13.8), the following notations have been used:
majA(t,q) = >, Ank(q) and A, g := A, k(1) (the Eulerian coefficient).

Notice the numerous symmetries within the tables.
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ides — |0 1 |2 n=3
imaj = |0]12|3|A3,(q) | A3k
des| maj
1 1
0 0 1 1 1
1 1 11 2
2 11 2 4
2 3 1 1 1
ides— |0] 1 2 |3 n=4
imaj —]0]123|345|6|A4(q) | Ak
des| maj
1 1
0 0 1 1 1
1 111 3
1 2 121 1 5 11
3 111 3
3 111 3
2 4 1 121 5 11
5 111 3
3 6 1 1 1
ides — |0 1 2 3 4 n=>5
imaj »[0[{1234(34567|6789|10| A5 x(q)| A5k
des| maj
1 \

0 0 1 1 1
1 1 1111 4 26
2 1221 111 9
3 1221 111 9
4 1111 4
2 3 11211 6 66
4 11 (13431 11 16
5 11 (24642 11 22
6 11 13431 11 16
7 11211 6
3 6 1111 4 26
7 111 1221 9
8 111 1221 9
9 1111 4
4 10 1 1 1
Fig. 13.1

14. Symmetric Functions

The Cauchy identity for Schur functions will be an essential tool for
deriving several combinatorial formulas for symmetric group statistics. It
matters to have a brief account for the algebra of symmetric function
and a complete description of the combinatorial properties of the Schur
functions. This is the content of the next three sections.
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14.1. Partitions of integers. Those structures remain the privileged
objects in the theory of symmetric functions. As already discussed in
section 4, by partition of an integer n > 1 it is meant a nondecreasing
sequence A = (A1, Ag,...) of nonnegative integers, where finitely many of
them are nonzero. The nonzero elements of A are the parts of the partition.
The number of parts is denoted by I(\) and the weight, denoted by |A|, of
the partition A is defined by

NEPYRDEE

When |A| = n, we say that A is a partition of the integer n. The symbol
P, will designate the set of partitions of n.

The multiplicative notation of the partition \ is reads as A = 1™2™2 |
where for each 7 = 1,2, ... the exponent m; is equal to the number of parts
of A equal to i. The integer m; = m;(\) is called the multiplicity of 7 in A.

For example, A\ = (5,4,4,2,1,1) is a partition of n = 17, whose
multiplicative notation reads 1221394251,

The shape of a partition A = (A1, Aa, ..., A) (A > 1) is the set of all the
|A| points (1,1), (1,2), ... , (1, A1), (2,1), (2,2), ..., (2,A2), ... , (r, 1),
(r,2), ..., (r,\) located in the north-eastern quadrant N? of Z2. Each
shape if also represented by a set of squared boxes left justified, where
every point of the previous sequence is the center of a box. For example,
the partition A = (5,4,4,2,1,1) is represented by the shape drawn in
Fig. 14.1

Fig. 14.1

This geometric representation is also called Ferrers diagram and de-
noted by the same symbol .

The conjugate partition of A = (A1, Ag,...,A;) is the partition
Noo= 1M7A22%2=As | (written in multiciplicative notation) or X =
(A1, A9, .., Ay, ), where \] := [{j : A\; > i}| (i = 1,..., \1). In particular,
A} = I(N\). The Ferrers diagram of )\ is obtained by taking the symmetry
of the Ferrers diagram of A\ with respect of the line y = = of the plane.
With the previous example we have ' = 112932415%! = (6,4, 3,3, 1).
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14.2. The algebra of symmetric functions. Let Z[xq,...,x,] be the
ring of polynomials in n variables with integral coefficients. A polynomial
in that ring is said to be symmetric, if it is invariant by permutation
of its variables. Let A, be the subring of Z[zq,...,x,] of all symmetric
polynomials. For every k& > 0 let A® be the set of all homogeneous
symmetric polynomials of degree k, the zero polynomial included. Then,

A, =EPAs.

k>0

For each a = (a1,...,ay) € N” let 2 be the monomial z® := z{* ... 2o

and for each partition A of length I[(A) < n let my(z1,...,2,) == > x®
denote the sum of all (distinct) monomials %, where « is a permutation

of A = (A\1,...,An). The polynomial m) is called monomial symmetric
polynomial. We also use the notation in‘lxg‘r" ... in place of my.

For example, with n = 4 variables,
mey =) T1 = T1 + T + T3 + Ty;
M(11) = ), T1T = T1Tp + T123 + T124 + ToZ3 + ToTy + T32y;
ma 1y = 2 Tirs = Biws + 2wy + vivs + 23z + 23ws + vdrs + 2371 +
x%xg -+ x%m + xixl + xi’]?g + xixg.

The monomial symmetric polynomials my(z1,...,x,) form a Z-basis
for A,, when X is restricted to the set of all partitions of length I[(\) < n.
On the other hand, the polynomials my(z1,...,z,) (I(A) < n; |A| = k)
form a Z-basis for A¥. When n > k, that is to say, when the number of
variables is large, the set of all the polynomials my such that |A\| = k form
a Z-basis for A¥. Hence, dim A® = p(k), the number of partitions of k.

In the theory of symmetric functions we assume that the number of
variables is finite, but large; some authors prefer to deal with infinitely
many of them, but the statements of certain properties are less intuitive.
To make the notion of largeness more precise, we deal, not with polyno-
mials, but with sequences of polynomials f = (f,) (n > 0), where each
term f,, belongs to A¥ and where for each pair m > n the polynomials f,,
and f,, satisfy the compatibility property:

fm(Z1, o 20, 0,...,0) = fr(z1, ..., 2p).

Let A* be the set of the sequences f = (f,), where each term f, is
a symmetric polynomial of degree k. We can show that for n > k the
mapping pf of A¥ into A¥ that sends f = (f,,) onto f,, is an isomorphism.
Consequently, A* is of dimension p(k). The set of the sequences m) =
(ma(z1,...,7,)) (n > 0) such that |\ = k is a Z-basis for A*. We then

let
A= @Ak.

A>0
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The elements of A are formal series with integral coefficients in the
functions my. The ring A is called the ring of the symmetric functions.
For every n > 0 the mapping of A into A, that sends the formal
series ), axmy onto the symmetric function ), axmy(z1,...,2,) is a
surjective homomorphism for n > 0 and maps the formal series ), axmax
such that |[A\| < n onto the corresponding series, in an injective manner.

14.3. The classical bases. For each r > 1 the polynomial

€Cr = Myr = E 1T ...Tp = E Lij  Lig « - T,

1<y <dp <o <y

is called the r-th elementary symmetric function. By convention, eqg = 1.
The generating function for the e,’s is obviously:

(14.1) Ew) =Y eu =[]0 +zw).

>0 i>1
For each partition A = (A1, Ag, ...) we define:

EX = €EX\1€xg - -

Notice that if A is written A = 17122 ... (multiplicative notation), then
m1 Mo

For each r > 0 define the homogeneous symmetric function of de-
gree r by
hei=> my (A =7).
A

In particular, hg =1, hy = ey , ha = m2) + m 1), ha = mz) + ma1) +
m(17171). Now

H(l —zu) "t = H Z (z5u)ki

i>1 i>1k; >0

_ r k1 k

>0  1<i1 < <im (ki,..okm)
Eki:T’

— r k1 km
DD DD DR DI

>0 A= (k1yekim) 15060 <o i,

[where (k1,...,ky,) is a rearrangement of (A1,..., Ay,)]
S Y =Y,
r>0 [X|="r r>0
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Thus, the generating function for the h,’s is

(14.2) H(u) =Y hou" =[] -2m)~"

>0 i>1
For every partition A = (A1, Ag,...) define
hktzihAIhAz.“

The power sums p, are defined by
Pri= My = Zm:,
i

furthermore, let
PXx = DPxiPxg -

Y

The generating function for the p,’s, defined by P(u) := > o p,u"™" !
can also be expressed as

szr r— 1_Zl_xu_z_lg

i>1r>1 i>1

1—xu

d d H'(u)
du 10g1:[ 1—zu ~du (u) = H(u)

The proof of the following theorem can be found in Macdonald [Ma95].

Theorem 14.1. The functions ey (resp. hy) form a Z-basis for A. The
functions p) form a QQ-basis for A.

Theorem 14.2. We have the relations:

() [0+ ) =" e = Bw);

i>1 r>0
(ii) H(l — )t = Z h.u" = H(u);
i>1 r>0
(i) H(u) E(—u) = 1;
(iv) > (-D)erhyr=0  (n>1)
0<r<n
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(vi) gés)) = P(—u);

(Vll) nhn = Z prhn—ry

(viii) H 1 —1x‘y = Z Z mx(x)ha(y) ;
j "I >0 |A|=n

(ix) H 1 _1$ " = exp an(x)u 1

Proof. Relations (i), (ii) have already been proved; (iii) is a straight-
forward consequence of (i) and (ii). Identity (iv) is derived by consider-
ing the coefficient of t" on the two sides of (iii). Identity (v) has been
proved and (vi) follows from (iii) and (v). When (v) is written in the form
H'(u) = H(u)P(u), we obtain (vii).

For the proof of (viii) write

HHl_xy =1 =in(y by (i)

i r>0

= Y b)) > aptaln
n>0(ry,...,rpn) 1<ip <<y

= D ham@) =) > h(x)m
n>0[y|=n n>0|\|=n

For (ix) write:

lognl—xu_zlogl—xu_zz_

—Z Zﬂf Z—an
Finally,
logﬂﬂl_w —Z;—pn )= pel@paly) - [

Let us give further relations between h,,, e, and py. If A = 1™12™2 .
is a partition, define

zZy = 1"m 1 22 mp! L
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Notice that if C'y designates the set of the permutations of order n whose

cycle structure is given by 1™2™2 .. .n™n_ in other words, if C'y is the set

of all the permutations having m; cycles of length 1, ms cycles of length 2,
, then z) = n!l/|Cy|.

Theorem 14.3. We have:

1 1
S Lol B = 3~ L
- Z)\pAu ) (U) ( ) —DP\u

z
\ A

1 1
b= 3 i =) ()P =y,

IA=n IAl=n

Proof. It suffices to prove the first identity. But P(u)=(d/du)log H(u)
implies

H(u):epopru?T:HeXp<r ) HZ (pru”)™" L m

r>1 r>1 r>1m,.>0

o Xrm,. E
= u U —
Z H Tme ‘ p>\

15. Schur Functions

Let e(o) designate the signature of the permutation o. A polynomial

P(z) = P(z1,...,2zy,) in n variables is said to be alternant or antisym-
metric, if for every permutation o of (1,2,...,n) the following relation
holds:

P(xo1,%52,. .., Ton) = (0) P(x1,T2,...,%pn).

Let A, (resp. A¥) be the space of all the alternants in n variables (resp. in
n variables and homogeneous of degree k, the zero polynomial included).
Then every alternant P(z) that belongs to AX can be written

P(x) = Z c(a) det(xiaj)(lgi,jgn)’

Q1>0> >0
‘a‘:a1+...+an:k

since, if P(x) contains the term x{*...x%" with coefficient ¢(«), it also
contains the term x77 ...2%7 with the coefficient e(a)c(c). On the other
hand, the «;’s are all dlstlnct, for if it were not the case, every determinant
det(z;”7) would be zero. Also notice that c(a) is the coefficient of z* in
P(z).
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Asay >ay >+ > ap, we can write o, =\, +n—1i (i=1,2,...), s0
that Ay > Ao > - >N, and k= |a| =1 + Ao+ -+ n(n—1)/2. Thus,

Aj+n—j
P(x) = Z c(\) det (xij j)(1§7g,j§n)‘
|z|=k=n(n—1)/2

Consequently, there exists no alternant in n variables of degree (strictly)
less than n(n — 1)/2. _
The determinant a5 = det(z; ) (1 < 4,5 <n), where § = (n —1,n —

2,...,1,0) is the Vandermonde determinant, equal to H,Kj (z; — ;). The
determinant a, = det(z;”?) can be written aq = axys = det (wjjJrn_])-

But if two a; are equal, the determinant is zero. Therefore, it is divisible
by (z; —z;) (i # j) and then by the product as = [];_;(z; — x;), that is,
by as.

Definition. The quotient sy(x1,...,Zy,) = axts/as is called the Schur
function in the variables x1, ... , x, associated with the partition A.

The Schur function ayis is symmetric and homogeneous of degree k.
This follows from the fact that it is the ratio of two alternants. On the other

hand, the alternants ayys (|A| = &, [(\) < n) form a basis for Altn(n=1)/2

The mapping A +— asQ is an isomorphism of A* onto Alf—n(n_l)m, the
kernel being zero, since asQQ = 0 = = 0. The following theorem has

then be proved.

Theorem 15.1. The Schur functions sy(x1,...,2z,) (|A] =k, (
form a Z-basis for A¥ and the Schur functions sy(z1,...,2,) (I
form a Z-basis for A,,.

IAINA

There is a compatibility relation that holds for the Schur functions, as
shown in the next proposition.

Proposition 15.2. Let [(\) = [ and p, q be two integers such that
Il <p < q. Then,

sx(z1,...,2p) = sx(T1,- -, Tp, Tpt1,-- -, Tq) B m gz =0
phl ==Ly =

Proof. 1t suffices to verify the proposition for ¢ = p + 1. First,
ax+5(x1,...,Tpr1) is equal to

A1+p Ap+1 Ap+1 A1+p Ap+1
Ty 1 Ty Ty 1 1
A1+p Ap+1 Apt1 A1+p Ap+1 ’
x,! . D Tp x,! D 1
A1+p Ap+1 Ap+1 A1+p Ap+1 1
p+1 p+1 p+1 p+1 p+1
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since A\py1 = 0. Hence, axis5(z1, ..., zp,0) is equal to
>\1+p >‘p+1
x T 1 Aq+p— A
1 1 1+p—1 P
xl . xl
..................... _ .
A+p )\p—|—1 1 Pl e
Tyt P 1 php—1 L
0 0 1 P
=T1...Tparts(T1,. .., Tp)
Thus,
1. . Tpaxys(T1,. .., Tp)
sx(z1,...,2p,0) = =sx(x1,.. o, 2p). [
x1...xpas(T1,. .., xp)

We can then define the Schur functions as infinite sequences s\ =
(sa(z1,...,2,)) (n > 0). Thus the sy’s form a Z-basis for A and the
sx’s (|]\| = k) for a Z-basis for A*.

The Schur functions can also be expressed as plain determinants in the
hi’s and also the ex’s, as shown in the next proposition. Remember that
)\ designates the conjugate of the partition .

Proposition 15.3. We have

Sy = det(hAi_iH)(lgi’an) (n>1\N);

sy = det (e>‘2_i+j)(1§i,j§m) (m > l()\/)) :
where, by convention, the coefficients are zero when the subscripts of the
hi’s or the ey ’s are strictly negative.

Proof. We only give the proof of the first identity. Start with the
formula (iii) of Theorem 14.2, that is, H(u)E(—u) = 1 and let egk) be

the elementary symmetric function of =y, ... , xx_1, Tx+1, ... , Tpn, with

E®) () being the generating function Z:};& elyr. Obviously,

n—1
D o hpu? Yy el (—u)” = (1 —apu)
p>0 r=0

Now consider a sequence (by,...,b,) of nonnegative integers and deter-
mine the coefficient of u» on the two sides of the previous equation. We
get

n—1
> ho = (=1)7e) = apr,
r=0

where with r + 7 =n
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n ik N
(15.1) D B (F1)" e =
r=1

Let £ be the n X n-matrix whose k-th row is given by

(15.2) (=) tet

n—1--

k) (k
B (_1>6g )7 68 ))
and let H be the matrix whose m-th column H. ,, reads

(15.3) H o = (Mo, —nt1, Mo —nt2,s - ).

)

The left-hand side of identity (15.1) can be rewritten as a matrix product,
so that
HE = (zim).

Now take the determinant of each side: det H.det £ = det (xzm). When
b =195, weget 1 xdeté = det(xZ_J) = ag, so that det(hbj_n+7;)a5 =
det (xf’) With b; := A\; +n — ¢, this can be rewritten as

det (h)\j+n—j—n+i)a5 = det (x?j—m_j),
ie.,

det(hAj_jH) = det(hAi_iﬂ-) = det(x?j+n_j)/det(w?_j) =5y ]

Let v, 6 be two Ferrers diagrams such that v D . The set difference
v\ 0, usually denoted by v/6, is called a skew diagram. When n > [(v),
we can define the skew Schur function s, 9(x) = s,/6(21,...,7,) by the
determinantal expression

(15.4) syse(x) = det(hy, g, —ivj) (1 <4,5,<n).
As above, it can be shown that also
(15.5) sy/9(1) = det(eyz_gg_H_j) (1<4,j,<n).

when n > [(v'). The skew Schur Function s, /4(z) is a symmetric function
that reduces to s, (z) when 6 is the zero partition.

16. The Cauchy identity

We have already found an expression for the expansion of the product
[1(1 — z;y;) !, namely

(16.1) [T = ziy) ™ =D ma()haly).
i) A
Two other expressions can be obtained:

80



15. SCHUR FUNCTIONS

(16.2) H(l —xy;)" ZZA pa()pa(y) ;
(16.3) H( —zy;)" ZS)\

In those expansions A runs over all partitions of integers. First, (16.2)
follows from

H(l _xzy] -1 _expzpn 7

%] n>1
since the right-hand side can be written

"i Pp, kn;
1 e n,M.ZZH% s (0)

n>1kp >0 (n:) (kn,) i ”‘ k!
1
= Z —pa(@)paA ().
N A

This proves (16.2). The third identity follows from the Binet-Cauchy
identity that reads:

n

det((l — wiyi)_l)ugi,jgn) = as(z)as(y) H (1-— xiyj)_l.

ij=1

The proof of the Binet-Cauchy identity can be made as follows. Multiply
the i-th row of the determinant det((1—x;y;)~*) by the product [],_, (1—
x;yg) and do it for each i = 1,...,n. The entry in (7, j) becomes

n—1

[T =) = 27 (-0)"eP @) [ () = exyrs-- s n)]

k#£j r=0

As product of matrices this can be read as

o n—j n—i )
(H(l _xiyk)>(ij) = (@) o) (GO e% W)
ko ’
and as product of determinants as

det(H(l — xzyk)> ( = H(l — T3Y5) det((l — miyj)_1)>

k#j bJ
= det () 7) det((=1)" e} (y))
= a(;(x)ag(y),
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remembering that as(z) = det (x,?_j) and det((—1)""" 7(1])2( )) =det& =
as(y), using the notations of the previous section.

Now to derive (16.3) we expand each term (1 —z;y;) " in the determi-
nant:

det ((1 — ;) —det<<Zx ))

m>0
a, o1 o
Ty Yp Ty YR
= det( E : e g : )
o (e} aq (0% (6% «
! xnlyl " xnnynn

:Zdet(x?jy?j) [a=(a1,...,a,) € N"]

x{t "
_ aq . (6% .
= E det(y1 : e Y : )
o :L,Ql :Lzan

- S ) = Sl
As an(x) = 0 if the «;’s are not all distinct, this yields:

det((l —xiyj)_l) = Z Z yaﬁao—ﬂ(w)

B1>>Brn>00€6,

=Y > yPe(0)as(x)

B oc€S,

— Zaﬂ(x)aﬁ(y) = ZCL)\_HS(«T)@)\—M(?J):
8 A

where [(\) < n. Hence,

n

H (1- xiyj)_l = ZSA($1, ce s ) SA(Y1y -y Yn)-

ij=1 A

The identity also holds for infinitely many variables (z;,y;), for the
coefficient of ;! x::y;l .. y;: (i1 <+ <ip; J1 < -+ < jp) in the
product [[; ;5 (1 — ziy;)~"
mial in the finite product [[,; ;«n(1 — z;y;) "1, where in, j, < N. The
identity holding in the finite case, the previous coefficient is equal to the
coefficient of the same monomial in sy (z1,...,2x)sA(y1,-..,Yn), and also
in sx(z1,...,xa)sa(y1,- .., yn) for every M > N because of the compat-
ibility property of the sy’s: sx(x1,...,2p,0,...,0) = sa(x1,...,2,). []

is equal to the coefficient of the same mono-
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Identity (16.3) is referred to as the Cauchy identity and is used in many
combinatorial contexts, especially under the form

(16.4) doum Y sa@say) =]] %

n>0 A |=n %]

17. The combinatorial definition of the Schur functions

The theory of symmetric functions would not have such an impact in
Combinatorics, if there was no interpretation of the Schur functions in
terms of sums of tableau evaluations. The tableaux in questions are called
semi-standard and can be introduced as follows.

First, recall that the Ferrers diagram associated with a partition A =
(A1, A2, ..., An) is the set of ordered pairs (i,7) of the Euclidean plane
with the property that 1 < i < A;, 1 < j < r. Each Ferrers diagram
is usually identified with its corresponding partition. For instance, the

following Ferrers diagram
X X

X X X
X X X
X X X X X

corresponds to the partition A = (5,3, 3, 2).

Let A be a Ferrers diagram with n points and let ¢1¢5...7, be a
nonincreasing word of length n whose letters are integers. Suppose that
those n letters are written on the n points of A in such a way that every
column (resp. every row) is (strictly increasing) from bottom to top (resp.
nondecreasing from left to right). The configuration 7 thereby obtained is
called a semi-standard tableau, of content {iy,is,...,i,} and of shape A.
If 4145...7, is the word 1,2,...,n the semi-standard tableau is called
standard of order n.

For instance 67

’ 448

"7 335
12245

is a semi-standard tableau of shape (5, 3, 3, 2) and of content 122324352678,
Let x = {x1,x2,...} be a set of variables (finite or infinite) and 7 be a
semi-standard tableau of shape A and of content {i; < iy < --- <4q,}. If
the cardinality of x is greater than or equal to i,, the x-evaluation of 7 is
defined to be the monomial z(7) := z;, z;, - - - z;, , i.e., the product

H Lr(i,5)s

where (i, 7) runs over all points (i, j) of the Ferrers diagram .
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For each alphabet © = {x1,x2,...,z,} with n > 7 the semi-standard

tableau of the running example has the x-evaluation xlx%xgmimgx(;x?xg.

Theorem 17.1. The Schur function sy (z) associated with the partition A
in the alphabet x is equal to

(17.1) sa(z) =Y x(r),

where the summation is over all semi-standard tableaux T of shape .

Thus Theorem 17.1 provides a combinatorial definition of the Schur
functions. Notice that with that definition it is not at all obvious that each
Schur function is symmetric in the z;’s. This follows from the algebraic
definition given in section 15, although there are several ways of proving
the symmetry property using (17.1) only. To obtain the expansion of s ()

it suffices to list the semi-standard tableaux of contents {1°,2, ...} with
c1 > co > --- > 1. As the Schur function is symmetric, the expansion will
also include the semi-standard tableaux of contents {1¢1,2%2 ...} for

each permutation o of the subscripts.

For example, consider the partition A = (3,1) and the alphabet
x = {x1,x2,73,24}. The semi-standard tableaux 7 of shape A whose
contents are of the form {1°,2% ...} with ¢ > ¢3 > --- > 1 are the
following

2 2 3 2 4 3 2
111; 112 112 113; 123; 124; 134

According to Theorem 17.1 we have:

3 2.2 2
5(3,1)(T1, T2, T3, T4) = E xTe + E xixs + 2 E TiTox3 + 3T 1T2X374.

Notice that the first summation involves twelve monomials. For 1 < ¢ <

j < 4, the monomial z3xz; (resp. xlmg’) corresponds to the semi-standard

J J
tableau i 7 i (resp. 7 j 7).

To prove Theorem 17.1 we start with the very first definition of the
Schur function as a ratio of two determinants, as given in Section 15. An
alternate proof consists of using Proposition 15.3, but this involves other
combinatorial techniques

Let A and p be two partitions (or Ferrers diagrams) such that p is
contained in A. The set difference A\ p is called a skew tableau and denoted
by A/pu. A skew tableau is called a horizontal strip, if each column contains
at most one box (or one cross) of the skew tableau. Let A; and p; denote
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A

Hit+1 ‘ )\i+1

I i

Fig. 17.1

the parts of the partitions \ and pu, respectively. As shown in Fig. 17.1,
the skew tableau \/p is a horizontal strip if and only if for all ¢ we have
Air1 < p, e,

AL > p1 > A2 > g > A3 > -

Let 7 be a semi-standard tableau of shape A and of content 1¢:2¢2 ., . n®n,
Let A\ := 0 and \,, := \. For each ¢ = 1,2, ..., n the subset of the boxes
of 7 containing an integer at most equal to i (resp. an integer equal to 7) is
a semi-standard tableau (resp. a horizontal strip) we denote by @) (resp.

MO /A1) Let )\g-i) denote the parts of \(¥. Hence, for eachi = 1,2,...,n
the following inequalities holds

i i—1 i i—1 i i—1
AP > AT S AP > A8 > a0 > A >
With those notations the z-evaluation of 7 is given by:

)\(1) _ )\(0) )\(2) _ )\(1) (n)|_y(n—1)
m(T):xll = |m|2 = l...x|n>‘ =1 5

Theorem 17.1 can then be rephrased as follows.
Theorem 17.1’. We have:

|>\(1)|_|>\(0)| A | — A A\ (n=1)
sa(xy,y .. ) = E xy Ty i l

0=2D cA® c..oaM=x
AD /XC=1) horizontal strip

The formula holds for n = 1, since the only Schur functions sy (z1) in
1Al

one variable z; are the monomials x}"', where A = A1) is reduced to a
single part. The formula can be rewritten

A= |AG =D AD=AO] AT a2
sx(z1,...,xn) = E M= | E xy e Xy ,

)\(nfl)c)\ )\(O)CA(I)C...C)\(nfl)

keeping in mind that each skew tableau )\(i)/ A=1) is a horizontal strip.
The second summation is nothing but the formula of the theorem for
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(n — 1) variables. Let g := A~ and use the induction hypothesis. We
are left to prove the identity

(%) SA(T1,. .. Tn) = Z Ik Spu(@1, T2y Tpo1).
A horizléntal strip

To prove (x) we proceed as follows. Consider the determinant

. Aj+n—j
ax(x1, ..., zy,) = det(x;’ )(1<i,j<n)
and evaluate
xi\l-i-n—l :L,i\n'i_n n
ax(zi,...,xp_1,1) = N N
CE’I’L 1 e CL’n_l
1 1

Subtract the (j + 1)-st column from the j-th column for each j; =
1,2,...,n—1. We get:

A
"
FE
An |
Tn-1
0O ... 0 1
: o NAn—i N —j-1
where F is the matrix (xiﬁn - xﬁ*ﬁn " <ij<n—1). But
Aj+n—j Ajf1tn—j—1 _ t
Ly - = (z; — 1) § Z;

)\j+1—|—n—j—1§t§)\j—|—n—j—1

=(z—1) Y vt

Xjr1 Sy <A
Hence

det E = det((mi - 1) Z gt

iy
1<i,j<n—1
Nj+1<m5 <N (1=hisn=1)

= H (CL’Z — 1) X Z det(x,l;j—i_n_j_l)(1Si7j§n_1).

1<isn (Aj+1<p;<X5)
(1<j<n-1)

Now if we divide det E' by

Ay, e, )= J] @i—1) A, z0m1),
1<i<n
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we obtain the Schur function sy(z1,...,x,—_1,1). Consequently,

Z det(mf-tj+n_1_j)(1§i,jgn—1)

sa(x1,...,Tp_1,1) =
( ’ ey ) A(xl,...,xn_l)

(Aj+1<p;<A5)

(1<j<n-1)
= g Su(T1, . Tp_1).
w

A/p horizontal strip
As sx(x1,...,%n_1,2,) is of degree |A| with respect to the set of all
variables and as s, (z1,...,%,—1) is of degree |u|, we get:

A —
S)\(xla"'amn—laxn>: E x"n,| 1 Su(xlv"'axn—l)a

n
A/p horizontal strip

which is formula (). []

There is also a combinatorial definition for the skew Schur function that
reads

(17.2) supe(x) =Y a(r),

T

where the summation is over all semi-standard tableaux 7 of shape v/#.
Those semi-standard tableaux obey the same rules as the semi-standard
tableaux occurring in (17.1): every column (resp. every row) is strictly
increasing from bottom to top (resp. nondecreasing from left to right).
However their shapes are skew diagrams.

For instance,

68
7_:155
2
122

is such a semi-standard tableau of shape is v/0 with v = (6,4, 3,2) and
6 =(3,3).
To derive (17.2) we have to use another combinatorial technique, since

we have to start from a determinantal definition such as (15.4) and not a
ratio of two determinants. The proof of (17.2) is not given in this memoir.

18. The inverse ligne of route of a standard tableau

In this section we consider standard tableaux whose shapes can be
skew diagrams v/6, as introduced in section 15. If the skew diagram has n
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boxes (or crosses), the entries written on those crosses are the n integers
1,2,...,n, the rows (resp. columns) being increasing when read from left
to right (resp. from bottom to top). For instance,

6 8

459
= 3

127

is a standard tableau of shape v/ with v =6,4,3,2 and 6 = 3, 3.

By analogy with the permutations, we can define the inverse ligne of
route of the standard tableau T as the set, Iligne T', of all k such that (k+1)
is above k in T (or, equivalently, to its left). With the above example we

have
NigneT = {2,3,5,7}.

Notice that for a standard tableau no ligne of route is introduced. The
word “inverse” has been here added for convenience. We further define:

(18.1) idesT :=|IligneT| and imajT := Zj (j € NigneT)).
J

A more refined statistic is the y-vector of T' defined as the word y(T') =
y(D)y(2)...y(n), where

(18.2) y(i) = #{j >i:j € lligneT}.
Using the same example, idesT =4, imajT =2+3+5+7 =17 and

123456789
y(T)=443221100

The next proposition is straightforward and given without proof.

Proposition 18.1. For each standard tableau T whose y-vector reads
y(T) =y(1)y(2)...y(n) the following holds:

idesT = y(1), imajT =toty(T)=y(1)+y(2)+ - +yn).
Now let {x1,z2,...} and {q1,¢2,...} be two sets of independent
variables. If To(1)T¢(2) - Te(n) 1S @ monomial written in such a way that

c(l) >¢(2) > -+ > ¢(n), define

¢q(mc(1)xc(2) e CL’C(n)) = qf(l)—lqg@)—l . chL(n)—l
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and let ¢4 act linearly on the algebra of the polynomials in the z;’s. If the
variables ¢;’s are distinct, then ¢4 cannot be a ring homomorphism. For
a standard tableau T of order n it will be convenient to use the notation:
qVT) .= qf(l)qg(z) ...¢"™ . Also, for each variable ¢ introduce

. (11—t if n =0;
Bdln =\ (181~ tqu)(1 — tqrge) - (1 —tqr---qu), ifn> 1.

Theorem 18.2. Let v/0 be a skew diagram with n points. Then, the
following identities hold:

1
(18.3) ¢q(Sy/9($1,$27..,>) = — Z qy(T);
H(l —q1---q7;) T,T of shape v/0
=1
1 .
(184) Ztr ¢q(sy/9(x1,...,xr+1)) = W Z tldequy(T);
720 » Alnt1 T,T of shape v /0

the summations on the two right-hand sides being over all standard
tableaux of shape v/#.

When all the variables ¢; are equal to a single variable ¢, the homomor-
phism ¢q, that will then be denoted by ¢, becomes a ring homomorphism.
We then have

(185> ¢q(8y/9(£€1,$2, s )) = SV/9(17 q, q27 s ))7
(18.6) bq(Su0(T1, . Trg1)) = 5070(1, 4, ..., q")).
In view of Proposition 18.1 this implies the subsequent corollary.

Corollary 18.3. Let v/ be a skew diagram with n points. Then, the
following identities hold:

1 e
(18'7) Sy/g(l,q,qQ,...) = ( : ) Z qmaJT;
T dn T,T of shape v /6

1 . o
(188) Ztr Sy/e(]_,q,,_,,qr) = ti Z tldeSqumaJT;
r>0 ( 7q>n—|—1 T,T of shape v/0

the summations on the two right-hand sides being over all standard
tableaux of shape v/#0.

The proof of Theorem 18.2 is based upon the combinatorial definition
of Schur functions (or skew Schur functions), as discussed in the previous
section, and a bijection

T (T,d)
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of the set of semi-standard tableaux onto pairs (7,d), where T is a
standard tableau having the same shape as 7 and d a nonincreasing
sequence of integers.

The semi-standard tableaux we will consider this time are mnon-
increasing along the rows (from left to right) and (strictly) decreasing
(from bottom to top) along the columns, as opposed to the definition given
in the previous section. This convention will facilitate the calculations. For
instance

21
S 331
N 5
862
is such a semi-standard tableau, whose shape is /0 with v = (6,4, 3,2)

and 0 = (3, 3).

Each such semi-standard tableau 7 determines a total ordering on the
points (i,7) of its diagram v/ in the following manner: (7, j) is said to
be less than (i, j'), if the integer 7(i,j) written on (i, j) is greater than
7(i',5"), or if 7(i,5) = 7(i,j') and (i,j) is to the left of (¢/,5'), that is,
i<

Suppose that the diagram v/ has n elements; write k on the point
(4,7) if (i, 7) is the smallest k-th element using the previous ordering. This
produces a standard tableau T, of order n, of shape v/f. Reading the
elements 7 (7, j) from smallest to greatest yields a non-increasing sequence
c=1¢(1)e(2)...¢(n), called the content of 7. Moreover, we have

(18.9) k € lligneT = c(k) > c(k+1).

Asi e lligneT = y(i) = y(i+1)+1and i ¢ lligneT = y(i) = y(i+1), we
see that the sequence d := d(1)d(2) ...d(n), defined by d(7) := c(i)—1—y(7)
for each i = 1,2,...,n, satisfies d(1) > d(2) > --- > d(n) > 0. Moreover,
the mapping 7 — (T, d) is bijective.

With the previous semi-standard tableau 7 the standard tableau T is
the tableau given in the beginning of this section. We further have:

123456789
c= 865332211
y(T)=443221100
d= 311000000

Next, for each semi-standard tableau 7 of content ¢ = ¢(1) . ..¢(n) define

z(7) = Te(1) " Te(n)s
so that

bq(@(r)) =gV gD g
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Using the above bijection 7 +— (7, d), we get
ba(w(r)) = gV gh® .. qumg! Vg™ gl
— qy(T)qd'
Accordingly,

Yoo gglam) = Y. @™ gt
d

7,7 of shape v/60 T,T of shape v/0

As the last summation is over all non-increasing sequences d = d(1) >
- >d(n) > 0, we obtain

(1810) Y Gqle(n) = ! S @,

(1 —q1-- Qz) T,T of shape v/6

7,7 of shape v/6

=t

7

Now make use of the combinatorial definition for the skew Schur function

Suyo(T1,72,...) = Z (7),

7,7 of shape v/6

and take the homomorphic image of identity (18.10) under ¢4. This yields
(18.3).

For the proof of (18.4) proceed as follows. In the expansion of
the skew Schur function s, /9(z1,22,...,2,41) in the finite alphabet
{z1,22,..., 2,41} the semi-standard tableaux 7 of content ¢ such that
¢(1) > r + 2 bring no contribution. Consequently,

Z z(c) = s,/0(T1, T2, ..., Tr1) — Spyo(T1, T2, .., Tr);
c(l)=r+1
hence,
ZtT Z .’,E(C) = Ztr(sy/g(xl, Loy ... 7:177’—1—1) — S,,/g(.’l?l,wg, ceey .’BT))
T c(l)=r+1 T

= (1 — t) ZtrS,//9<.’B1,LE2, .. .,.’BT+1).
T

On the other hand, by using (18.10) we get

WS T A0 X g

T c(l)=r+1 7,7 of shape v/0
1 .
= — Z 2fldequy(T)7
H(l—tch"'%') T,T of shape v/6
=1

since y(1) = idesT". Thus identity (18.4) is proved.
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19. The Robinson-Schensted Correspondence

This is one of the most celebrated correspondences. Its main interest in
Combinatorics lies in the fact that geometric properties held by permuta-
tions can be transferred onto tableaux. Remember that we have introduced
inverse lignes of route for both permutations and standard tableaux. One
of our problems will be to relate those two lignes of routes through the
Robinson-Schensted correspondence.

19.1. The Schensted-Knuth algorithm. In section 12.2 each nonde-
creasing biword b has been mapped onto a triple (o,, '), where o is a
permutation and o', ¢ two nondecreasing words. The Schensted-Knuth al-
gorithm will map such a biword onto a pair of two semi-standard tableaux
of the same shape, that shape being a (right) Ferrers diagram. Again take
up the example of section 12.1

b— by (000111133333
“\e) \244033312244)”

a biword of length n = 12, which is nondecreasing in the sense that the
biletters (0,2), (0,4), ... , are in nondreasing order with respect to the
lexicographic order. The Schensted-Knuth algorithm applied to b can be
described as follows:

start with two empty tableaux P = L , Q= L . Next, insert the first
entry 0 on the top row b into ) and the first entry 2 on the bottom row c
into P, to obtain P = \l, Q= Lo . As 2 <4 < 4 (on the bottom row c),

insert 44 next to 2 onto the same row in P and record the positions by
inserting the corresponding entries 00 (on the top row b) onto analogous

places in Q:
p=1244 Q=000

Next, the fourth letter 0 of ¢ will bump up the smallest entry in P that
is strictly larger than itself. This is 2. We also record the new position
occupied by 2 on the second row in P by writing 1 (the fourth entry on

the top row) into Q:
—L —L
p=1044 (=000,

Then, the fifth letter 3 of ¢ will bump up the smallest leftmost entry on
the first row in P that is strictly larger than itself. This is the leftmost 4.
There is no entry on the second row of P smaller than 4, so that 4 is

92



19. THE ROBINSON-SCHENSTED CORRESPONDENCE

inserted next to the right of 2. We then record the new position occupied
by 4 on the second row in P by writing 1 (the fifth letter of b) into Q:

24 11
p=034 =000,

Again, the sixth letter 3 of ¢ will bump up the smallest leftmost entry on
the first row in P that is strictly larger than itself. This is 4. There is no
entry on the second row of P smaller than 4, so that 4 is inserted to the
right of the second row. We then record the new position occupied by 4
on the second row in P by writing 1 (the sixth letter of b) into Q:

2414 111
p=1033 =000,
The seventh letter of ¢ is 3. There is no entry on the first row in P that is

greater than 3, so that 3 is inserted to the right of the first row and the
seventh letter 1 of b is written to the right of the first row in Q:

244 111
pP=10333 @=10001

The eighth letter of ¢ is 1. It will bump up the smallest leftmost entry on
the first row in P that is strictly larger than itself. This is the leftmost 3.
In its turn that entry 3 will bump up the smallest leftmost entry on the
second row in P that is strictly larger than itself. This is the leftmost 4.
The third row is empty, so that 4 will form a new one-entry row for P.
We then record the new position occupied by 4 on the third row in P by
writing 3 (the eighth letter of b) into Q:

3
234 111
P=10133 Q=[0001

Using the same insertion technique we successively get

44 33 44 33
233 111 2333 1113
p=10123 @=0001, p=10122 @=0001.
and finally
44 33
2333 1113
p=1012344 =000133,
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Theorem 19.1. The insertion algorithm

b (b) _ (61 by bn> L PQ
C Cl1 C2 ... Cp
provides a bijection of the set of all nondecreasing biwords onto the set

of ordered pairs P () of semi-standard tableaux, of the same shape, the
content of P (resp. of Q) being {c1,ca,...,cn} (resp. {b1,ba,...,bn}).

It is not our intention to give a formal proof of the theorem. The only
difficult part is to see that the algorithm provides two tableaux which are
both semi-standard. The fact that both P and () have the same shape is
then evident. Also, the algorithm for the reverse construction is easy to
formulate.

In the sequel, standard Young tableau of order n means standard tableau
whose shape is a (right) Ferrers diagram corresponding to a partition of n.

Let ¥,, (resp. Tg)) be the set of all standard Young tableaux of order n
(resp. of all ordered pairs P @ of standard Young tableaux of order n of
the same shape).

Corollary 19.2. When restricted to permutations o of order n written
as increasing biwords, the insertion algorithm

oc— PQ

establishes a bijection of the group &,, of n! elements onto ‘37(12). The
bijection is called the Robinson-Schensted correspondence.

19.2. A combinatorial proof of the Cauchy identity. Let

b by by ... by
A = (aij)@,j>0) — b= <C) = (Cl co ... Cn)

be the bijection constructed in section 12.1 that maps each matrix A =
(aij) (i,j > 0) with integral entries such that >,  a; = n onto a
nondecreasing biword of length n. By construction the biletter (;) occurs
a;; times in b. Accordingly, if z = (zo, z1,z2,...) and ¥y = (yo, Y1, %2, - -.)
are two alphabets of variables, we have

(19.1> TpyThy - - - Tb,Yer Yeo -+ - Ye,, = H(xiyj)aij‘
,J

Now consider the Schensted-Knuth bijection b — P @Q. The product (19.1)
is equal to the product of the z-evaluation z(Q) by the y-evaluation y(P).
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When the matrix A runs over all matrices with integral entries whose
finitely many of them are nonzero, the pair P () runs over all pairs of
semi-standard tableaux, of the same shape. For short, designate the shape
of a tableau P by |P|. We can then write:

H(l —aiyy) = H > (wiy;)*

’] = éﬂ(%yy)“iﬂ'

= PZQCU?Q)?J(H

=Y. > zQuP)

A |P|=(QI=A
= ;(%AWD <|P|Z=/\y<P))

=Y sa(y)sala),
A

by the very combinatorial definition for the Schur functions given in
section 17.

In the same vein we can prove the dual Cauchy identity, i.e.,

(19.2) [T+ ziy;) =D sa(@)say),
>\

%]

where X still designates the conjugate partition. The product on the left-
hand side is equal to
Z H(xiyj>aij )
A iy

but this time the entries of the matrices are only 0 or 1. The corresponding
biwords b have distinct biletters, so that we can derive an inserting process
in which each inserted element bumps up the entry that is larger than or
equal to instead of the smallest leftmost entry strictly larger than itself.
Recording the tableau () as before, we obtain a pair P @), of tableaux of
the same shape, such that the transpose P of P and Q itself are semi-
standard. An analogous calculation leads to identity (19.2).

19.3. Geometric properties of correspondence. The ligne of route
“Ligne” and the inverse ligne of route “Iligne” of a permutation have been
defined in section 11 and the inverse ligne of route “Iligne” of a tableau in
section 18.
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Theorem 19.3. Let 0 — P (@ be the Robinson-Schensted correspon-
dence. Then

(19.3) Ligneo = Iligne ); Tligne o = Iligne P.

This property can be verified by a careful study of the various steps in
the construction of the Schensted-Knuth algorithm. We omit the detailed
proof. It is essential to notice that the @-tableau retains the geometric
information on the permutation o, on the one hand, and the P-tableau on
the inverse permutation o~!, on the other hand.

For instance, with

12345 34 24
“‘(31425)HPQ_125,135

we observe the equalities: Ligneo = {1, 3} = Iligne @ and Iligneo = {2} =
Iligne P.

The Robinson-Schensted correspondence is a useful ingredient in the
construction of bijections of the symmetric group onto itself. For instance,
suppose that we have a a bijection Q — Q7 of T,, onto itself that preserves
the shape and has the property: Iligne Q7 = n — Iligne@Q = {n —i :i €
Iligne @}. Then the chain

c—PQ—PQR'—jo,

where the rightmost arrow stands for the inverse of the Robinson-
correspondence, is a bijection of &,, onto itself such that

Iligne jo = lligneo, Lignejo = n — Ligneo.

The other important property of the correspondence (for which there
exist many proofs) can be stated as follows:

(19.4) [0 PQle ot — QP

19.4. A permutation statistic distribution. As was done in section 18
for standard tableaux, we can introduce the y-vector of a permutation
o=o0(1)...0(n) and define it as the word y(o) = y,(1) ...y,(n), where

Yo (i) :=#{j >1:j € Ligneo}.
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Hence, deso = y,(1), majo = toty(o) = y,(1) + -+ + y,(n). We can
also consider the y-vector for the inverse 0~ ! of ¢. Taking two sequences
(p1,p2,...) and (q1, 2, . ..) of variables define the monomials

qy(a) — q’!lJcr(l) . q%o
and consider the polynomial
An(t,s,q,p) = Y tdsogdese quio)pule™),

ceG,

n ot o—1(1 s—1(n
(n)  pul )::p’!ll ()__‘pg (n)

The homomorphism ¢q that has been introduced just after Proposi-
tion 18.1, keeps the same meaning. Also let ¢, be the analogous homo-
morphism defined by means of the variables p;’s

Theorem 19.4. The bi-factorial generating function for the polynomials
A, (t,s,q,p) is given by:

Z [ q] v R An(tvqua p) - ¢q¢p Ztlsk H #

>0 t n+1 [87 p]n—|—1 5 1<j<it1 1-— UL ;Y;
N 1<i<k+1

Again, we emphasize the fact that ¢4 and ¢p are (non-ring) homomor-
phisms acting on the z;’s and the y;’s, respectively. The infinite product
on the right-hand is to be extended first in monomials in the z;’s and the
y;’s and the mappings ¢p, ¢q are to be applied next to each monomial.

The proof of Theorem 19.4 is a consequence of the geometric properties
of the Robinson-Schensted correspondence, as stated in Theorem 19.3, and
of the Cauchy identity. From (19.3) we can write:

A t $,q,P Z Z Sidethidesty(Q)qy(P)
IM=n |P|=[|Q[=X

Hence,
! An(t, 5,4, p)
n 787 b
t; Aln+1 [S; Plnt1
_ Z( Z sides Q y(Q))( Z gides P y(P)>
= Z (Z tl¢q(3A(xla cee ,.TH_l)) (Z Skqbp(s)\(ylv s 7yl€+1)>
IA|=n >0 k>0

[by (18.4).]
Thus
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U’I’L

An(t,s,q,p)
">0 [t dlnt1 [s;Plnt1

—¢q¢pztl Y Cut Y sa(@n o m)sayn, - Ykr)

n>0  |A=n

1
= ¢qPp Ztlsk H m [by the Cauchy formula (16.4).]
1< <I+1 i
1<i<k+1

When all the variables ¢; (resp. the variables p;) are equal to a single
variable ¢ (resp. p), the homomorphisms become ring homomorphisms.
We recover formula (13.7) that gives the bi-basic generating functions by
the four-statistic (des, ides, maj,imaj).

20. Eulerian Calculus; the first extensions

The next three sections will be devoted to deriving the various exten-
sions of the fundamental identity for the Eulerian polynomials (A, (t))
(n > 0) (see (10.9)) that reads

(20.1) Lt 2: A

—t + exp(u(t — 1))

when the exponential occurring in the denominator of the rational fraction
is replaced by the g-exponential (as was done in section 10), then by a
Bessel function J or by a g-Bessel function J, in its infinite or finite form,
and also when the fraction itself is replaced by

(1—-t)exp(u(t -1)X) n

—t+exp(u(t—1)(X +Y)) 7;) mBn(Xv Y1),

(20.2)

that stands for the natural extension of the fraction, when going from the
group A, of the permutations to the group B,, of the signed permutations.

Those various extensions are symbolized by the diagram of Fig. 20.1,
where the identities (20.1) and (20.2) sit on the vertices (-,-,-) and
(sgn, -, -), respectively, and where the horizontal arrow — stands for the
passage from the permutations to the signed permutations, the oblique
arrow " stands for the g-extension, the uparrow 1 for the extension by
means of a Bessel function, in its infinite form (J) for the first level and
in its finite form (Ji) for the second one. All those terms will be fully
explained in the sequel.
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('7 q, Jk) _— > (Sgn7 q, Jk)
A

(s Jk) |, (sgn,-, Ji)
(-,q‘, J)— 1 » (sgr}:q, J)
('7"J) e (Sgn’ 7‘])
I (44" ‘;74 .4
(.7.7.) - (sgn, ,.)

Fig. 20.1

Of course, we could start from the most general extension that sits
on (sgn,q,Ji) and get the other results by successive specializations.
However proceeding in such a way would overlook the local techniques
that have their own interest. We then proceed from the particular to the
general, at least in the beginning. When we have enough material, we
will attack (sgn, g, Ji) itself and obtain the remaining identities with their
combinatorial interpretations.

20.1. The signed permutations. A signed permutation of order n can
be defined as a pair (o,¢), where o is a permutation o = o(1)0(2)...0(n)
and ¢ = £(1)e(2)...€(n) is a word of length n in the alphabet {z,y}.
The word ¢ is called a xy-word; the number of letters in £ equal to x
(resp. equal to y) is denoted by £(e|x) (resp. £(c|y)). Also 0., (resp. o.y)
designates the subword of o made of all letters o (i) such that (i) = x

(resp. £(i) = y).

Definition. The integer i is said to be a descent of the signed permu-
tation (o, ¢), if one of the following conditions is verified
(i) i =n and g(n) = x;
(i) 1<i<n—1,e(i)=z,e(i+1) =y;
(iii) 1<i<n-—1,e(i)=¢e(i+1)and o(i) > (i + 1).
The number of descents of (o,¢) is denoted by des(o, €).

Ezxample. Let
123456789

c=672431859
E=TYYYTTYT T
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be a signed permutation. Then o, = 63159, 0., = 7248 and des(o,¢) =
Card{1,2,5,6,9} = 5.

Another way of introducing the descents is to start with the linear
order (n,z) > --- > (L,z) > (n,y) > --- > (1,y), keep item (i) and
replace conditions (ii) and (iii) above by

(ii') 1<i<n—1and (0(i),e(i)) > (o(i + 1),e(i + 1)).

Now let

(20.3) Bn(X, Y, t) — Z XZ(E\w)YZ(E\y)tdes(a,s)
(0,)

be the generating polynomial for the set of signed permutations of order n
by the number of descents.

Theorem 20.1. The following identity holds:

(1 —1t) exp(u(t —1)X) u'
(20.4) —ttexpult— (X +Y)) nz;; p Bl Y00,

Notice that when X = 0 and Yu = w in (20.4) we revover identity
(20.1) with their combinatorial interpretation.

For the proof of Theorem 20.1 we proceed as follows. Define the statistic
desy o of a permutation (not a signed permutation) o = o(1)...0(n) to
be

q _ J deso, if 1 <o(n) <n-—k;
PRI T 1 + des o, ifn—k+1<o(n) <mn;

and let
Affb(t) = thesk 7 (0 €6,).

o

Because of item (i) in the definition of a descent in a signed permutation
we can write:

(20.5) Bn(X,Y,t) = zn: (Z) Xkyn—k gk (4).

k=0

Now the “des,” interpretation given for AF(¢) provides the following
recurrence relation

(20.6) Ab(r) = AN + (- DAL (L<k<r),
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since tAZ:% (t) is the generating polynomial for the permutations ending

with (n — k + 1) by “desy,” while A¥=1(t) — A"~1(#) is the generating
polynomials for the other permutations. By iteration,

k k
207) 50 =220+ (§) - 00+ (§) - 1024250
k
4+t <k) (t—1)*A%_, (1)
Using Umbral Calculus (dear to the late professor Rota, who had made an

extensive usage of that approach) A" = A,, = A%(t) and A° = 1, formula
(20.7) may be rewritten as

(20.8) ARty = AR (= 1)+ A)".
In view of (20.5) and (20.8) we then have
(20.9) B, (X, Y,t)=(X(t—1)+(X+Y)A), A"=A4,.

Now exponential generating function (20.1) for the Eulerian polynomials
may be rewritten as

1-1¢
expud) = —t +exp((t — Du)’
so that
u” u” n
> —TBa(X,Y 1) = > F(X(t — 1)+ (X +Y)A)
n>0 n>0

=exp(uX(t—1)) exp(u(X +Y)A)
(1 —t)exp(uX(t—1))

T ttrexpu(X +Y)(E-1)) 0

20.2. Pairs of permutations. Let m = w(1)7(2)...7m(n) and p =
p(1)p(2)...p(n) be two permutations of order n. The number of common
descents of m and p, denoted by ddes(m, p), is defined to be the number of
integers k such that 1 <k <n —1and w(k) > w(k+ 1), p(k) > p(k+1).
The generating polynomial for the Cartesian product G,, x &,, by “ddes”
is denoted by

(20.10) AQS(t) i= Y 1) (7 p) € 6, x By).

(m,p)
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Now, let

n>0

be the Bessel function of the first kind, of order zero and let

(20.10) T(u) = Jo(2/u) = Z(_l)nﬂ

nln!’
n>0

Theorem 20.3. The bi-exponential generating function for the polyno-
mials A34es(t) (n > 0) is given by:

1—1t u™
20.11 =1 — Addes(y),
(20.11) —t+ J(u(l —1)) +T;n!n! ()

Notice that we go from the fraction in (20.1) to the fraction in (20.11) by
merely replacing “exp” by “J.” The proof of Theorem 20.3 is quite similar
to the proof of Theorem 10.1 that gives the generating function for the
polynomials ™A, (¢, q). The fraction in identity (20.11) can be rewritten
as

n n—1 u” -1
<1+Z<_1) (1=%) n!n!) ’
n>1
so that (20.11) is equivalent to
n—1 n—1 u" ddes u” _
(1_2(_1) (1-¢) n!n!) 'ZA" (t)n!n! =1
n>1 n>0
and provides the recurrence Ad4®(¢) = 1 and

(20.12) Ade() = Y <Z) (Z)(t—n’f—lAgie,i(t) (n>1).

1<k<n
Let F} be the generating polynomial for the pairs of permutations (7, p)
of order n, such that both 7 and p have their longest decreasing rightmost

factors (L.d.r.f.) equal to k by “ddes.” Also, let Gy, := Fy,+ F41+- -+ F,.
Under those conditions we have

(2 -

so that
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n

5 ()bt £ G

1<k<n k=1

— Z tik (t(Gk — Gk—|—1) + Gk—|—1> (t — 1>k_1
k=1

-y tlk (tGk — (1 = )G ) (¢ — !
k=1

n

t—1)kt t—1)F
- ZG’f( tk—)l - Gk+1( ik :
k=1

=G, = Addes(p),
by definition of the G’s. []

Remark. The proof of the previous theorem shows that if instead of a
pair of permutations we consider a finite sequence of permutations, we can
also calculate the generating function for those finite sequences by their
common descent. This is one of the extensions that will be proposed in
the next section.

Let A% := |{(m,p) € &, x &, : ddes(m, p) = k}|. The first values of

the coefficients A?Liiljs, calculated by means of the recurrence (20.12), are

shown in Table 20.2.

k= 0 1 2 3 4
1 1

2 3 1

3 19 16 1
4

S

211 299 65 1
36561 7346 3156 246 1

Table 20.2 (distribution of ddes on S,, x S,,)

20.3. The g-extension. The g-extension of (20.1) was already done
in Theorem 10.1. Recall that when the exponential is replaced by the
g-exponential E,, the expansion of the fraction involves the generating
polynomials for &,, by the bi-statistic (1 + des, inv). We will also consider
the replacement of the exponential by the other g-exponential e;. The
formulas obtained together with their combinatorial interpretations will
be discussed in the next section as specializations of more general results.

Referring to the diagram represented in Fig. 20.1 the three extensions
(sgn, -, ) [signed permutations], (.,.,J) [pairs of permutations| and (-, q, -)
[the g-extension] have been described.
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20.4. The t,q-maj extension for signed permutations. In §20.1 the
notion of descent for a signed permutation has been introduced, so that
the major inder can also be defined by adding the positions at which
a descent occurs. In the example shown in §20.1 the descents occur at
positions 1,2,5,6,9 so that maj(o,e) =14+2+4+5+6+9 = 23.

Now form the generating polynomial for the set of signed permutations
of order n by the pair (des, maj), that is,

(20.13) Bn(X, Y, t, q) — Z XE(E|$)YE(E|Z/)tdes(a,6)qmaj(a,s).
(0,€)
As we now see, the generating function for those polynomials B,, (X, Y, t, q)
(n > 0) can be derived, by g-analogizing the calculation made in §20.1
for the polynomial B, (X,Y,t). For 0 < k < n and each (ordinary)
permutation o let
dos o des o, if 1 <o(n)<n-—k;
BT\ 14 deso, ifn—k—+1 <o(n) <mn;
(20.14) maj,o:=majo+nx(n—k+1<o(n) <n);
and let

Ab(t,q) i= Y tI=kogmai (o€ &,).
g

If T is a subset of [n] = {1,2,...,n} let B;(t,q) denote the generating
polynomial for the signed permutations (o,e)=(0(1),e(1))...(c(n),e(n))
containing all the letters (i, ) when ¢ € I and all the letters (j,y) when
j € [n]\I. Because of the definition of a descent for a signed permutation,
we have

(20.15) Br(t,q) = Ak (t,q) if #I=kFk.

Hence
n

n
B.(X,Y,t,q) = XEyn=kaAk(t q).
xveo =3 (}) k(0
Mimicking (20.6) we also have:
An(tq) = Ayt g) + (tg" — DAGZ (Hg)  (1<k<n).

By iteration,

k
k — n—s
Ab(tg) = <S> (tg" = 1)(tq" ™" = 1)...(t¢" " = 1)B,_(t. q).
s=0
Hence
l
XY= Y o xkynh

0<Zien (n—k)s!(k—s)!

X (tqn - 1)(tqn_1 - 1) tee (tqn—s—l—l - 1)Bg—s(t7 Q)
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and
u” B,(X,Y;t,q ysStntmxstnym —-1)°
> —'% = D Tl ml ¢ () ) By ym(t,q)
n>0 n: 34 )n+1 $mm >0 Sm.m. 74 )n4+m+1
 explux) 3 X YD At

But A%(t, q) is the generating polynomial by (desg, maj,), that is, the g-
maj Eulerian polynomial ™*A,(t, q), introduced in Definition 10.1. As, by

(10.2b)
Zu Ath Ztsexp (u[s +1]y),

|
>0 r t q r+1

we conclude that

" Ba(X, Yt
Z u—'u = exp(—uX) Zts exp(u(X +Y)[s+ 1],)

= Ztsexp Xq [s]lq + Y[s+1])).
n>0

Proposition 20.4. Let B,(X,Y;t,q) be the generating polynomial for
the signed permutations by (des, maj), as defined in (20.13). Then

(20.16) w Dt (Xalsly + Vs +1]9)"
On+1 5>0
2 Bn(X, Yt q) s 1 .
(20.17) nzmu W = got (Xl LY £ 1)
(2018) S Z—% ZtS exp(u(Xq[s]g + s+ 1],)).

For each subset I C [n] let B(t,q) be the generating polynomial for the
signed permutations containing all the letters (i, x) with i € I and all the
letters (j,y) with j € [n] C I by (des, maj). If #I = k, we have:

Br(t,q) s Mk T n—k
(20.19) Fdas —;t q"[s]q [s + 1]

Proof. Identity (20.18) has just been proved. The other formulas can
then be easily deduced. []
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20.5. A first inversion number for signed permutations. As explained
in the next section, the inversion number for signed permutations that will
be further studied will be motivated by analytical reasons. However, we
can also look for an inversion number, that reduces to the usual “inv”
for the ordinary permutations, that has the further property of being
equidistributed with “maj” on the set of signed permutations.

Keep the notations of Proposition 20.4 and let SP; be the set of signed
permutations of order n containing all the letters (¢,x) with ¢ € I and all
the letters (j,y) with j € [n]\ I. By letting ¢ = 1 in (20.19) we get

k(G Dn
(I—q)

The most (7) natural inversion number, say, “Inv”, whose distribution
on the set SP; is given by Bj(1,q), can be defined by mapping each
(0,¢e) € SPy onto

Bi(l,q9) =q

Inv(o,e) :=invo + # 1.
In the notations of §20.1
(20.20) Inv(o,¢) :=invo + £(g|x).

To avoid any confusion, denote the major index of a signed permuta-
tion w by Majw. To construct a bijection W having the property that

(20.21) Maj(o,e) = Inv ¥(o,€),

proceed as follows. It suffices to do so for each subset SP; such that
I={n—k+1,n—k+2,...,n} (0 <k <n). Each signed permutation in
such an SP; is then a permutation of the increasing word

(Ly)2,y)....n—k,y)(n—k+1,2)...(n,x),
Introduce a new letter * and impose the ordering
(n—Fk,y) <*x<(n—k+1,x).

Consider the alphabet {(1,y), ..., (n—k,y), *, (n—k+1,2),...,(n,z)} and
let w belong to SP;. The transformation ®, introduced in Theorem 11.3,
maps w * (the signed permutation w, linearly written as a permutation,
with the juxtaposition of the letter x at the end) onto

(20.22) O (w*) = w *,
where w' is a rearrangement of w. Furthermore,
(20.23) maj(w*) = inv ®(w x) = inv(w’ *).
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The bijection ¥ of SP; onto itself is then defined by
(20.24) U(w)* :=P(wx) =w *.

Theorem 20.5. The mapping ¥ defined in (20.24) is a bijection of each
class SPr onto itself such that Majw = Inv ¥(w) holds for every w € SPj.

Proof. As ® is a bijection of each rearrangement class onto itself and
because of (20.22), the mapping W is itself a bijection. Furthermore, let
w=2x1x3...T, € SPr. Then Majw = majw + nx(z, € I) = maj(w*) =
inv ®(w *) = inv(¥(w) *) = Inv ¥(w). []

Ezample. Letn = 6,1 = {4,5,6} and consider the signed permutation
w = (3,y)(1,y)(6,z)(5,z)(2,y)(4,z), that will be rewritten as w =
3,1,6,5,2,4. With 3 < x < 4 the image of w x under ® (defined in §11.3)
is ®(wx) =6,3,5,1,4,2, %, so that ¥(w) = 6,3,5,1,4,2. We verify that
Majw = 143+44+6 = 14. Moreover ¥(w) has 11 inversions and # I = 3,
so that Inv ¥U(w) =11 4+ 3 = 14.

21. Eulerian Calculus; the analytic choice

When the symmetric group G,, is regarded as a Coxeter group generated
by the transpositions (i,7 + 1) (1 < i < n — 1), the length lcox(o) of a
permutation o is simply the number of inversions invo. As recalled in
the previous subsection 20.3, the generating function for the bi-statistic
(1+des,lcox) = (1+des,inv) on the symmetric groups A,, = &,, has been
derived by taking a suitable g-analog of the generating function for the
single statistic “des.”

As we already have an expression for the generating function for “des”
on the groups B, namely (20.4), the natural question arises: can we find
an analogous approach to obtain the generating function for (des, lcox) on
the groups B,,7 The answer is yes (see Exercise 30), but the formula we
can derive does not fit any longer in the set-up of the g-series; its analytic
manipulation is cumbersome.

Accordingly, if we wish to remain in the algebra of the g-series and
obtain the desired extension for the signed permutations, identity (20.2)
must play the role played by identity (20.1) for the plain permutations.
In the first place it is necessary to find a g-analog for (20.2), with an
interesting combinatorial interpretation.

We definitely adopt that approach of analytical nature. The statistic
“inv” for the signed permutations will directly come out of that interpre-
tation.

21.1. Inversions for signed permutations. A good choice for a g¢-
analog of formula (20.2) is to replace the product of the two exponentials
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in the denominator by a product of two g-exponentials (and not by
eq((t — 1)(X +Y)) that would give a g-expansion with some negative
terms.) In the g-series expansion

(I —-t)eq,((t—1)X) B 1
AN T D0 e 1)~ 2 T D)

the coefficients B,,(X,Y,t,q) are polynomials with nonnegative integral
coefficients. One of the consequences of the main result proved in this
section is to show that each B,,(X,Y,t, q) is the generating polynomial for
the signed permutations of order n by a bi-statistic “(des, coinv)”:

(212> Bn(X, Y, t, q> _ Z XZ(E|$)yZ(6|y)tdes(0',s)qcoinv(a,s)‘
(0,6)

Of course, “des(c,¢)” is the number of descents, as was defined in
subsection 20.2; and “coinv(c,€)” is the number of co-inversions in the
signed permutation, defined as follows.

A pair of integers (4, j) is said to be an inversion (resp. a co-inversion) of
the signed permutation (o, ) of order n, if one of the following conditions
is verified

() <(3) = (j), i < §; and 0(3) > o(f) (resp. o(i) < ()

(ii) €(i) =y, e(j) = x and o (i) > o(j).

Let inv(o, ) (resp. coinv(o, )) denote the number of inversions (resp. the
number of co-inversions) of (o, ¢).

Take up again the example of section 20.2. We have:

y 672431859

TYYYyrryxrx

. (672431859
coimmv

TYYyrryrx

):4+2+&1:1n
):6+4+11:2L

The first values of the polynomials B, (X,Y,t, q), i.e., the generating
polynomials for the signed permutations by the pair (des, coinv), are shown
in Table 21.1.
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By =tX+Y; Bo=tt+q)X*+2t(1 + )XY + (t +q)Y?;
By = (2tq+2t> +* +¢*)Y? +t(1 + ¢+ ¢*) (3¢ + 2t + 1) XY?
+t(1+q+ ¢3)(2q + tq+ 3t) XY + t(2tq + 2t¢*> + 2 + ¢*) X>.
Table 21.1 (distribution of (des, coinv))

Another consequence of our main result is to show that if in (21.1)
each g-exponential e,(u) is replaced by the second Q-exponential Eq(u),
the polynomials B, (X,Y,¢,Q) on the right-hand side are the generating
polynomials for the signed permutations by the pair (des,inv). The first
values of those polynomials are shown in Table 21.2.

Bi =Y +tX; By=(1+tQ)Y?*+2t(1+ Q)XY +t(1 +tQ)X?>;
By = (1+2tQ +2tQ* + PQ*)Y> +t(1 + Q+ Q)3+ Q +2tQ)XY?
+t(1+Q+ Q%3+ Q+2tQ) XY + (1 + 2tQ + 2tQ* + t?Q*) X 3.
Table 21.2 (distribution of (des, inv))

When restricted to the elements of &,,, the statistic “inv” for B,, is
nothing but the usual number of inversions for the permutations. Likewise,
formula (21.1) with X = 0 specializes into the analog of (10.12) for e,.

Thus, (21.1) with its combinatorial interpretation (21.2) is our g¢-
extension of (20.4). In our diagram of Fig. 20.1 that extension sits on
vertex (sgn,q, ).

21.2. Basic Bessel Functions. The next step is to study the expansion
of (21.1), when the g-exponentials are replaced by g-analogs of Bessel
functions. Formally, the left-hand side of (21.1) is to be replaced by the
fraction

(1-6)J((1-8)X;:Q,q)
—t+J(1-1)X;Q,9)I(1-1)Y;Q,q)’

where J is a basic Bessel function defined below. Our problem will be
to study the expansion of that fraction in the algebra of series in one or
several bases.

Let L, I be two fixed nonnegative integers and Q = (Q1,Q2,...,QL),
qa=(q1,92,...,q) two sequences of variables. Define

(21.3)

Q) =¥ ol
(Q§ Q)n = (Q1§ Ql)n cee (QL§ QL)m
(@G Dn = (q1:0)n - - (@5 @)n-
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Using the H-notation for the Hadamard product of two series, that is,

(go anu") H(go 6nu”) = Z(anﬁn)u”,

n>0
we define the several-basis Bessel function by
(214> J(’LL, Q7 q) = (Z(_u>n) HEQl (U) HEQZ (U) H---
n>0
HeCh(u) HeQ2<u) H---
We can also write:

Q(g) 1
(21.5) J(u;Q,q) := (=1)" y
V=2 Vg wa

n

If L=1=1, then

o)
J(u;Q,q) = go(_l) (Q; Q)n (Q;Q)nu

Finally, for L = 0 and [ = 1, we regain the g-exponential
1

n

J(u;_7 Q) = HZZO(_l)n <q; q)nun = el](_u)7
and for L =1 and | = 0, the -exponential
()
3w Q) = S (1) L = Bal-u).

n>0

The coefficients in the series expansion of the fraction (21.3) will be
shown to be polynomials with positive integral coefficients. They actually
are generating polynomials for combinatorial objects, called signed mul-
tipermutations by a multivariable statistic that includes a single statistic
referred to as the number of descents.

Definition. Each triple (X, o, ¢) is called a signed multipermutation of
order n if ¥ = (¥4,...,%X1) and ¢ = (01,...,07) are two sequences of L
and [ permutations or order n, respectively, and if ¢ is an zy-word of
length n.

Definition. FEach integer i is said to be a descent of the signed multi-
permutation (X, g, €), if one of the following three conditions is satisfied:
(i) i =n and e(n) = x;
i) 1<i<n-—1,¢e(t) =z, e(i+1)=y;
(iii)) 1 < i < n-—1,¢e() = e(i+ 1) and ¥1(¢) > X1(i + 1), ... ,
(i) >Xr(i+1),and also 01(i) > o1(i + 1), ... , 0y(i) > oy(i + 1);
Let ddes(X, g,¢) denote the number of descents of (X, 0,¢).
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The inversion and co-inversion numbers “inv” and “coinv” of a signed
permutation (o, £) have been defined in § 21.1. With a signed multipermu-
tation (X, g,¢) we further use the notations:

Qinv(gﬂf) — Qilnv(zhs) - Q?V(Elﬂs) .
qcoinv(g,g) . q;:oinv(al,s) L qcoinv(al,s)
= l .

Let (o,¢) be a signed permutation, where 0 € S,, and ¢ = ¢(1) ...e(n)
is an xy-word. Recall that the word o.|, (resp. o.,) is defined to be the
subword of ¢(1)...0(n) made of all letters o (i) such that £(i) = x (resp.
g(i) = y). Introduce the number of inversions “inv(o.|y, o) between the
words o, and o), by

inv(oeyy, 0cja) = #{(i,5) : €(i) = y, €(j) = x, o (i) > o(j)}-
Another way of defining the statistics “inv” and “coinv” is then to let

inv(o, e) = inv o, |, +inv o)y + inv(oe)y, 0c)z) ;

coinv(o, €) = coinv 0|, + coinv o, |, + inv(oe|y, oc|z)-

Definition. Suppose that € has « letters equal to x and 3 letters equal
toy (a4 = n). We say that the permutation o is compatible with € (also
that the signed permutation (o,¢) is compatible), if inv(o,|,, o) = 0, or,
in an equivalent manner, if the subword o.|, is a rearrangement of the
word 12...f (and then o,|, is a rearrangement of (5 +1)(8+2)...n (of
length ).

A signed multipermutation (X, 0,¢) such that ¥ = (34,...,31) and

o= (o1,...,07) is said to be compatible, if the permutations X1, ..., X,
o1, ..., 0p are all compatible with e.

Let
(216) Ba,ﬂ(ta Q; q> — Z tddes(z,g,s)Qinv(g,s)qcoinv(g,s)

(X,0,¢€) (comp.)
Lielz)=a, L(e|y)=p

be the generating polynomial for the compatible signed multipermutations
(X, g,¢) such that e contains « letters equal to = and 3 letters equal to v,
by the statistic (ddes, inv, coinv). Also let

(217) BH(X7 Y7t7Q,Q)
= 3 XUyl ddes(Bee) ginv(Se) geoinv(ee),

(Z,0,¢)

the sum being over all signed multipermutations of length n.
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Proposition 21.1. We have the identity

(21.8) B,(X,Y,t,Qq) = »_ m m X*Y?P B, 5(t,Q,q)
a+B=n o Q o q

Proof. To avoid cumbersome notations assume that L = [ = 1. Let
(X, 0,¢) be a signed bipermutation of length n such that ¢(¢|z) = . Let I
denote the set of the a letters of the word o.|,. There exists a unique
increasing bijection fy (resp. f,) mapping the set X(I) (resp. o(I)) onto
the interval [n — a4+ 1,n] and the set X([n ]\ I) (resp. o([n]\ I)) onto the
interval [1,n — a]. The triple (fx 0 X, fy 0 0,€) is then a compatible signed
permutation. The mapping (X, 0,¢) — (fs o X, f, 0 g,¢) is surjective.
Moreover, if (Xg,00,€) is compatible, the number of preimages (3,0, ¢)
mapped over (Xg, 09, ) by that surjection is equal to (2) (”)

(e

If (X9, 00, ¢€) is compatible and if (fx o X, fy 0 0,¢) = (X0, 00, €), then

ddes (X, 0,¢) = ddes (Xg, 09, €);
inv (0,¢) = inv (09, ) + inv(a€|y, 0€|w);

coinv (o, €) = coinv (09, ) + inv(og|y, 0c|z),

since fx; and f, are increasing mappings.

Therefore, the sum > Q™) ¢eoiv(9:2) oyer all triples (X, 0,¢)
(27076)
such that (fx, 03, f, 00,¢) = (X9, 00, €), is equal to

Qinv(EO,s) qcoinv(ao,s) Z Qinv(ZE‘y,Eﬂm) qinv(ae‘y,ae‘m)

(2,0,e) _ Qinv(EO,s) qcoinv(ao,s) |:n:| |:n:| )
Al L%
Hence,
Bn(X7Y7t7Q7Q)
_ Z onyﬁ Z tddes(Eo,ao,s) Z Qinv(Z,s)qcoinv(U,s)
Q+B:n (Ean—an) (COl’Ilp.) (27078)
E(Elx):a (fEOE,fO-OO',€):(EO,O'Q,€)
o Inl n
= > Xy H H Bas(t,Q,q). [
(0 (0
0<a<n Q q

The main result of this section that will be proved in the next subsection
is the following theorem.
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Theorem 21.2. The following identities hold:

1-1J((1-H)X;Q,q)
—t+J(1-1)X;Q,q) J((1-1)Y;Q,q)

=Y g, AT

(21.9)

= n(Q Q)n
Xoy#
= BO{ Y Y °
2 Gma@asGa, e

The list of the first values of the polynomials B, 5(t, @, q) is shown
in Table 21.3. Remember that to obtain the polynomials B, (X,Y,t, @, q)
(for L =1 =1) identity (21.8) is to be used.

Boa=1; Bio=t;
Boo=Qq+q+tQ+1; Bi1=2t Byo=t(Qq+q+tQ+1);
Boz=2Qq+2Q°+2q+2Q°tq+2Q%¢* +2Q°¢* +2¢°
+ @ +1420Q¢ +2tQq+ 2tQ%*q + 2 ¢°tQ + 2 ¢*tQ?
+2Q¢° + Q% +21Q + 21Q* + 2Q%¢* + Q°¢°
Bi2=1t3Qq¢+3q¢+2tQ+Q+3)
By =t(2Qq+1tQq+2q+1q+3tQ +2+1)
B3o=1tDBog3

Table 21.3 (distribution of (ddes, inv, coinv)
over the compatible signed bipermutations)

The list of the first values of the polynomials B, (X,Y,t,Q,q) (for
L =1 =1) is shown in Table 21.3. If in Table 21.3 we let ¢ = 0 (resp.
Q@ = 0), we recover Table 21.1 (resp. Table 21.2). On the other hand, the
table contains the first values of the Gaussian polynomials 14+Q, 1+Q+Q?
and 1+ ¢, 14 g+ Q?. That occurrence will be fully explained in the next
subsection.

Back to the diagram in Fig. 20.1 we see that Theorem 21.2 refers to
extension (sgn,q,J) and the distribution of (ddes,inv,coinv) on signed
multipermutations. When X = 0in (21.9), we go from signed multipermu-
tations to the multipermutations themselves. This corresponds to vertex
(,q,J). For L = 0, ] = 1 we have the specialization (sgn,gq,-), corre-
sponding to identity (21.1) with a combinatorial interpretation in terms
of number of descents and co-inversions. Finally, vertex (sgn, -, J) may be
regarded as the specialization with all the variables (); and ¢; equal to 1.
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Theorem 21.2 provides a combinatorial interpretation in terms of signed
multipermutations counted only by their numbers of descents.

21.3. The iterative method. To prove Theorem 21.2 we proceed as
follows. Let (Q)n = (Q;Q)n, (¢)n := (¢;q)n and again assume that
L =1 =1. Identity (21.9) (in its second form) may be rewritten

B (t - i1+ xiyiy-a
(- " @a@e, ) 0-1x6es

Xoyhs
= 2 @@ @ Q)

an identity of the form (1—R)~1S = T. Express it in the form S = (1-R)T
and look for the coefficients of X*Y? on both sides. Then the identity is
equivalent to the set of the two recurrence formulas

itji>1

(21.10) Bpo = Q) (¢t — 1) + Z m . m q (t— 1)1 Q) B,
(21.11) Ba.s :o;a m@ mq E]Q [ﬂq (t—1)+-1QE+() B, 5_;;
0<5<B
i+5>1

withn > 1, a+ 8 >1and By = 1.

First, if (3, 0,¢) is a signed bipermutation such that ¢ contains « let-
ters  and [ letters y, both signed permutations (X, ¢), (o, ¢) are permu-
tations of the biletters (1,y)...(8,y)(1+8,x)...(a+ B, x). Consequently,
the left factor (3(1),0(1),e(1))...(X(k),o(k),e(k)) (1 < k < a+ ) of
(3, 0,¢) is decreasing, if we have (1) > --- > X(k) and o(1) > --- > o(k).
Each compatible signed bipermutation [in short, c.s.b.] has a longest de-
creasing left factor [in short, Ld.l.f.] of length at least equal to 1. Each
letter (3(i),0(i),e(i)) of the signed bipermutation (X, 0,¢) is said to be
large (resp. small), if (i) = x (resp. (i) = y).

In the sequel the c.s.b. are supposed to have a large letters and g small
letters. Let F'(i,7) denote the generating function for those c.s.b., whose
[.d.l.f. is of length (i + j) and start with 7 large letters followed by j small
letters (0 < i < a,0< 35 < B,i+7 >1). Let G(>1i,>0,> k) (resp.
G(=1i,> j,> k)) designate the generating function for those c.s.b., whose
l.d.l.f. is of length at least equal to k and start with at least ¢ large letters
(resp.and start with i large letters followed by at least j small letters). Let

o= [ [, DL B 00 s
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so that (21.10) and (21.11) can be rewritten as

(21.12)  Bao=QE(t—1)"+ Y wiolt—1)"" (8=0);

1<i<a
(21.13)  Bag= > wi;(t—1)""" (8=1).
0<i<a
0<j<pB
iti>1

Lemma 21.3. The following identities hold:

(21.14)  t'u;o =t F(,0) + G(> i,
(21.15) t"w, ; =t F(i,j) + G(=1,

S O

+1>Z+]—|—1) if 7> 1.

Proof. The product t'u; is the generating function for the c.s.b.
starting with a decreasing factor having i large letters, with the restriction
that the initial number of descents is counted ¢ (instead of i — 1) when
the l.d.l.f. is exactly of length 4. In that generating function are included,
besides the c.s.b. just described, the c.s.b. whose [.d.l.f. contains ¢ large
letters and at least a small letter, plus all the c.s.b. whose [.d.l.f. contains
at least i + 1 large letters and no small letter. This proves (21.14).

When j > 1, the product ¢**7 u; ; is the generating function for the
c.s.b. starting with a decreasing factor having i large letters and at least j
small letters, still with the restriction that the intial number of descents
is counted i + j (instead of ¢ + j — 1) when the Ld.lf. is of length i + j.
Beside those c.s.b. the generating function involves all the c.s.b. whose
l.d.l.f. contains i large letters and at least j + 1 small letters. []

As F(i,0) = G(>1i,>0,>i) — G(>i,>0,>i+ 1), it follows from
(21.14) that
: t—1
(21.16) G(>4,> 0,>14) = t" L u; o + TG(z i,>0,>1i+1);

it also follows from (21.15), when j > 1, that

L t—1
(2117) G(=i,2j, i+ j) = "7 T+ ——=G(=i, 2 + 1,2+ j +1).

Moreover, we have the identity:
(21.18) G(>i,>0,>i+1)=G(=1i,>1,>i+1)
+G(>i+1,>0,>i+1).
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Since B, s is equal to G(>1,>0,> 1) + G(=0,> 1,> 1), those three
formulas furnish the calculation for B, s as we now see. By iteration,

(2119) Ba’g =1Uu1,0 + (t — 1)”LL2’0 + -+ (t — 1)a_2Ua_1’0

(t _ 1)04—1
ta—l

(t—1)*"!
to—1

G(>a,>0,>a)

G(:O{—l,Z]_,ZO{)

t—1
+ ( " )G(: ,>1,>2)+G(=0,>1,>1).
If 8 =0, we have G(>a,>0,>a) = G(=a,=0,=a) = F(a,0) =
tO‘Q(g) and all quantities of the form G(=1i,>1,>i+ 1) are null. As

[eY

tap = Q1), we get

Bao =10+ (t — Dugg + -+ (t — 1)* 2ug_10 + t(t — 1)* Q)
= w1+ (t = Dugo+ -+ (= 1) Pug-1,0 + (t = 1) uap

+(t—-1)°Q),

which is nothing but formula (21.12) to be proved.
When S > 1, we can pursue the iteration in (21.19) and because
G(>a+1,>0,>a+1) =0 obtain

Bapg=u0+ (t—1Nugo+---+(t— 1)&—1ua’0

+T)G(:O{,Z 1,:O_/+]_)

—1
+...+¥G(: 1,>1,>2)+G(=0,>1,>1).

Then each expression G(=i,> 1,> i+ 1) is iterated by making use of the
relations G(=14,>p+1,>i+5+1) =0 (0 < i < a). We then obtain
(21.13). []

22. Eulerian Calculus; finite analogs of Bessel functions

Looking back on the diagram in Fig. 20.1 there remains to show how
a further extension of Theorem 21.1 can be made and what meaning be
given to the top level of the diagram, especially to vertex (sgn,q, Ji). As
was shown in the previous section, the letter “J” without subscript refers
to the basic Bessel function. The subscript “k” will refer to a finite analog
of that function, that is now introduced.
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Rewrite the two identities of Proposition 4.1 as:

’I’L+k _ tot b
(22.1) K I DR
q 0<b; <---<bp <k+1
ny | K+ 1
(22.9) e e D DR
@  0<Bi<-<Bp<K+1

They hold for all integers £ > 0 and K > 0. On the other hand, as we
have (see (6.1))

1
(22.3) = q*°'?,
(¢ @)n ogblgsbn
(3)
(24 oL X @
<Bi<-<Bp
we can let
n+oo|l 1
(225) { n L'_ (¢ 9)n’
(%)
. e
(226) R P P R

so that (22.1) and (22.2) are valid for all £ and K finite or infinite.
Let €f(u) and Eg(u) denote the generating functions for (22.1) and
(22.2), i.e.,

n+k
22.7 ef(u) = { } u™, still equal to ,
(22.7) (=2 . (U5 @)kt

n
n>0

(228)  EEw) =Y @0 [K+ 1Lun.

n>0 n
In particular, the two g-exponentials may rewrite as

1
eq(u) = ego (U’) = . un,
Z:O (¢ On
o)
Eg(u) = E(u) = u'™.
¢ ? 2;0 (@ Q)n
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Let K, k be two fixed nonnegative integers. Using the Hadamard
product (see (21.4)) we define the K, k-finite analog basic Bessel function

JE(u;Q, q) by

(229) I Q)= (D (—u)") nES (w) Hel ()

n>0
or, in an equivalent manner, by
K+ 1 k
2210 3 Q) = 1 [F T
When K and k are infinite, then
k) 1

(22.11) JX(wQ.q) =I(w;Q.q) = Y _(-1) u,
! ! 7;0 (Q, Q)n (4:9)n

which is the basic Bessel function defined and used in the previous section.
We could take the Hadamard product of more than two Bessel functions;
our results would still be valid, but awkward to state and handle.

Following the same pattern as in the previous two sections consider the
fraction

(KM (1-t)IF(1-t)X;P,p)
(2212) F=F(n) = R ox: Py B0 - 0V:0.0)

and expand it first as a generating function for signed biwords, then for
signed bipermutations. Notice that the above fraction involves two Bessel
functions J¥ ((1 — ¢)X; P, p) and JM((1 - 4)Y;Q, q).

22.1. Signed biwords. 'The next step is to express F' as a homomorphic
image of a generating function for the so-called signed biwords. We just
make use of the combinatorial expressions given in (22.1) and (22.2). Let
x, X,y,Y, P, p, Q, q designate independent variables and K, k, M, m
four fixed nonnegative integers. Consider the alphabet 2 = Ql(llffn/[) whose

C
elements are the triletters (c), where z = x or y, and C, ¢ are integers
such that z
0<C<L<K 0<c<k, ifz=ux
0<C<M0<c<m, ifz=uy.

c
Let () = ®(-; P,p, @, q, X,Y) be the map that sends each triletter (c)
onto o z
C.c : — e
o((e)) = PCpX, }fz—x,
2 Q%q°Y, ifz=uy.
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Next, form the free monoid A* generated by 2. It consists of all the
three-row matrices, called signed biwords,

B B(1) B(2)...B(n)
(22.13) w=|b]=105b1) b2)...bn)
£ e(1) ¢(2) ...e(n)

The length of w is n and denoted by ¢(w). The signed biword of length 0
is the empty word, denoted by e. When ¢ = z™ (resp. ¢ = y™) and also
when B(1) < B(2) < --- < B(n) and b(1) < b(2) < --- < b(n), we say
that the signed word w is nondecreasing. Let ND, (resp. ND,) be the set
of all nondecreasing signed biwords, whose bottom row has only x’s (resp.
only y’s). The set of the juxtaposition products w'w”, where w’ € ND,
and w” € ND,, is denoted by ND, ND,,.

By defining ®(w) as the product of the images under ® of the triletters
of w, we extend ®, by linearity, to a homomorphism of 2A* into the ring of
polynomials in the variables P, p, X, @, q, Y.

Proposition 22.1. Let

o= (1= - )@ @) (- 0w,

where w runs over ND, ND,, \ {e} and w’ over ND,. Then
F =9(G).

Proof. 1t follows from (22.1) and (22.2) that

J(X) =3I (1=t X;Pp) =) (t—1)™d(w) (weND,);
JV) =T ((1=0)Y;Q,9) =Y (t—1)™®(w) (weND,);
IX)I(Y) =) (t—1)"™®(w) (weND,ND,).
Hence, with w running over ND,, §Dy,
1—t B 1—t
—t+J(X)JY) 4+ (t— 1)) d(w)

:(1—}2@—1WW—HMwD

w#e

-1

We obtain the desired identity by multiplying by J(X) on the right. []

119



D. FOATA AND G.-N. HAN

Definition. Let w be a signed biword, as in (22.13), and 7 an integer.
We say that ¢ is a rise for w, if one of the following three conditions holds:
(i) i =n and e(n) = x;
(i) 1<i<n-—1,¢e(i)=z,¢e(i+1)=y;
(iii) 1<i<n-—1,e(i) =¢e(i+1), B(i) < B(i+1) and b(z) < b(i + 1).
The number of rises of the signed biword w is denoted by rise w.

Proposition 22.2. The following identity holds:

(22.14) G=) tevy
and consequently
(22.15) F =Y t"eva(w),

where w runs over all signed biwords in 2A*.

To prove Proposition 22.2 we make use of a classical inversion formula
that is stated and proved in various contexts. Let X* be the free monoid
generated by a set X and form the large algebra of X™* over a ring () of
polynomials. The elements of that algebra are the formal sums > ¢(w) w,
where w runs over X* and c(w) belongs to Q. Let a : X? — Q be a given
mapping that we extend to a mapping a : X* — ) by sending each word
W= T1La...Ty € X* to

a(w) = {a(x1,x2) coea(xpo1,xy), ifn > 2

1, ifn=0or 1.
Next define:
v Jla(zr,ze) = 1) . (a1, 2p) — 1), ifn>2;
a(w) '_{1, if n=20or 1.

Further, let U, V be two nonempty subsets of the alphabet X. The
expressions UT and U*V stand for the sets of all nonempty words w =
T1To ... Ty all letters of which are in U (resp. whose rightmost letter x,,
is in V' and other letters are in U).

Lemma 22.3. In the large algebra of X* we have the identity:
—1
(2216) > aww=(1- Y aww) x ¥ aww
weU*V welU+ weU*V

Proof. Multiply each side by (1 — > a(w)w) on the left and verify
weU+
that the coefficients of each word w on both sides are the same. []
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In formula (22.16) take the following ingredients: first, X := AU {0},
where “o00” is the triletter (0o, 00,00) (writing the triletter horizontally
for typographical reasons). Let u = (C, ¢, z) and v/ = (C',, 2’) be two
triletters belonging to X.

For “a” take the mapping:

t, if 2=z and 2’ = oc;

t, if z=uzand 2’ =y;

t, ifz=2and C <(C" and c < ¢;
1, otherwise.

For V take the singleton {oo} and for U the alphabet 2. Formula (22.16)
is rewritten, after simplification on the right by oo, as

(22.17) Za(w@)w = (1 - Z a(w) w>_1 X Z a(w o0) (w).

weA* weA\{e} weA*

a(u,u’) =

Let w = uMu® . ul™ be a signed biword of length n, written as a word
with n triletters. Let u(®*1) := co. Then, the statistic rise(w) can also be
expressed as:

(22.18) rise(w) = Z X(a(u(i) u(H—l)) _ t).
1<i<n

For every signed biword w we then have:

a(w@> — trisew,
(t —1)*@) =1 if w € ND,ND, and £(w) > 2;
a(w) =4 1, if {(w) =0 or 1;
0, otherwise;
(t— 1)) if w € ND, and £(w) > 1;
a(woo) =14 1, if /(w) = 0;
0, otherwise.

With those ingredients the left-hand side of identity (22.17) is equal to

S trisewqy and the right-hand side is the expression found for G in
weA*
Proposition 22.1. []

22.2. Signed bipermutations. Although Proposition 22.2 provides an
expression for the fraction F in terms of biwords and involves one statistic,
namely the number of rises, the combinatorial objects are still rudimen-
tary. To obtain an expression in terms of combinatorial objects having a
richer geometry, such as permutations or signed permutations, it is nec-
essary to imagine a further correspondence. This is the purpose of this
subsection and the next one.
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The definition of a signed multipermutation (X, g, €) was given in § 21.2.
When X (resp. o) consists of a single permutation ¥ (resp. o), we speak
of a signed bipermutation (X, 0,¢), as in the present subsection. With such
a signed bipermutation we associate the subset I., := {i1,...,%c|q)}
(resp. L.y := {Jj1,-- -, Je(ely)}) of all the integers i such that £(i) = z (resp.
e(i) = y)-

Suppose that (X, 0, ¢) is compatible in the sense of Proposition 21.2 and
consider the restriction of the bijection i — ¥(7) to I, (resp. to I|,); it
is a bijection, denoted by X, of I.|, onto the interval [1,£(e|y)] (resp. a
bijection ¥, |, of I.|, onto the interval [{(e]y)+1,n]). In the same manner,
two restrictions of o are considered: o, of I.|, onto [1,4(c|y)] and o), of
I\, onto [{(ely) + 1,n].

For instance,

ly

123456789
Y= [753421896

(22.19) c= (672431589
eE= \xxyYyyyyrxrzw
is a compatible signed bipermutation of order n = 9. Also I, =

{1,2,7,8,9}, I, = {3,4,5,6}.
The restrictions ¥,|,, X, Ocp 0c)y, Written as two-row matrices,
together with their inverses read:

v 12789 v 3456 P 12789 o 3456
cle=\75896) ~clvT\3421) "l* T \67589) "<lvT \2431)
o1 _ 56789 o1 1234 ol 56789 ol 1234
el \29178) Telv \6534) Tele \71289) "elvT \6354)°
We do not repeat the definitions of “des” and “maj” for permutations,

but introduce the definition of “rise” and “rmaj” (referring to the “rises”

and no longer to the “descents”). If p is a permutation, written as a linear
word p = p(1)p(2)...p(n). Then, define

rise p := Z x(p(2) < p(i+1));

1<i<n—1

majpi= ), ix(pli) < pli+1)).

The statistics “des” and “maj” will be determined for E;i, Ues_|31/ and the
statistics “rise” and “rmaj” for Ugi, UE_L;, by means of word codes, as it was

done in §12.2 for the application of the MacMahon Verfahren. To avoid
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cumbersome notations suppose that those four bijections are identified
with the bottom rows of their defining two-row matrices, respectively
denoted by Sy = S;(1)...S.(l(e|z)), Sy = Sy(1)...5:(4(ely)), sz =
52(1) .52 (0(el)), 5, = 5,(1) ..., (£(=ly).

For each i = 1,...,{(c|x) let Z (7) be the number of j such that
i < j < {Lelr)-1 and Sy(j) > Sz(j + 1), that is, to the number of
descents to the right of S, (i) and form the word Z, := Z,(1)...Z({(g|x)).
Define Z, in the same way, replacing “x” by “y”.

For s, and s, the word “descent” is to be replaced by “rise.” For each

i=1,...,0(e|z) let z,(i) be the number of j such that i < j < l(e|x) — 1
and sm( ) < 8z(j + 1) and form the word z, := z,(1)...2(¢(c|x)). Define
zy in the same way, replacing “z” by “y”.

With the above example we get

Sy = (29178 Sy = (6534 S = (71289 sy = (6354
Z,=1\11000)" Z,=\2100)" z,=\33210)" 2,=\1100/"

Proposition 22.4. We have:

des Ed}c =Z,(1); maj E;'}E =tot Zy, = Zy(1) + -+ -+ Zy(U(e|x));
des X, 1 Zy(1); majX_ | =totZ, = Z,(1) +-- -+ Z,(L(c|y));
risec_ = zz(1); rmaj 0€|i =totzy = 2z, (1) + - - + 2, (U(e]));
rise ‘75|y = 2zy(1); rmaj ‘75_|31/ =totzy = z,(1) + - - - + 2z, (U(ely)).

Proof. With the words Z,, Z,, 2, and 2, we have another way of
counting descents and rises. []

To further simplify the notations the following shorthand will be used:

ides; > := des E;i; imaj, > := maj E_|1'
ides, ¥ := des E;;; imaj, > := majX_

Ely’
.. e -1, -1,
11186y, 0 1=TISe 0 ; Irmaj, o := rmaj Oz

.. . -1, 1

irisey o ;= rise o, ; irmaj, o := rmaj Oy
With each compatible signed bipermutation (X,0,¢) is associated the
eleven-variable monomial

(22_20) \II(E o, 6) I X€(€|w)Yﬂ(s|y)tddes(2,a,e)

% ledes:lc Evldesy Eplma‘]m EleaJy b 1rlsem o lI‘lSGy Uplrrnaj:lc qurmajy o
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Our purpose is to work out the generating function for the polynomials

(22.21) Bog:=Y U(3,0,0),
where the sum is over all compatible signed bipermutations (X, o, €) such
that £(e|z) = a and {(e|x) = S.

22.3. Signed biwords and compatible bipermutations. Using the nota-
tions of the previous subsection and Proposition 22.2, we prove the fol-
lowing theorem.

Theorem 22.5. The factorial generating function for the polynomials
B, g defined in (22.21) is given by

K,M

(%m)

By (22.12) and (22.15) the left-hand side of the previous identity is
equal to

Z RKSMTkSmF(K’M) _ Z UKVMukvm Z trisew(p(w),

k,m

() () we ()"
so that there remains to find an appropriate correspondence between
signed biwords and compatible signed bipermutations.

Again use the notation (22.13) for the signed biword w and still let
Iy(c|z) (vesp. Iy|y)) be the set of all i such that (i) = x (resp. £(7) = y).
Then let Bz := B,(1)...By({(e|z)) (resp. Bly := By(1)...By,({(ely)))
be the nonincreasing rearrangement of all letters B(i) such that i €
Iy(cloy (vesp. @ € Iycpyy). Let blz = by(1)...b.(€(e]z)) (resp. bly :=
by(1)...by(¢(ely))) have analogous definitions when B is replaced by b.
Hence (see §22.1) the image ®(w) of the signed biword w reads:

(2222) (p(,w) _ Ptot B|thot B|ypt0t b|mqtot b|yXZ(E|.'E)YZ(E|y).

For example, let K =8, M =6, k=9, m = 8 and consider the signed
biword w € Ql(g’g):

B 471046335
w=|b]=[1954006910
€ TTYYYyrrx
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Then Blz = 75433, Bly = 6410, bl = 99510, bly = 6400, £(]z) = 5,
{(ely) = 4, so that ®(w) = PZ2QYMp?*¢'°X>Y?. The rises of w are: 2
(because £(2) = y, €(3) = z), 4 and 5 (because €(4) = €(5) = ¢(6) = y,
B(4)=0< B(5) =4 < B(6) =6,b(4) =0 <b(5) =0 <b(6) =6) and
finally 9 (because n =9 and €(9) = z). Hence, risew = 4.

Definition of the mapping w = (B,b,e) — (X,0,¢). First, the x,y-
word € remains the same. If £(i) = y let

(22.23) X(i) == [{j:1<j <n,B(j) > B(i),e(j) = v}
+H{i:1 <5 <4, B() = B(i),e(j) = y};
and if e(i) = x let
(22.23") () :=L(ely) + {7 : 1 < j <n,B(j) > B(i),e(j) = =}
+{j:1<i<j,B(j) = B(i),e(j) = z}|.

Next for each i = 1,2,...,n and €(i) = y let

(22.24) o(i):=[{j: 1 <j <n,b(j) > b(i),e(j) = y}|

+ {7 i < <n,b(j) =b(i),e(j) =y}
When ¢(i) = z, let
(22.24") o (i) == Llely) + {7 - 1 < J < n,b(4) > b(i), (j) = «}|

+ {1 <7<n,b(j) = b(i),e(j) = 2}
Notice that the only difference in the definitions of ¢ and ¥ is the following;:
if b(i) = b(j) (resp. B(i) = B(j)) and i < j, then o(i) > o(j) (resp.
(i) < %(4)). Obviously, (X, 0,¢) is a compatible signed bipermutation.

For instance, to the above signed biword w = (B, b, ) there corresponds

the compatible signed permutation displayed in (22.19). Let us materialize
the correspondence with the following matrix.

123456789

B= 471046335

(22.25) = 1954006910
e= |zxyyyyzraxx

Y= | 753421896
o= \672431589

Once the signed bipermutation (X, 0,¢) has been obtained, we deter-
mine the words S;,Z,,... and the statistics ides,, ides,, ... , as they
were introduced in the previous subsection; also, we let
K':= K —ides, X; M':= M —ides, %;

(22.26) , . , .
k' =k —irise, 0; m :=m —ides, o
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and define the words:
AN:=Blr—-Z,, ©:=Bly—2,, N:=blxv—2z,, 0:=0bly—z,
where the difference is defined letter by letter. For instance,
A=A1)-- A(l(e|x)) = (Ba(1) = Zo(1)) - - (Ba(U(e]a)) — Zo(£(e]2))).-

Proposition 22.6. The integers K', M', k', m’ are nonnegative. Fur-
thermore,

(1) K2 A1) = -+ = Al(el) 20, M2 6(1) 2 -+ = O(l(ely)) 2 0
() K 2A1)2 > Alela) > 0w’ >0(1) > - > 0(0(ely)) > 0
(iii) tot Blx = imaj X, + tot A; tot Bly = imaj Zy + tot ©;

(iv) tot bjlx = imajo, +tot A; totbly = imajo, + tot .

Also the rises of w and the descents of (¥, 0,¢) coincide. In particular,
(V) risew = ddes(X, o, ¢).

Finally, the mapping
KM K'M’
((k;m)’“’) — ((k/m/),A,G,A,Q,(E,U,5)>

With our running example, the correspondence between w and (X, 0, €)
was shown in (22.25). Also K = 8 M = 6, k = 9, m = 8. The other
parameters are (see the first calculations just before Proposition 22.4):
K'=K-2,1)=8-1=7M =M-2,1) =6—-2 = 4,
K =k—2(01) =9-3=6 m =m-—2z%/(1) =8—1 = 7. Finally,
A=Blr—-27,=64433,0=4310,A=66300,0=5300.

The proof of Proposition 22.6 follows the pattern derived earlier for the
MacMahon Verfahren.

is bijective.

The final calculation uses all those items, as well as identity (22.3):

Z UKVMUkUmtrise wq)(w)

()
km )W

= Z U(3,0,¢) Z UK'VM'uk’Um’ZptotAQtot@ptotAqtote

(2,0,8) (1;(/’1\/[/’) (1;%)

= > Y > U(E00)enU) ey (V) el (u) el (v)

a>0,8>0 4(e|x)=a (2,0,¢)
Uely)=pB

= > eBU)e)(V)es(u) el (v)Bag. []

20,520
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22.4. The last specializations. With X = 0 in the identity of Theo-
rem 22.5 we get:

1-—1t
(22.27) yMym
(%:) —t+ I3 (1 -1)Y;Q,9)
_ Z eg(V) 85(U>Yﬁ Z tddes(E,a)Vides EQimaj Evirise qurmaja‘
B20 (2,0)

The sum on the right-hand side is over all pairs of permutations (X, o).
This can be regarded as the specialization sitting on vertex (-, g, Jx) in the
diagram of Fig. 20.1.

When the parameters K, M, k, m are not finite, the identity of Theo-
rem 22.5 is derived as follows: multiply both sides successively by (1 —U)
and let U = 1, multiply by (1—V) and let V' = 1, multiply by (1 —u) and
let w =1, multiply by (1 —v) and let v = 1. We obtain the identity:

(1—8)J((1—t)X; P,p)
—t+J(1-1)X; P,p) J(1-1)Y;Q,q)

1 1 1 1
= Xy”?
QE%EO (P; P)a (Q;Q)p (P5P)a (4:9)5
> Z tddes(E,a,s)pimajm EQimajy Epirrnajm qurmajy o

(%,0,¢) (comp.)
Ue|lz)=a, L(e|y)=p

(22.28)

The latter underlying generating function is over the compatible signed
bipermutations only, while identity (21.6), that corresponds to vertex
(sgn,q, J), is over all signed bipermutations and even multipermutations.
However identity (22.8) involves two distinct Bessel functions J(-; P, p),
J(;Q, q), instead of only one. When we reduce the number of bases, say,
when (P, p) = (Q, q), we can still regain (21.6), as is now explained.

For each signed bipermutation (not necessarily compatible) (X, o, ¢) let

inv(06|y7as|m) = #{(%]) : €<2) =Y, 6(]) =, U(Z) > U(])}7
a quantity equal to zero when the bipermutation is compatible. Also let

imaj(%, €) 1= imaj, (¥, €) + imaj, (3, ¢) + inv(oe|y, 0cz)

irmaj(o,¢) := irmaj, (o, ¢) + irmaj, (o, €) + inv(oe)y, 0c)z)-
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Now in (22.8) let (P, p) = (@, ¢); the right-hand side can then be rewritten
as:

2 (@ Q)i(q; Dn az . m Q [Z] qXQYB

n>0

> Z tddes(Z,a,s)Qimaj(E,s)qirmaj(a,s).

(2,0,6) (comp.)
L(elz)=a, l(ely)=ph

Because of the definition of “imaj” and “irmaj” for a signed permutation
the polynomial B],(X,Y,t,Q, q) defined by

(2229) B;I(X, Y, t, Q, q)::ZXé(eLr)Y€(€|y)tddes(E,a,e)Qimaj(E,s)qirmaj(a,s),
(27076)

the sum being over all signed bipermutations of length n, is also equal to
Z |:n:| |:n:| Xayﬂ Z tddes(Z,a,s)Qimaj Zqirmaj o
ol o '
a+p=n Q 4 (3,0,6) (comp.)

l(elz)=a, (c|ly)=P

Hence, when (P, p) = (Q, ¢) identity (22.28) takes the form

1-t)I((1-)X;Q,q)
—t+J(1-1)X;Q,9) I(1-1)Y;Q,q)

1
= B (X.Y. .
;<Q;@>n<q;q>n n(X Y 4Q0)

(22.30)

The comparison with (21.6) shows that the right-hand sides of (21.6)
and (22.30) involve different statistics: inv(X,¢), coinv(e,e) for (21.6)
(when reduced to bipermutations) and imaj(3, ), irmaj(o, €) for (22.30).
However, those two formulas imply the identity

(22.31) B, (X,Y,t,Q,q9) = B, (X,Y,t,Q,q).

In order to show that Theorem 22.5 that contains the most general
extension sitting on (sgn, ¢, Ji) implies (21.6) sitting on (sgn, g, J) we prove
identity (22.31) combinatorially by means of a direct bijection.

A bijection for (inv,coinv) and (imaj,irmaj). The main ingredient is
the bijection ® of Theorem 11.2 that is used in the following context.

Let m be a bijection of a finite set I = {i; < iy < .-+ < i}, of
integers onto a finite set of integers 7(I) := {j1 < j2 < -+ < jx}. The
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permutation 7 is presented as a two-row matrix e ) et d
w(iy)...7(ig)
denote the correspondence that sends each bijection onto its inverse and

consider the chain
i\ i o gk
<7T(21>...7T(2k>) (W‘l(jl)...w_l(jk))
& (i e\ i [ i1 ... ik
— — ; P
<y1 .. .yk> <7T/<21) .. .W/(Zk))

i . o . i ...
T—im — ®imT — 1DiT.

that is rewritten:

As proved in Theorem 11.2, the transformation ® sends the word
77 (1) ... 7 1(ji) onto a rearrangement y; ...y, of that word, which is
the bottom row of the third matrix above. Moreover,

maj(r " (j1) ... 7 (r)) = inv (1. uw),
which implies

majim =invi®ir and rmajim = coinvidir.
Also Tligne i = Iligne ®i 7. Hence,
(22.32). Ligne m = Lignei®in.

Now each signed bipermutation (3, 0,¢) is characterized by the two
subsets I.|., I.|, and its restrictions 3, ¥, 04, 0, to those two subsets,
as they were defined in § 22.2. This gives a sense to the notation

[Is\xals Zm72y70x70y]

ly>

to designate a signed bipermutation (X, o, ¢).
Next form the composition product i®i described above and consider
the mapping A : (X, 0,¢) — (X', 07, ¢) defined by

(27 a, 6) = [Is|x7 I,
<2/7 0/7 5) = [Is|x7 I,

lys Em Eyaamay];

ly, IP1 Y, iPi Y, iPio,,iPig,).

Proposition 22.6. The mapping A is a bijection of the set of signed

bipermutations of length n onto itself, having the following properties:
(i) ddes(X,0,¢e) = ddes(X',0’,¢);
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(ii) imaj(X,e) = inv(X, e) and irmaj(o, &) = coinv(c’, €).

Proof. Property (i) follows from (22.32), since Ligne o, = Lignei®io,
and analogous relations for the other restrictions. Finally,

inv(X.)y, Xejz) = inv(E'Ew, E'E|x) and inv(o.y, 0z|z) = inv(aéw,aém).
Then,
imaj(X, ) = maj Zai + mayj Eg; +inv(Ee)y, Xelz)

/

=invX,, +inv Z'Ew + inv(X Z'Em) =inv(X' e);

/
ely’

irmaj(o,€) = rmaj aai + rmaj o

; +inv(o.y,07)

/

= coimv O'E|x

+ coinv 0;|y + inv(aéw, 0;|w> = coinv(c,¢e). []

23. Eulerian Calculus; multi-indexed polynomials

As seen in section 10, the classical Eulerian polynomials A, (t) =

S tdeso (n > 0) have the following exponential generating function
ce6G,

u" 1—-t
2 1 1 An t —Y = 9
(23.1) + ; ®) n! —t+exp(u(t—1))
so that = 4 1_¢
93.9 1 FA, (D) =
(23.2) +nz>:1 ()n' 1 —texp(u(l—1))

provides the exponential generating function for the polynomials %4,,(¢) :=

tA,(t) = > tifdese (n > 1) and Uy(¢) := 1. In the previous three
ce6G,
sections we have worked out various extensions of the rational function

occurring in (23.1). In the present one we will rather use the second one,
because the major results dealing with multi-indexed Eulerian polynomials
have been introduced in that way and have become classical. The change,
however, is minor.

23.1. The bi-indexed Fulerian polynomials. In the fraction occurring
in (23.2) replace exp(u(l — t)) by the product e,((1 — t)u)e,((1 — t)v)
where u, v, p, g are independent variables. Then expand the fraction as a
series normalized by products of the form (p;p), (¢; ¢)m. We obtain:

u"v™ 1t
(23.3) nzzo’ mAn,m(t,pa Q) = 1 tep((l _ t)u) eq((l _ t)v>'

m>0
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To see that A, ,(t;p, q) is a polynomial with integral coefficients we may
rewrite (23.3) as L = (1 — R)™!. The identity L(1 — R) = 1 yields the
recurrence relation

@0 Auntin) =3[ p "] Aaslspa) ¢ =y

(2]

where 0 < i < n, 0 < j <m and (3,j) # (n,m). As Ago(t;p,q) = 1,
relation (23.4) shows by induction that each A, ,,(¢;p,q) is a polynomial
with integral coefficients. To show that the coefficients are indeed positive
and of sum (n 4+ m)! requires more analysis and will be a consequence of
the theorem below.

Of course, a product of more than two g-exponentials could have been
taken and the results below would have been very similar. The advantage
of keeping only two allows a much easier reading.

The second class of polynomials under study will be denoted by
Ay, m(t;p). There is no risk of confusion with the previous ones, as they
are in two variables ¢ and p instead of three. No confusion either with the
g-Eulerian polynomials A, (t,q), as the present ones are double indexed.
Those polynomials A,, ,,,(t; p) are defined by

235) S A (tip) = -

S (pp)aml ™ 1 —tep((1 = t)u) exp((1 = t)v)’

Let ¢ = 11in (23.4). Then A,, ,,(¢;p, ¢) is transformed into a polynomial in
two variables ¢ and p. Furthermore, the Gaussian polynomial [Zn] becomes
q

the ordinary binomial coefficient (7}”‘) Hence (23.3) itself is transformed
into identity (23.5). Thus

(23.6) Apm(t;p) = Anm(t;p, 1),

Notice that when u = 0 (resp. v = 0) identity (23.5) specializes into the
exponential (resp. basic) generating function for the Eulerian polynomials
4,,(¢) introduced above (resp. for the polynomials YA, (¢, q)).

The ligne and inverse ligne of route “Ligne” and “Iligne,” that have been
defined in the previous sections for permutations, are being partitioned
into two parts. Let (n, m) be an ordered pair of nonnegative integers and o
be a permutation of order n + m. Define:

Higne, o :={r:1<r<n—-1,0"r)>c ' (r+1)},
Higne, o :={r:n+1<r<n4+m—-1,0"r) >0 (r+1)},
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imaj, o := Z{r :r € Iligne, o},
imaj, 0 := Z{r —n:r € lligne, o},

invy o= #{(r,r):1<r<r <n, o r)>o (")},
inve o :=#{(r,7") :n+1<r<r' <n+m,o '(r) > ()}

When m = 0 (resp. n = 0), the statistics imaj, o and invy o (resp. imaj, o
and invy o) are the familiar inverse major index and inversion number of
the permutation o, respectively.

Theorem 23.1. Let n, m be two nonnegative integers. The generating
polynomial for the group &,,4,, of the permutations of order n + m by
the three-variable statistic (1+ des, imaj,,imaj,) is equal to A, . (t;p,q).
In other words, if A,, »,(t;p, q) is defined by identity (23.3), then

(23.7) Apm(tip,q) = Y tlHdesopmaliogmaiz o,
€S tm
We also have:

(23'8> An,m(t§ b, Q) = Z tltdes Upinvl qunvz .

€S tm

For the proof of (23.7) we use the Schur function algebra and the
Robinson-Schensted correspondence, as was already done for the proof of
Theorem 19.4. Take up again the previous notations with a pair (n, m) of
integers and o designating a permutation of order n+m. Let 71 (resp. 73)
be the restriction of o to the set o~1([1,n]) (resp. o~ ([n + 1,n + m])).
Using the Robinson-Schensted correspondence (see § Corollary 19.2) each
bijection 7; (j = 1,2) is mapped onto a pair (P;,Q;) of Young tableaux
of the same shape that we shall denote by A;.

It follows from the properties of the correspondence that the entries of
Py (resp. Py) are the elements of the interval [1,n] (resp. [n + 1,n + m])
and the entries of Q; (resp. QQ2) are those of the set o=1([1,n]) (resp.
o~ Y([n+1,n+m])). Let T} := P; and T be the Young tableau obtained
from P, by replacing each entry r by r — n and let U be the product
U = Q1 ® Q2. This means that U is the skew tableau obtained by
placing Q2 to the right of Q1 and just under it. Thus 17 (resp. T5) is
a Young tableau of shape A1 (resp. Ay) whose entries are 1,2,...,n (resp.
1,2,...,m); the entries of U are 1,2,...,n and the shape of U is the skew
shape A1 ® As.

We summarize all this by writing :

shapeT; =X (1 =1,2); |[M|=n; |X]=m;

(23.9)
shapeU = A\ ® Aa;  [A]| + A2 =n+m.
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For instance, let (n,m) = (5,4) and

_(123456789)_ 0_1_(12345'6789)
864521973) 659341(2817)/°

(34569) (1278)
T = o T2 = .
45213 8697

Under the Robinson-Schensted correspondence

Then

4 6
25 59
= (P,Q1)= \13,34/; M\ =(2,21);
89 28
7'2’_>(P27Q2>:(67,17); A2 =(2,2);
and
4 6
25 34 59
T'=P=13; Th=Po—-n=12; U=Q, Q=34
28
17

The inverse ligne of route (see section 18) of U is lligneU = {1,2,4,5,7, 8},
so that imajU = 27 and idesU = 6.

It follows from Theorem 19.3 that the mapping
(o,n,m) = (A1, A2; Th, T2; U)
is a bijection having properties (23.9) and also

Iligne, o = Iligne T} Iligne, 0 — n = Iligne T5;
(23.10) gne; . g 1 . gney g 2
Ligne o = Iligne U.

With our working example Iligne; 0 = {1,3} = IligneT7; Iligne, 0 =
{2} = lligne T5; Ligneo = {1,2,4,5,7,8} = Iligne U.
It follows from (23.10) that

(23.11) imaj; o =imajT; (j=1,2); deso = ides U.
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Let t 'A,,(¢; p, q) denote the right-hand side of (23.7). Then by (23.10)
and (23.11)

(2312) t 1D, q Z Z tldGSU imaj T4 qlmaJ T2
(A17>\2) (T17T27U)

where the first sum is over the ordered pairs (A1, A\2) of partitions satisfying
|A1] = n, |A2] = m, and the second over all triples (73,75, U) satisfying
(23.9).

We next use identity (18.7) as well as a specialization of (18.8) obtained
by letting ¢ = 1, i.e.,

1 .
r r1y ides T’
(23.13) D sl = A= gt >t

r>0 T,T of shape v/0

where s, /9(1""1) is the skew Schur function obtained by taking an
alphabet of (r + 1) letters all equal to 1. We have :

A, (t;p, q)
(1 — )"t (p; p)n (g5 @)m
— 1 tides Upimaj T qimaj T>
1 —t n+m-+1 . n(q: m
(1-1) PPl @ D 5

= Z Zt’"s>\1®>\2(1’"+1)s>\1(1,p,p2, )8 (1,q,4%, )

(A,A2) 7

Z Z t"sx, (1" ) sx, (1,0, 0%, .. )8, (17 N80, (1, 0,42, .. ),
(A,h2) T

as U is of shape A\; ® Ao. In the last step we have used the fondamental
multiplicative property of the Schur functions : s gu(z) = sa(z)s,(x).
Now, the Cauchy identity (16.4) for Schur functions yields

1 1
[A1] r+1 2 _ _ .
E u 5)\1<1 )SA1(17p7p 3o ) - | | d—1 1 +17
A1 d>1 (1 —up )T’—!— <u7p)oor
1 1
|>\2| (17‘—|—1) 1 2 — —
V7RIS sx.(1,¢,47,...) d—1\r+1 +1°
> I = = g

As |A1| = m, |\2| = n, we may write

2 (1 =)+ (3 p)n (@3 O Anlli 0]

n,m
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— Zu%mz D s, (1 )sa, (1, - )sa, (17 )sa, (1g, )

(A,A2) T
:Zt’" > aMlpelsy (17 sy (Lp, . )sa, (17 ) sx, (Log, )
r (A1,A2)

= ;tr (}\Zl ulsy (17 sy, (1, p, .. ))
(ZW 1T+1)SA2(1,q,...))

el 1 I 1
—~ (U5 D)oe T (03 )0’ Tt (U5D) oo (V5 @)

Next replace u/(1 —t) by v and v/(1 —t) by v. This yields
uo™ 1—t
Y, (tipq) =
D T Ak e 2 (e oy N (s T
B 1—t
C —t+ E((t - Du)E,((t—1)v)’

n,m

using the notation of the second g-exponential. Since E,(u)e,(—u) = 1,
we obtain:

Y G P S e e

#(0,0)
1-1

T T tep (L= tu)eq (1 — o)’

This proves identity (23.7).

There are two methods for proving identity (23.8): first, the iterative
method that has already been used for the proofs of Theorems 10.1,
20.3 and 21.1. The recurrence relation (23.4) is to be considered and the
summand to be combinatorially interpreted by introducing the notion of
the longest increasing rightmost factor. As one of the previous proofs could
be reproduced almost verbatim, the proof is omitted. The second proof
consists of constructing a bijection o — ¢’ of &,, 1., onto itself having the
property that

Ligneo = Ligneo’, imaj;o =inv;o’ (j =1,2).

Again, the bijection ® of Theorem 11.2 could also be used in the same
way as was done in Proposition 22.6. As the similarity is so strong, the
construction is omitted. []
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23.2. The Désarménien Verfahren. This method, based on the algebra
of symmetric functions, is quite effective for deriving congruence properties
of certain polynomials, especially the Eulerian polynomials and also the
bi-indexed Eulerian polynomials introduced in the previous subsection.

Take up again the notations introduced in § 14.3, especially formulas (ii)
and (ix) of Theorem 14.2, that merge into

(23.14) Huz)= |1 —uz)) ™ =exp ) " pT(x)7
where the “p” has been written in boldface as “p” to avoid confusion with
a further base denoted by “p.” Also recall that a partition of an integer
n is a non-increasing sequence A = (A1, Ag,...) or a word A = 1"™12™m2 |
(the multiplicative notation) with the meaning that A has m; parts \;
equal to 1, mo parts \; equal to 2, etc. As usual, to each partition A\ is

attached the constant

zy = 17122 omylme! L.
and the power symmetric function
PA(7) = P, ()P, () - - = pa(2)™ pa(z)™ - -

Finally, |A| = n means that X is a partition of n and the notation I(\)
stands for the number of parts of A.

Now for each partition A = 1122 .. of the integer n introduce the
polynomial:

(23.15) Y&(Q):=:Tif%f%?égjgg-==(q;q%1px(1,q,q2,---)

By induction on the number of distinct parts of A it is easily verified
that T (q) is a polynomial of degree n(n — 1)/2. In the following lemma
needed for deriving congruences properties for the polynomials Ty (q) we
denote the k-th cyclotomic polynomial by ®(¢q) with the convention that

Pi(q) =1—gq.
Lemma 23.2. Letn=ka+b (0<b<k—1). Then

(¢ Qn

—2 2" = k%! (q: do .
(1 — q’“)a a (Qa Q)b mo k(Q>

Proof. Write (¢; q)n = ( I1 (qkj+1;Q)k_1)(qk;qk)a(qk“+1;q)uxAs
0<j<a—1

¢*=1 mod ®(q), we have (gke+! kj+l.

;0)s=(¢;q)p and (¢ @) p—1=(q; Q-1
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When g = ( is a k-th primitive root of unity, ((;()s—1 = [] (1 -¢),
1<i<k—1
which is the value in X = 1 of the polynomial (1 — X*)/(1 — X) =
14+ X + -+ X*1 that is, k. Therefore, (¢;q)x—1 = k mod ®(q).
Moreover, (¢*;¢*), is divisible by (1 — ¢*)* and lim M =a! []
a—¢ (1 —q%)

Proposition 23.3. Letn =ka+b,0<b<k—1and A =1"12"2 .. be
a partition of n. Then the following congruences hold :

(i) if my # a, then Tx(q) = 0 mod Pk (q).

(ii) if mp = a, let \* = 1™ ... (k — 1)™=1(k + 1)™*+1 ... be the
partition of b derived from \ by deleting the my; = a parts equal to k.
Then

(23.16) Tx(q) = k%a! T« (q) mod ®x(q).

Proof. The proposition is an immediate consequence of the previous
lemma and the definition of T)(q) given in (23.15). []

Let F(u) be a formal power series in one variable u. As the two series
eq(u)e’ — 1 and e4(u)ey(v) — 1 have no constant term, it makes sense to
expand the following two series as

n m

()

(2317)  Fleg(w)e’ —1) = Y Jmmm,m(q);

n

(23.18) Fleg(uep(v) —1)= S — Ko (P, q)-

n>0,m>0 (q’ q)n (pap)m
Theorem 23.4. Let n = ka+b with 0 <b <k —1 and m > 0. Then

(23.19) Kiatb.m(q) = Kpm+a(q) mod P (q).
Furthermore, if 0 < m < k — 1, then

(23.20) Kprat+b,m(¢,0) = Kpm+tka(q,p) mod ®;(q) mod ®x(p),

where the double congruence means that the two congruences are to be
taken in succession.

Notice that the subscripts in the polynomials K are different in (23.19)
and (23.20), so that the first congruence is not a specialization of the
second one.
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Proof. Consider the following expansion in the variables v and v

(5o - Z ()

r>1 r>1
n
N N —m)! ™ by ()™
-y ( ),Umzun $ (N —m)! pi(2)™ pa(z)™
m 1lma2lme - 1ma 2ma
m=0 n>0 mi,ma,...
m+m>N, mi+ma+---=N-—m; L.m; +2.my+---=n.

_ N v o P ()
! E ; E .
0<m<N<ntm U IA|=n 2
I{(AN)=N—-m

Replacing the alphabet x by the successive powers of ¢ yields

pr(17Q7q27"'> N u" " (N)

(23.21) (E ' + v) > Y kWM (q),
K |7 Tn,m
r>1 " 0<m<N<n+m (4:¢)n m!
where
T
(23.22) EM@=N S ra)
b Z>\
A|=n
u$:N—m

When my, = a, then I(X) = [(\*) + a and z) = 2\~ k%a!, so that

Ty«
EM@=nN Y . 9 10d @4 (g).
)\*
A I=b

I(A*)=N—m—a
In particular by (23.22)

KN @=n Y I-(a)

IN*|=b A
I(A")=N—m—a
Therefore
(23.23) K yom(a) = K3 (g) mod @y(q).

Now, by (23.14),

e TT0 - - (TP))

. r
7>1 r>1

so that, if F(u) = Y cu’, we get
i>0

138



23. EULERIAN CALCULUS: MULTI-INDEXED POLYNOMIALS

Fleg(u)e’ =1) =) ci(eq(u)e’ — 1)’

i>0
Prlq, 6% ) ) )
Z (exp(Zu - +v 1
1>0 r>1
. N pT<17q7q27"') N
= Z o (urbrbidd )
N> r>1

[for some coefficients C'y (N > 0);]
C u ™
B DL Sy LT

|
N>0 = " 0<m<N<n+m (q’Q)” me
Z .

’I’L m

o (@) m!

n m

(%

n,m (),

n+m
Cn
N!
N=0
order N in the variables u and v. Hence, the congruence property for
K, m(q) is a consequence of the congruence property (23.23) satisfied by
the polynomials K éNn%(q) themselves.

where K, n,(q) = KﬁL{Vﬂ%(q), since the formal series (23.21) is of

The proof of (23.20) is quite similar. This time we start with the

T T
expansion of the series Z(u pr(z) +v'pr(y)
r
r>1
second alphabet. We have

S R BN R A

N
) , where y stands for a

r>1 A+B=N r>1
_ z”: < )(Z A'u‘ 'pA )(Z B,v'“'l)u ))
A+B=N I(N)=A I(u)=B
_ n, m p)\( )pu(y)
Y ey RERG)
n>0,m>0 [A|=n, |u|=m
ntm>N I(A)+(p)=N

Again, if we replace the alphabet = (resp. y) by the successive powers of ¢
(resp. of p), we obtain

(Z urpr(l,q,...)—7|:U7"pr<1,py.~-))N: 3 ( “n : f’m KN (q,p),

r>1 n>0,m>0
n+m>N

where
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(23.24) KN (g,p)=N! >
IX|=n, |u|=m
IN)+H(n)=N

In the last summation the sum of the lengths of the two partitions is to
remain constant, equal to N. We then use the bijection (A, p) — (A*, u™),
where pT is derived from p by adding a parts equal to k. We have

T (g T +\P
K =nt Y DT 4, g) mod ay(p)
IN|=b, |ul=mtka w
IA)+l(pT)=N

N
Klg 77’L)—|—ka (q p)

For the coefficients K, (g, p) of the series F(e,(u)eq(v) — 1) we also find

the expression
n—l—m

Kom(q,p) ZN, P)

for some coefficients Cy (N > 0). The congruence property for the
K,.m(q,p) follows from (23.24). []

23.3. Congruences for bi-indexed polynomials. We apply the tech-
niques of the previous subsection to the sequence of the bi-indexed Eule-
rian polynomials (in two variables) A,, n,(,q) defined by identity (23.5).
Notice that it has two specializations

(2325) AH,O(L q) = in%n(t Q)7 AO,m(t7 Q) = %m(t)7

where "VA,, (¢, q) is the g-inv-Eulerian polynomial introduced in section 10
and %A, (t) = 1 if m = 0 and tA,,(t) (with A,,(t) being the traditional
Eulerian polynomial) if m > 1. In particular, A; (t,q) = Ao1(t,q) = t.
The recurrence relation (23.4) with ¢ = 1 provides the recurrence relation
for the polynomials A,, ,,, (¢, ¢) and shows by induction that

(23.26) Ay n(t,q) = ™Ag ma1(t, @) = Amyii(t)  (m>0).

Theorem 23.5. Let n and k be two positive integers and let n = ka + b,
0 < b < k—1 be the Euclidean division of n by k. Then the following
congruence holds:

(23.27) Aparpm(t,q) = (1 —t)FEDag, (1, q) mod §y(q).
Furthermore, if 0 < m < k — 1, then
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(23.28)  Akatb,m(t:4,0) = Apmira(t; ¢, p) mod ®x(q) mod Pr(p),
Fork=1,m=1:
(2329) Aa,l(t7 Q) = AO,a+1(t7 Q) = %a—‘,—l(t);
fork=2,b=0,1, m=0:

MAga1b(t,q) = Aozars = (1 —1)*Apa(t,¢) mod (1 + g)
(23.30) =(1—1)*%U44p(t) mod (14 q).

Proof. The generating function for the polynomials A,, ,, (¢, ¢) may be
rewritten as

Apm(t,g) u™ o™ N ;
Z (1 _ t)n—|—m (q; Q>n W = Z(ﬁ) (6q(u> eXpv — 1) .

n>0,m>0 i>0

By Proposition 23.4 the coefficients K, ,,,(q) := Ay m(t,q)/(1 — t)"T™
satisfy the congruence (23.19):

Aka+b,m(t7q> _ Ab,m—|—a(t7Q>

(1 — ¢)katbim = (1 — t)btmta mod ®(q).
In an analogous manner
Anm(t;qp) u” o™ to\? i
2 (L= (30)n BiP)m Z(l——t) (catwep(w) 1)

n>0,m>0 >0

and congruence (23.20) applies. []

23.4. The signed Fulerian numbers. Consider the g-inv-Eulerian poly-
nomials ™A, (¢,q) = Y ovcs, titdesoginve introduced in section 10 and
define the signed Fulerian polynomial to be

n

(23.30) B, (1) = AL (L 1) = B, 8,
k=1

The integers *¢"4,, , (1 < k < n) are called the signed Eulerian numbers.
Relation (23.30) shows that

(2331) Sg%n,k = ngn g,

where the sum ranges over all permutations o € G,, such that 1+deso = k.
Their first values are displayed in Table 23.1. Recall that %,,(¢) is the
generating polynomial for &,, by the statistic “1 + des” (see section 10).
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k=1 2 3 4 5 6 7
n=1]1

211 -1

31 0o -1

411 -1 -1 1

511 2 -6 2 1

61 1 -8 8 —-1 -1

71 8§ —19 0 19 -8 -1

Table 23.1

Theorem 23.10. Let *8"A,,(t) be the signed Eulerian polynomial defined
in (23.30). Then

(23.32a) B, (1) = (1 — 1) U, (1) ;
(23.32b) o1 (1) = (1 — )" YU, 41 (2).

Proof. 'This has already been proved in Theorem 23.5 with relation
(23.30), since %8™4,,(t) = ™A, (¢, ¢) mod (1 + ¢). Another proof consists in

starting with the recurrence relation (10.11) for the polynomials VA, (¢, ¢)
and let ¢ — —1 in that relation. As

. 2m . 2m +1 . 2m +1 m
lim | = lim ) = lim ] =1 .|,
qg——11 217 g——1 ) g—-1121+1 1
q q q
. 2m
lim , =0,
g——-11(2t1+1 q

we are led to the recurrences

]

(23.33) S8y, (1) = t(1 —t)>" 1 + Z <n) SEA, (¢) ¢ (1 — ¢)2n 12,

1<i<n-—1
(23.30) Ui (t) = 11— 7" + (”) i (8) (1 — 1)
1<i<n t
0<i<n—1 L

When ¢ — 1 in (10.11) we get the recurrence relation for the polynomials
A, (1), i.e
n ) *)

(23.35) Un(t) =t -t)" T+ > CL) U;(t)t (1 —t)" 1

1<i<n—1
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By comparing (23.33) and (23.35) we see that the polynomials (1 —
t)"%,, (t) satisfy the same recurrence relation as the polynomials 845, (t).
Hence (23.32a) holds. To establish (23.32b) an easy induction on n
suffices. []

Having the classical relations for the (unsigned) Eulerian numbers A,, j
at our disposal, as derived in (10.5)—(10.9), it is straightforward from
Theorem 23.10 to prove the following relations:

(23.36a) Aok = o1 — Ao 1 k-1
(2336b) sg%2n+1’k = ]{?Sgnflgmk + (2’1’L — k‘ -|— 2>Sg1}42n71€_1 3

together with the analogs of the Worpitzky formulas

3 (2” - ) By i = k"
1

7

Z (2n —1 + 2) Sg%Qn—l,k—i — k/,n’
1

and the polynomial relations
Sg%gn(t) = (1 — t)Sg%Qn_l(t);
Eon 1 (£) = (2n 4 1) £ %800 () + (1 — )°7A5, (8);

where 8"A/, (t) denotes the derivative of *8"y,, ().

24. The basic and bibasic trigonometric functions

By analogy with classical analysis start with the traditional Euler
identity

(24.1) er, = cosy, +isiny,,

where ey, is an analog of the traditional complex exponential. When we
choose ef, = eq4(iu) (resp. er, = ep(iu)eq(iv)), we obtain the definitions of
the ¢-sine, sin,(u), and g-cosine, cos,(u), (resp. of the p, g-sine, sin,, ,(u, v),
and p, g-cosine, cos, 4(u,v).) Of course, the other g-exponential E,(u)
could be used, but this does not lead to significantly different results.
The goal of this section is to define the other functions tan; and secy,,
to derive the recurrence formulas for the coefficients of their expansions
and, finally, to obtain combinatorial interpretations for the coefficients.

24.1. The basic and bibasic tangent and secant functions. First, re-
call some easy results on the p- or g¢-partial deriwvative. If A(u,v) =
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Alu,v;p, ) = Y, Apmu™0™/((p;0)n(q; ¢)m) is a (p, q)-bibasic series
n>0,m>0

in the variables u and v, define:
A —A
(24.2) 9, A(u,v) := 20 0) — Alpu,v),

A(u,v) — A(u, qv).

u

(24.3) 04 Au,v) =

The following relations are immediate

(24.4) 0p(A(u,v)B(u,v)) = A(u,v) 8, B(u,v) + A(pu, v) 9, B(u, v);

A(u,v)  B(u,v) 0, A(u,v) — A(u,v) 0, B(u,v)
(24.5) O B(u,v) B(u,v)B(pu,v) ’

B(pu,v) 0, A(u,v) — A(pu,v) 0p B(u,v)
(24.6) - B(u,v)B(pu,v) ’

and also the analogous relations for the g-partial derivative. If the series
A(u;p) and B(u;p) are p-basic series of the variable u, we speak of p-
derivatives. The above properties are similar and will not be restated.
Definition. The p-sine and p-cosine are defined by the identity
ep(iu) =: cosp(u) + 7 siny(u);
the p, g-sine and p, g-cosine by the identity

ep,q(iu, iv) 1= ep(iu)eqy(iu) =: cosp q(u) + @ siny, 4(u).

Proposition 24.1. The following identities hold:

(24.7) ep.q(—iu, —iv) = cosp 4(u,v) — i sin, 4(u, v);
ep.q(iu, 1) + e, o (—iu, —iv)
24 .8 — b9 ) p,q ) .
(24.) cosp g (u,) ‘ ,
) ep q(iu,iv) — ey o(—iu, —iv)
24.9 , — _b.q ) p,9q ) :
) siny, g (u, v 2

)
24.10) Op ep.q(au,v)
24.11) 0p sin, 4(au,v)

)

24.12) 0p €osp q(avu,v) = —a siny 4(au, v);

=aepq(au,v);
= o cosp ¢(au,v);

(
(
(
(

and analogous relations for the q-partial derivative. The identities for
ep(—iu), sin,(u), cos,(u) are obtained by letting v = 0.

Proof. As ep(iu) = cosp(u) + @ siny(u), relation (25.7) is proved
by direct calculation. Next, (24.8) and (24.9) are banal. For deriving
(24.10) remember that e,(au) = [[,5o(1 — cup™) ™, so that e,(pau) =
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(1 —au)ey(au). Then 9y ep(au) = aey(au). The last two relations hold
by linearity. []

Definition. The p-tangent, p-secant, p, g-tangent and p, g-secant func-
tions are defined by

sin, (u) siny, 4 (u, v)
24.13 tan, (u) := —2—~: tan, ,(u,v) == —2L 2~
( ) p( ) COSp(’LL> p,q( ) COSp’q(U,U>
1 1
24.14 secy(u) := ; secy ¢(u,v) ;= ———.
( ) p( ) COSp(’LL> pﬂ]( ) COSp’q(U,U>
Also define
1+ si
(24.15) Eul(u;p) := %(pu()lb) = secp(u) + tan, (u);
D
14 s
(24.16) Ful(u, v;p,q) i= 02000 o (0, 0) + tang, (0, v).

cosp,q(u, v)
Theorem 24.2. The following derivative relations hold:

(24.17) 0p Eul(u; p) = 1+ tan,(u) Eul(pu; p);
(24.18) 0p Eul(u,v;p,q) =1+ tan, 4(u, v) Eul(pu, v;p, q);
(24.19) 04 Eul(u, v;p,q) =1+ tany, 4(u,v) Eul(u, qu;p, q).

Proof. Relation (25.17) follows from (25.18) or can be proved in a
straightforward manner. As Eul(u,v;p,q) = Eul(v,u;q,p), it suffices to
prove the first of those two relations. By (24.6)

1 + siny, 4(u, v)

O cosp,q(u, v)
o8y ¢(pu, v) Op(1 + siny, 4(u,v)) — (1 +siny 4(u,v)) Gy cosp 4(u, v)
- cosp,q(u, v) cosp q(pu, q)
€08y, q(pu,v) cosy (u,v) + siny 4 (u, v) +sing, 4 (u, v) sing, 4 (pu, v)
B coSp,q(u, v) cosy 4(pu, q)
Thus,

1 +siny o(u,v) 14 sing, 4(u, v) 1 + sin, 4(pu, v)
coSp,q(u, v) a coSp,q(u,v)  cosp4(pu,v)

= 1+ tany, 4 (pu, v) Eul(pu,vip,q). []

Fp
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Denote the expansions of Eul(u; p, ¢) and Eul(u,v;p, q) by

(24.20) Eul(u; p) Z Eul, (
n>0 )”
u” v’
(24.21)  Eul(u,v;p,q) := Z Eul,, . (p, q) . ;
S0 (25 P)n (¢ @)m
so that
(24.22) tan, (u) = Eul® (u; p) := Z Eul,(p) ———
n>0,n odd (p p)
Um
(24.23) tan, ,(u) = EulOdd(u,v;p, q) == Eul,, o (p, q) )
o n>oz;>0 (p;p) (4 9)m
n+m odd

Proposition 24.3. The coefficients Eul,, (p) (n > 0) and accordingly the
function Eul(u; p) are inductively defined by the following two relations:
(i) Eulo(p) = Euls(p) = 1;

(ii) the recurrence formula valid for n > 1

n
(24.24) Eul,1(p) = E [ } p" % Eul,(p) Eul,,—.(p).
a
0<a<n P
a odd

The coefficients Eul,, ., (p, q) (n > 0, m > 0) and accordingly the function
Eul(u, v;p, q) are inductively defined by the following three relations:

(iii) Eulo,o(p) = Eulo,1(p,q) = Eul o(p, q) = 1;
(iv) the recurrence formula valid for n > 1

n —a
(24.25)  Bulpyio(pg) = ) Hp” Euly,0(p, q) Eulp—a0(p, q).

0<a<n P
a odd

(v) the recurrence formula valid for n +m > 1
(24.26)

n m m—
EUIn,m—Fl (p, Q) = Z |:CL:| |: b :| q b Elﬂa,b(pa Q) Elﬂn—a,m—b(pv Q>
0<a<n,0<b<m p q

Proof. Go back to identities (24.17) and (24.19), expand both sides
and write that coefficients of the same monomial are equal on both

sides. []
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When (24.18) is taken into account, conditions (iv) and (v) can be

replaced by

(iv’) the recurrence formula valid for m > 1

(24.25")

Eulo,m+1(p, ¢) = Z

m
[ b} q"™ " Eulg 4(p, q) Eulg,;m—s(p, q).-
q

0<b<n
b odd

(v') the recurrence formula valid for n +m > 1

(24.26')

EUIm—Fl,n(pa Q) - Z

n| |m —a
u [b} p" " Euly 4 (p, q) Eulp—_a m—s(p, ).
p q

0<a<n,0<b<m
a+b odd

Finally, notice that both (24.25) and (24.25") are the same recurrence
formulas as (24.24).

As Euly(p) = Eul; (p) = 1, all the coefficients Eul,,(p) can be determined
by means of formula (24.24). The first values are the following:
Euly(p) = Euly(p) = Eula(p) = 1, Elﬂg( ) = p(l + p),
Buly(p) = p(1 +p)° +p*, EU15( ) =p*(1+p)*(1 +p?)?,
Eulg(p) = p*(1 +p)>(1 + p* +p*) (1 + p+ p* + 2p%) + p'?,
Eulz (p) = p*(14+p)*(14p?) (1+4p%) (1+p+3p>+2p°+3p* +2p°+ 3p°+p"+p°).

The first polynomials Eul,, ,,(p, ¢) can be derived by menas of Propo-
sition 24.3. Because of the symmetry we only list the polynomials
Eul,, m (p, q) such that n < m.

EUIO 0(p7
Eulo 3P

(p,

Eulg 4(]97
Euls 2 (p,
EUIO,5(p7
EUIQ,B(p7
Eulg 6(p,
Eul; 5(p,
Euls 4(p,
EUIB,B(p7

q) =
q) =
) =
) =
) =
) =
) =
) =
) =
)

q
q
q
q
q
q
q
q

Euly 7(p, q)

Euh 6( )
Eu12 5( )

Eulp1(p, q)
q(1+q);

= Eulo2(p, ¢) = Euli,1(p,q) = 1;
Euly 2(p,q) = 1+¢;

q(1+9)2+¢* Eulis(p,q) =1+2q+2¢%
2+p+q+pq;

q (1 +q)2(1+¢*)?%  BEulia(p, q) = 2¢(1 + ¢)*(1 + ¢*);
(1+p)(1 +Q)3;

q (1+Q) (1+¢*+¢q )(1+Q+q +2q )+ q'%
(3q +6q -|—10q -|—13q -|—12q -|—9q +6q+2)q,
3q +3pq -|—7q +6pq +7pq -|—8q +9q -|—7pq +4pq+5q+p+1;

=2p°q+2p°¢° +p°¢® +p° +4p® + 8p°¢* + 8p* ¢+ 2p°¢* +dp +

8pq® + 8pq + 2pg® + 4% + 4q + 2 + ¢*;

= q3(1+q)2(1-|-q2)(1+q3)(1+q+3q2+2q3+3q4+2q5+3q6+

A T+ %);
(1491 +¢*)(1+¢*)(3¢" + 3¢ +5q + 3¢+ 3);
( +p)(1+¢)*(1 + ¢*)(3¢* + 4¢° + 3¢® + 4q + 3);
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Eulz 4(p,q) = (1 +p)(1 +¢)*(1 + ¢*)
x (¢*p* + pg® + ¢* + 5qp + 3qp* + 3¢+ p* + p+ 1).

24.2. Alternating permutations. We now use formula (24.24) to show
that the polynomials Eul,, (p) are generating polynomials for sets of permu-
tations, called alternating, by the statistic “inv” (and also by “imaj”).

Definition. A rising alternating (resp. falling alternating) permutation
is defined to be a permutation ¢ = o(1)...0(n) having the following
properties:

(1) < o(2), 0(2) > 0(3), 0(3) < o(4), etc. in an alternating way
(resp. o(1) > 0(2), 0(2) < 0(3), 0(3) > 0(4), etc. in an alternating way).

By DR, (resp. D,,) is denoted the set of rising alternating (resp. falling
alternating) permutations of order n.

One of the consequences of the following theorem is the fact that the
number of rising alternating (resp. falling alternating) permutations of or-
der n is equal to Eul,, (1). Referring to the table of the polynomials Eul,,(q)
given above, we see that: Eulg(1) = Eul;(1) = Eulz(1) = 1, Eul3(1) = 2,
Euly(1) = 5, Eul5(1) = 16, Eulg(1) = 61. The numbers Euly, (1) (resp.
Euly,11(1)) are called tangent numbers (resp. secant numbers) and have
been combinatorially studied for decades. The polynomials Eul,,(¢) appear
as g-analogs of those numbers.

The rising alternating permutations for n = 1, 2, 3,4 are the following;:
1:;1,2;1,3,2;2,3,1;1,3,2,4;1,4,2,3;2,3,1,4;2,4,1,3;3,4,1,2.

Theorem 24.4. For every n > 0 the polynomial Eul,,(p) is the generating
function for the rising alternating permutations of length n by the number
of inversions. In other words,

Eul,(p) = Z pinve,

c€EDR,
When n is odd, we also have

Eul,(p) = Z pnve,

oc€D,

Proof. The result is banal for n = 0, 1 and 2. For n > 2 consider
the set Sj41,441 of rising alternating permutations o of order n 4 1 such
that n + 1 is in the (a + 1)-st position (i.e., o(a + 1) = n + 1) with a
odd. Such a permutation is characterized by the two rising alternating
subpermutations o’ = o(1)...0(a) and 6" = o(a+2)...0(n+ 1) that do
not contain n + 1. The inversions of ¢ fall into four groups:

148



24. THE BASIC AND BIBASIC TRIGONOMETRIC FUNCTIONS

(a) the inversions that correspond to the pairs of letters whose first
letter is in ¢’ and the second one in ¢”; if follows from Proposition 4.3

that their generating polynomial is equal to [Z]p;

(b) the n — a inversions between n + 1 and each letter of ¢”;

(c) the inversions inside ¢’; by induction their generating polynomial is
equal to Eul,(p);

(d) the inversions inside ¢”’; their generating polynomial is equal to
Eul,,_4(p).

The generating polynomial for 5,11 41 is then equal to

invo Nl n—a
Z q = L}q Eul,(p) Eul,—q(p).

0ESn+1,a+1
Hence,

B = 3 |7 0 Bl Bl (o),

0<a<n,a odd

that is exactly the induction formula (24.24).
When n is odd, the transformation rc, already introduced (see the end
of section 12), that sends the permutation o onto the permutation rco

defined by
rco(i):=n+1—on+1—-14) (1<i<n),

maps DR,, onto D,, in a one-to-one manner. Moreover, under the trans-
formation the number of inversions “inv” remains alike. This proves the
second part of the theorem. []

Saying that a permutation o is rising alternating (resp. falling al-
ternating) is equivalent to saying that Ligneoc = {2,4,6,...} (resp.
Ligneo = {1,3,5,...}). Hence, Corollary 11.5 implies the following propo-
sition.

Proposition 24.5. For every n > 1 we have:

Z pinva _ Z pimaja and Z pinva _ Z pimaja.

oc€EDR, c€DR, c€D,, oc€D,

24.3. Combinatorics of the bibasic secant and tangent. In section 23
we have studied the class of the bi-indexed Eulerian polynomials defined
by

An,m<t,p, q) = Z tl-l—des innvl qunv2 o
066n+m
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As the statistic “inv” (also the statistic “imaj”), when defined on the
subset of alternating permutations, leads to a combinatorial interpretation
of the ¢g-tangent and ¢-secant numbers, the natural question arises: what
can be said about the polynomials

invy, o an O’ invy o IHV g
(24.27) Dy (p,q) = Y p™" 27 Epm(piq) =) _p™ ’
UEDRn+m O'EDn+m

when the pair (invy, invy) is restricted to the subset DR, 1, of the rising
(resp. the subset D, 1, of the descending) alternating permutations. No
use keeping the variable t as all the permutations in DR, ., (resp. Dpym)
have the same ligne of route, i.e., {2,4,6,...} (resp. {1,3,5,...}).

Again, let (n,m) be an ordered pair of nonnegative integers. By
convention, Dy o(p,q) := 1. Let n +m > 1 and let ¢ be a permutation of

order n + m. The statistics “inv;” and “invy” (see Theorem 23.1) can be
redefined as follows:

invyo:=#{(i,j):1<i<j<n+m,n>o(i)>o(j) > 1},
invgo :=#{(4,j):1<i<j<n+m,n+m2>o0(i) >o(j) >n+1}.

To emphasize the fact that inv; and inve are defined by means of the
ordered pair (n,m), we also use the notations:

(n,m) . (n,m)

inv, = invy; invs = invsy .
As has been defined in § 24.1,

Eul(u, v;p, q) = secp,q(u, v) + tany, 4 (u, v)

- Z Euln,m(p7 Q>

n>0.m>0 (0;P)n (6 Om

The purpose of this subsection is to prove the following theorem.

Theorem 24.6. For each pair of nonnegative integers (n, m) we have:

(2428> Dn,m(pa Q) = Euln,m(pa Q);
when n + m is odd, we further have:
(24.29) Epm(p;q) = Euly 1 (p, 9);

Before proving the theorem and making some comment about the
symmetry of the polynomials Eul, ,,,(p,q) let us establish the following
lemma.
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Lemma 24.7. Let o be a permutation of order n+m > 1 and ¢/ :=rco.
Then
(invgn’m), invén’m)) o= (invgm’n), invém’n)) o’

Proof. By definition of r and ¢ we have
dn+m+1—i)=n+m+1-0() (1<i<m-+n).

Hence the following statements are equivalent:

i) 1<i<j<n+4+m & n>o@)>oc(j)>1;

i) 1<n+m+1l—j<n+m+1l—-i<n+m
&n+m>n+m+1—o(j)>n+m+1—-0(i) >m+1;

i) 1< < <n+m & n+m>d(j)>c(')>m+1 with
i=n+m+1—7,7=n+m+1-—1i;

Thus, invgn’m)a = invém’n) o’. Also, invén’m)a = invgm’n)
muting the roles of n and m. []

o’ by per-

If o is a rising alternating permutation of order n+m, then ¢’ =rco is
rising alternating or descending alternating, depending on whether n +m
is even or odd. By the previous lemma we then have

Dpon(q,p), if n+m is even;

(24.30) Drm(p0) = {Em,n(q,p), if n+m is odd.

Thus, when n +m is even, the symmetry of the polynomials D,, »,(p, q) is
obvious combinatorially. When n + m is odd, it is only a consequence of
Theorem 24.6.

In order to prove identity (24.28) of Theorem 24.6 we show that the se-
quence (D,, m(p, q)) satisfies the relations (iii), (iv), (v) of Proposition 24.3
that uniquely define the sequence (Eul,, ,,(p, ¢)). This is the content of the
next proposition.

Proposition 24.8. Let D, ,,(p,q) be the generating polynomial for the
set DR+ of the rising alternating permutations of order n + m by
the two-variable statistic (invy,inve). Then the sequence (Dy m(p,q))
(n > 0,m > 0) is inductively defined by the following three relations:

(iii) the initial conditions Dy o(p,q) = D1,0(p,q) = Do1(p,q) = 1;

(iv) the recurrence formula valid for n > 1:

n —a
Dpyro(pa) = Y u P""“Da,o(p, q) Dn—a,0(p; 9);
p

0<a<n,
a odd

(v) and the following formula valid for n +m > 1:
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m

b

(24.31) Dy i1 (pra) = ) mp

0<a<n,0<b<m
a+b odd

:| qm_bDa,b(p7 q)Dn—a,m—b(p7 Q)
q

Proof. Relation (iii) is banal, while relation (iv) is the recurrence
formula for the p-tangent or p-secant number derived in the previous
subsection.

Let 0 = 0(1)o(2)...0(n+m+ 1) be a rising alternating permutation
of order (n +m + 1). As the permutation starts with a rise (1) < o(2),
the letter (n+m+ 1) in the word o occurs in an even position, say, 2k + 2
(k> 0). Let

1 <2k+1,1<0(l) <n};

1<
1<I<2k+1,n+1<o()<n+m};

Also, let #A := a, #B = b, #C = c=n—a, #D :=d = m — b,
so that a +b = 2k + 1 and ¢ +d = n+ m — (2k + 2). The two words
o':=0(l)...0(2k+1) and 0" := 0(2k+3)...0(n+m+1) are alternating
permutations of the sets A + B and C' + D, respectively. The reduction
of ¢’ is defined to be the permutation 7/ = 7/(1)...7'(2k 4+ 1), where the
letter 7/(1) is equal to m if and only if o(l) is the smallest m-th letter
of A+ B. The reduction 7" = 7"(1)...7"(n+m+ 1 — 2k — 2) of 0" is
defined in the same way. Of course, both 7" and 7" are rising alternating
permutations.

Now o is completely characterized by the four-sequence (A, B, 7', 7").
The inversions of o of the formn > o(i) >0(j) > 1 (1 <i<j<n+m)
are of three kinds:

(i) 1 <i<j<2k+1; they are counted by invga’b) /5
(ii) 2k + 3 <i < j < n+ m; they are counted by invgc’d) 7'’

(iii) 1 <1< 2k+2<j<n+m+1; using the notations of §4.4 they

are counted by inv(y(A)y(C)).

Thus,
inv (™™ = invi®® 7/ 4+ inv{eD 7 4 inv(y(A)y(C));
and in the same way

invgn’m) = invga’b) '+ invgc’d) 7" +inv(y(B)y(D)) + d.

The “d” that has been added takes the inversions o(2k +2) = n+m >
o(l)>n+1(2k+3<I1<n+m+1) into account.
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When the pair (A, B) is fixed, so are the ordered partitions (A, C') and
(B, D) of [n] and [n + 1,n 4+ m], respectively. Hence

s (ab) s . (eid) _iro. o (asb) s . (c,d) i
v 7' +inv 7' _inv T +inv T —
E plﬂ 1 1 q 2 2 = Da,b<p7 Q)Dc,d(]% q)

/7

T/,

Now, when A (resp. B) runs over all subsets of [n] (resp. of [n+1, n+m]) of
cardinality a (resp. b), the pairs (A, C) and (B, D) range over all ordered
partitions of [n] and of [n + 1,n 4+ m], respectively, into two blocks such
that #A4 = a, #C = ¢, and #B = b, #D = d. By Proposition 4.3

. . n m
T PO g BN { } [b} ..
(4.B) WplPlq

The final summation with respect to a, b yields (24.31). []

For proving (24.29) consider (24.31) when n + m is odd. Using (24.30)
we can rewrite (24.31) as

m n _
Enp1m(p ) =) lb] [ ] 4" "Eb,a(q ) Em—bm—a(d,p)-
q p

a
0<b<m,0<a<n
b+a odd

This is exactly the recurrence formula (24.16") written for Eul,, 11 (g, p).

As the analogous relations (iii) and (iv’) hold for E,, ,(0,p), identity
(24.29) is proved. []
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Exercises and examples

1. Rogers-Szegé Polynomials. The product exp(zu) exp(u) is the ex-
ponential generating function for polynomials H,, (x), whose expression is
easy to derive.

In the same manner, the product of the two g-exponentials e, (zu) e,(u)
is the factorial generating function > H,(z,q)u"/(q; q)n for polynomials
H, (z,q), called the Rogers-Szeg6 polynomials. They can be expressed by
means of the g-binomial coefficients.

We have Hapi1(—1,q) = 0, Han(—1;q) = (¢;¢*)n, then Hy(q*/?,q) =
(—q'/?;¢*/?),, and finally the induction formula

Hpy1(z,q) = (1 +2)Hp(z,q) — (1 = ¢")x Hp—1 (2, q).

2. The Ramanujan sum. The sum in question is:

io (@ @n o _ (08 @)oo (90”015 @)oo (45 @)oo (b1 @) oo
(i) (s @)oo (ba™ w5 @)oo (b5 @)oo (g0 15 @)oo

On the left-hand side each term is a series in the variable ¢ and is defined
for each integer, positive and negative. In the proof of the identity there
will be no ambiguity in the definition of the sum.

Start with the sum

—+o00

h(b) _ Z (bqn;Q)OOun _ (ba q)OO +§

(ag™; q) oo ()

(a

;q)nun
(b; @)n

n—=——oo n=—oo

and use the trivial relation (bg";q)e = (1 — bg™)(bg"™; q)0o. We obtain
the g-recurrence

h(b) = (1 —ba™") h(bq) + ba " u=" h(b),
and by itération

(ba=t;q)n

h(b) = h(bqn)m
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for every n > 0. As soon as n > j + 1 the latter identity implies that the
coefficients of u‘q’

(ba™ ;)
(ba=tu=1;q) oo

(ba™"1q)n
(ba= =15 q)n
are identical. Hence, h(b) = h(0)(ba™!;q)so/(ba  u"t;q)oe and also

h(q) = h(0)(qa™%;q)oo/(qa u1; q)s. Going back to the original defi-
nition of h(b) and using the g-binomial theorem we obtain

in  h(bg") and in  h(0)

(@90 (a5 @) oo
o) = (a3 @)oo (43 @)oo

By combining the last three formulas in an evident manner we obtain the
Ramanujan sum.

3. A maj-inv bijection for permutations. Let x = (x1,x2,...,2,) be
the inv-coding of a permutation o € &,,. With x,,+1 := o(n+1) = 0 define
a sequence y = (Y1,Y2, -, Yn) by ¥i := i — xip1 +ix(o(i) > o(i+ 1))
for each ¢ = 1,2,...,n. Then the sequence y is subexcedent, the mapping
x + gy is bijective and toty = y; +y2 + -+ - + ¥, is equal to majo. Let o’
be the permutation whose inv-coding is y. Then o — ¢’ is a bijection of
S, onto itself having the property: majo = invo’.

4. A numerical example. Calculate the inv-coding and the maj-coding
of 0 = 259478361 and the number of inversions and the Major Index of .

Find the permutations having for inv-coding and maj-coding the
subexcedent sequence x = 001304645, respectively.

5. Another maj-coding. Let 0 = o(1)0(2)---0(n) be a permutation.
With o(n + 1) := 400 define a sequence z = z129 -+ - z,, by

zi=#{1<j <ilo(j) €lo(i),oli+ DI},

using the notation ] ...] for a cyclic interval (see section 2).

(a) The sequence z is subexcedent.

(b) Determine the sequence z that corresponds to o = 259478361.

(c) The transformation ¢ — z is invertible. Find the inverse of z =
001304645.

(d) Let © = zyx9- -2, be the inv-coding of ¢ and x,41 = 0. The
following identity holds:

2 =Ty — Tig1 +ix(05 > 0iq1).

(e) We have: z1 + 23+ - -+ 2, = majo. Thus, the transformation o — y
defines another maj-coding.
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6. A counter-ezample. For each permutation ¢ = o(1)o(2)---0(n)
define a sequence y = y1y2---yn by y; := (i — 1)x(c(i — 1) > o(i)). The
transformation o +— y is not a maj-coding although toty = majo.

7. Number of vector subspaces. Let q be the power of a prime number
and let F, denote the field having ¢ elements. The number of vector
subspaces of dimension n of the vector space FqN T is equal to [N :”}
First, the number of sets {vy,vs,...,v,} of n vectors vy, va, ... , v, of

F,N*" that are linearly independent, is equal to

q(N-i-n)(N-i-n—l)/Q(qN-l-n o 1)(qN+n—1 - 1) . N+1 1);

(g

then, the number of such sets that generate a given vector subspace of
dimension n in F, /N is equal to "2 (g — 1) (" = 1) (g —1).

8. The use of the q-Pascal Triangle. Derive the expansions of 1/(u;q)n
and of (—u;q), (formulas (3.9) and (3.10)) by means of the ¢-Pascal
Triangle formulas (3.5) and (3.6).

9. Nondecreasing sequences of integers. Calculate the generating func-
tion for nondecreasing sequences of N integers at most equal to n by “tot”
(formula (4.5)) by using the ¢g-Pascal Triangle formulas (3.5) and (3.6)

10. Binary words. Calculate the generating function for binary words
of length (N + n) having N letters equal to 1 and n letters equal to 0 by
their number of inversions (formula (4.17)) by using the g-Pascal Triangle
formulas (3.5) and (3.6)

11. Partitions of integers and q-binomial coefficients. The interpreta-
tion of the g-binomial coefficients in terms of partitions of integers (see
§4.1) makes it easy to prove the following identities.

(a) By classifying the partitions in at most n parts, all being at most
equal to N, according the size of the smallest n-th part (possibly 0) we

get:
i[N j—l—n 1] jn_{N—i—n]
=]
7=0
(b) Also
i{nJerm—lnLN—j}qjm_{m+n+N]
pard A N-—j N

= (_1>NqN(n+m)—|—N(N—|—1)/2 {—m ;Vn — 1} ‘



D. FOATA AND G.-N. HAN

12. The Eulerian numbers. They are denoted by A, ; and are defined
by the recurrence relation (see (10.8))

<E121) An,k = (k -+ 1)An—1,k + (n — k)An—l,k—l (1 < k <n-— 1) )
Apo=1 (n>0); Ak =0 (k>n).

Their first values are shown in Table E12.1.

k= 0 1 2 3 4 5 6
n=1 1

2 1 1

3 1 4 1

4 1 11 11 1

5 1 26 66 26 1

6 1 57 302 302 54 1

7 1 120 1191 2416 1191 120 1

Table E12.1

(a) For each n > 0 we have > A, =n!and A,y = Ay n_1-k-
k>0
(b) The number of descents, deso, of a permutation o = o(1)...0(n)
is defined to be the number of integers j such that 1 < 7 < n —1 and
o(j) > o(j + 1). For every k > 0 and every n > 0 the number A, j is
equal to the number of permutations o € G,, having k£ descents.

(¢) The Eulerian polynomial A, (t) is defined by A, () := > A, it
0<k<n—1

As said in Definition 10.2, relations (10.7) and (10.8) are equivalent.

13. The Eulerian Polynomials. Consider the sequence (A, (t)) (n > 0)
of formal series in the variable ¢t (they will appear to be polynomials and
more precisely the Eulerian Polynomials defined in Exercice 12) defined
by

Anl(t o
(E13.1) ﬁ ::;Otz (j+1)™

(a) If D designates the derivative-operator for the formal series, we
have: A, (t) = (1+ (n—1)t)A,—1(t) +t(1 —t).DA,_1(t) (n>1).

(b) For n > 0 let A,(t) := Y. A, xtk. Then the relations listed in
(E12.1) hold. k20
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(c) It follows from the definition A, (t) = > A, xt* and (E13.1) that
k>0

A= % (—1)i(k—i+1)”<n:_1).

0<i<k
(d) The “inverse” of the previous formula is the Worpitzky formula:
k
" = Z (x + )An,k.
0<k<n—1 N

[Start with the expansion of A, (¢)(1 —t)~(™*1) then use Exercise 12 (a)
and (d) to recover (E12.1).]
(e) The exponential generating function

u” 1—-t
;OA”“)H =t exp(u(t — 1))

is a consequence of (E13.1). Thus, the five definitions (10.5)—(10.9) are
shown to be equivalent.

14. A less unwieldy definition for the Denert statistic. The Denert
statistic “den” has been defined in section 2 by means of the cyclic
intervals. There is an alternative definition that is the following. Let
o = o0(1)o(2)...0(n) be a permutation of order n. If 1 < i < n—1
and o(7) > i, say that i is an excedence-place for o, and o(i) is an
excedence-letter for o. Let 11 < i < --- < i; be the increasing sequence
of the excedence places and j; < jo < -+ < jp—kr the increasing
sequence of non-excedence places. The subwords Exco = o(i1)...o(ix)
and Nexco = o (j1)...0(jn—k) are referred to as the excedence-letter and
non-excedence-letter subwords.

Let ¢ = o(1)o(2)...0(n) be a permutation. Let i1, ..., ix be its
excedence-place sequence. Then the Denert statistic of o is also given by

deno =141 + 99 + -+ -+ i + inv Exco + inv Nexc o.

123456789 .
715492638) shown in §2.3
we have i1 = 1, io = 3, 13 = 5, Exco = 7,5,9, Nexco = 1,4,2,6, 3,8,
invExco =1, invNexco = 3, and then denc =14+3+5+1+4+ 3 = 13.

For instance, for the permutation o = <

15. Euler-Mahonian Statistics. In Definition 10.1 the ¢g-maj-Eulerian

majA(t,q) = Y. t*MaJA, 1 (q) have been introduced in four different ways.
k>0
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To simplify the notations the superscript “maj” will be deleted in this
Exercise. For an easy reference rewrite the recurrence for the coefficents

Apk(q) = ™A, 1 (q):
(E15.1) A () = [k + g An_1k(q) + ¢" [n — klg An_1 k—1(q),

for 1 < k < mn — 1 with the initial conditions A4, ¢(¢) = 1 for n > 0 and
Apnk(q) =0 for k > n.

Let £ = (E,) (n > 0) be a family of finite sets such that card E,, = n!
for all n > 0. A family (f,9) = (fn,9n) (n > 0) is said to be FEuler-
Mahonian on E, if fo = go =0, f1 = g1 = 0 and if for every n > 2 both f,
and g, are integral-valued mappings defined on E,, and if there exists a
bijection 1y, : (w', j) — w of E,,_1 x[0,n—1] onto E,, having the following
properties:

gn(w> = gn—l(w/) +7;

(E15.2) £ (w) = frno1(w), if0<j< froa(w);
T far () + 1, i fa (W) +1<i<n—1.

Every such a pair (f,, g,) is called a Fuler-Mahonian statistic on E,.

(a) Let (f,g) be a Euler-Mahonian family on E and for each triple
(n,k,1) let A, r; be the number of elements w € E,, such that f,(w) =k
and g, (w) = [ and let A, k(q) := >, Ankiq". Then (A, x(q)) satisfies
recurrence (E15.1).

(b) On the set SE,, of the subexcedent sequences of length n (see
Proposition 2.1) we know that “tot” is Mahonian. Further, define the
Eulerian value “eul z” of a sequence z = (z1,...,2,) € SE, by eulxz =0
if x is of length 1 and for n > 2

oulz = eul(z1,...,Tn 1), if z,, <eul(zy,...,2p_1);
Tl eul(xy, .. o)+ 1, ifx, >eul(zy,. ., o) + 1.

Then the pair (eul, tot) is a Euler-Mahonian statistic on the family (SE;,)
(n >0).

(c) The pair (des, maj) is a Euler-Mahonian statistic on the family (&,,)
(n>0).

(d) Let n > 2 and ¢/ = z1...2,-1 be a permutation having k
excedences, that is, there are k integers ¢ such that 1 < ¢ < n —1 and
i < z;. In short, exco’ = k. Let (x;, > --- > x;,) be the decreasing
sequence of the excedence values x; > i and let (z;,,, <--- < wx;,_,) be
the increasing sequence of the non-excedence values x; < i. By convention,
Liy = N.
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Define ¢, (0’,0) := 122 ... xp_1n. If 1 < j <n—1, let y; := min{x;,, :
z;,, > x;; }. Replace each letter z;,, (1 <m < j)in ¢’ such that z;,, > x;,
by x;,,_,, leave the other letters alike and insert y; into the x;,-th position
in o’. Let 0 = 1,,(0’, j) denote the permutation derived by that procedure.

For example, 0’ = 32541 has k = 2 excedences 13 =5 >3, 21 =3 > 1
(in decreasing order) and three non-excedences x5 =1 < 5, x5 = 2 < 2,
x4 = 4 < 4 (in increasing order), so that (i1,1i2,13,14,15) = (3,1,5,2,4).
With j = 1 we have i; = 3 and x3 = 5. For getting v¢s(c’, 1) replace
xi, = b by x;, = 6, leave the other letters alike and insert x;, = 5 into the
x;,-th = 5-th position. Thus, ¥g(c’,1) =326451.

For j = 3 we have i; = 5 and 25 = 1. As j = 3 > k = 2, replace
xi, = 3 by x;, = 6, then z;, = z; = 3 by z;, = 5, leave the other letters
alike and insert z;, = z;, = 1 = 3 into the z;,-th = 1-st position to
obtain ¥g(0’,3) =352641.

With (f,g) = (exc,den) (see section 2) properties (E15.2) hold for i,
so that (exc, den) is a Euler-Mahonian statistic on the family (&,,) (n > 0).

Let us illustrate the latter property with the running example. The
statistic “den” is calculated by using the definition of Exercice 14. We have:

' = <;§§j?), so that exco’ = 2 and deno’ = (1 +3)+0+2 = 6. Next

Ye(o’,1) = (;ggigf), so that excig(o’,1) = 2 and denvg(o’,1) =
o, . o (123456

(1+3)4+0+3=7=deno’+1. Finally, ¢4(0’,3) = (352641 , so that

exctg(o’,3) =3 and dens(0’,3) =(14+2+4)+0+2 =9 =deno’ + 3.

(e) Let (f,g) be a Euler-Mahonian family on F = (F,,). For each
w € B, (n > 2) let ¥, (w) := (W, jn), ¥, (W) = (W, jn_1),
o Yy N w2 = (w™Y) jy) and j; := 0; the sequence ¥(w) :=
(1,72, -+ Jn—1,Jn) is subexcedent and ¥ is a bijection if E, onto SE,
such that f(w) = tot ¥(w) and g(w) = eul ¥(w). The bijection ¥ is said
to be an (f, g)-coding E,,.

Let ¥(des,maj) (r€SP. W(exc,den)) be the (des,maj)-coding (see ques-
tion (c))) (resp. the (exc,den)-coding (see question (d)) of &,. Then
O = v} .~ 0 Wieveden) IS a bijection of &, onto itself having the

(des,maj) (exc,den)
property: (exc,den)w = (des, maj) O(w).

16. Binary words. Let BW(N,n) be the set of binary words of length
(N +n) containing N times 1 and n times 0. If z = z1x5 ... 2N, is such
a word, define

rise x 1= Z X(z; < z;41) and rmajz = Z ix(T; < xig1).
1<i<N+n—1 1<i<N+n—1
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Next, let DESx := des x 4 risez and MAJ z := majx + rmaj x.
(a) For each of the words in BW (2, 3) write the values of the six statistics
“deS” , C(maj77 , (Crise” , “rmaj” , “DES” , C(MAJ” .

b > g = [N:”]

zEBW(N,n)
(C) Z trise wqrmaj T _ Z tdes xqmaj T
x€EBW(N,n) 2EBW(N,n)

(d) For x € BW(N,n) let ' :== z129 - n1pn_1. Then

majx =risex + N =rmajx’ + N, if xyi, = 1;
rmajr =majxr +n =rmajx’ +n, ifxyy, =0.

N+n N + ¢
© 3 Qe { } "
2EBW(N,n) n 2 144

17. The Z-statistic is a Mahonian statistic. Two transformations are
described, the global cycling “gcyc” for manipulating the Major Index and
the local cycling “leyc” for dealing with the Z-statistic itself.

(a) Let m = (mq,ma,...,m,) be a multiplicity, that is, a sequence
of positive integers and R(m) be the class of all the rearrangements of
the word 1122 ... r™r. Let n be a rearrangement of m. Construct a
bijection €m n, defined on R(m), with values in R(n), preserving “maj.”
[Tt suffices to give the construction when m and n differ by two consecutive
letters * and y = x + 1; in other words, construct a bijection 6 of
R(ma,...,mg,my,...,my) onto R(mq,...,my, my,...,m).]

(b) The Z-statistic is defined, for each word w = z1x5 ... %y, by

Z(w) == Z maj w;j,

1<j

where w;; stands for the subword of w made of all the letters 7 and j. For
example, for the word w = 2412131242, the subwords wio, = 2121122,
wyz = 1131, ... , are to be considered, the Major Indices are to be
calculated and their sum to be added up. Calculate Z(2412131242).

(¢c) For each word w = xjz9- -2, in R(m) and each letter =z =
1,2...,r the global cycling gcyc, (w) = y1y2 - - ym and the local cycling
leye, (w) = 2122 - - - 2, are defined by

) zi =1 x;—1, siz; > x;
r; —x+r, sinon. ' ¢ ’ ¢ ’

. Ti, six; < x;
. ;i — X, S1x; > X,
Yi ==
T, six; = .
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Let m® denote the multiplicity of gcyc,(w) and m, the multiplicity of
leyc, (w). Characterize those two multiplicities, that is to say, express m”
and m, as rearrangements of the sequence m = (mq, ma, ..., m,).

(d) For the word w = 2412131242 calculate the differences majw —
majgeycy(w) et Z(w) — Z(leyey(w)).

(e) If = z,, is the last letter of w, show that

majw — maj(geyc, (w)) = Mgy1 + Myto + - -+ m,.
(f) If © = =, is the last letter of w, show that
Z(w) — Z(lcyc,(w)) = myy1 + Mgyo + -+ -+ my.
(g) Construct a bijection of R(m) onto itself having the property
majw = Z(®(w)),

thus proving that the Z-statistic is Mahonian on each class of rearrange-
ments.

18. The t =1 Lemma. Let (b,) (r > 0) be a sequence of formal series
belonging to an algebra 2l of formal series in one or several variables. Let ¢
be a new variable; we can form the series b(t) := ) ., b,t", that belongs to
the algebra 2A[[t]]. ‘Let t = 1” in b(t) does not always make sense. However,
if the series ) b, converges for the topology of the formal series in 2,
that is, if there exists a € 2 such that the order o((by + b1 +---+b,) —a)
tends to +o0o with r, we can define “let t = 1 in b(t)” and then b(1) by:

b(1):==a =3, 54br

(a) Let (a,) (r > 0) be a sequence of formal series in 2 such that
lim, a, = a, that is, such that o(a —a,) tends to infinity with . We define:
b(t) == (1 —1t)- >, 5part". Then b(1) = a.

(b) Deduce (6.13) from (7.8).
(c) Deduce (12.3) from (13.7).

19. The dihedral group. On the group &,, of the permutations on

order n three transformations i, r and ¢ can be defined in the following way.

First, i is the bijection that maps each permutation o onto its inverse o~ *.

Write o as a linear word 0 = (1) ...0(n). Then, define

co=(n+1-0c(1)(n+1-0(2))...(n+1—0c(n);
ro:=o(n)...o(2)o(1).

We say that c is the complement to (n 4 1) and r the reverse image.
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(a) r=ici.

(b) The group acting on &,, generated by {i,c} is isomorphic to the
dihedral group D, of order 8 of the rotations of the square.

(c)rc=cr,ir=cietirc=rci.

(d) For each o € G,, the following relations hold: Ligneco = [n — 1]\
Ligneo and Lignerco =n — Ligneoc = {n —i: ¢ € Ligneo}.

20. Action of the dihedral group. By means of an example the action
of the dihedral group on several set-valued statistics, such as “Ligne,”
“Iligne,” the various extremum letter or place subsets (see §11.4) is
examined.

In Fig. E20 the dihedral group of order 8 is acting on the permuta-
tion o = 2,6,8,1,7,4,3,5, whose graph appears on the first square enti-
tled “Id”. The ligne of route, Ligne o, of o (the set of the “places” where
a descent occurs) is denoted by A. Here A = {3,5,6}. The inverse ligne of
route, Iligne o, of o (the set of the “letters” i occurring to the right of the
letters (i 4 1)) is denoted by B; here B = {1,3,5,7}.

The Right to left Maximum letter set, Rmalso, of o (the set of the
letters greater than all the letters to their right) is denoted by C. The
elements of Rmals o are the ordinates of the bullets “o”. Here C' = {5, 7, 8}.

The Right to left minimum letter set, Rmil o, of o (the set of the letters
less than all the letters to their right) is denoted by D. The elements of
Rmals o are the ordinates of the crosses “x”. Here D = {1, 3,5}.

Each graph corresponds to the action of an element Id, r, c, rc, i, ir,
ic, irc of the dihedral group on the permutation o. Notice that n — A
is to be understood as the set {n —x : * € A}. Under each graph the
ligne of route and the inverse ligne of route have been determined. Under
graph rc, for instance, Ligne = n — A and Iligne = n — B are to be read
Lignerco =n — A and and llignerco =n — B.

Id r
[ ] [ ]
O O
x |
o (0]
X X

Ligne = A Ligne = [n — 1]\ (n — A)

Iligne = B Iligne = [n— 1]\ B

Rmals = C Lmals = C

Rmil = D Fig. £20 Lmil = D
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rc

Ligne=[n—1]\ A

Nigne = [n — 1]\ (n — B)

Rmil=n+1-C
Rmals=n+1-D

Ligne=n— A
Iligne =n — B
Lmil=n+1-C
Lmals=n+1-D

i ir=ci
l *
X X
O (0]
[ ] [ ]
@) @)
Ligne = B Ligne = [n — 1]\ (n — B)
Iligne = A Iligne=[n—1]\ 4
Rmap =C Lmap=n+1-C
Lmap = D Rmap=n+1—-D
ic=ri irc=rci
@) @)
[ ] [ ]
O (0]
X X
3( -
Ligne = [n — 1]\ B Ligne=n — B
Higne = [n — 1]\ (n — A) lligne=n—A

Rmip = C
Lmip =D

Lmip=n+1-C
Rmip=n+1-D
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Notice that whenever the transformation “i” is applied the “1” for
“letter” is replaced by the “p” for “place”. Under graph i, for instance,
Rmap = C means that the R1ght to-left Maximum place of i is equal
to C, i.e., Rmapioc =C.

21. Variations on the cycle number polynomial. Let cyco denote the
number of cycles of a permutation o and let Cp,(x) := ) _2%°7 (0 € &,,).

(a) Then, Cp(z) =z(z+1)---(x+n—-1) (n > 1).

(b) As in Exercice 20 let Rmals o (resp. Rmil o) be the set of the letters
greater than (resp. smaller than) all the letters located on their right in o =
o(1)---o(n). Let Rmapo (resp. Rmip o) be the set of the places of those
letters, respectively. Recall that # Rmalso (resp. # Rmil o) designates the

123456
315624) we have
Rmalso = {6,4}, Rmapo = {4,6}. Rmilo = {1,2,4}, Rmipo = {2,5,6},
so that # Rmalsc = # Rmap o = 2, # Rmilo = # Rmip o = 3. For each
n > 1 we have: Cp,(z) = Y x# Rmalso = $* g#Rmapo — $~ 57 Rmilo —
S g Rmipe (5 € G,,).

(c) Let Cp(x,y,q) =Y aff Rmapoy#Rmipoginve (5 ¢ G, ). Then,
Co(z,y,9) = vy(y+qz)(y+q+¢°z) - (y+q+ ¢+ +¢"+¢" ).

(d) Let w = x125...2, be the maj-coding of o = o(1)0(2)...0(n).
Then, Rmilo = {i: 1 <i <n,z; = 0}.

(e) Let D, (y,q) := >, y# Rmilogmaje (5 € &,,). Then,

Du(y, ) =y(y+a)y+a+a¢*) - (y+a+¢+-+¢"7)
(f) Starting with the expression obtained in (c) for C,(x,y, q) derive

number of those letters. For instance, with ¢ = (

U €T x (1u —um;q)
ZC’n(q,x,y)i(_ ) :1_x+y_1+$+y_1 —q - oo
n>0 q;49)n Yy Yy (uy + —q’q)

22. A lower-record extension of the q-maj-Eulerian polynomial. For

each n >0 let A,(t,q,y) Z tdeswgmajw, # Rmilo Zt Ak

weSy
(a) The following induction formula holds

Apr=W+ag+@ + - +MAn 1k + @+ + DA 1k,
that implies

=yl —q)+q—tq")An-1(t,q,1,y) — q(1 — t)A,_1(tq, ¢, 1,y),
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for n > 1 and Ay(t,q,1,y) =0.
(b) Next, derive

(s a9)

n 1 d

u 1—qg+ugstt’ st

An(mq?y)i = t°

nZ:O (& @) nt1 ; (u y(1—q)+q )
1—q+ugstt’ /st

that specializes into the generating function (10.2a) for the g-maj-Eulerian
polynomials ™#4,, (¢, q) when y = 1.

23. The tableau emptying-filling involution. Consider a standard Young
tableau P of order n whose entries are the integers 1, 2, ... , n, for example
the following one with n = 5 and consider the tableaux successively derived
from P:

34
p=1125
34 34 3e 35
v 1®25 |25 [ ,]|245 H\& (new entry: 5)
35 *5 45
45 (345 ,[345 (new entry: 4)
45 45 45 45
v |®45 |45 ;|45 453 (new entry: 3)
45 45 45
953 [>e3 ,[523 (new entry: 2)
45 45
|23 (123 _. pJ (new entry: 1)

The entries are taken from the following set {1,2,3,4,5,1,2,3,4,5,e}.
When a tableau contains a bullet “e,” adopt the convention that the
neighbors of the bullet are the roman typed entries just above or on the
right of it. There are zero, one or two such neighbors. The passage “—”
to the next tableau is defined as follows:

(i) if the tableau has no bullet, either the tableau has no roman typed
entries and the final tableau P” is reached, or there is such an entry, in
particular on the leftmost bottom corner; call it x, then replace x by the
bullet “eo”;

(ii) if the tableau contains a bullet, consider the neighbors of the bullet;
if there is no neighbor and the number of boldface typed entries is ¢, replace
the bullet by the boldface typed (n — i); if there is one neighbor, say, z,
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TPNCLIN

permute the two entries “o” and “z”; if there are two neighbors, let « be the

[Pk

smallest entry of the two and again permute the two entries “o” and “z.”

It is obvious that P” is a standard Young tableau having the same shape
as P. Let P — P7 be the transposition operation acting on tableaux.
Further properties are the following:

(i) the map P ~ P” is an involution (called the tableau emptying-
filling involution) having the property: lligne P’ = n — Iligne P;
(ii) J and T commute;

(iii) if o — PQ under the Robinson-Schensted correspondence, then
ro— PTQ/T.

(The operations r, as well as ¢ and i, are defined in Exercice 19.)

Properties (i) and (iii) are not straightforward, the J-algorithm being
not easy to handle (see [Sch63, 77] for a proof or use the jeu de taquin
approach as developed, for instance, in [Lo02, chap. 5]).

(a) Using the above notations, if o — PQ (and ro — PTQ’7 by (iii)),
then co — P/TQT.

(b) Define the involutions t and j of &,, by o — PQ — PTQT — to,
and 0 — PQ — PQ’ — jo, where, in each case, the last arrow “—”
refers to the inverse of the Robinson-Schensted correspondence. Then
2= =t2=(ij)t=1,it=ti, jt=tj. Alsor=tj=jt,c=ijti, so
that the group generated by {i,t,j,r,c} is of order 16, in fact, the direct
product of the dihedral group D, generated by {i,j} by the group of two
elements {1,t}.

34 124

(c) Let PQ = \ﬁ 1 35 be the pair of standard Young tableaux as-
sociated with the permutation o = 31425 under the Robinson-Schensted
correspondence. Determine P/, Q7, P, QT, P'T, Q’7 and the sixteen
pairs of standard Young tableaux associated with the sixteen permutations
in the orbit of ¢ with respect to the group defined in (b).

(d) As already described in section 19 the following two properties hold:
Lignejo = n — Ligne o and Iligne jo = Iligneo.

24. A classical tool for symmetry proving. Let o be a permutation of
1,...,r7and m = (mq,...,m,) be a sequence of nonnegative integers. Let
R(m) (resp. R(cm)) denote the class of the rearrangements of 1™ .. ¢
(resp. the rearrangements of 1<) .. .7 ). As noticed in Remark 8.2,
Am(t,q) = Asm(t, q). A combinatorial proof of that property can be made
as follows.

It suffices to prove the property when o is a transposition (i,7 + 1) of
two adjacents integers (1 < ¢ < r — 1). Consider a word w in R(m)
and write all its factors of the form (i 4+ 1)i in bold-face; then replace
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all the maximal factors of the form (i 4+ 1)? that do not involve any
boldface letters by i4(i + 1)?. Finally, rewrite all the boldface letters in
roman type. Clearly, the transformation is a bijection that maps each
word w in R(m) onto a word w’ in R((i,7+ 1)m) with the property that
(des, maj) w = (des, maj) w'.

If we take the statement of Theorem 17.1 as the definition of the Schur
function sy(x), the symmetric nature of sy(x) does not appear. To still
prove that the Schur function is symmetric, we can use a similar argument.

25. Line of route-indezed Eulerian polynomials. Let L = {{; < --- <
(i} be a subset of {1,2,...,n — 1} with the conventions ¢y := 0 and
lk+1 = n. The L-indexed Eulerian polynomial Ay (¢, q) is defined to be

Ap(t,q) = Ztides"qimaja (0 € &, Ligneo = L).

g

Form the (kK + 1) x (k + 1) matrix N,(L,n):

[41 —Lo+r Lo —Lo+r L, —Lo+r L1 —Lo+r
r r e r r
1 [52—514-7“} Ly, —L1+r Lgp1—L1+r
. o 14 —224-7“ Ly 11524—7“
NT<L7 n) = 0 1 e [ " r ] [ * r :|
: : ' : it +
0 0 .1 [nete

In particular, N,.(0,n) = [”‘:r} The purpose of this exercise is to prove

the formula:

A
At q) = Ztr det N,.(L,n).

(E22.1) :
(ta q)n—l—l >0

(a) Let W,(L,n) denote the set of the words w = wywsy...w,, of
length n, whose letters are nonnegative integers satisfying the identities

() omy T=wp > >we =05 T >we 41 > > wy, > 0;
> W41 > > wy > 0;

Wy < Wpy41, Wy <Weptl Heees Wey < Wy 41

Then Z q"***" = det N,.(L,n). [By induction on k.]
weW,.(L,n)
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(b) Let S, (L, n) be the set of all pairs (o, s), where o is a permutation of
1,2,...,n, of ligne of route L, and where s = s1s5...5, is a nonincreasing
word having the properties:

(E22.2) r>8] >8> > 8, >0;
Ligneo = L; i€ lligneo = s; > si41.

Each word w = wywsy...w, € W,.(L,n) is mapped onto a pair (o,s) €
Sy(L,n) in the following way: suppose that the nondecreasing rearrange-
ment of w is of the form 4{*...i%" withi; <--- <4y, anday > 1, ...,
am > 1. Read w from left to right and give the labels 1, 2, ... | a,, to the
an, letters equal to i,,; continue, again from left to right, giving the labels
am—+1, ..., am+a,—1 tothe a,,_1 letters equal to i,, 1 and so on. Reading
those labels from left to right yields a permutation o = o(1)0(2)...0(n).
The word s is the nonincreasing rearrangement of w.

Ezample. Let n =9, r =8, L = {2,5,7}. The word w € Ng(L,9) and
the associated pair (o, s) € Sg(L,9) are shown in the following table:

L= 2 5 7

w = 557413044

o= 231487956
Iligne = 1 67

s = 755444310

The map w +— (o, s) is a bijection of W,.(L,n) onto S,.(L,n).
(c) The following identity holds

§ : tldes o qlmaJ o
o, Ligneo=L r tot w
D ILEED D A

so identity (£22.1) also holds by (a) and (c).
(d) Let Ap(q) = >,q™¥7 (Ligneo = L). Then AL(q)/(¢;q)n =
det N, where N = (N; ;) (1 <4,5 <k+1)is the (k+1) x (k+ 1)-matrix

1/(4:9)e;—er_y, if i <5
0, else.

NiJ =

—_

(e) We also have Ar(q) :=>__¢™° (Ligneo = L).

g
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26. Partitions, permutations and descents. The statistic “ligne of
route” (“Ligne”) is defined in §11.4. The notations used in (b) refer to
§14.1.

(a) Let (aj,as9,...,ar) be a composition of the integer n, that is, an
ordered sequence of integers such that a; > 1, a5 > 1, ... , ar > 1 and
a1 +ag+- - = ap = n. The number of permutations o = o(1)c(2) - --o(n),
of order n, such that Ligneo C {a1,a1 + as,...,a1 +as+ -+ ap_1} is
equal to (al’a;f“_’ak) =n!/(ailas! ... ax!).

(b) For each permutation ¢ = o(1)o(2)---0(n) and each integer
i=1,2,...,nlet d;(c) denote the number of descents (o(j) > o(j + 1))
occurring in the right factor o(i)o(i +1)...0(n) and let

o d10' dzo’ o
() i g (@) (@) (o)

where q1,q2,...,q, is a finite sequence of variables. Notice that dy(o) is
the usual number of descents of . Furthermore, if A = (A > Ay > -+ >
An > 0) is a partition, whose number () of positive parts is at most equal
to n, let m;(\) designate its number of parts equal to i, for i = 0,1, ..., n.
Then, define

n - — n A [p— >\1 >\2 e >\n
(mm) | (mou),mm, . .,mnw)’ 4T
The following identity holds:

d(o)
Z < n >q>‘ _ UEZGRq ‘
m()) QI-—q)I—qq2) (1 —q1q2- - qn)

I{(AN)<n

[Expand the right-side of the previous identity and use (a).]

27. A further extension of the MacMahon Verfahren. Let U :=
(S<,S<, L., L<) be a partition of the alphabet X = {1,...,r} such that
S.US< ={1,...,h} (the small letters) and Lo UL< = {h+1,...,7}
(the large letters) for a certain h (0 < h < r). Let w = x129...2,, be
a word in the alphabet and let x,,11 = h + % An integer ¢ such that
1 <17 < mis said to be a U-descent in w, if either x; > x;11, or x; = T;11
and x; € S< U L<. Because of the convention z,,41 := h + % there is a
U-descent in position m iff z,,, € Lo U L<, so that the four blocks of the
partition determine different kinds of descents.

Let desy w (resp. maj; w) denote the number (resp. the sum) of the
U-descents in w. For each sequence m = (my,...,m,) consider the
generating polynomial for the class R(m) by the pair (desy, maj;), i.e.,
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AU (t,q) = Y tiv v gmdivw (w € R(m)) (see section 6). Then the
extensions of identities (7.7), (7.8) and (6.13) read:

(E27.1) (t; => 11 {m;j S} IT o) [Sr:z:l}

S D)1t S5 e Lo

1€S<
z+ m 1
et )
1€l < i€L< v
o eI_SI (—uwizq), 4 .GI_L[ (—qusq),
E27.2 AV (4 qg)——— = ¢ 5 €< :
( ) %: ( )(t;Q)HIImII ;) I (wisa),,, 11 (quisq),
- €S~ ieL .
o E1;[ (—uisq) ‘GI_L[ (—quiiq)
(E27.3) AY (1 — == el :
Z q’q)umn I (uisa) oo IT (quisa)
1€S< i€l o

where |m| =mi + -+ m,.

28. A maj-inv transformation for signed words. The purpose is to
extend the transformation, introduced in section 11, to signed words. A
first extension has already been given in §20.5 for signed permutations.
Keep the notations of Exercise 27, in particular the definitions of desy
and of maj;;, and for each word w = z125 ...z, with letters in Sc US< U
L. U L< define

invy w —Z( x(zi > x5) 4+ x(x; —xjGSSUL§)>+#{Z'::E¢€L<ULS}.
1<J

There are then four kinds of U-inversions. Let ™AY (¢) := Y.  ¢mvvw,
w€R(m)
(a) The following identity holds

ieS< 1€l i€L<

It then follows that the generating function Y ™AL (q) u™/(¢; q)jm is

equal to the right-hand side of (E27.3). Thus, "™AY (¢q) = AY (1,q), the
generating polynomial for R(m) by maj;;.

(b) By using the transformation ® of Theorem 11.3 build a bijection ¥
of R(m) onto itself having the property: maj; w = invy ¥U(w).
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(c) Let Sc = {1,3}, S< ={2,4}, L. = {5, 7}, L< = {6, 8} and consider
the word w = 6,2,2,3,1,7,7,4,8,6 whose U-descents occur at positions
1,2,4,7,9 and 10, so that maj,w =14+2+4+4+ 7+ 9+ 10 = 33. Notice
that the factor 2,2 involves a descent because 2 € S<, but not the factor
7,7 because 7 € L. There is a descent at the right end because 6 € L<.
Determine ¥(w) and verify that invy ¥(w) = 33.

29. The Brenti homomorphism. The homomorphism materializes the
similarity between the classical identities for the symmetric functions and
the identities found for the Eulerian polynomials and their extensions. Re-
call that the generating functions for the elementary symmetric functions,
on the one hand, and for homogeneous symmetric functions, on the other
hand, read (see (14.1) and (14.2))

(E24.1) BE(u) =Y eu” =[[(1 + z:u);

r>0 i>1
(E24.2) H(u) =Y ho" =[]0 —2u)™
r>0 i>1
so that
(E24.3) E(—u)H(u) = 1.

On the other hand, the exponential generating for the Eulerian polynomi-
als A, (t) (see Exercise 13) can be put into the form:

(E24.4) (1 +3 %(—u)k) ( AZ—@uk> —1.
k>1 k>0

The comparison of (E24.3) and (E24.4) shows that the following two
statements are equivalent:

1—tht
E(ex) = i (k>1), &(eo) =1,
_AR(?)

E(h) = == (k= 0).

The mapping £ is called the Brenti homomorphism.
(a) For each sequence A = (A1,..., ;) of positive integers such that

A1 + -+ + A = n (in particular, for each partition of n) and each
permutation o = (1) ...0(n) define desy o to be the number of descents
o(1) > o(i+ 1) with ¢ different from Ay, Ay + A2, ... , Ay +---+ ;. Then

form Ay(t) := Y t1%27 (o € G,,). Then £(hy) = Ax(t)/n!

173



D. FOATA AND G.-N. HAN

(b) The factorial generating function for the polynomials VA, (¢, q) (see
(10.10)) may be rewritten as:

> (1— 1+ 1)g(%) ) (3 Mm _1

= @k = (@D

so that the following two statements are equivalent:

k=1 ,(5)
(o) = U (gmiq (k>1), &feo) =L

Determine &,(hy).
(C) Let Bn(t,Q,q) — Z tddes(Z,U)anvKcomva ((270.) e 6, X Gn)
3,0
be the generating polynomial for the pairs of permutations by the three-
variable statistic (ddes, inv, coinv). By specializing Theorem 21.1 we have

1t _Nv _Bt@a) .
—t+J((1—tu;Q,q) n%% (D60

The following two statements are also equivalent:

_a-t1Hebk) o
SQ.aler) = (Q: k(g 9)k (k=1), €qale) = 1;
o Bk(t7Q7Q>
$a.q(hi) = (Q;9),(a; )k 2 0).

(d) Let P(u) = >, o, pru""! be the generating series for the power
symmetric functions. Using identity F’(u)/E(u) = P(—u) derived in
Theorem 14.2 (vi), determine &(px41) (k > 0).

(e) Using the relation P(u) = E'(u)H (u) determine &,(p,,) and &g 4(pn)
(n>1).

(f) By Theorem 20.1 the exponential generating function for the gen-
erating polynomials B,, (X, Y, t) for signed permutations by number of de-

scents is (1) exp((t—1)X) 3 L B.x,v,0),

—t+exp((t—1)(X+Y)) = n!

a relation that may be written as

(1 +5° (1_71#(—0(” + (—Y)”)) > % B,(X,Y,t) = 1.

n>1 ’ n>0
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Make the changes X <— XY, Y « Y. Then —tX™ + (=Y)" is changed
into (=Y)*((=1)""1tX" +1), and B,(X,Y,t) into Y"B,(X,1,t), so that
the following two statements are equivalent:

nfen) = T (L1 tex £ 1) (2 1), (eo) = 1
enthn) = 220 5 )
With the changes X < — X, Y < XY the two statements are equivalent:
oien = T =), e =1
o) = 22 ()

30. The des-length distribution for signed permutations. The length lcox
of a signed permutation (o, ¢) is defined by

lcox(0,e) :=#{i < j:e(i) =e(j),0(i) >0o(j)}
+#{i<jre() =ze(f) =y}+ Y o))
e(i)=z

Let B!/ be the generating function for the group of the signed permutations
of order n by the pair (des, lcox) expressed in the form

B;L/ _ Z Xﬁ(s|m)tdes(a,5)qlcox(a,s).
(0,¢)
Then

n

% 1—1 (u<1 _t))n _ U 1"
() 1 —teg(u(l—1t)) 7;) (=X Dn (¢ On ;O (—Xgq; q)n(q;q)nB”'

The first values of B]! are the following:
Bl =1+4+1tX; BY=(t+q)+tq(l+ q)*X +tg*(t + q) X3
By = (@3 +2t> +2tq+ 1) +t(1 + ¢+ ¢*) (1 + ¢+ 2¢*> + tqg + t¢*) X
+t2(1+q+ ¢*) (1 + ¢ + 2tq + tg* + t¢®) X?
+tq%(t3q3 + 2tq® + 2tq + 1) X 3.
Introduce the polynomials

Aiftq) = Y g™ (0 < k<),

ceS,
where
desy, o = {des o, if o(n) <n—k;
1+deso, ifo(n)>n—k+1.
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With the notations of section 23
An(t,q) = "4,(t, ).
An easy derivation yields
B! = xk g2 M Ak, q).
= > Xkq L Anta)
0<k<n q
By Theorem 10.1 the left-hand side of (*) can be rewitten as

ul 1 <u<1 — t))m
Z Al(t,Q) Z (_Xq;q)m (QQQ)m,

= (@) =
that is denoted by

2 ( - B

=0 (—X49)n (6:0)n
Proving (*) amounts to proving the identity B, = BY.

31. The Wachs Involution. Let %Agy,(t) := > t1 1957 and 84, (¢) :=
S sgnot!tdeso (o € G,,) be the two polynomials introduced in The-
orem 23.7, where the two identities 8™, (t) = (1 — t)" %, (¢t) and
8 9,11(t) = (1 — )" %A,,41(t) were proved analytically. A combinato-
rial proof can be derived by imagining an involution on &, preserv-
ing the ligne of route of each permutation and changing the signature
of some of them in such a way that the generating polynomial for the re-
maining permutations is precisely (1 — ¢)"%,,(¢). This is accomplished
by the Wachs involution ¢ defined as follows: consider a permutation
o=o0(1)o(2)---0(2n) and let j be the smallest integer such that 1 < j <n
and the letters 25 — 1 and 25 are not adjacent in the word o. Then define

$(0) = { (2j —1,27) 0, if such an integer j exists;
' o, otherwise.
The involution preserves the ligne of route and changes the signature, so
that if o, designates the set of its fixed points, we have: 8"A,, (t) =
Yoo sgnot!tdese (o ¢ F,,). Now, if o is in Fon, there is a unique
permutation 7 = 7(1)7(2)...7(n) of order n such that for each i =
1,2,...,n the unordered pairs {c(2i — 1),0(2i)} and {27(i),27(i) — 1}
are identical. Let E(c) be the set of all integers i such that the two-letter
factor 27(i), (27(i) — 1) occurs in o (and not the factor (27(i) — 1), 27(7)).
Then o — (7,E(0)) is a bijection of §a, onto the Cartesian product
S, x PB({1,2,...,n}), where PB({1,2,...,n}) denotes the power set of
{1,2,...,n}, such that
inve =4 invt + #FE(0),
Ligneo = {2i :i € Lignet} U{2i —1:i € E(0)}.
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Accordingly,
sg%Qn Z Sgno_t1+desa _ Z (_1>#Etdes7'—|—#E
0EF2n T7€6,,EC{l,...,n}
D D
Ec{1,...,n} TES,

Let ™A, (t,q) be the g-maj-Eulerian polynomial (see section 10) and
U, (t,q) == Y. sgnotiTdesogmaic (5 € &) be the signed g-Eulerian
polynomial. Using the above procedure it is shown that

80, (L, q) = (tg; q2)n tmaig (t, q2).

32. The divisibility of the g-tangent coefficients. As introduced in
section 24 the coefficients of the g¢-tangent functions are denoted by
Ds,1+1(q) (n > 0). Each integer n > 1 can be written as n = m2!, where

m is odd and [ > 0. Define Fv,(q) := [] (1+ qm2j) and also

0<5<I
I Ewvi(q), if n is odd;
F ( ): 1<i<n
nid) (1+¢*) J] Ewvi(q), ifniseven.
1<i<n

In an equivalent manner, let Evg(q) = Fo(q) == 1, Fi(q) = 1+ gq,
Fy(q) == (14 ¢)*(1 +¢*)? and Fy(q) = Fu-2(q) Eva-1(q) Evy(q) for

n > 3. Define the exponents a(n,i) by F,(¢) := [[ (1+ ¢*)*(™?.
1<i<n

(a) Give the table of the coefficients a(n,i) (1 <i<n) for 1 <n <8.
(b) For i« > 1 let ®,(q) be the i-th cyclotomic polynomial with
#1(q) = 1 —q, so that 1 —¢* = [] ¢a(q). For n = m2! (m odd, I > 0)
and 7 =0,1,...,1 let dli

Aji={d:d|m27 d+ m27}, B:={d:d|m2""", deven}.

Then 1+¢™% = [ ¢a(q) (0<j<1).
dEAj

(c) Also Ev,(q) =[[¢alq) (d]|2n, d even).
(d) For each n > Cll let Od,(q) := [[da(q) (d|2n,d odd), so that
d

1— dn(q)Evy,(q). Using that factorization we see that the product

{ on } Evo(q) Evi(q) ... Ev(q)
2k + 1] Evp_i(q) Evp—r41(q) - - Evn(q)
(e) Finally, F,(q) divides Da,41(q).

is a polynomial in q.
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33. Congruences for the q-secant coefficients. The purpose is to prove
the congruence
Dan(q) = ¢*"" Y mod (g +1)°

by using a combinatorial argument.

(a) Let 1 < ¢ < 2n — 1. A rising alternating permutation o =
o(1)o(2)...0(n) is said to be i-balanced if the word o contains the factor
i (14 1), or if the letter (i + 1) lies on the left of i in o and not adjacent
to i. For example, the permutation ¢ = 263415 is i-balanced only for
i =1,3,5. If ¢ is i-balanced for every i = 1,2,...,(2n — 1), it is said to be
balanced.

The permutation (2n —1)2n (2n —3) (2n — 2) ... 3412 is the unique
balanced rising alternating permutation of order 2n.

(b) Let o be a nonbalanced rising alternating permutation. The greatest
integer 7 such that o is not i-balanced is denoted by #’. Then o is necessarily
of the form o = wi'w' (i’ + 1)w”, where w’ is a nonempty factor. The
permutation ®(o) = w (i + 1)w' i w” is still rising alternating and
inv®(c) =invo + 1.

(c) The polynomial Ds,(q) is monic of degree 2n(n — 1).

(d) For n > 2 let Ag, (resp. Bs,) be the set of all rising alternating
permutations of length 2n beginning with the factor (2n — 1)2n (resp.
ending with 12). By induction on n,

Z qinva = q2n(n—1) mod (q + 1)2
0c€A2,UB2n,

(e) Let Esg, be the complement of As,, U Bsg,,. Then

Z ¢™° =0mod (¢ + 1)

UEEQ.,L
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Answers to the exercises

Clearly, exp(zu) exp(u) = exp((1 + z)u) is the exponential generat-

ing function for the polynomials H,(z) = (1+x)" = >, (?) 2.
0<n<n

In the case of g-series the Calculatipn is to be made explicitly:

—J n :

eq(au) eg(u ZZ o ,:Z(LZ{@}M

n>0 qq> 0<5<n J

n>0 O<3<n
(z,q). With x = —1 we get Z H,(-1,q) =
n>0 n>0 ( )n
1 1 u?n
= = (=1)" ——5—, hence
(4 @)oo (W @)oc (0% ¢?)oc 7;) (%3 4%)n

Hapia(—1 q)ZOanden( Lq)=(q; )zn/(qQ;QQ)nz(C{;QQ)n.With

_ 1/2 1/2 -
x = ¢/~ it turns into H,(q¢/%,q) = =
7;) (¢ Dn (uq'/%; q)oo (13 @)
1 u”
———e— = ——————— hence
(u; ¢Y?) oo n%% (qY%q1?)n
Ho( ) =\ EDn (@0 (¢4,

(@3 q/%), (a2 a1 /2), (gl q )
(q"Y%,¢*/?),,. Start with f(z,u) = Z %Hn(ag,Q). Then

n>0 n

f(z,u) — f(z,qu)

H,1(z,q). On the other hand,
n>0
1 1

f@u) = fleq) = s Gw e

(1 —-(1—-uw(1 - 2zu) =

f(x,u)u(l + z — zu). Therefore Z LHnH(x,q) = (1+ z)
un—|—1 N

X Z x,q) — Z ﬁan(x,q). Hence the recurrence
4q;

n>0 Z
for n 2 0 Wlth H_q(x, q) = 0.

No further comment.

By definition of y we have y; =i— > x(o(i) > o(j) > o(i+1)) or
1<5<1

> x(o(i+1) > a(j) > o(i)), depending on whether o (i) > o(i+
1<5<i—1

1) or (i) < o(i+1). The sequence y is then subexcedent. Now, given
a subexcedent sequence y we can reconstruct the permutation o in a

unique way, starting with o(n) from y, =n— >. x(o(n) > o(j)).
1<j<n
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The mapping y — o — z is then bijective. Finally,

toty = 1<Z< (i = ip1) +ix(o(i) > o(i + 1)) = 1<Z< ix(o(i) >

o(i+ 1)) = majo, since xg = z,4+1 = 0.

,5,3,8) and inve = 20;
4,1,2,2,3), majo = 17.
aj-coding(938164275) = x.

furthermore, maj-coding(o)

We have inv-coding(c) = (0,0
Finally, inv-coding(687293154) =

,0,2,1,1
(0,1,1,3,
T an dm
zi <#{1 <j<i}=1i; (b) z=001102238; (c) o0 = 756312984.

Distinguish two cases. If o(i) > o(i+ 1), the components of this new
maj-coding satisfy the relations:

x; — Tip1 +ix(o(i) > o(i + 1))
={i<ilo(i)>o@)}—{j<i+1]o(j)>0o(i+1)}+i
={i<ifo(G)>o@}+{j<i+1]o(j)<o(i+1)}
={i<ilo(@)>o@r+{i<ilo(i) <oli+1)}
=#{l<j<ilo(j) €lo(i),o(i+ 1} =z

If 0(i) < o(i + 1), then

x; — Tip1 +ix(o(i) > (i + 1))

={i<ilo(G)>o(@)}-{i<it+1]o()>ao(i+1)}
={i<ilo(G)>a@}—{j<ilo() >a(i+1)}
=#{1<j<i|o(y)€lo(),o(@+1)]}=z.

The subsequence y is subexcedent and y; + y2 + ...y, = majo.
However the transformation o +— y is not bijective; for instance, the
two permutations 213 and 312 have the same image 010.

The vectors of a set {vy,vs,...,v,} are linearly independent, first
if v; is not zero (there are (¢g™*™ — 1) possible choices), then
if vy is not proportional to vy (there are (¢ — ¢) possible
choices), more generally, if for i = 2,...,n the vector v; does not
belong to the subspace of dimension (i — 1) generated by vy, ve,

., vi_1 (there are (¢N 1™ — ¢'~!) possible choices). The number
of such sets {vi,vs,...,v,} is then equal to (¢gN+t" — 1)(¢gV+" —
q) - (gNT" —¢"~1). The second enumeration is derived by the same
reasoning. Finally, the number of sets {vy,vs,...,v,} having only
linearly independent vectors is equal to the number of subspaces of
dimension n, multiplied by the number of such sets that span a given
space of dimension n.
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The two formulas are banal for N = 1. For proving (3.9) use
(3. ) with the substitutions n < N + n, i < n, so that (1 —
ug™) X [V = 3 (V=g [V e M =
n>0 n>0 n>0
(u;q) 5 (by induction on N). Hence 3 [N:”]u” = (u;q) 5 (1 —
n>0

ugV)™l = (u; q)]_vlJrl. For (3.10) make use of (3.5) with the substitu-
tions n <— N + 1, i < n, so that

(~w @y =( 3 ¢ (1+ugV) =

0<n<N
1+ Z ([N}qn(n—l)/Q_i_[ JXJq(n—l)(n—2)/2—|—N)un_|_q(N+1)N/2uN+1:
1<n<N
1+ Z ([N] +q(N—l—l)—n[]l/vl])qn(n—l)/Zun +q(N—|—1)N/2uN—|—1 —

1<n<N
Z [N;Z_l] qn(n—l)/Qun.
0<n<N+1
By induction on N + n. Let ND(N,n;q) := S g%t Then
beND(N,n)
ND(N,n;q) = > ¢+ > ¢ Leta; :=b; —1 (i =1,...,N)

b1=0 by >1
in the second sum. With the convention that ND(N, n;¢) = 1 when
N =0 we get:
0<by<---<bny<n 0<a1<---<ans<n—1
= ND(N — 1,n;9) + ¢" ND(N,n — 1;q)
N+n—-1 N+n—-1 N +n
- e =0

n—1 n

Proceed by induction on N +n. Let BW (N, n;q) := S gvve,
zEBW(N,n)
Then BW(N,n;q) = >, ¢™% + > ¢™% Let y; := xi41 (i =
z1=0 r1=1

1,...,N +n — 1) in each of the sums and let y be the word
Y1Y2 - - -YN+n—1- In the first (resp. the second) sum we have invx =
invy and y € BW(N,n — 1) (resp. invz = n + invy and y €
BW(N — 1,n)). With the convention that BW(N,n;q) = 1 when
N =0,
BW(N,njq)= >, ¢™¥+ > gt
yEBW(N,n—1) yEBW(N—1,n)
=BW(N,n—1;¢9)+ ¢"BW(N —1,n;q)
N+n-—-1 Wl N+n—1 N +n
o S R A AP

n n
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As shown in Fig. A1, for each partition 7 in at most n parts, all at
most equal to N denote the size of the n-th part of 7 (the smallest
one being possibly 0) by j. Withdraw j from all the parts of
there remains a partition in at most (n — 1) parts, all at most equal
to (N — 7). The latter partitions have a generating function equal to

[N—j—i—n—l}
N—j I*
1

n

n—11

m—1

J N—j J N—j
Fig. Al Fig. A2

Report to Fig. A2. For each partition 7 in at most (n+m) parts, all
at most equal to N, denote the size of the smallest (n + 1)-st part
by j. To such a partition 7 associate the partition 7’ in at most n
parts, all at most equal to j and a partition 7" in at most (m — 1)
parts, all at most equal to (N — j).

The two ¢g-binomial coefficients occurring on the left-hand side of the
identity are precisely the generating functions for the partitions 7’
and 7', respectively. The identity is then a consequence of the fact
that the weight of 7 is equal to the sum of the weights of 7’ and
of 7", plus the size of the rectangle of dimension j x m.

By induction.
If n is inserted onto the left of a permutation ¢’ = ¢’(1)...0'(n—1)
or between two letters o (i), o(i + 1) such that o(i) < o(i + 1), the
number of descents increases by one. In the other case the number
of descents remains alike. To obtain the set .S, j, of all permutations
of order n having k descents it suffices

either to take each permutation belonging to S, —1 ;—1 and insert n
into the (n — 1) — (k — 1) positions that create a new descent; we
then obtain (n — k)A,, r—1 permutations of order n;
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or to take each permutation belonging to S, _1 and insert n
into the (k + 1) positions that create no descent; (k + 1)A,_1%
permutations of order n having k£ descents are derived in that way.

The right—ha.nd side of the identity to be proved is equal to: .
1=6)" Y G+ 14+ (n—1)t—nt+(1-t)j) = (1-t)™ > #(j+

n>0 n>0
DI )+ 1) = (L= 5 6+ 1) = A, (0.
n>0

First Ag(t) = (1 —1)/(1 —t) = 1 and the constant coefficient of each
series A, (t) is A, 0 = 1. Consider the coefficient of t* (k> 1) on
each of sides of (E13.1). Then A, = A1+ (n — 1)Ap_1 -1 +
kA,_15— (k—1)A,_1 —1, which is the desired recurrence relation.
Finally, the recurrence implies that A,, ;, =0 for £ > n > 1.

It suffices to calculate the coefficient of t*¥ in (1 —¢)"T 3 ¢7(j+1)".

n>0
An(t)(1—t)~(HD) = S (MR R S A =
k>0 0<i<n—1
SN AT =0 Y Ay (D) o

§>0 0<I<min(j,n—1) >0 0<i<n—1

ST (j+1)", using ("JFTJL_Z) =0whenj <n—2andl=j+1,...,n—1
720

and the Worpitzky for the last step.

From (E13.1) > A,()(1 — )=y /nl = S un/nl S (5 +

n" = ;0 t/ ;Z(_U(J' +1))"/nl = e go(te“)j :ne_“/(l - tje;). With
u = v(l —t) we get goAn(t)v”/n!_: (1 — t)exp(v(l — 1)) /(1 —

texp(v(l —t))) and the desired generating function.

Let ¢ = o(1)...0(n) be a permutation. If o(i) < 4, say that ¢ is
an accedence-letter of o. Let A(o) (resp. E(o)) denote the set of all
accedence-letters (resp. excedence-letters) of o. First, verify that for
each j=1,...,n

#{i € Ao) : j €lo(i), 1]} = #{i € E(0) : j €li,o(i)]}.
Next, verify that
#{(l,k): ke E(o), ke [l,a(l)[}
=#{(l,k): I,k € E(0),0(k) €]l,a(D)]};
so that
#{(l,k):l € A(o),k € E(0),0(k) €|a(l),l]}
=#{(l,k): I,k € E(0),k €]l,0(l)]};
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This is sufficient to show that

#(L k)l <k,o(k)<o(l) <k}+#{(l,k): I <k,o(l) <k<o(k)}
=#{(Lk): Il <k,o(k) <o(l) <I}+#{(,k): | <kk<o(k)}.
Merge the third term into the first and the fourth into the second:
#{(L,k):l<o(l),o(k) <k,o(k)<o(l) <k}
=#{(l,k):l<ok),k<o(ll),l<k<ao(l)}.

(a) and (b) are easy; (c) is a rewriting of the maj-coding discussed
in §2.2. The difficult part is (d) and requires a deeper study. A
numerical example is discussed in details inviting the reader to
reconstruct the proof himself. For a complete formal proof see
[Ha90b]. Finally, (e) is merely making the appropriate composition
products.

The table of the six statistics for BW(2, 3):

des | maj | rise | rmaj | DES | MAJ
11000 1 | 2 0 0 1 2
10100 2 | 4 1 2 3 6
10010 2 | 5 1 3 3 8
01100 1 | 3 1 1 2 4
01010 2 | 6 2 4 4 | 10
00110 1 | 4 1 2 2 6
10001 | 1 1 1 4 2 5
01001 | 1 | 2 2 5 3 7
00101} 1 | 3 2 6 3 9
00011 0 | O 1 3 1 3

The bijection = +— y of BW(N,n) onto BW(n, N) is defined as
follows. For 1 <i < N+nlet y; =1 —z;. Then rmajx = majy and

. : N +n
qrmaJ r _ qmaJy — |: :| )
xGBWZ(N,n) yGBWZ(n,N) "
A bijection x — z of BW(N, n) onto itself is constructed as follows.
First, for each x € BW(N,n) apply the bijection of (b) to get
y € BW(n, N). Then factorize y in a unique manner under the form
y = v110v210 - - - v _110vg, where v; is a nondecreasing binary word
of the form 0%1°; moreover, the length I(v;) of v; satisfies I(v;) > 1
for 2 <i < k—1andl(vy) > 0, I(vg) > 0. To each nondecreasing
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word v; = 0%1° associate the nondecreasing word u; = 0°1¢. Then,
let z := w110u210 - - - up_110uy.

For example with x = 10110001011 € BW(6,5) we get y =
01001110100 € BW(5, 6). The factorization of y = 0(10)011(10)(10)0
yields z = 1(10)001(10)(10)1 = 11000110101 € BW(6,5). We verify
that rmajx = majy = maj z and risexz = desy = des z.

Look for the difference between rmaj and maj.

3 MAIe = 3 MATE 3 MAT

z€BW(n,N) zEBW(n,N),z,4+Nn=0 z€BW(n,N),zntn=1

17. (a)

o 2maj’ x+N 2majzxz+n
= > ¢ + ) g™

x€BW(n—1,N) x€EBW(n,N—1)
_ N[n-l—N—l} n[n-l—N—l]
o n_l,N q2 n,N_l q2
N[n+N 1—q¢" n[n+N 1— g2V
[ n, N ]q21_q2N—|—2n [ n, N Lzl_quHn
_[n+ N7 A=)+ (1 - )
N [ n, N ]qz 1 — g2N+2N
_ [THN] q" +q"
= n,N q2 1+qn+N.

Let w be a word of R(m) and let 1 <z <y =2+ 1 < r. Replace
all the factors yx of w by a special letter “~”. In the new word the
maximal factors containing the two letters x and y are of the form
2%® (a > 0, b > 0). Change all those factors into x°y® and replace
every “~” by yx to obtain a word w’ of the second set. For instance,
with w = 122322233243213 € R(2,7,5,1), x = 2 and y = 3 we
successively get:

w = 122322233243213 — 122~223~4~ 13
5 133~ 233~ 4~ 12 — 133322333243212 = v’ € R(2,5,7,1).

That transformation is bijective and majw = majw’ holds.

Z(w) = maj(2121122) + maj(1131) + maj(41114) + maj(22322) +
maj(242242) + maj(434) =4+3+1+3+ 7+ 1= 19.

The multiplicities of geyc, (w) and lcyc, (w) are respectively:

m® = (Myq1,Mgio, My, M1, Mo, My_1, M, ) and

my = (M1, M2, Mg 1, Mg 1, Mgy, 5 M, M),

The global and local cycling are equal to geycy (w) = 4234313424 and
leycy(w) = 4214121434, But maj geycy(w) = 18 and Z(lcycy(w)) =
16. As majw = 21 and Z(w) = 19, the two differences are equal to 3.
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Consider the unique factorization w = pgq1p1¢2ps - - . ¢sps of w, where
the p;’s are words all letters of which are at most equal to x and
where the ¢;’s are words whose letters are all greater than x with
pil > 1, |gi| > 1 for all ¢ > 1 and |pg] > 0. The last letter
of each factor p; (resp. ¢;) is less (resp. greater) than the first
letter of the following factor ¢;41 (resp. p;). Say that there is a
rise at the end of the factor p; and a descent at the end of the
factor ¢;. In the word gcyc,(w) those rises become descents and
the descents become rises, the other rises or descents remaining
invariant. Therefore majw —maj(geyc, (w)) = |qi|+|q2|+- - +]qs| =
Myl + Mgy + -+ My

Let a =1,2...,r be aletter occurring in w and denote the image of a
under the local cycling u := lcyc, (w) by a’. If i < j and i # z, the
subwords w;; and u; ; are identical up to the reduction. On the other
hand, for x < j, item (e) implies majw,; —maj(gcyc,(w)). ;7 = m;.
As the two cyclings are identical up to the reduction for the words
with two letters, it follows that Z(w) — Z(u) = Y. (maj(wy;) —
maj(uxfj/)) = Mgyl + Mgq2 + -+ My T

The desired bijection @ is defined, for each word w € R(m) and each
letter x, by the composition product:

O (wx) = (lcyC;1 o® 0 Oz m, © gcycm(w))m .

It is readily verified that ®(wz) is a rearrangement of wz; further-
more, majw = Z(®(w)) holds.

Let b:= > b.t". Then by = ag and b, = a, — a,_; for r > 1. But
r>0

a—(bo+b1+---+b,) =a—(ap+a1—ap+---+a,—a,_1) = a—a, and
by assumption the order of that difference tends to infinity with r.

The right-hand side of (7.8) is of the form ) bst®, where by =
1/(u;q)s41. But limg by = 1/(u; ¢)oo. Then let b(t) := (1—t)->, bs t°.
It follows that b(1) = 1/(u; q)o. Multiply the left-hand side of (7.9)
by (1 —t) and put ¢ = 1 afterwards. It is found that > An(t =
1,q)u™/(q; q)m. This yields (6.13).

This time (a) is to be applied twice in succession. The coefficient
of t7, that is, > t5/(u; q1,q2)r+1,541, tends to > t5/(u; q1, ¢2) o0, s+1
(obvious definition) when r tends to infinity. Multiply the left-hand
side of (13.7) by (1 — ¢1) and put t; = 1; we get the expression
>3/ (U5 a1, 42)00,s+1- As 1/ (U3 41, 42) 00,51 tends to 1/(u; g1, ¢2)c0, 005
when s tends to infinity when the previous sum is multiplied by
(1 —t2) and when t5 is replaced by 1, we get: 1/(u; ¢1,¢2)c0,00- By
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multiplying the right-hand side by (1 — 1) and (1 — ¢2) successively
and by making the substitutions ¢t; = 1, then to = 1, we obtain:
> on Anlqr, q2) v /((q1591)n (q25 G2)n)-

If o(i) = j, then io(j) = i and cio(j) = (n + 1 — 7). Hence
icic(n+1—i)=jandro(n+1—1i) =0(i) =j.

Write the n points (1,0(1)), (2,0(2)), ... , (n,0(n)) onto the
square {1,...,n} x {1,...,n}. The reflection of the square about
the horizontal (resp. vertical, resp. major diagonal) axis transforms
the graph of o onto the graph of the permutation co (resp. ro,
resp. i0). But those reflections generate the dihedral group D4 and
there is a one-to-one correspondence between those reflections and
the operations i, c and r.

) The relations can be verified either by computation, or geometrically.

Lets co := ¢’ and rco := ¢”. Then j € Ligneo if and only if
j € [n—1]and o(j) > o(j + 1); hence o'(j) < ¢/(j + 1) and also
a”(3") < o”(4") with 5 =n+1— j — 1. Consequently, j € Ligneo
if and only if j € [n — 1] and, in an equivalent manner, j ¢ Ligner o
orn —j € Lignerco.

The verification of all those properties is easy.

First C(x) = x; by induction xC),_1 () is the generating polynomial
for the permutations having m as a unit cycle; moreover, (n —
1)C,—1(x) is the generating polynomial for the other permutations,
as the element n can be inserted in (n — 1) manners into each
permutation of order (n — 1) to create a permutation of order n,
where n is not a unit cycle.

Several proofs can be made. If we use # Rmals, then zC),_1(x)
is the generating polynomial for the permutations ending by 1.
Moreover, (n —1)C,,—_1(z) is the generating polynomial for the other
permutations, because the insertion of 1 into each one of the (n —1)
possible slots (excluding the rightmost one) of a permutation of
2,3,...,n, does not modify the right-to-left maximum letter set.
Consider the following modification of the Lehmer-coding: if o =
o(1)...0(n),is a permutation, let w := z1x5 ... x, be the (modified)
Lehmer coding defined by z; := #{j : i+1 < j <n,o(i) > o(i+1)}.
Then, inve = totw, Rmipoc = {i : 1 < i < na; = 0} and
Rmapo = {i : 1 < i < nx; = n —i}. First, Ci(z,y,q) = zy;
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then, by induction,

C’n(x,y,q) — Z x21gi§nx($i=n—i)y21gi§nx($i=0)q21gi§n$i

weSE,

n—1

— Z mx(w1:n—1)yx(m1:0)qm1

x1=0
% Z xzzgignx(ﬂﬁi:n—i)yzzgignx(ﬂﬁizo)qzzgignm
’UJ’GSETL,1
=W+e+ @+ -+ "+ " D) Cha (2, y,9).
(d) In the maj-coding zqxs ...z, of a permutation o we have z; = 0 if
and only if ¢ is on the right of the subpermutation of o reduced to

the letters 1,2,...,(i — 1), i.e., if and only if i € Rmalso.
(e) First, D1(y,q) = y and for n > 2

Dn(yv(D: Z yzlsian(miZO)qtotw

weSE,
n—1
_ 2 : yzlgiSn_lx(miZO)qtotw' § :yx(xn:())qxn
w’e€SE, _1 Tpn=0

=Dp1(y, )y +a+¢+--+¢" 2+ ¢"7).
(f) First, notice that, for k£ > 1,

M1—®+ﬂ<r_k1—xﬂ—q»

y+a+a®+-+dr =
l1—gq y(1—q)+4q

1— 1—a(1—
and y( Q)+q<1 _ a( q)) = x + y — 1. Therefore,

1—¢q y(1-q) +q
1— (1 — 1— n
Cnlq,z,y) = (_x( q>; ) (y( q) + q) Y , so that
y(1—q)+q /n 1—¢q r+y—1

230“%%me@n

n>0

by using the g-binomial theorem (Theorem 1.1).
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22. (a) The polynomial A, j, is the generating function for the permutations
of order n having k descents by (maj, # Rmil). When the letter n is
inserted into a permutation of order (n — 1), the number of descents
remains alike, if n is inserted into a descent and is increased by one
otherwise; moreover, the statistic “# Rmil” is increased by one, if n
is placed at the end of the permutation.

(b) Form the two factorial generating functions:

A(t,q,y;u) :=
n>0 q>
’LL
B(t,q,y;u) == > An(t,q,y
nZ>O Q)n—H

From (a) we deduce:

uq uq
A(t, q,y; u)=1+yuB(t, ¢, y; UHEA“’ q,y;u)— EA(tq, q,y;u).

As A(t,q,y;u) = B(t,q,y;u) — tB(t, q, y; qu), we get

uq tq
1= L —uy) Bl g,y w) + (—t + 7 ) B(t.q,y;
< e W (t,q y;u) + M (t, ¢, y; qu)
2

utq
_qB(tq,q,y;QU) =1

ug
— B(tq, q,y;u) —
M (ta,q,y; u)

Let B(t,q,y;u) = Y t° Gs(q,y;u) and work out a recurrence for the
s>0

coefficients G4(q, y; u):

(1 —q—ug—yu+yqu) Y _t° Gu(g,y;u)
s>0

+ (=14 g+ qu) Z t° Gs-1(q,y; qu)

s>1

+ug Y t°q° Gulgysu) —u Y ¢ Goa(q yiqu) =1 —q.

s>0 s>1
By taking the coefficients of ¢* on both sides we obtain:
1
1-— yu

l—u(g+¢+---+¢°)
L—uy+q+aq¢*+-+q°)

Go(q,y;u) =

G (CLyﬂ ) —1(q7y7qu) (S > 1)7
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1_u(qk+1+._.+qs)
1—u(yg” +¢* + -+ ¢°)

so that G4(q, y;u)= H
0<k<s

s 1_Q+uqs+1
L—u(yg"+¢" +--+¢°) = —(1—61'“

LYl —a+a )

1—gq 1—q+ugstt
for k=0,1,...,s, we get
l—qku+ (L(J)
1 —q+ugst? 1—q+ugstt’ /st
00 K, Y1 -4 +q ( y( q)+q‘>
<k<s 1 — ¢"u-———"—— u-——=>—":q
1—q+ugst? 1—q+ugstt’ /st

As ¢ =iri, properties (i)—(iii) and relation (19.4) imply that if

o — PQ, then ioc — QP, ric — QTP’T and co = iric —
pJTQT.

All the relations are proved by direct calculation.

5 5
45 35 24 34
pJ:123, QJ:1247 pT:137 QT:127

3 4
25 25
P/T =[14 QT =13  Notice that i, c, r correspond to geometric

transformations on permutations, but neither t, nor j.

Tableaux | Permutations | Tableaux | Permutations
PQ oc=31425| PTQT |to=25143
PQ’ jo=34152| PTQ’T |roc=52413
P7Q 41523 P/TQT |co=35241
P7Q7 14253| P/TQ'T 32514
QP ic=24135| QTPT 31542
QP 35124 Q/TPT 42531
QP’ 24513 QTP/T 53142
Q’pP’ 13524 | Q/TP/T 42153

my 1’s, mo 2’s, ...
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For each Ferrers diagram A with m boxes and each vector m
...,m,) of positive integers such that mj; + mgo + -+ +
m, = m let K(\,m) denote the set of Young tableaux containing
, m, r’s. Let ¢ be a permutation of 1,2,...
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We construct a one-to-one correspondence between (A, m) and
(A, 0m) as follows. Let m = (my,...,m;, mii1,...,m,;) and m’ =
(my,...,miz1,m;,...,m,) differ only by a transposition of two
adjacent terms and consider a tableau T in IC(A,m) in its planar
representation. Write all the pairs 4,7+ 1 in boldface whenever those
two integers occur in the same column with (i + 1) just above i.
The remaining 4’s and (i + 1)’s in T occur as horizontal blocks i j°
(a > 0,b > 0). We define a bijection T' — T" of K(A,m) onto
(A, m’) by replacing each block i®j° in T by i®j% and rewriting
the vertical pairs 7,7 4+ 1 in roman type.

The identity is true for £ = 1. For k > 2 expand the determinant of
N,.(L,n) by the cofactors of the last row. By induction

det N.(L,n) = det N.({l1,...,lk_1}, k) |:£k—|—1 —Tﬁk + r}

— det NT<{€1, .. .,Zk_l},n).

The first (resp. second) term on the right-hand side is the generating
polynomial for the words w = wyws ... w, satisfying the conditions
(*)(£,n), With the possible (resp. sole) exception of the subcondition
Wy, < Wy +1-

The construction of the bijections may be regarded as another
version of the MacMahon Verfahren.

Similar to the proof of Theorem 18.2. Start with a pair (o, s) having
the properties (£22.2) and let d = dyds...d, be the word whose
letters d; are defined by

d s; — siy1 — x(i € lligneo), if1<i<n-—1;
' if i = n.

Then d; + --- + d,, + idesc = s1, so that it makes sense to put
do == 7r—8 >0and dy +di +---+ d, +idesoc = r. On the
other hand, 1-dy +2-dys+---+n-d,+imajo = tot s. The mapping
(0,8) — (0, (do,dq,...,dy,)) is a bijection of the pairs (o, s) satisfying
(E22.2) onto the pairs (o, (dg,ds,...,d,)) such that Ligneoc = L
and where the integers dy, di, ... , d, are nonnegative and of sum
do+dy+---+d, =r—ideso. Hence,

Z t" det N,.(L,n)

r=0 :Ztr Z qtothztrzqtots

r>0  weW,(L,n) r>0  (o,s)
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_ZZ Z td0+ 4+d, +1desaq1 di+--+n.d,+imajo

r>0 o dg,..

_Ztldesa imajo Z Z tdo(tq) 1 ~-~(tq”) n

r>ideso do+---+dn
1 =r—ides o

- Ztldesa imajo
(@)1

This is the specialization for ¢ = 1.
A direct proof can be found (see [St86, p. 70]); it is also a consequence
of Corollary 11.5.

)n—‘,—l

Distribute the n integers 1,2, ..., n into k classes of sizes a1, as, ... ,
ak. Write the elements in each class in increasing order and justapose
those class increasing sequences in the following order: first class 1,
then class 2, ... , class k. This yields a permutation ¢ having the
following property: Ligneo C {a1,a1 +ag,...,a1+as+ -+ ap_1}.
Furthermore, there are n!/(aj!as! - -+ ag!) ways of making up such
permutations.

The expansion of the right-hand side reads ) qbl(g) ba(e) .. -qZ"(G),

o,b
where the summation is over all permutations ¢ and the sequences
of integers b = (bi(0) > be(o) > -+ > by(c) > 0) such that
the following property holds: & € Ligneoc = bg(o) > bri1(0).

But the sequence b may be written as i{'i5*...i}*, where i; >
o > -+ > 1 > 0and ay > 1, ax > 1, ... , ar > 1,

b1(o) b2(0') . 2(0)

so that the monomial ¢, is still equal to (x)

AR O ey qa1+...+ak71+1---q;';+,,,+ak. But the se-
quence i7%i5% ... i3" is nothing but a partition A = (A > Ag > --+)
having at most n positive parts, and a; parts equal to 71, ay parts
equal to ig, ... , ag parts equal to iy, so that the monomial (x) is
also equal to q*. Hence,

blo' bQO' g
Zq () CON Zn()

= ZqA #{o : Ligneo C {a1,a1+az,...,a1+ - -+ax_1}}
A

B A\ n! B A\ n
N Z d ailag! -+ ap! Z q <m()\))

MM <n ) MM <n

The left-hand side of (E27.1) is equal to the sum of the series
S ¢ Hdesu wgllall+maiy w o gyer all triples (s, a,w). By using Propo-
sition 3.1 the right-hand side is equal to the sum of the series
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dots q||a(1)”+"'+”a(r)||, where each a¥) = (a;1,...,a.,) is a sequence
of integers satisfying s > a;1 > -+ > a;,, > 0, if 7 € S
5> a1 > > a5 > 0,if0 € S<5 8> a1 >0 > aie, > 1,
ifi € Loy s > ajqn > -+ > a;e, > 1, if i € L<. The bijec-
tion (s',a,w) — (s,a® ... a(") such that s = s’ + desyw and
lal| + maj,; w = |a)|| +--- 4 |]al”|| can be constructed by rewrit-
ing the MacMahon Verfahren developed in sections 6 and 7 almost
verbatim. To obtain (£27.2) use the manipulation on g¢-series as at
the end of section 7 for going from identity (7.7) to (7.8).To derive
(E27.3) multiply (F27.2) by (1 —t) and make ¢t = 1.

The identity follows from Theorem 5.1. The letters belonging to S<
bring no further U-inversions; those belonging to S< U L< bring
ILc S-UL- q(gl) extra U-inversions when they are compared between
themselves; finally, the U-inversion number must be increased by the
number of letters belonging to L. U L<, that is, Zi€L<UL< m;. To
show that ™AY (¢) = AY(1,q) is equal to the right-hand side of
(E27.3) it suffices to expand the g-multinomial coefficient and to
make use of (3.7) and (3.8).

Let w = z129...2y, be a word in R(m). For each i € S< U L<
replace the m; occurrences of the letter ¢ in w by the letters (i, m;),
(i,m; — 1), ..., (i,1), when reading the word from left to right. For
each ©+ € S U L. replace all the m; occurrences of ¢ by the same
letter (4,1). Finally, let * :== (h + £,1). By convention, (i,k) < (j,1)
if either ¢ < j, or i = j and k < [, so that the new word, say, w, has
its letters in a totally ordered alphabet.

Apply the transformation ® to w* to obtain a word of the form
®(w*) = w *. In W replace each letter (i,k) by the letter 4, to
obtain a word w’ in the class R(m). Define ¥(w) = w’.

Apply the algorithm described in (b). In the first operation write
iy instead of (i,k) and obtain w = 64, 22,21, 31, 11,71, 71,41, 81, 51.
Here x = 4 + %; apply @ to w x, then derive ¥ (w):

w* = 61,29,21,31, 11,71, 71,41, 81,51, *
| 61
61| 2
61,22 | 21
61,22 | 21 | 31
29,61,21,31 | 11
22,61,21,31,11 | T
22,61,21,31,11,71 | Ty
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29,61 ] 21,31,11,71 | 71 [ 4y
61,22, 71,21,31,11, 71,41 | 8
61 | 22,71 [21,31,11,71 | 41,81 | 51
61|71 22,71]21,31,11,81 | 41,571 | *
O(wx) =61,71,71,22,81,21,31, 11,51, 41, *
U(w)=6,7,7,2,8,2,3,1,5,4

The number of U-inversions is 0+04+04+3+0+5+4+7+44+5 =
28, plus the number of elements in L. U L<, which is 5. Thus,
inVU \II(U)) = 33.

By induction on the number [ of parts of A.

Again by induction on [ we get &,(hy) = ™Ax(t, q)/(q; q¢)n, Where
1n\iA>\ — Z tdeska inv o (O’ cs )

Same derivation as in (a).

Let E(u) := (=t +exp(u(t —1))/(1 —t) = 1+ > (1 — )k~ LuF/k!

k>1

Then & (u)(1+ Y t Ap(t)(—u)*/k!) = €' (u) (the derivative of £(u)).
k>1

o) = o 3 bt - 041

(@ Dn 52,

3 Q) m . {Z]k(t—l)k_an_k(t, Q. q)-

) M<k<n k q

S2alP) = G0N

No more hints.

The generating function for the B,(l?’) is equivalent to the recurrence
formula

B =Y x4 5 M| " amasom

0<k<n 0<m<n—k

Hence, to show that B!/ = BS’), it suffices for 0 < k& < n to prove
the recurrence formula

A= Y ["‘k] AP g) ™ (1= £y,

m
0<m<n—k

Use the iterative method already illustrated in § 21.3. If a permuta-
tion of order n ends with a term at most equal to (n — k), we can
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consider its longest increasing rightmost factor (l.i.7.f.). If the per-
mutation ends with a term greater than or equal to (n —k+1), make
the convention that its [.i.r.f. is of length zero.

For m = 0,1,...,n — k designate the generating function for those
permutations whose [.i.r.f. is of length m by F),, and let G,, =
F,+---+F, ;. Then u,, = ["n_%k} ¢ A" (¢, q) ¢™F is the generating
function for the permutations whose Li.7.f. is of length at least equal
to m, adding a supplementary descent when the Li.r.f. is of length

greater than or equal to (m + 1). We then have

U = Fm+tGm+1a
and

As A, k(t,q) = Go and as Gp,— = Ak k(t, q) g™ Rk we obtain the
recurrence formula by iteration starting with Gj.

No comment for the first part. The relation involving %8"As, 41 (t)
is treated in the same way. For the last part notice that majo =
2majT + > p(y)(2i — 1). Hence

sg%n(t, Q) _ Z SgnO’t1+deS quaj o

o

_ Z (_1)#E(O’) tl—l—des T+#E(O’)q2 maj T+3;e (o) (2i—1)
(1,E(0))

— Z (_t)#EqueE(Zi—l) Z tl—l—deS’qurnajT
Ec{1,...,n} T€S,

= (tq; ¢*)n t ™A, (t, ¢%).

32. (a) The table of the first a(n,i) is the following:

= 1 2 3 4 5 6 7 8
n=1 1
2 2 2
3 2 1 1
4 3 3 1 1
5! 3 2 1 1 1
6 3 3 2 1 1 1
7 3 2 2 1 1 1 1
8 4 4 2 2 1 1 1 1
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By definition 1 — ¢* = [[{®4(q) : d|i} for each i > 1. As (1 — ¢*%) =
(1—¢")(1+4¢"), we have 1+¢° = [[{®a(q) : d|2i, d+i}. In particular,
if 0 < j < then 1+ ¢™ = [[{®u(q) : d|m27*+1,d + m27} =
[[{®a(q) : d € A;}.

As the sets A; are two by two disjoint, it suffices to show that B is
the union of the A;’s. But if d|m2/t, d+ m2/™! for some j with
0 < j <1, then d|2n (equal to m2'™t) and d is even. Thus d belongs
to B. Conversely, suppose d|2n and d even. Then d = m/2/*!
with m’ odd, m'|m and 0 < j < [. Consequently, d is an element
of Aj.

The product is zero if £k > n. When 0 < £k < n — 1, the Gaussian
polynomial is the product of the two factors

p _ Odu(@(1—¢*""")Ody 1(q) - (1= ¢*" " )Ody (q)
(1 = g?**t1)O0d}.(q)(1 — g?*=1) -+~ Ody(q)(1 — q)
Q= Evn(q) Evn-a(q) - Evn_k(q). When numerators and denom-

Ev(q) Evi-1(q) ... Evi(q)

inators are expressed in terms of cyclotomic polynomials, then P
and () involve cyclotomic polynomials ®; with d odd for P and d
even for Q. As [2511] is a polynomial and the cyclotomic polyno-
mials are irreducible, each of those two factors is also a polynomial.

But P is precisely equal to the expression under consideration.

Rewrite the recurrence relation (24.5)
D — 2n 2k+1 ) D
on+1(q) = Z q 2k+1(q) Dan—2k-1(q)-

First, D1(q) = 1. Proceed by induction on n > 1. For 0 < k <
2n :|D2k—|—1(Q)D2n—2k—2(Q)
2k+1] Evi(q)...Ev,(q)
2n } Evy(q) - - - Evk(q)
2k + 1] Ev,—r(q) - - - Ev,(q)

. The first factor is a poly-

n — 1 the product [ is a polynomial

because it may be factorized as {

Dok 1(q) Doy 2k-1(q)
Evg(q) -+~ Evkl(q)  Evi(q) - Eva—k-1(q)
nomial by (d), so are the other two by the induction hypothesis.
Hence, when n is odd, each term in the sum in the quadratic recur-
rence above is divisible by F,(q) = Evi(q)Ev2(q) - - - Ev,(q). Thus
F,(q) | Dan+1(q). When n is even, rewrite the recurrence formula by
grouping the terms two by two to give

2n ok
Dana(a) =) {Qk + J ¢ (14+¢*" ) Doy 11 (q) Don—ak-1(),
k
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where this time k runs over the interval [0,n/2 — 1]. As n is even,
the binomial 1 + ¢2("=2%=1) is divisible by 1 + ¢*; and the product
[2511] Doy 11(q) D2y —2k—2(q) is divisible by Evi(q) - - - Ev,(q). Hence,
each term in the sum is divisible by F},(q) = (1+¢?)Ev1(q) - - - Ev,(q).

Let 0 = z125...29, be a balanced rising alternating permutation
(b.r.a.p.) of order 2n. As 2n is necessarily a peak of o, it must be
the leftmost one, i.e., xo = 2n. If 1 = ¢ with i < 2n — 2, then (i+1)
would occur to the right of ¢ and ¢ would not be balanced. Thus o
is of the form o = (2n — 1)(2n)x3- - - x2,_122, and is balanced if
and only if the right factor z3---zs,_179, is i-balanced for every
i =1,2,...,2n — 3. By induction, (2n — 3)(2n — 2)---3412 is the
only b.r.a.p. of order 2n — 2, so that the unique b.7.a.p. of order 2n
is (2n —1)(2n)(2n — 3)(2n — 2) - - - 3412.

If o contains the factor (i’ + 1)i’, then all the letters greater than
(' + 1) are to the left of (i + 1). But as o is alternating of even
length, the letter i’ is between two letters greater than ', which is a
contradiction.

The relation inv ®(¢) = inveo + 1 implies that a rising alternating
permutation with a maximal number of inversions is necessarily
balanced. As there is only one such a permutation whose number
of inversions is equal to 2n(n — 1), the property is proved.

As S {q™7 10 € Asn} = 3 {¢"™7 1 0 € Bop} = ¢V Es,a(q)
and > {¢"™ 7 : 0 € Ay, N By, } = ¢*=D =D Ey 4 (q), the induc-
tion on n implies S {¢™7 : 0 € Ay, UBy,} = 2¢* ("D g2(n-1(n=2) _
q4(n—2)—|—4(n—1)q2(n—2)(n—3) = q2n(n—1) mod <q + 1)2

Let (5, be the complement of As, U By, that is, the set of rising
alternating permutations of length 2n having (2n) and (2n — 1)
among their peaks and 1 and 2 among their troughs. There remains
to show that > {¢"™° : 0 € Cs,} = 0mod (¢+ 1)%2. Let 7, 7’ be
the transpositions (2n — 1,2n) and (1, 2), respectively, and G be the
group of order 4 generated by {7,7'}. The group G acts on Cs,, and
the generating polynomial for the four elements in each orbit by the
number of inversions is divisible by (g+1)2. Therefore, the generating
polynomials for all elements of Csy,, is also divisible by (¢ + 1)2.
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Notes

The use of the algebra of g-series in Combinatorics goes back to
MacMahon [Macl3, 15, 78], who realized that certain closed formulas in
Enumeration could only be expressed in that context. He had a great
talent for deriving many of his results in a very intuitive manner. In our
to-day’s more systematic approach a memoir on g-series in Combinatorics
has to begin with a chapter on basic hypergeometric series, at least on the
fundamental result of that theory, which is the g-binomial theorem. More
material can be found in Gasper and Rahman [GaRa90], also in the old
book by Slater [S166], or in the more recent one by Fine [Fi88]. The second
chapter in Andrews’ book [An76] also covers all that is needed on this
subject. The combinatorial aspects of the hypergeometric series identities
are developed in [JoSt87], but not discussed in those Notes. Published in
the seventies Gessel’s, Ph.D. thesis [Ge77] must be viewed as an excellent
memoir on g-series and combinatorics.

Coding permutations by sequences of integers for computer purposes
goes back to Lehmer [Le60]. The inv-coding, as such, belongs to him. The
maj-coding is implicit in the early papers by Carlitz [Cab4, 59, 75] on
Eulerian numbers and made explicit in Rawlings [Ra79, 80]. In studying
the genus zeta function of local minimal hereditary orders, Denert [Den90]
introduced a new permutation statistic, which was later christened “den”
and was shown to be equidistributed with the major index or inversion
number. The den-coding in § 2.3 is taken from [FoZe90)].

The algebra of the g-binomial coefficients is classical; see, e.g. [AnT1,
§3.3]. It was convenient to devote a full chapter, essentially chap. 4, to
presenting the main combinatorial structures counted by those coefficients.
Chapters 5 and 6 may be regarded as an extension of section 3.4 of
Andrews’s monograph [An71]. However, the proof of the fact that the
Major Index is a g-multinomial statistic, a result that is due to MacMahon
[Macl3], is given in greater detail; it involves the so-called MacMahon
Verfahren, that can be viewed as a transformation on two-row matrices.
That transformation is based upon a commutation rule that preserves the
statistics under study. Notice that the MacMahon Verfahren has been
extended by Stanley [St72] in his theory of (P, w)-partitions.
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As is often the case, an explicit combinatorial tool like the MacMahon
Verfahren opens the way to significant extensions, such as the study of
bivariable polynomials Ay, (¢, q), indexed by sequences m = (mq,...,m,)
of r nonnegative integers. Formula (7.7) already appears in MacMahon
[Macl5, vol. 2, p. 211]. Chapters 7, 8 and 9 should be regarded as a
systematic approach to combinatorial g-calculus. The material has been
taken from [ClFo95a and b, Fo95, FoKr95].

Several sources have been used for chapter 10: [Ri58, p. 38-39 and 213—
216, FoSc70] for the traditional Eulerian polynomials, [ChMo71, St76] for
the ¢g-inv Eulerian polynomials, [Fo76, Ga79] for the joint study of the two
g-extensions. The iteration method developed for Lemma 10.2 appears in
several different forms, for instance in [Ge82, Ze80a, FoZe91].

The joint combinatorial study of the statistics “maj” and “inv” on a
class of rearrangements of an arbitrary sequence, as written in chapter 11,
is borrowed from [Fo68, FoSc78]. However the construction of the funda-
mental transformation is made in a very different manner, as there is a
canonical way of extending each bijection valid for binary words to a bi-
jection over an arbitrary class of rearrangements. Notice that Bjorner and
Wachs have proposed an interesting extension to Poset Theory [BjW88|
and derived further properties of the fundamental transformation. Prop-
erties (d) and (e) in Theorem 11.3 are basically theirs. A

The expansion of the infinite product 1/]];5¢ ;50(1 — ugiql), made
in chapter 12, can be found in [Ca56] and also in [Ro74], where a first
combinatorial interpretation was given. See also [St76]. '

The expansion of the finite product 1/[Jo<;<, 0<jcs(1 — uqiql) natu-
rally leads to the study of a four-variable generating polynomial for the
permutation group. Identity (13.7) first appeared in [GGT78]. Other proofs
can be found in [Ra80, DeFo85]. Specializations had been anticipated in
[CaT6].

There is no originality in discussing some basic facts on symmetric
functions, as done in chapters 14, 15, 16. The best source of study
remains Macdonald’s book [Ma95]. To-day we rejoice at the coming out
of Lascoux’s treatise [La03] with its creative approach to the subject, as
started in [LaSch81, 84].

The combinatorial definition of the Schur function given in chapter 17
is taken from Proctor [Pr89], but has been rewritten in a more systematic
way, under the superb guidance of our friend Jean-Pierre Jouanolou.

Corollary 18.3 can be found in [St76], also in [DeFo85]. The idea of
keeping a several-variable statistic y instead of the one-variable “imaj” is
due to Adin et al. [ABRO1]. This yields Theorem 18.2, but the resulting
identities involve a non-ring linear homomorphism.
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NOTES

The Robinson-Schensted correspondence [Ro38, Sc61], that has been
so popular in the seventies and eighties, is described in the more general
set-up developed by Knuth [Kn70]. The geometric properties of that corre-
spondence are due to Schiitzenberger [Sch73, 77]. An excellent exposition
of its various properties is given in [Kn70, p. 48-72]. Theorem 19.4 may
be regarded as an Adin-Brenti-Roichman extension of identity (13.7).

The generating function for the signed permutations by number of
descents (Theorem 20.1) has been calculated by various authors: [St92,
StE93, Br94, Re93a, Re93b, Re93c, Re95a, ClF094]. The proof of Theo-
rem 20.1 is taken from the last reference. Theorem 20.3 is due to Car-
litz et al. [Ca76], Theorem 21.1 to [FoHa97|; however its specialization
to the symmetric group appears already in [St76]. The idea of taking fi-
nite analogs of the Bessel functions for enumerating pairs of permutations
is due to Fedou and Rawlings [Fe95, FeRa94, FeRa95]. The extension to
the group of signed permutations and accordingly Theorem 22.5 can be
found in [FoHa96]. The proof of the theorem relies upon a very conve-
nient inversion formula, which has appeared in various contexts [GoJa83,
p. 131, St86, p. 266, Vi86, HuWi75, Ze81]. The inversion formula stated
here (Lemma 22.3) is borrowed from [FeRa94, FeRa95].

The proof of Theorem 23.1 is taken from [FoZe81]. The Désarménien
Verfahren was developed in the two papers [De82 and 83]. Lemma 23.2,
Proposition 23.3, as well congruences (23.19) and (23.27) are due to
Désarménien. Congruences (23.20) and (23.28) are apparently new. Sec-
tion 23.4 on signed Eulerian numbers are taken from [DeFo092]. Those
numbers were introduced by Loday [Lod89] in a study of the cyclic ho-
mology of commutative algebras.

The theory of basic trigonometric functions is due to Jackson [Ja04]
(see the detailed bibliography in Gasper and Rahman’s book [GaRa90].)
The study of bibasic trigonometric functions proposed in this memoir, as
well as its combinatorial counterpart, are apparently new.

For Ex. 1 see [De82a] or [AnT76, chap. 3, Examples 1-6]. The proof
of the Ramanujan sum (Ex. 2) reproduces Ismail’s derivation [Is77]. The
maj-inv bijection for permutations described in Ex. 3 belongs to common
knowledge. For Ex. 12 and 13 refer to [Ri58, p. 38-39 and 213-216, FoSc70],
as mentioned above. In Ex. 14 the solution made by Clarke [C195] has
been borrowed. Ex. 14 reproduces the techniques developed in [Ha90a,
90b]. Notice that the study of the Denert statistics for arbitrary words,
as developed in [Ha94, 95] has not been touched in those Notes. See, e.g.
[Lo02, chap. 10].

The Z-statistic has been introduced in [ZeBr85] for the proof of the
Andrews ¢-Dyson conjecture. The combinatorial approach in Ex. 17 is
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due to Han [Ha92]. The tableau emptying-filling involution was invented
by Schiitzenberger [Sch73] and used in [FoSc78|. Ex. 20 is taken from
[FoSc78]. Ex. 25 can be regarded as the t-extension of §11.4 in the book
by Lothaire [Lo02]. The identity of Ex. 26 is taken from [ABRO1]. The
calculation in Ex. 27 was made in [FoKr95], as well as the content of
Ex. 28.

The Brenti homomorphism (see Ex. 29) has been used in [BecRe95],
other applications of the Brenti homomorphism are proposed in the
Exercise. The formula used for the length in the group of the signed
permutations is due to Brenti [Br94], the generating function for the pair
(length, number of descents) derived in Ex. 30 is due to Reiner [Re95a].
The involution in Ex. 31 belongs to Wachs [Wa92]. Finally, Ex. 32 and 33
are taken from [Fe81] and [AnFo82].

The algebra of symmetric functions, especially the Cauchy identity for
Schur functions, has been a powerful tool for deriving various generating
counting series. We have not mentioned other tools, such as the Hook
Young diagrams developed by Berele, Regev and Remmel [BeRe85, 87]
and the derived (k,l)-Schur functions [Rem83, 84, 87]. In most cases it
seems that the Schur function model suffices for the derivations [DeFo91].

We have not discussed operator techniques, as developed in [An71] or
[Ze80b]. The subject of permutation statistics is in full expansion, so that
the present Notes can only be regarded as a partial aspect of to-day’s
state of the art. There have been interesting studies by the Californian
school (see [Bec95, 96]) and by the vigorous Israeli school ([AR01, ABRO1,
ReRo03a, ReRo03b]. The goal is to find the most appropriate maj-analogs
for the further Weyl groups, or to work out with set-valued statistics
[FoHa02]. The first results found in [ARO1] are very promising. Finally,
let us mention the paper by Babson and Steingrimsson [BaSt00] on the
classification of the patterns that lead to a Mahonian distribution.
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