
Pattern Recognition 43 (2010) 1152 -- 1164

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.e lsev ier .com/ locate /pr

Reconstruction of tomographic images from limited range projections using discrete
Radon transform and Tchebichefmoments

X.B. Daia,e, H.Z. Shua,e,∗, L.M. Luoa,e, G.N. Hanb, J.L. Coatrieuxc,d,e

aLaboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, 210096 Nanjing, China
bIRMA, Université Louis Pasteur et C.N.R.S., 7, rue René-Descartes F, 67084 Strasbourg, France
cINSERM, U642, Rennes, F-35000, France
dUniversité de Rennes 1, LTSI, Rennes, F-35000, France
eCentre de Recherche en Information Biomédicale Sino-Français (CRIBs), France

A R T I C L E I N F O A B S T R A C T

Article history:
Received 3 November 2008
Received in revised form 2 June 2009
Accepted 22 July 2009

Keywords:
Discrete Radon transform
Discrete orthogonal moments
Projection moments
Image reconstruction

This paper presents an image reconstruction method for X-ray tomography from limited range projections.
It makes use of the discrete Radon transform and a set of discrete orthogonal Tchebichef polynomials
to define the projection moments and the image moments. By establishing the relationship between
these two sets of moments, we show how to estimate the unknown projections from known projections
in order to improve the image reconstruction. Simulation results are provided in order to validate the
method and to compare its performance with some existing algorithms.
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1. Introduction

The issue of image reconstruction has received much attention
in the medical imaging literature. This is due to the constant search
for improvements of imaging modalities, ranging from X-ray com-
puterized tomography and emission tomography up to acoustic and
optical techniques. They all bring different insights in the human
body either morphological or functional. The standard mathemati-
cal model of X-ray computerized tomography (CT) assumes that the
sensing device measures the line integrals of the object attenuation
coefficient at some known orientations. An analytical formulation
for the reconstruction of two-dimensional (2-D) tomographic images
from projections, i.e., an inverse problem, has been first proposed by
Radon in 1917. The filtered back-projection (FBP) algorithm, which
can be seen as a computer implementation of Radon's inversion for-
mula, still plays an important role although algebraic methods are
also intensively used [1–3]. However, the reconstruction based on
FBP algorithm requires the projections for all angles from 0 to �.
A major health concern today is related to the reduction of dose
to the patient which means limiting either the X-ray source inten-
sity or the number of projections. This issue is critical not only for
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diagnosis imaging but also in interventional setting where for in-
stance rotational-X is used.

One way to improve the quality of the reconstructed image when
only limited range projections are available consists to estimate the
projections at unknown views by moment-based approaches [4,5].
Milanfar et al. [6] presented a variational framework for the tomo-
graphic reconstruction of an image from the maximum likelihood
estimates of its orthogonal moments. Basu and Bresler [7,8] investi-
gated the problem of recovering the view angles from the projection
data by means of moment method. By establishing a relationship
between the image geometric moments and projection moments,
Wang and Sze [9] presented an approach to reconstruct the CT im-
ages from limited range projections. Shu et al. [10] extended Wang's
method by using the orthogonal Legendre moments to improve the
quality of the reconstructed image. Its advantage is that the orthog-
onal moments have simple inverse transform, thus the image can
be more easily reconstructed from the orthogonal moments. More-
over, the geometric moments, especially at high order, are sensitive
to noise and digitization error. However, both Wang's and Shu's
methods were based on the use of continuous moments. When
applied to 2-D digital images, the double integrals are usually ap-
proximated by discrete summations that lead to numerical errors in
the computed moments. The discrete orthogonal moments recently
introduced for image analysis [11–14], in particular Tchebichef mo-
ments, have shown a better image representation capability than
the traditional continuous orthogonal moments because they do not
require any discrete approximation for numerical implementation.
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Two other arguments motivate our use of the discrete orthogonal
Tchebichef polynomials: (1) they are the simplest among all the
discrete orthogonal polynomials; (2) they have a definition domain
ideally suited for square images [11].

Since the reconstruction techniques are typically modeled in the
domain of the continuous 2-D plane from which projections are ac-
quired, the need to impose the reconstructed solution as an image
on a 2-D discrete grid of pixels is usually accommodated at a later
stage of the implementation for each algorithm. In some approaches,
these discrete sampling issues do constrain the data acquisition pro-
cess and the reconstruction and may influence the experimental de-
sign of CT scanner. Moreover, when using the discrete orthogonal
polynomials to define the projection moments, the traditional Radon
transform is no longer applicable, and a discrete version of Radon
transform is required. Guédon and Normand [15] introduced the so-
called Mojette transform as a discrete geometric tool. Beylkin [16]
described the discrete Radon transform (DRT) to map a set of sam-
pled image points onto a set of discrete projections. The algebraic
mapping for this transformation can be computed exactly since no
interpolation of the data is required. Matus and Flusser [17] devel-
oped a group theoretic and Fourier based approach to the DRT. Svalbe
[18] and Kingston [19] derived improved versions of DRT to handle
both continuous projections and discrete projections in Fourier and
Radon space. The advantage of the techniques reported in [18,19] is
that they require no pre-processing of the projection data, a straight-
forward 1-D linear interpolation and a simple sorting of projection
samples.

The organization of this paper is as follows. A brief outline of the
discrete Radon transform is provided in Section 2. The definition of
projection moments and image moments is given in Section 3. In
this section, we also establish a relationship between the projection
moments and image moments and discuss how to estimate the pro-
jection moments at any specific view from the image moments. The
performance of the proposed solution with a comparison to some
existing methods is reported in Section 4. The concluding remarks
are given in Section 5.

2. Discrete Radon transform

Because the data projections are acquired in discrete form, we
use the following version of DRT suggested by Kingston and Svalbe
[19]:

R(k,�) =
N−1∑
x=0

N−1∑
y=0

I(x, y)�(k − xy� + yx�)

� = tan−1(x�/y�), x� ∈ Z, y� ∈ Z, (1)

where I(x, y) is the image function, N×N is the image size, and N
is assumed to be a prime number; �(x) is the delta function, k ∈
{0, 1, 2, . . . ,N�−1}, N� = N(|x�| + y�), x� and y� are respectively the
horizontal and vertical distances with the nearest pixels.

Using the Fourier slice theorem, the mapping from a continuous
projection to a discrete projection can be implemented by interpo-
lation. It means that each individual discrete projection R(k,�) at a
given view � denoted hereafter by R�(k), can be calculated by inter-
polation using the FFT data of all continuous projections g�(s), which
can be referred to Kingston and Svalbe [19]. The image can be re-
constructed using the inverse DRT (IDRT)

I(x, y) = 1
N

⎡
⎣ N∑
m=0

R(〈x − my〉mod(N),m) −
N−1∑
�=0

R(�, 0)

⎤
⎦ , (2)

where R(�,m) is the DRT given in [18]

R(�,m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N−1∑
x=0

I(x,�) for m = 0,

N−1∑
y=0

I(〈my + �〉mod(N), y) for 0<m�N.

(3)

Here 〈A〉mod(N) denotes the residue of A modulo N, � ∈ {0, 1,
2, . . . ,N − 1}.

If only the projections R(k,�) defined by Eq. (1) are available,
we need to transform them into the corresponding R(�,m) before
reconstruction. The detailed description of the transformation from
R(�,m) to R(k,�) can be found in [18,19].

3. Method

3.1. Discrete projection moment and image moment

The moments of discrete projection R�(k) are called the discrete
projection moments. In this paper, we use a set of discrete or-
thonormal polynomials to define the projection moments. Let tp(k),
p = 0, 1, . . . , L, be a set of discrete orthonormal polynomials defined
on the interval [0,N� −1], the pth order orthonormal projection mo-
ments of R�(k) is defined as

Hp(�) =
N�−1∑
k=0

tp(k)R�(k). (4)

Substituting (1) into (4) and using the property of delta function,
we have

Hp(�) =
N−1∑
x=0

N−1∑
y=0

I(x, y)tp(y�x − x�y). (5)

Let Tnm be the (n+m)th order discrete orthonormal moment of
the image intensity function I(x, y) defined as

Tnm =
N−1∑
x=0

N−1∑
y=0

tn(x)tm(y)I(x, y), 0�n,m�N − 1. (6)

The orthogonality property of polynomials leads to the following
approximate inverse moment transform

Î(x, y) =
M∑

n=0

n∑
m=0

Tn−m,mtn−m(x)tm(y), (7)

where M denotes the maximum order of moments used in the re-
construction.

The objective of the next subsection is to establish a relationship
between the orthonormal projection moments defined by (5) and
the discrete orthonormal moments of I(x, y) defined by (6).

3.2. Relationship between discrete projection moment and image
moment

Let us first introduce some basic definitions. Define the pth order
discrete orthonormal polynomial tp(x) as

tp(x) =
p∑

q=0

cpq(−x)q, (8)

where (−x)q is the Pochhammer symbol defined by

(−x)q = (−x)(−x + 1)(−x + 2) · · · (−x + q − 1), for q�1

with (−x)0 = 1.
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It can be deduced from (8) that

(−x)l =
l∑

r=0

dlrtr(x) for 0� l�p, (9)

where Dp = (dlq), with 0 � q � l � p, is the inverse matrix of the
lower triangular matrix Cp=(clq). Now we can establish the relation-
ship between the projection moments and image moments.

Theorem 1. The discrete orthogonal projection moment of order p at
given view �, Hp(�), can be expressed as a linear combination of discrete
orthogonal image moments, Tnm, of same order and lower, i.e.,

Hp(�) =
p∑

n=0

p−n∑
m=0

�nm(p,�)Tnm, (10)

where

�nm(p,�) =
p−n−m∑
r=0

n+r∑
s=0

p∑
q=n+m+r

n+r−s∑
i=n

n+m+r−i∑
j=m

(−1)q+s+i+j−r−n

× cpqdindjm

(
n + m + r

s + m

)

× S1(q,n + m + r)S2(n + r − s, i)S2(m + s, j)ym+s
� xn+r−s

� .

(11)

Here S1(i, j) and S2(i, j) are respectively the first kind and second kind
of Stirling numbers [20].

The proof of Theorem 1 is given in Appendix A.
Eq. (10) can be expressed in matrix form. Let HM(�) =

[H0(�),H1(�), . . . ,HM(�)]T , T(k) = [Tk0, Tk−1,1, Tk−2,2, . . . , T1,k−1, T0k],
�M = [T(0), T(1), T(2), . . . , T(M)]T where M is the maximum order of
moments to be used, then we have

HM(�) = �M(�)�M , (12)

where �M(�) denotes a matrix of size (M+1)×(M+1)(M+2)/2 which
is defined by

�M(�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�00(0,�)

�00(1,�) �10(1,�) �01(1,�)

�00(2,�) �10(2,�) �01(2,�) �20(2,�) �11(2,�) �02(2,�)

. . . . . .

�00(M,�) �10(M,�) �01(M,�) �20(M,�) �11(M,�) �02(M,�) . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

Here the elements �nm(p,�), with 0 � n, m, p � M, are given
by (11).

Proposition 1. Given the discrete projections of I(x, y) at L different
sampling angles �i, 1 � i � L, one can uniquely determine the first L
moment vectors T(k) of I(x, y), 0 � k< L. This can be done using only
the first L orthogonal discrete projection moments.

For the proof of Proposition 1, we refer to Milanfar et al. [6].
Theorem 1 describes a general result which is valid for all the

sets of discrete orthonormal polynomials. In the rest of the paper,
we focus on the use of discrete orthonormal Tchebichef polynomials.
Note that other discrete orthogonal polynomials such as Krawtchouk
[12], Racah [13] or dual Hahn polynomials [14] can be consid-
ered. The pth order discrete orthonormal Tchebichef polynomial is

defined by [11]

tp(x) = (1 − N)p
	(p,N) 3F2(−p,−x, 1 + p; 1, 1 − N; 1) =

p∑
r=0

cpr(−x)r

x = 0, 1, . . . ,N − 1, (14)

where 3F2(·) is the generalized hypergeometric function, 	(p,N) is a
constant independent of x. A suitable choice of 	(p,N) is [11]

	(p,N) =
√√√√(2p)!

(
N + p

2p + 1

)
, (15)

and cpr is given by

cpr = (−1)r

	(p,N)
(p + r)!

(p − r)!(r!)2
(1 − N)p
(1 − N)r

. (16)

An essential step when applying a given polynomial to the recon-
struction problem is to find the inverse matrix Dp. For the discrete
orthonormal Tchebichef polynomials, we have the following result.

Proposition 2. For the lower triangular matrix Cp whose elements clq
are defined by (16), the elements of the inverse matrix Dp are given by

dlq = (−1)q
	(q,N)(2q + 1)(l!)2(1 − N)l
(l + q + 1)!(l − q)!(1 − N)q

, 0� q� l�p. (17)

The proof of Proposition 2 is given in Appendix A.
From the above Proposition, we can derive an explicit expres-

sion of �nm(p,�) in (11) for discrete normalized Tchebichef poly-
nomials. Let


rsqij(p,n,m) = cpqdindjm

(
n + m + r

s + m

)
S1(q,n + m + r)

× S2(n + r − s, i)S2(m + s, j), (18)

then (11) becomes

�nm(p,�) =
p−n−m∑
r=0

n+r∑
s=0

p∑
q=n+m+r

n+r−s∑
i=n

n+m+r−i∑
j=m

(−1)i+j+q+s−r−n

× 
rsqij(p,n,m)ym+s
� xn+r−s

� . (19)

Substitution of (16) and (17) into (19) leads to

�nm(p,�) = R
p−n−m∑
r=0

n+r∑
s=0

Z1Z2Z3y
m+s
� xn+r−s

� , (20)

where

R =
√
(2p+1)(2n+1)(2m+1)(N+n)!(N+m)!(N−n−1)!(N−m−1)!

(N+p)!(N−p−1)!
,

(21)

Z1 = (n + m + r)!
(m + s)!(r + n − s)!

, (22)

Z2 =
p∑

q=n+m+r

(−1)p+q+s−r−nUq(p,N)S1(q,n + m + r), (23)
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Uq(p,N) = (p + q)!(N − q − 1)!

(p − q)!(q!)2
, (24)

Z3 =
r−s+n∑
i=n

r+n+m−i∑
j=m

Wij(n,m,N)S2(r − s + n, i)S2(s + m, j), (25)

Wij(n,m,N)

= (i!)2(j!)2

(i + n + 1)!(i − n)!(m + j + 1)!(j − m)!(N − i − 1)!(N − j − 1)!
.

(26)

The coefficients Uq(p,N) and Wij(n,m,N) can be computed
through

Uq+1(p,N) = (p + q + 1)(p − q)

(N − q − 1)(q + 1)2
Uq(p,N), for q�n + m + r, (27)

Wi+1,j(n,m,N)=− (i+1)2(N−i−1)
(i+n+2)(i−n+1)

Wi,j(n,m,N), for i�n, (28)

Wi,j+1(n,m,N)=− (j+1)2(N−j−1)
(m+j+2)(j−m+1)

Wij(n,m,N), for j�m, (29)

with

Un+m+r(p,N) = (p + n + m + r)!(N − n − m − r − 1)!

(p − n − m − r)!((n + m + r)!)2
, (30)

Wnm(n,m,N) = (n!)2(m!)2

(2n + 1)!(2m + 1)!(N − n − 1)!(N − m − 1)!
. (31)

Note that the first and second kinds of Stirling numbers, S1(r, k)
and S2(k,m), can be pre-calculated and stored in a look-up table.
The above recurrence formulas allow reducing the computational
complexity of �nm(p,�).

3.3. Estimation of the discrete projection moments at any view

Based on the relationship between the given projection moments
and the image moments established above, the following shows how
to compute the unknown discrete projections from the image mo-
ments.

The orthogonality of Tchebichef polynomials leads to the follow-
ing approximate inverse transform of (4):

�
R �(k) =

M∑
p=0

Hp(�)tp(k), (32)

where M denotes the maximum order of moments used in the re-
construction.

Substituting Eq. (10) into Eq. (32), we have

�
R �(k) =

M∑
p=0

tp(k)
p∑

n=0

p−n∑
m=0

�nm(p,�)Tnm. (33)

Eq. (33) provides the basis to estimate the unknown discrete projec-
tions from the known image moments. When all the projection data
are available, they can be used to reconstruct the original image. The
main steps of the reconstruction process are summarized as follows:

(1) Acquire the discrete projections from corresponding known
continuous projections according to the method described in
Section 2;

(2) Compute the discrete projection moments up to order M from
given discrete projections using (4);

(3) Calculate the image moments of order up to M based on (12);

(4) Estimate the unknown discrete projections from image mo-
ments using (33);

(5) Once the unknown projections are estimated, use either the FBP
method or the inverse discrete Radon transform (IDRT) defined
by (2) to reconstruct the original discretized image I(x, y).

It is worth noting that the image reconstruction can also be done
by using the approximate inverse moment transform defined by (7)
when the image moments of order up to M are calculated. If such a
strategy is adopted, the steps (4) and (5) can be omitted. However,
we prefer to use the technique described above. The reason for such
a choice will be explained in the next section.

4. Results and discussions

4.1. Simulation

A simulated image of size 127×127 pixels (Fig. 1) has been built for
performance evaluation and comparison purpose. The main object is
an ellipse with size 42×39 pixels and the two internal ellipses have
6×5 and 9.5×9 axes (the three ellipses will be denoted by E1, E2 and
E3 and their density values are equal to 1, 3 and 4 respectively).
We use this phantom to compare the two methods for computing
the image moments. The first method is directly based on (7) since
the image is known and the second one is performed through the
computation of discrete projection moments with the help of (12).
In both methods, the discrete orthonormal moments, Tnm, of order
up to 16 are calculated. The differences between the moment values
using these two methods are shown in Table 1. It can be observed
from this table that the difference between the real image moments
and estimated image moments is very small. This result points out
that the image moments can be well estimated from the discrete
projection moments.

To test the robustness of the proposed method, we first con-
sider the case where the projections are known over the whole

Fig. 1. Simulated phantom and the sample directions at 0◦ and 90◦ .

Table 1
Errors between the image moment values obtained with Eq. (6) and image moment
values estimated from digital projection moments with Eq. (12).

n m

0 2 4 8

0 0.0000 −0.00008 0.00046 −0.0001
2 −0.00027 0.0002 −0.00003 0.00005
4 0.00031 −0.00012 −0.0001 −0.00006
8 0.0000 −0.000003 −0.00004 −0.00005
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Fig. 2. Results when all the projections are known. The projections are compared at different views: 0◦ , 40◦ , 60◦ , 90◦ , 130◦ and 140◦ . Image moments of order up to 20 are
used (solid line: original projections; cross: projections estimated from Tchebichef moments; point: projections estimated from Legendre moments).

interval [0,�], the reference axis being horizontal. The image mo-
ments of order up to M = 20 are calculated, and (33) is used to es-

timate the projection,
�
R �(k), at any specified view �. The initially

acquired projections g�(s) and the projections estimated with the
methods based on both the Legendre moments (denoted by g̃�(s))
and the Tchebichef moments of order up to M = 20 at angles 0◦,
40◦, 60◦, 90◦, 130◦ and 140◦ are depicted in Fig. 2. Note that for

comparison purpose, the estimated discrete projections
�
R �(k) have

been converted to ḡ�(s) using the interpolation in Fourier space
[19]. They show a good fit between the estimated and the origi-
nal projections, with a slightly better performance of the proposed
method when compared to the Legendre moment based method, as
exemplified for the angles 40◦ and 140◦. We then assume that pro-
jections are available in the range of 25◦ � � � 155◦, and unknown
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Fig. 3. Results when only the projections in the range of 25◦ � � � 155◦ are known. The projections are compared at unknown views: 0◦ , 10◦ , 30◦ , 150◦ , 170◦ and 180◦ .
Image moments of order up to 20 are used (solid line: original projections; cross: projections estimated from Tchebichef moments; point: projections estimated from
Legendre moments).

over 0◦ � � < 25◦ and 155◦ < � � 180◦. Fig. 3 shows the estimated
projections using both the proposed method and Legendre moment-
based method at views of 0◦, 10◦, 30◦, 150◦, 170◦ and 180◦. Here
also, the discrete Tchebichef moments perform better than the con-
tinuous Legendre moments.

We now consider the problem of image reconstruction from
limited range projections. The following configuration of continu-
ous projections is used: (a) the total view varies from 25◦ to 155◦;
(b) the angular sampling rate is 1◦; (c) the spatial ray sampling rate
is 127 rays per view. Fig. 4(b) shows the reconstructed image from
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Fig. 4. Reconstruction results from incomplete projections (25–155◦): (a)–(d) Reconstruction using FBP, SART, MLEM, MXE method respectively; (e) reconstructions using
Legendre moments with different maximum order; (f) reconstructions using Tchebichef moments with different maximum order, where the inverse discrete Radon transform
(IDRT) is used in the reconstruction process; (g) reconstruction using Tchebichef moments with different maximum order, where the FBP is used in reconstruction process;
(h) reconstruction using the inverse moment transform defined by (7) with different maximum order.

incomplete projections (25◦–155◦) using the filtered back-projection
(FBP) algorithm. Because the FBP algorithm requires the continu-
ous projections, g(s,�), for all s and �, the value of g(s,�) is set to
zero at the unknown views. The projection data considered here are
assumed to be noiseless and a Ram-Lak filter with cutoff frequency
�max �1/(2�s) has been applied for the FBP in order to avoid the
overlapping phenomenon (�s denotes the sampling interval of s)

[2]. Note also that for noiseless data, the value of �max is chosen in
such a way that the mean square error (MSE) between the origi-
nal image I and the reconstructed image Î is minimal. The MSE is
defined by

MSE(%) = ‖Î − I‖2
‖I‖2 × 100%. (34)
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We now apply our method as well as the continuous orthogonal
moment based method described in [10] to compute the image mo-
ments from the projection moments with maximum order M equal
to 5, 10, 15 and 20. These moment values are used to estimate the
unknown projections. Then, the FBPmethod is applied to reconstruct
the image from all the projections in which the missing angle pro-
jections are estimated by the method based on Legendre moments
(Fig. 4(e)) and IDRT method is used to reconstruct the image where
the unknown projections are estimated by Tchebichef moments
(Fig. 4(f)). We also apply the FBP algorithm instead of the IDRT to re-
construct the image: the corresponding reconstructed images are de-
picted in Fig. 4(g). For comparison purpose, the reconstructed resu-
lts using MLEM (maximum likelihood expectation maximum) [21],
MXE (minimum cross-entropy) [22] and SART (simultaneous alge-
braic reconstruction technique) [23] are displayed in Fig. 4 (b)–(d)
where the results have been obtained after 100 iterations (20 itera-
tions for SART). As previously indicated, when the image moments
are available, it is also possible to use the inverse moment transform
defined by (7) to reconstruct the original image. Fig. 4(h) shows the
reconstructed images using (7) forM = 5, 10, 15, and 20 respectively.

Table 2 shows the MSEs for the images displayed in Fig. 4 and
Table 3 provides the mean grey levels of three reconstructed ellipses
E1, E2 and E3. From Fig. 4, Tables 2 and 3, we can see that the statisti-
cal methods MLEM andMXE lead to better results than the FBP when
parts of projection data are missing. That is because the comparison
and correction steps in iterative statistical methods can modify the
incomplete projections at each iteration. While they significantly de-
crease with the moment order, all the reconstructed results remain
very close when using the different methods, even if the Tchebichef

Table 2
Reconstruction MSE (%) of Fig. 4 for different values of maximum order of
moments M.

Method M

5 10 15 20

Legendre 11.2860 8.4279 5.9729 5.4071
Tchebichef (IDRT) 9.0753 6.5466 3.6704 3.0925
Tchebichef (FBP) 10.5623 7.0158 4.9478 3.9878
FBP 17.8945
SART 18.9854
MLEM 5.5214
MXE 5.4801

Table 3
The mean gray levels of the three reconstructed ellipses E1, E2 and E3.

Method M

5 10 15 20

FBP 0.739:2.024:2.744
SART 0.669:2.005:2.736
MLEM 1.003:2.725:3.689
MXE 1.003:2.742:3.699
Legendre 0.978:2.241:3.035 1.008:2.251:3.205 1.006:2.455:3.437 0.995:2.529:3.545
Tchebichef (IDRT) 0.994:2.421:3.257 1.004:2.498:3.347 1.003:2.774:3.701 1.002:2.905:3.875
Tchebichef (FBP) 0.982:2.333:3.185 1.006:2.412:3.265 1.004:2.678:3.521 0.997:2.716:3.803

Table 4
Maximum orders of moments required for the methods based on Legendre polynomials and Tchebichef polynomials to get similar values of MSE.

MSE (%) values and corresponding maximum order of moments M

Legendre 9.3100 (M = 8) 8.4279 (M = 10) 5.9729 (M = 15) 5.4071 (M = 20)
Tchebichef (IDRT) 9.0753 (M = 5) 8.4466 (M = 8) 5.8704 (M = 11) 5.2104 (M = 12)
Tchebichef (FBP) 9.1024 (M = 5) 8.5277 (M = 8) 6.0023 (M = 11) 5.4128 (M = 12)

moments lead to lower MSEs. However, when looking at the images,
different behaviors can be observed. If we find the classical artifacts
of the FBP and statistical algorithms in (a)–(d), (e) and also in (g),
they are not observed in (f) where the IDRT is applied. The contours
of the phantom ellipses are better defined and their original shapes
are preserved. Conversely, we can see a loss in homogeneity of the
regions, with a random like pattern, without any obvious link with
the acquisition geometry. The Legendre and Tchebichef based images
do not visually show significant differences when they are associ-
ated with the FBP. It can also be seen from this figure that, for the
same value of M, the quality of the reconstructed image based on (7)
(shown in (h)) is lower than those obtained with either FBP or IDRT
algorithm. One way to improve the quality of the reconstructed im-
age based on the inverse moment transform is to increase the value
of M. However, such a strategy would lead to higher computational
complexity since the dimension of the matrix �M(�) defined in (13)
is (M+1)×(M+1)(M+2)/2. Moreover, high order moments are more
sensitive to noise than the low order moments [24] (this point will
be discussed later). For these reasons, the inverse moment transform
in the reconstruction process was not further considered. In this ex-
periment, the whole procedure costs 35.9 s (35.1 s when using FBP
method for reconstruction), and the computation time required for
each step (from step 2 to step 5) is respectively 2.6%, 51.8%, 24.5%,
12.1% of the total time. Note that the program was implemented in
Matlab 7.0.1 on a PC CORE 2 3.0GHz, 2.0 GB RAM. It is worth noting
that the computation of the matrix �M(�) for both known and un-
known views in this experiment is approximately 73% of the whole
computation time, thus, it is the most time consuming process in
our method. Generally speaking, the greater value of M, the higher
computation time will be.

To bring additional cues, we compare our methodwith the Legen-
dre moment based method, using the maximum order of moments

Table 5
Reconstruction MSE (%) using Legendre moments and Tchebichef moments for
different values of cut-off frequency with M = 15.

Method �max

0.5 0.7 0.9 1

FBP 19.427 18.729 18.457 18.556
Legendre 7.866 7.385 7.258 7.265
Tchebichef (IDRT) 5.123 5.123 5.123 5.123
Tchebichef (FBP ) 6.874 6.474 6.001 6.311
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Fig. 5. Reconstruction from incomplete projections (25–155◦) with Poisson noise when cut-off frequency �max = 0.7: (a)–(d) reconstruction using FBP, SART, MLEM, MXE
method respectively; (e) reconstructions using Legendre moments with different maximum order; (f) reconstructions using Tchebichef moments with different maximum
order, where the inverse discrete Radon transform (IDRT) is used in the reconstruction process; (g) reconstruction results using Tchebichef moments with different maximum
order where the FBP is used in reconstruction process.

required to get similar values of MSE. In all cases (Table 4), the
maximum order of moments used in the proposed method is lower
than that needed for Legendremoments. Thus, a significant reduction
in computational complexity can be reached.

To test the robustness of the methods to noise, the same example
(the projections are always assumed to be available in the range of
25◦ � � � 155◦) is used where Poisson noise, with the mean value
equal to the projection intensity, was added to the projection data.
When the input data are corrupted by noise, the choice of the cut-off
frequency may be more complicated. According to [25], a filter with
a cut-off frequency that is too high maymaintain resolution and con-
trast, but allow noise to degrade the reconstructed image quality.
Conversely, a filter with a too low cut-off frequency will suppress
image noise, but may oversmooth the image, decrease contrast and
eventually introduce ringing artifacts. Different values of �max have
been tested in this experiment, the MSEs corresponding to the FBP
method, the Legendre moment method associated with FBP algo-
rithm, and the proposed method combined with both IDRT and FBP,
are illustrated in Table 5. It can be observed from this table that for

Table 6
Reconstruction MSE (%) of Fig. 5 for different values of maximum order of moments
M with the cut-off frequency �max = 0.7.

Method M

5 10 15 17

Legendre 12.543 9.318 7.385 42.546
Tchebichef (IDRT) 9.897 7.691 5.123 30.444
Tchebichef (FBP ) 11.462 8.223 6.474 38.187
FBP 18.729
SART 19.965
MLEM 9.542
MXE 9.398

a fixed value of M, the MSEs depend on the cut-off frequency except
for the case where the IDRT is used in the reconstruction process (i.e.
no filtering is required for IDRT). Fig. 5 depicts the reconstructed im-
ages corresponding to different approaches for �max =0.7 and M = 5,
10, 15 and 17, respectively (in (e)–(g)), as well as the results ob-
tained with the statistical methods after 50 iterations (in (b)–(d)).
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Fig. 6. Reconstruction results of “pseudo-real” data with Poisson noise for � = 0, 10, 15, 20, 25 respectively. The size of image is 509∗509 and maximum order M is 15:
(a) original image with ROI; (b)–(f) reconstruction results using FBP method; (g)–(k) reconstruction results using the method based on Legendre moments; (l)–(p) reconstruction
results using the proposed method where the IDRT is used in the reconstruction process.
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Fig. 6. (continued).

The correspondingMSE values are shown in Table 6.We can see from
Fig. 5 and Table 6 that for M = 17, the quality of the reconstructed
images degrade for both Legendremomentmethod and the proposed

method. This effect is due to the fact that the higher order moments
are sensitive to noise. These results point out that for higher noise
level, lower moment order should be used. To improve the quality
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Table 7
Reconstruction MSE (%) of Fig. 6 using FBP method, the method based on Legendre
moments and our method with maximum order M = 15 for different values of �.

Method �

0 10 15 20 25

FBP 25.052 32.731 36.902 41.614 45.072
Legendre 25.052 27.733 28.813 31.681 35.402
Tchebichef (IDRT) 19.524 21.011 22.412 25.314 29.768

Table 8
The difference of mean gray levels of regions of interest between reconstructed
results shown in Fig. 6 and original image in Fig. 6(a).

Method �

0 10 15 20 25

FBP 2.3291 18.3010 26.7710 34.6410 41.9750
Legendre 2.3291 3.7642 5.8551 8.9654 10.1023
Tchebichef (IDRT) 1.9283 2.4501 4.6709 6.4441 9.0123

of the reconstruction in case of noise, one way consists to utilize the
projection based filter technique to reduce its impact as suggested
by Schaeffter et al. in [26].

4.2. Evaluation on “pseudo-real” data

Since real projection data are not available from imaging devices,
the evaluation has been conducted on previously reconstructed im-
ages, acquired on standard CT devices (Fig. 6(a)) whose sizes are all
509∗509, hence the so-called “pseudo-real” data. A parallel geome-
try (723 rays per view) has been used to generate the projections
over [0◦, 180◦] with 1◦ angular sampling. Poisson noise with mean
value equal to the projection intensity was added to the projections.

The limited range projections are defined over [�, 180◦−�]
where � is an adjustable parameter. The approach using the discrete
Tchebichef moments has been compared to the continuous Legendre
moment method for � = 0, 10, 15, 20, 25. These moment values are
then used to estimate the unknown projections. The reconstructed
images using different approaches for different values of � are dis-
played in Fig. 6. Fig. 6(b)–(f) and (g)–(k) provide the reconstruction
results for different values of � using FBP method and the method
based on Legendre moments. The cut-off frequency of the Ram-Lak
filter used in FBP algorithm is set to 0.7. As in the previous example,
when the unknown projections are estimated with Eq. (32), the
IDRT method was applied. The reconstruction results are shown
in Fig. 6(l)–(p). These pictures confirm the observations previously
made on the phantom data. The quality of the reconstructions using
FBP degrades quickly with smaller intervals of view, especially on
the left and right sides of the head. The resulting images remain
blurred and a loss of contrast can be seen even for the lowest value
of �. However, some soft tissues features (for instance, the black
regions at the center of the brain) are restituted. The reconstruc-
tion resulting from our approach provides a good contrast for the
skull and an improved resolution for very fine bones (for instance
just below the nose) with well defined contours. However, the soft
tissue details mentioned before are lost and the regions depict a
random-like texture. The corresponding MSE values are displayed
in Table 7 and the difference of mean grey levels of region of inter-
est (denoted by a rectangle in Fig. 6(a)) between the reconstructed
results and the original image (Fig. 6(a)) are displayed in Table 8.
They show the fast decrease in performance when � is increasing for
FBP. If this trend is similar for moment-based approaches, it is less
pronounced. In other words, the moment-based approaches seem
more robust to limited range projections. Here also, both the MSE
and the difference of mean grey levels obtained with Tchebichef
moments and IDRT are the lowest.

5. Conclusion and perspectives

A new method has been described for tomographic image recon-
struction from limited range projections. The discrete Radon trans-
form and the discrete Tchebichef polynomials have been used to
establish the relationship between the projection moments and im-
age moments. Based on this relationship, the image moments were
calculated from the known projections, and they were then used to
estimate the unknown projections. The effectiveness of the method
has been confirmed by the results obtained on simulated phantom
and “pseudo-real” data. These experiments have shown some im-
provement in MSEs when using Tchebichef polynomials instead of
the continuous orthogonal moments (e.g. Legendre moments). The
visual inspection of the reconstructed images, however, pointed out
advantages and disadvantages. On the positive side, the contours and
small bone structures are better preserved. On the negative side, re-
gion features are less homogeneous and soft tissue properties can
be lost. The CT scanner being mainly devoted to bone analysis, this
may be acceptable in clinical situations. It must be emphasized that
the situations experimentally simulated in this paper are extremely
demanding (from 160◦ down to 130◦ for the angular view). They are
nevertheless close to those encountered in rotational-X which, at the
moment, is mainly devoted to vascular explorations. The search for
efficient methods capable to fulfill the clinical requirements, while
significantly reducing the irradiation, remains a true health problem
and an open challenge. Our future work will focus on improving the
present approach and extending its scope to fan-beam and cone-
beam geometries.
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Appendix A.

Proof of Theorem 1. Using (8), (5) can be rewritten as

Hp(�) =
N−1∑
x=0

N−1∑
y=0

I(x, y)
p∑

q=0

cpq(x�y − y�x)q. (A.1)

Using the relationships [20]

(x)r =
r∑

k=0

(−1)r−kS1(r, k)xk and xk =
k∑

m=0

(−1)mS2(k,m)(−x)m, (A.2)

we have

(x�y − y�x)q =
q∑

r=0

r∑
s=0

(−1)q+s−r

(
r

s

)
S1(q, r)ys�x

r−s
�

×
r−s∑
i=0

(−1)iS2(r − s, i)(−y)i
s∑

j=0

(−1)jS2(s, j)(−x)j. (A.3)

Substitution of (A.3) into (A.1) yields

Hp(�) =
p∑

q=0

q∑
r=0

r∑
s=0

r−s∑
i=0

s∑
j=0

j∑
n=0

i∑
m=0

(−1)q+s+i+j−r
(
r
s

)
S1(q, r)

× S2(r − s, i)S2(s, j) · ys�xr−s
� cpqdimdjn

N−1∑
x=0

N−1∑
y=0

tn(x)tm(y)I(x, y).

(A.4)
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Using (6) and making the change of variables r′ = r–n–m, s′ = s–m
in the last equation of the above expression, we can derive the result
claimed in Theorem 1. �

Proof of Proposition 2. To prove the proposition, we need to verify
the following relation

l∑
q=r

clqdqr = �lr for 0� l, r�p.

Using (16) and (17), we have

l∑
q=r

clqdqr = (−1)r
(2r + 1)	(r,N)(1 − N)l

	(l,N)(1 − N)r

×
l∑

q=r

(−1)q(l + q)!
(l − q)!(q + r + 1)!(q − r)!

. (A.6)

For l = r, (A.6) becomes

clldll = (−1)l(2l + 1) × (−1)l(2l)!
(2l + 1)!

= 1. (A.7)

To prove (A.6) for r< l, let

G(l, r, q) = (−1)q+1
(
l + q + 1
l − q + 1

)(
2q

q − r

)
(l + 1 − q)(q − r)

(l + q + 1)(l + r + 1)(l − r)
,

(A.8)

we have

G(l, r, q + 1) − G(l, r, k) = (−1)q(l + q)!
(l − q)!(q + r + 1)!(q − r)!

. (A.9)

Thus

l∑
q=r

(−1)q(l + q)!
(l − q)!(q + r + 1)!(q − r)!

=
l∑

q=r

[G(l, r, q + 1) − G(l, r, q)]

= G(l, r, l + 1) − G(l, r, r) = 0. (A.10)

The proof is now complete. �
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