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Abstract—Processing blurred images is a key problem in many 

image applications. Existing methods to obtain blur invariants 
which are invariant with respect to centrally symmetric blur are 
based on geometric moments or complex moments. In this paper, 
we propose a new method to construct a set of blur invariants 
using the orthogonal Legendre moments. Some important 
properties of Legendre moments for the blurred image are 
presented and proved. The performance of the proposed 
descriptors is evaluated with various point-spread functions and 
different image noises. The comparison of the present approach 
with previous methods in terms of pattern recognition accuracy is 
also provided. The experimental results show that the proposed 
descriptors are more robust to noise and have better 
discriminative power than the methods based on geometric or 
complex moments. 
 

Index Terms—Legendre moments, symmetric blur, blur 
invariants, blurred image, pattern recognition 

I. INTRODUCTION 
mage processing is a very active area that has impacts in 
many domains from remote sensing, robotics, traffic 

surveillance to medicine. Automatic target recognition and 
tracking, character recognition, three-dimensional (3-D) scene 
analysis and reconstruction are only a few objectives to deal 
with. Since the real sensing systems are usually imperfect and 
the environmental conditions are changing over time, the 
acquired images often provide a degraded version of the true 
scene. An important class of degradations we are faced with in 
practice is image blurring, which can be caused by diffraction, 
lens aberration, wrong focus, and atmospheric turbulence. In 

pattern recognition, two options have been widely explored 
either through a two steps approach by restoring the image and 
then applying recognition methods, or by designing a direct 
one-step solution, free of blurring effects. In the former case, 
the point spread function (PSF), most often unknown in real 
applications, should be estimated [1-5]. In the latter case, 
finding a set of invariants that are not affected by blurring is the 
key problem and the subject of this paper.  
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The pioneering work in this field was performed by Flusser 
and Suk [6] who derived invariants to convolution with an 
arbitrary centrosymmetric PSF. These invariants have been 
successfully used in template matching of satellite images [6], 
in pattern recognition [7]-[10], in blurred digit and character 
recognition [11], [12], in normalizing blurred images into 
canonical forms [13], [14], and in focus/defocus quantitative 
measurement [15]. More recently, Flusser and Zitova 
introduced the combined blur-rotation invariants [16] and 
reported their successful application to satellite image 
registration [17] and camera motion estimation [18]. Suk and 
Flusser further proposed a set of combined invariants which are 
invariant to affine transform and to blur [19]. The extension of 
blur invariants to N-dimensions has also been investigated [20], 
[21]. All the existing methods to derive the blur invariants are 
based on geometric moments or complex moments. However, 
both geometric moments and complex moments contain 
redundant information and are sensitive to noise especially 
when high-order moments are concerned. This is due to the fact 
that the kernel polynomials are not orthogonal. 

Teague has suggested the use of orthogonal moments to 
recover the image from moments [22]. It was shown that the 
orthogonal moments are better than other types of moments in 
terms of information redundancy, and are more robust to noise 
[23]. As noted by Teh and Chin [23], the moment invariants are 
considered reliable features in pattern recognition if they are 
insensitive to the presence of image noise. Consequently, it 
could be expected that the use of orthogonal moments in the 
construction of blur invariant provides better recognition 
results. To the authors’ knowledge, no orthogonal moments 
have been used to construct the blur invariants. 

In this paper, we propose a new method to derive a set of blur 
invariants based on orthogonal Legendre moments (for a recent 
survey on moments, refer to [24]-[27]). The organization of this 
paper is as follows: in Section 2, we review the theory of blur 
invariants of geometric moments and the definition of 
Legendre moments. In Section 3, we establish a relationship 
between the Legendre moments of the blurred image and those 
of the original image and the PSF. Based on this relationship, a 
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set of blur invariants using Legendre moments is provided. The 
experimental results for evaluating the performance of the 
proposed descriptors are given in Section 4. Finally, some 
concluding remarks are provided. 

II. BLUR INVARIANTS AND LEGENDRE MOMENTS 
This section first reviews the theory of blur invariants of 

geometric moments proposed by Flusser and Suk [6], [7], and 
then presents some basic definitions of Legendre moments. 

A. Blur invariants of geometric moments 
The two-dimensional (2-D) geometric moment of order 

(p+q), with image intensity function f(x, y), is defined as 
1 1( )

1 1
( , )f p q

pqm x y f x y dxdy
− −

= ∫ ∫ ,                                          (1) 

where, without loss of generality, we assume that the image 
function f(x, y) is defined on the square  [–1, 1]×[–1, 1]. 

The corresponding central moment of image f(x, y) is defined 
as 

1 1( ) ( ) ( )
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 Let g(x, y) be a blurred version of the original image f(x, y). 
The blurring is classically described by the convolution 

( , ) ( )( , )g x y f h x y= ∗ ,                                           (4) 
where h(x, y) is the PSF of the imaging system, and * denotes 
linear convolution. 

In this paper, we assume that the PSF, h(x, y), is a centrally 
symmetric image function and the imaging system is 
energy-preserving, that is, 

( , ) ( , )h x y h x y= − − ,                                                 (5) 
1 1

1 1
( , ) 1h x y dxdy

− −
=∫ ∫ .                                                (6) 

As noted by Flusser [7], the assumption of centrally symmetry is 
not a significant limitation of practical utilization of the method. 
Most real sensors and imaging systems have PSFs with certain 
degrees of symmetry. In many cases they have even higher 
symmetry than central, such as axial or radial symmetry. Thus, 
the central symmetry assumption is general enough to describe 
almost all practical situations. 
Lemma 1. The centroid of the blurred image g(x, y) is related to 
the centroid of the original image f(x, y) and that of the PSF h(x, 
y) as 

    
( ) ( ) ( )
0 0 0
( ) ( ) ( )
0 0 0

,

.

g f h

g f h

x x x

y y y

= +

= +
                                                             (7) 

In particular, if h(x, y) is centrally symmetric, then 
. In such a case, we have ( ) ( )

0 0 0h hx y= = ( ) ( )
0 0

g fx x= , ( ) ( )
0 0

g fy y= . 
   The proof of Lemma 1 can be found in [9]. 

B. Legendre moments  
The 2-D (p+q)th order Legendre moment of image function 

f(x, y) is defined as [28] 
  , p, q = 0, 1, 2, …,          (8) 

1 1( )
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pq p qL P x P y f x y dxdy
− −

= ∫ ∫

where Pp(x) is the pth-order orthonormal Legendre 
polynomials given by 
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The corresponding central moments are defined as 
1 1( ) ( ) ( )

0 01 1
( ) ( ) ( , )f f f

pq p qL P x x P y y f x y d
− −

= − −∫ ∫ ,xdy                  (11) 

where the coordinates ( ( )
0

fx , ( )
0

fy ) are defined in (3). 

III. METHOD 
In this section, we first establish a relationship between the 

Legendre moments of the blurred image and those of the 
original image and the PSF. We then derive a set of blur 
moment invariants. 
A. Legendre moments of the blurred image 

The 2-D normalized Legendre moments of blurred image, 
g(x, y), are defined by 

( )
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              (12) 
In the rest of this subsection, we discuss how to express the 

Legendre moments of blurred image defined by (12) in terms of 
Legendre moments of the original image and the PSF. 

Making the notation  and 0 1( ) ( ( ), ( ),..., ( ))T
M MU x P x P x P x=

( ) (1, ,..., )M T
MM x x x=  where the superscript T indicates the 

vector transposition, we have 
( ) ( )M M MU x C M x= ,                                                      (13) 

where ,( )M p kC c= , with 0 ≤ k ≤ p ≤ M, is a (M+1)×(M+1) 
lower triangular matrix whose elements cp, k are given by (10). 

 Since all the diagonal elements of CM, ,
2 1 (2 )

2 2 !p p p

p pc
p

+
=

! , 

are not zero, the matrix CM is non-singular, thus 
1( ) ( ) ( ) ( )M M M M MM x C U x D U x−= = ,                                  (14) 

where ,( )M p kD d= , with 0 ≤ k ≤ p ≤ M, is the inverse matrix of 
CM. The elements of DM are given by [29] 
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By expanding (14), we obtain 
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Similarly, we have 

, , ,
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The following theorem reveals the relationship between the 
Legendre moments of the blurred image and those of the 
original image and the PSF. 
Theorem 1. Let f(x, y) be the original image function and the 
PSF h(x, y) be an arbitrary image function, and g(x, y) be a 
blurred version of f(x, y), then the relations 

( ) ( ) ( )
, , , , , , , , ,

0 0 0 0

,
p q p i q j p s p q t q

g f h
p q i j s t p m q n k i m k s l j n l t

i j s t k i m k s l j n l t

m n
L L L c c d d d d

k l

− − − −

− −
= = = = = = + = = +

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑∑ ∑∑ ∑ ∑ ∑∑

             (21) 
and 
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hold for every p and q. 
Proof. Substituting (19) and (20) into (12), we have 
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The above equation can be rewritten as 
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The proof of (21) is now complete. The proof of (22) is very 
similar to that of (21), it is omitted here.                                             � 
Theorem 2. If h(x, y) satisfies the conditions of central 
symmetry, then 
(a) ( ) ( )

,
h

,
h

p q pL L= q  for every p and q; 

(b) If (p+q) is odd, then ( )
, 0h

p qL = . 

Proof. Using Lemma 1, the assertion of (a) can be easily 
proven. To demonstrate (b), it is noticed that 

. Using this relationship, we can deduce 
the result.                     � 

( ) ( 1) ( )p
pP x P x− = − p

B. Blur invariants of Legendre moments 
With the help of Theorems 1 and 2, we are now ready to 

construct a set of blur invariants of Legendre moments through 
the following theorem. 
Theorem 3. Let f(x, y) be an image function. Let us define the 
following function ( )fI : N×N→R.  
If (p+q) is even then 

( )( , ) 0fI p q =  
If (p+q) is odd then 

( )
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(25) 
Then, I(p, q) is invariant to centrally symmetric blur for any p 
and q. The number p+q is called the order of the invariant. 

The proof of Theorem 3 is given in Appendix A. 
Using the Legendre central moments instead of Legendre 

moments, we can obtain a set of invariants to translation and to 
blur which are formally similar to ( )( , ) fI p q . 
Theorem 4. Let f(x, y) be an image function. Let us define the 
following function ( )fI : N×N→R. 
If (p+q) is even then 

( )( , ) 0fI p q = . 
If (p+q) is odd then 

( )
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, , , , , , , ,( )

00 0 00,0
0
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(26) 
Then, ( , )I p q is invariant to centrally symmetric blur and to 
translation for any p and q. 

The proof of Theorem 4 is very similar to that of Theorem 3, 
it is thus omitted here. It should be noted that ( , )I p q  in (26) 
deals with translation of both the image and the PSF. 

Based on (26), we can construct a set of blur and translation 
invariants of Legendre moments and express them in explicit 
form. The invariants of the third, fifth and seventh orders are 
listed in Appendix B. 

IV. EXPERIMENTAL RESULTS 
In this section, some experiments are described in order to 

show the invariance of the proposed method to various PSF’s 
and its robustness to different kinds of noise. The comparison 
with some existing methods in terms of recognition accuracy is 
also provided. 
A. Test of invariance and robustness to noise 
 A toy cat image, whose size is 128×128 (Fig. 1), has been 

chosen from the public Columbia database [30]. This image 
was then successively degraded by out-of-focus blur, 
averaging mask, Gaussian function and motion filter as 
reported in [8], [9] and [19]. The parameter σ (standard 
deviation of the Gaussian function) of Gaussian blur was 
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chosen equal to 0.5, and the parameter θ  (θ means the angle in 
the counterclockwise direction, θ = 0 corresponds to a 
horizontal motion, and θ = π/2 corresponds to a vertical 
motion.) of motion blur set to 0. Other parameters such as the 
size for averaging blur, the radius for out-of-focus and the 
depth for motion filter were chosen equal to the size of blur 
mask in all the experiments. We first checked that the eighteen 
Legendre moment invariants of order up to seven (listed in 
Appendix B) were exactly equal to those of the original image 
whatever the blurring mode (the corresponding numerical 
values are omitted here). 

Let us define the vectors ˆ ( (0, ), (1, 1),..., ( ,0))rI I r I r I r= −  

and 3 5
ˆ ˆ ˆ( ) ( , ,..., )rI r I I I= for any odd value of r ≥ 3. The relative 

error between the two images is computed by 
( ) ( )

( )

( ) ( )
( , ) ,

( )

f g

r f

I r I r
E f g

I r

−
=                                           (27) 

where ||.|| is Euclidean norm in L2 space. In the following 
experiments, moment invariants of order up to r = 7 are used. 
 The next experiment was carried out to verify the 
performance of the invariants to both image blur and noise. 
The original cat image was blurred by a 9×9 averaging mask 
and a zero-mean Gaussian noise with standard deviation (STD) 
from 1 to 50 was added. Some examples of the blurred image 
with additive Gaussian noise or salt-and-pepper noise are 
shown in Fig. 2. Plots in Fig. 3 compare the relative error 
defined by (27) for Flusser’s method based on geometric 
moment invariants (GMI) where eighteen blur invariants 
derived from central moments are used [7], the complex 
moment invariants (CMI) reported in [16] and the present 
Legendre moment invariants (LMI) up to order seven by 
averaging blur with different Gaussian noises. It can be seen 
from the figure that the proposed descriptors perform better 
than the GMI and CMI. Then, the cat image was blurred by a 
11×11 motion filter, and the same Gaussian noise was added. 
The results (Fig. 4) again indicate the better behavior of the 
proposed method. Similarly, the original cat image was 
degraded on one hand by out-of-focus blur (13 pixel-radius of 
the PSF support) and by adding a salt-and-pepper noise with 
noise densities varying from 0.004 to 0.2 (see Fig. 5) and, on 
another hand, by Gaussian blur (the PSF was a Gaussian 
function with 15 pixel-radius of support) with the same 
salt-and-pepper noise (see Fig. 6). It can be also seen that a 
better robustness is achieved whatever the PSF or the additive 
noises. 
B. Classification results  
 This experiment was carried out to compare the 
discrimination power of the GMI, CMI and LMI. A set of 
alphanumeric characters whose size is 50×50 pixels (Fig. 7) is 
used for the recognition task. The reason for choosing such a 
character set is that the elements in subset {0, o}, {2, Z}, {7, T} 
and {9, q} can be easily misclassified due to their similarity. 
The testing set is generated by adding averaging blur, 
out-of-focus blur, Gaussian blur and motion blur with mask of 
sizes 3×3, 4×4, 5×5, 6×6, 7×7, 8×8, 9×9, 10×10, 11×11, 12×12 
pixels, respectively. The parameter σ of Gaussian blur was 
chosen equal to 1 or 2, and the parameter θ of motion blur set to 

0 or 1, forming a set of 480 images. Note that the original 
images as well as the blurred images are mapped onto the area 
of orthogonality, and the actual size of the blurred images in 
this experiment is 80×80. This is followed by adding a white 
Gaussian noise with different standard deviations, 
salt-and-pepper noise with different noise densities and 
multiplicative noise with different noise densities. The 
Euclidean distance is used here as the classification measure. 
Table 1 shows the classification rates using the different 
moment invariants. One can observe from this table that the 
recognition results are quite good for the different methods in 
the noise-free case. The classification rates remain high for low 
and moderate noise levels but decrease significantly when the 
noise level goes up. However, if the GMI behaves better than 
the CMI, the LMI approach is the only one providing a rate 
close to or over 90% whatever the noise nature and its level. 

In the next example, eight objects were selected from the 
Coil-100 image database of Columbia University as an original 
image set (see Fig. 8). The actual size of the blurred images in 
this experiment is 160×160. Fig. 9 shows some examples of the 
blurred and corrupted images. The recognition results are 
displayed in Table 2. They lead to the same conclusions 
regarding the performance of the respective moment invariants 
but the decrease in recognition rate is more significant when the 
noise level is increased. This is also true for the LMI. The CMI 
do not perform well in these experiments due to their additional 
invariance to rotation. The worse numerical stability is a tax on 
the combined invariance. The orthogonality of LMI explains 
the difference in performance with GMI. 
 We also compared the computational load of the GMI, CMI 
and LMI in these two experiments. The programs were 
implemented in MATLAB 6.5 on a PC P4 2.4 GHZ, 512M 
RAM. It can be seen from Tables 1 and 2 that the GMI and the 
LMI computations are much faster than the CMI ones. This is 
due to the fact that the computation of the complex moments 
requires a mapping transformation which is time consuming. 
C. Real image analysis 

In the last experiment, we tested the performance of the 
invariants on images degraded by real out-of-focus blur. A 
sequence of eight pictures of a comb lying on a black ground 
was taken by a digital camera (Panasonic DMC-FZ50). The 
images differ from each other by the level of out-of-focus blur. 
The picture was captured 8 times from the same position but 
with different focus depth, manually set. All the test images are 
depicted in Fig. 10. The values of GMI, CMI and LMI were 
computed for each image. Table 3 depicts the values of σ/μ, 
where μ denotes the mean of eight real images and σ the 
standard deviation. From this table, it can be seen that the 
minimal value of the LMI is 3.42% and the maximum value of 
the LMI is 6.15%, which are lower than those obtained with 
GMI (resp. 4.91%, 12.43%) and the CMI (resp. 7.47%, 7.54%).  

V. CONCLUSION AND PERSPECTIVES 
In this paper, we have proposed a new approach to derive a 

set of blur invariants using the orthogonal Legendre moments. 
The relationship between the Legendre moments of the blurred 
image and those of the original image and the PSF has been 
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established, and using this relationship, a set of blur invariants 
based on Legendre moments has been derived. The 
experiments conducted so far in very distinct situations 
demonstrated that the proposed descriptors are more robust to 
noise and have better discriminative power than the methods 
based on geometric or complex moments. 

One weak point of these descriptors is that they are only 
invariant to translation, but not invariant under image scaling 
and rotation. The derivation of combined invariants to both 
geometric transformation and blur is currently under 
investigation. 
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APPENDIX A 
The theoretical derivations provided here allow getting the 
expressions of the Legendre invariants to translation and blur. 
To prove Theorem 3, we need first the following Lemma. 
Lemma 2 Let p, i, j and t be given integers satisfying 0 ≤ i ≤ 
p–1, 0 ≤ j ≤ p–i–1, 0 ≤ t ≤ p–i–j, let us define 

, , , , , ,( , , , ) ,
p t s j p t ps

s n l i n l j p m k s m k t
s i j l i n l j k s m k t

n m
F p i j t c d d c d d

l k

− − −

−
= + = = + = = +

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑ −             

(A1) 

, , , , , ,( , , , ) ,
p i p s ps t s

s n l j n l t p m k i m k s
s j t l j n l t k i m k s

n m
G p i j t c d d c d d

l k

− −−

− −
= + = = + = = +

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑

            (A2) 
where the coefficients ci, j and dm,n are respectively given by 
(10) and (15), then we have F(p, i, j, t) = G(p, i, j, t). 
Proof: By changing the order of summation in (A1), we have 

, , ,
0 0 0 0 0

, 1
0

( , , , )

( , , , , ),

p p t j p t p t p t

, , ,p m s n l i n l
m l n k s

p

p m
m

m n
F p i j t c c d d d d

k l

c F p m i j t

− − − − −

− −
= = = = =

=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

=

∑ ∑ ∑∑∑

∑

j

,

k s m k t

            (A3) 
where 

1 ,
0 0 0 0

( , , , , )
p t j p t p t p t

, , ,s n l i n l j k s m k t
l n k s

m n
F p m i j t c d d d d

k l

− − − − −

−
= = = =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑∑∑ −

,

.               

(A4) 
Similarly, (A2) can be written as 

 

, , ,
0 0 0 0 0

, 1
0

( , , , )

( , , , , ),

p p t i p i p p i

, ,p m s n l j n l
m l n k s

p

p m
m

m n
G p i j t c c d d d d

k l

c G p m i j t

− − − −

− −
= = = = =

=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

=

∑ ∑ ∑∑∑

∑

t k

, , , ,

i m k s

             (A5) 
where 

1 ,
0 0 0 0

( , , , , )
p t i p i p p i

s n l j n l t k i m k s
l n k s

m n
G p m i j t c d d d d

k l

− − − −

− −
= = = =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑∑∑ .               (A6) 

To prove the Lemma, it suffices to prove 
1 1( , , , , ) ( , , , , )F p m i j t G p m i j t= . Since both CM = (ci, j) and DM 

= (di, j) are lower triangular matrices, it is clear that dk, s=0 if s > 
k, and cs, n= 0 if n > s. Using these properties and changing the 
order of summation in (A4) and (A6), we have 

1 ,
0 0 0 0

( , , , , ) ,
m k s n

, , , ,s n l i n l j k s m k t
k s n l

m n
F p m i j t c d d d d

k l − −
= = = =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑∑∑∑ (A7) 

1 ,
0 0 0 0

( , , , , ) .
m m k s n

, , , ,s n l j n l t k i m k s
k s n l

m n
G p m i j t c d d d d

k l

−

− −
= = = =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑∑∑∑ (A8) 

(A7) can be further written as 

1 ,
0 0 0 0

, , , , ,
0 0 0 0

( , , , , )

                   ,

, , , ,s n l i n l j k s m k t
k s n l

l i n l j m k t k s s n
k n l s

m n
F p m i j t c d d d d

k l

m n
d d d d c

k l

+∞ +∞ +∞ +∞

− −
= = = =

+∞ +∞ +∞ +∞

− −
= = = =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑∑∑∑

∑∑∑ ∑
(A9) 

where the convention 0
m
k

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 if k > m is used in the above 

equation. 
Since the matrix DM is the inverse o
have , , ,

0
k s s n k n

s

d c

f CM, we 
δ

+∞

=

=∑ , thus, (A9) becomes 

( ) ( )

1 , ,
0 0

, , ,
0 0

( , , , , )

! .
! ! !

l i k l j m k t
k l

l i k l j m k t
k l

m k
F p m i j t d d d

k l
m d d d

l m k k l

+∞ +∞

− −
= =

+∞ +∞

− −
= =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

=
− −

∑∑

∑∑

,

     (A10) 

Letting , , / !u v u ve d u= , we have 

1 , , ,
0 0 0 0

( , , , , ) ! !l i k l j m k t m k l i l j k t
k l k l

, , ,F p m i j t m e e e m e e e
+∞ +∞ +∞ +∞

− − − −
= = = =

= =∑∑ ∑∑ .           

(A11) 
From the above equation, it can easily be obtained 

 1 , , ,
0 0 0 0

1

( , , , , ) ! !

( , , , , )  (making the change of variables and )

m k l i l t k j m k l i k t l j
k l k l

F p m i t j m e e e m e e e, , ,

F p m i j t k l l k

+∞ +∞ +∞ +∞

− − − −
= = = =

= =

= = =

∑∑ ∑∑ (A12) 

e Making the change of variable l = n – l in (A7), we can deduc
1 1( , , , , ) ( , , , , )F p m i j t F p m j i t= .                                       (A13) 

Combining (A12) and (A13) an

          (A14) 

The proof of Lemma 2 is now complete.                                      � 

d using (A7), we obtain 
1 1( , , , , ) ( , , , , )F p m i j t F p m j t i=

, , , , ,
0 0 0 0

, , , , ,
0 0 0 0

(making the change of variable )

m k s n

s n l j n l t k s m k i
k s n l

m k s n

s n l j n l t m k s k i
k s n l

m n
c d d d d

k l

m n
c d d d d

m k l
k m k

m n
k l

− −
= = = =

− −
= = = =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
= −

⎛ ⎞⎛
= ⎜ ⎟

⎝ ⎠

∑∑∑∑

∑∑∑∑

, , , , ,
0 0 0 0

1( , , , , )

m k s n

s n l j n l t k i m k s
k s n l

c d d d d

G p m i j t

− −
= = = =

⎞
⎜ ⎟
⎝ ⎠

=

∑∑∑∑

Proof of Theorem 3 We only need to prove the Theorem for 
the case where p+q is odd. We will to do this by mathematical 
induction. It can be easily verified that the result is true for p+q 
= 1. For p+q = 3, four cases need to be considered: (1) (p = 3, q 
= 0); (2) (p = 2, q = 1); (3) (p = 1, q =2); (4) (p = 0, q = 3). We 
provide here the demonstration for p = 2 and q = 1, other cases 
can be proved in a similar manner. We deduce from (25) that 
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( )

12 1 2 2 2 1 1
( ) ( ) ( )
2,1 , 2, 1, , , , ,( )

00 0 00,0
0 3

( ) ( ) ( )
2,1 , 2,( )

0,0

(2,1)

1 ( , )
2

1 (1,0)
2

g

ji s t
g g f

s t m n k i m kg
ji s t k i m k s l j n l t
i j

g g f
s t mg

I
m n

L I i j L c c d d d
k lL

m n
L I L c

k lL

−− − −

− −
== = = = = + = = +

< + <

=

⎛ ⎞⎛ ⎞
− ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑ ∑ ∑∑ ∑ ∑ ∑∑

1 1 2 2 1 1

1, ,1 , ,0 ,
0 0 1 0

2 2 2
( ) ( )

,0 2, 1,1 ,0 , 1,1 0,0
0 0

(0,1) .

s t

n k m k s l n l t
s t k m k s l n l t

s
g f

s m k m k s
s k m k s

c d d d d

m
I L c c d d d d

k

− −

− −
= = = = + = = +

−

−
= = = +

⎧⎪
⎨
⎪⎩

⎫⎛ ⎞ ⎪+ ⎬⎜ ⎟
⎪⎝ ⎠ ⎭

∑∑ ∑ ∑ ∑∑

∑ ∑ ∑

s l j n l td

  

(A15) 
Using Theorem 2, it can be obtained from (21) that 
  ( ) ( )

0,0 0,0
g fL L= ,  

  ( ) ( ) ( ) ( )
1,0 1,0 0,1 0,1,g f gL L L L= = f , 

  
( ) ( ) ( ) ( ) ( ) ( )
2,0 2,0 0,0 2,0 0,0 0,0

( ) ( ) ( ) ( )
1,1 1,1 0,0 1,1

2 5

2

g f f h f

g f f h

L L L L L L

L L L L

= + +

= +

h

 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2,1 2,1 1,0 1,1 0,1 2,0 0,1 0,02 5 2 5g f f h f h fL L L L L L L L= + + + h . 

Substituting the above equations into (A15) and using the 
relationships ( ) ( ) ( )

1,0(1,0) (1,0)g f fI I L= =  and ( ) ( ) ( )
0,1(0,1) (0,1)g f fI I= = L , we 

have ( )(2,1) ( )(2,1)g fI=I . 
Suppose that Theorem 3 is valid for all invariants of order up to 
p+q–2, then we get 

( ) ( )

( ) ( ) ( )
, , , , , , , ,l td d( )

00 0 00,0

( ) ( ) ( )
, ,( )

0,0

( , ) ( , )

1 ( , )
2

1 ( , )
2

g f

p q p i q j p s p q t q
g g g

p q s t p m q n k i m k s l j ng
ji s t k i m k s l j n l t

i j p q

f f f
p q s tf

I p q I p q
m n

L I i j L c c d d
k lL

m n
L I i j L

k lL

− − − −

− −
== = = = = + = = +

+ < +

−

⎛ ⎞⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞
− + ⎜ ⎟

⎝ ⎠

∑ ∑ ∑∑ ∑ ∑ ∑ ∑

, , , , ,
00 0 0

( ) ( )
, ,

( ) ( ) ( )
, , , , , , ,( )

0,0

1 ( , ) ( )
2

p q p i q j p s p q t q

p m q n k i m k s l j n l
ji s t k i m k s l j n l t

i j p q

g f
p q p q

q q
f g f

,

,

t

s t s t p m q n k i m k s l jf
l j n l t

c c d d d d

L L

m n
I i j L L c c d d d d

k lL

− − − −

− −
== = = = = + = = +

+ < +

− −
= = +

⎛ ⎞
⎜ ⎟
⎝ ⎠

= −

⎛ ⎞⎛ ⎞
− − ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑ ∑ ∑∑ ∑ ∑ ∑ ∑

∑
00 0 0

p q p i q j p s p t

ji s t k i m k s
i j p q

− − − −

== = = = = +
+ < +

∑ ∑ ∑∑ ∑ ∑ ∑ n l t

                           (A16) 
Using the property , equation (25) can be rewritten as ( )2

0.0 2d =

( ) ( ) ( )
, , , , , , , ,( )

0 0 0 00,0

1 ( , ) .
2

p q p i q j p s p q t q
f f f

p q s t p m q n k i m k s l j n l tf
i j s t k i m k s l j n l t

m n
L I i j L c c d d d

k lL

− − − −

− −
= = = = = = + = = +

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑∑ ∑∑ ∑ ∑ ∑∑ d   

  
  (A17) 

Using (21), we have 
( ) ( )

, ,

( ) ( ) ( )
, , , , , , , , ,

0 0 0 0

( ) ( )
, , , , , , ,

g f
p q p q

p q p i q j p s p q t q
f h f

i j s t p m q n k i m k s l j n l t p q
i j s t k i m k s l j n l t

q t q
f h

i j s t p m q n k i m k s l j
l j n l t

L L

m n
L L c c d d d

k l

m n
L L c c d d d

k l

− − − −

− −
= = = = = = + = = +

−

−
= = +

−

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑∑ ∑∑ ∑ ∑ ∑ ∑

∑ ,
00 0 0

( ) ( )
, ,

00 0 0

( , , , , , ),

p q p i q j p s p

n l t
ji s t k i m k s

i j p q

p q p i q j
f h

i j s t
ji s t

i j p q

d

L L A p q i j s t

− − −

−
== = = = = +

+ < +

− −

== = =
+ < +

=

∑ ∑ ∑∑ ∑ ∑ ∑

∑ ∑ ∑∑

d L

    

  (A18) 
where 

  , , , , , ,( , , , , , )
p s p q t q

p m q n k i m k s l j n l t
k i m k s l j n l t

m n
A p q i j s t c c d d d d

k l

− −

−
= = + = = +

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ − .       (A19) 

Similarly 
( ) ( ) ( ) ( )

, , , ,
00 0 0

( , , , , , )
t js t s i

g f f h
s t s t i j s t

ji s t
i j s t

L L L L A s t i j s t
′−′−

′ ′ ′ ′
′=′ ′ ′= = =

′ ′+ < +

′ ′ ′ ′− = ∑ ∑ ∑∑ .       (A20) 

Substituting (A18) and (A20) into (A16) and using (A17), we 
obtain 

( ) ( )

( ) ( )
, ,

00 0 0

( ) ( ) ( )
, ,( )

00 0 0 00,0

( , ) ( , )

( , , , , , )

1 ( , ) ( , , , , , ) ( , , , ,
2

g f

p q p i q j
f h

i j s t
ji s t

i j p q

q j t js t s i
f f h

i j s tf
jt i s t

i j s t

I p q I p q

L L A p q i j s t

I i j L L A s t i j s t A p q i j
L

− −

== = =
+ < +

′′− −−

′ ′ ′ ′
′=′ ′ ′= = = =

′ ′+ < +

−

=

⎡ ⎤
⎢ ⎥′ ′ ′ ′− ⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑ ∑∑

∑ ∑ ∑ ∑∑
00 0

, )
p q p i

ji s
i j p q

s t
−

== =
+ < +

∑ ∑ ∑

 

( ) ( ) ( )
, ,( )

00 0 0 0 0 0 00,0

( ) ( ) ( )
, ,( )

00,0

1 ( , ) ( , , , , , ) ( , , , , , )
2

1 ( , ) ( , , , , , )
2

p q j j j p i q ji i i
f f h

s t s tf
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i j p q
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f f h

i j s tf
t
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L
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= ′ ′ ′ ′= = = = = = =
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⎡ ⎤
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⎢ ⎥⎣ ⎦
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∑ ∑ ∑∑ ∑∑ ∑∑
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( , , , , , )
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⎢ ⎥
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∑ ∑ ∑∑ ∑
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⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑∑ ∑ ∑ ∑∑

 (A21) 
Define 

( ) ( ) ( )
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00 0 00,0

( ) ( ) ( )
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p q p i q j
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′ ′
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(A23) 
it can be easily verified from (A19) that 

, thus, we have ( )2
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( , ) ( , )B p q B p q′= . Using this relationship, (A21) can be 
rewritten as 
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(A24) 
Changing the order of summation and shifting the indices in the 
above equation, we obtain 
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where 
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      (A27) 

where ( , , , )F p i i s′  and  are respectively given by (A1) 
and (A2). 

( , , , )G p i i s′

Using Lemma 2, we have 
( , , , , ', ', , ) 0T p q i j i j s t = .                                                    (A28) 

Thus 
( ) ( )( , ) ( , ) 0g fI p q I p q− =                                                      (A29) 

The proof of Theorem 3 has been completed.                                  � 

Appendix B: LIST OF LEGENDRE MOMENT INVARIANTS 
UP TO THE SEVENTH ORDER 
The expressions given below provide to the interested readers 
all the elements to replicate our method and to apply it to other 
examples. 
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Fig. 1. The standard gray-level image of cat with size 128×128 

       
           (a)                        (b)                          (c)                         (d) 
Fig. 2. Some examples of the blurred image: (a) averaging blur with additive zero-mean Gaussian noise, 
STD=10; (b) motion blur with additive zero-mean Gaussian noise, STD = 20; (c) out-of-focus blur with 
additive salt-and-pepper noise, density = 0.01, (d) Gaussian blur with additive salt-and-pepper noise, 
density = 0.02. 
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Fig. 3. Relative error for averaging blur with Gaussian noise shown in Fig. 2(a). Horizontal axis: 
standard deviation of noise; vertical axis: relative error between the corrupted image and original image. 
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Fig. 4. Relative error for motion blur with Gaussian noise shown in Fig. 2(b). Horizontal axis: standard 
deviation of noise; vertical axis: relative error between the corrupted image and original image. 
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Fig. 5. Relative error for out-of-focus blur with salt-and-pepper noise shown in Fig. 2(c). Horizontal 
axis: noise density; vertical axis: relative error between the corrupted image and original image. 
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Fig. 6. Relative error for Gaussian blur adding salt-and-pepper noise shown in Fig. 2(d). Horizontal axis: 
noise density; vertical axis: relative error between the corrupted image and original image. 

        
Fig. 7. Original images of alphanumeric characters for invariant character recognition 

    

    

Fig. 8. Eight objects selected from the Coil-100 image database of Columbia University 
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Fig. 9. Some examples of the blurred images corrupted by various types of noise 

            
Image1                          Image2                        Image3                       Image4 

       
Image5                 Image6                           Image7                       Image8 

Fig. 10. The comb. The extent of out-of-focus blur increases from Image1 to Image8. 
 
Table 1. The recognition rates obtained respectively with GMI, CMI and LMI for alphanumeric 
character in Fig. 7 

 GMI CMI LMI 
Noise-free 100% 100% 100% 
Additive white noise with STD=1 92.08% 91.88% 100% 
Additive white noise with STD=3 85% 82.92% 97.71% 
Additive white noise with STD=5 77.29% 75.42% 90% 
Additive salt-and-pepper noise 
with noise density = 0.2% 91.04% 87.08% 97.92% 

Additive salt-and-pepper noise 
with noise density = 0.4% 83.75% 83.54% 94.79% 

Additive salt-and-pepper noise 
with noise density = 0.8% 77.33% 75.67% 90% 

Additive multiplicative noise with 
noise density = 0.01 95.83% 90.63% 98.13% 

Additive multiplicative noise with 
noise density = 0.03 95% 86.88% 97.5% 

Additive multiplicative noise with 
noise density = 0.05 91.25% 85.21% 95% 

Computation time 6.86s 27.08s 6.95s 
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Table 2. The recognition rates of the GMI, CMI and LMI in object recognition (Fig. 9) 
 GMI CMI LMI 
Noise-free 100% 100% 100% 
Additive white noise with STD=8 78.33% 80% 96.25% 
Additive white noise with STD=16 68.96% 62.71% 83.96% 
Additive white noise with STD=25 60.42% 50.62% 74.79% 
Additive salt-and-pepper noise 
with noise density = 0.01 87.29% 76.46% 97.08% 

Additive salt-and-pepper noise 
with noise density = 0.02 73.33% 64.38% 85.83% 

Additive salt-and-pepper noise 
with noise density = 0.03 68.13% 56.46% 79.37% 

Additive multiplicative noise with 
noise density = 0.1 100% 99.17% 100% 

Additive multiplicative noise with 
noise density = 0.3 96.25% 87.92% 99.38% 

Additive multiplicative noise with 
noise density = 0.5 90% 81.88% 95.63% 

Computation time 9.42s 44.14s 9.80s 
 

Table 3. GMI CMI and LMI values of the real images in Fig. 10 
 Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8 σ/μ 

(5, 0)G  -0.328 -0.319 -0.324 -0.322 -0.324 -0.329 -0.357 -0.363 5.07% 
(5, 0)C  35.01 34.95 34.51 34.34 34.38 34.44 40.28 40.62 7.54% 
(5, 0)L  -66.3 -66.3 -68.2 -68.5 -69.1 -69.9 -71.9 -72.8 3.42% 
(4,1)G  -0.0622 -0.0658 -0.0671 -0.0669 -0.0669 -0.0674 -0.0720 -0.0725 4.91% 
(4,1)C  50.20 50.02 49.40 49.18 49.21 49.33 57.61 58.15 7.5% 
(4,1)L  -11.4 -12.4 -12.8 -12.9 -13.0 -13.0 -13.1 -13.2 4.62% 
(3, 2)G  -0.0190 -0.0179 -0.0174 -0.0165 -0.0166 -0.0169 -0.0219 -0.0222 12.43% 
(3, 2)C  60.14 59.86 59.13 58.88 58.90 59.07 68.92 69.59 7.47% 
(3, 2)L  -12.9 -13.0 -13.4 -13.4 -13.5 -13.7 -14.2 -14.3 3.72% 
(2, 3)G  -0.0262 -0.0278 -0.0278 -0.0274 -0.0273 -0.0274 -0.0313 -0.0316 6.98% 
(2, 3)C  60.14 59.86 59.13 58.88 58.90 59.07 68.92 69.59 7.47% 
(2, 3)L  -10.6 -11.7 -12.1 -12.2 -12.2 -12.2 -12.5 -12.5 5.16% 
(1, 4)G  -0.0485 -0.0479 -0.0480 -0.0468 -0.0471 -0.0475 -0.0549 -0.0554 7.11% 
(1, 4)C  50.20 50.02 49.40 49.18 49.21 49.33 57.61 58.15 7.5% 
(1, 4)L  -8.84 -8.79 -8.89 -8.72 -8.79 -8.86 -9.98 -10.06 6.15% 
(0, 5)G  -0.223 -0.250 -0.257 -0.257 -0.257 -0.258 -0.269 -0.269 5.67% 
(0, 5)C  35.01 34.95 34.51 34.34 34.38 34.44 40.28 40.62 7.54% 
(0, 5)L  -40.6 -45.4 -46.8 -46.8 -46.9 -47.1 -48.6 -48.6 5.49% 
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