AN ADJOINT METHOD FOR UNDERWATER GEOACOUSTIC
INVERSIONS BASED ON LOCAL AND NONLOCAL
IMPEDANCE CONDITIONS
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ApsTRACT. The adjoint method of optimal control is applied to a parabolic
approximation of the wave equation (a Schriidinger-type equation) in order to
se problem for the geoacoustical properties of the seabed, The
| configuration is one of shallow water and wideband signals, The aim

1. INTRODUCTION

Bottom properties are essential in underwater acoustics for the prediction of
acoustic losses and for sonar applications. The methods used in the acoustics
community for solving inverse problems are usually based on a signal processing
approach. These methods are very sensitive to the physical context and are not
easily transportable from one physical configuration to another.

A data assimilation approach, based on the formulation of an adjoint prob-
lera should provide us with a robust inversion scheme which will be well-suited to
a “rapid environmental assessment” system, where we would like to estimate the
seabed properties in real time. We propose an optimal control approach with the
impedance boundary condition playing the role of the control function. The result,
will be an equivalent medium that is not necessarily the ground truth, but that
reproduces faithfully the acoustic losses. This same optimal control approach can
also be applied to a more complicated initial boundary value problem, favored in
underwater acoustics, where an absorbing layer is used instead of an impedance
boundary condition. Here the controls will be the geoacoustic properties of the
spongy layer.

We base our study on the paraxial approximation of the wave equation since
this is well-suited to the wavegunide geometry of our physical context. An inverse
problem is then posed as a data assimilation problem where we seek to minimize
the least-squares difference between measurements of the acoustic field on a line
of hydrophones and the simulated field based on an initially unknown impedance
boundary condition on the seafloor. Questions of existence of solutions to the
inverse problem are tricky. The numerical implementation should combine robust
methods that give maximal accuracy without being too computationally expensive.
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FIGURE 2.1. A waveguide for underwater acoustics.

The paraxial approximation for the solution of the wave equation is well doc-
umented - see [l. The use of adjoint methods for the soltion of inverse problems
inated with [LeDim| and has been applied to numerous data assimilation prob-
lems in oceanography [], in tatata [| and in tititi [. As far as existence goes, there
has heen work on the Schrodinger equation from the control theoretical viewpoint
in [], (] and [. Furthermore, {Fern| has proved a convergence result for the exact
gradient plus minimization algorithm applied to an inverse problem for the wave
equation. The local impedance boundary condition is well known in the underwater
acoustics field [Papadak|, [Lee]. The use of a nonlocal condition is more recent, and
was introduced by [Yev].

In this paper we first present the physical problem and its mathematical formu-
lation by a paraxial approximation. We then define an optimal control problem
and compute the exact gradient of the cost function by using an adjoint method.
Next, we consider existence questions for the control and for the proposed algo-
rithm. Finally we present the discrete formulation and some revealing numerical
simulations.

2. A PARABOLIC EQUATION FOR WAVE PROPAGATION.

We consider a waveguide in the r-z (eventually (r.d,z)) plane, where r denotes
the range (horizontal distance from the origin) and z denotes the depth below the
surface. A point source emits a signal from the depth z = z, which propagates
in the waveguide and undergoes reflections from the surface z = 0 and from the
seafloor 2 = z, where it is partially absorbed - see Figure 2.1. The signals are
measured on one or more geophones situated on the line r = R.

Starting from the wave equation for the acoustic pressure,
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we cbtain a Helmholtz equation for a monochromatic wave of frequency w = 27 f,

&p 10p  p .,

a5+ o+ s Hhgnip =0,

o Trar T aa kan'p
where kg = w/cg, n = cafe(z) and ¢g is the reference acoustic velocity. If we now
suppose a slow envelope of variation, the acoustic pressure can be factorized by a
Hankel function,

plr,z) = :T.,.&mm%v:,ol .

We then apply two successive approximations: the far-field approximation and the
small aperture approximation. Finally we obtain the simplest parabolic equation,

L Bu 8w, o,
(2.1) Mwﬁdw + i kg(n® =1ju=10

for the factorised pressure, v . The transmission losses are then given by

TL = 201og, |5 -

Details can be found in [Stu, Tap).

In order to obtain a well-posed initial boundary value problem, we add an “initial”
condition u(r = 0,z = z,) and suitable boundary conditions on the surface z = 0
w:ac:n_ﬁmam.gSoENHm,_

2.1. Direct Numerical Simulations. We show a few direct simulations of the
parabolic equation (2.1). The numerical method used is an implicit Crank-Nicolson
finite difference discretization - see [Stk]. The physical data were: ¢g = 1520 ms=!,
¢(z) = 1500ms™!, f = 250Hz, 2, = 135 m, 2 = 135m. R = 5500m. The Figure 2.2
compares the losses, |u(r, z}|, for a Dirichlet condition (u = 0) on the seabed z = z,
h those of & Nemmann condition wa HB.&:EEmoamanos&sﬁr,_M;._..hqc"c

with = —1, which describes partial transmission. This simulation corresponds
quite well to actual signal logs recorded during measurement campaigns.

2.2. Energy. In the sequel we will need estimates of the energy of the solution to
(2.1). As for the wave equation, we define the energy as

B() = \ fudf? + [Vuf? de.
1

We can readily show that this energy is conserved and thus

E(t) = B(0) = cst.
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FIGURE 2.2. Direct simulations of the parabaolic equation with a
Dirichlet condition (top), a Neumann condition {middle} and a
Robin condition (bottom) at z = z, .

3. OpriMAL CONTROL FOR THE INVERSE PROBLEM

In order to solve the inverse problem we propose to use an impedance boundary
condition. We consider two boundary conditions for the equivalent seabottom. The
first condition is a local one {LBC}). This is the classical Robin or mixed condition.
The second is a non local absorbing boundary condtion (NLBC) and was introduced
by [Y], originally for the Fresnel equations and then for the paraxial wave equation
[¥J]. The advantage of the second condition is its closeness to the physicel reality
and its ability to better model the problem at hand. However, its implementation
is more complex.

3.1. A local impedance boundary condition. We suppose that the boundary
condition on the seafloor z = z, is

(3.1) W +iviriu=10

where v is & real-valued function depending on the range r. The value of 7 is not
arbitrary, since the boundary condition must dissipate the energy of the systom. In
arder to check this, we multiply the parabolic equation by i (the complex conjugate
of i} and we take the real part:

S_c_m.;.%z||
2 & +$ﬁ%ﬁmculc.
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We then integrate between z = 0 and z = z;, and find

1d == , [ —i fu_ ] _
i [y W de [Retigtm] o,
that is
1d uﬂmnr. 2 1 _
@ /., jul"dz = %cm?muhmhi.

The energy will thus decrease when Re(~) < 0.

3.2. The adjoint method. Let us suppose now that we measure ug(R. z) for a
given range r = R. We would like to recover the boundary coefficient +(r) which
plays the role of the control function. Let the cost function be (we can always add
a penalisation term on «)

“— u“k. ..~
10 =3 [ bR - w2

where u{7;r, 2) is obtained from solving the parabolic equation with the boundary
condition (3.1). The minimisation problem is thus to find

inf J{v).
22,70

where G is a suitably defined space of admissisble controls. The necessary condi-
tion for the existence of a minimum is given by the following basic theorem.

Theorem. If J attains a (local) minimum at a point v, € G, then for any ¢ € G

§F{7.:0) =0
uiliere

G 6) = Wuw E@w - J)

is the Géteaux derivative of J at + in the direction ¢.

We must start by taking the variation of J

lim L0 ) —Jy) 1 .\"um [u(y + @ R, 2) — ua(R, 2)|* = july: R z) — ua(R, 2)[
t—+0 t 2150, t

L'y, 0) = 4'(0),
where g is the function defined by
() = J(y + tg).
We introduce the real-valued scalar product
< u,v >= Re(uv).
This scalar product satisfies
<wus=uf, <iwvs=- < u i >,
CWVFEC VU, YUY = e, T >,
and the derivative formula

Q_:wnm.ne..a-cv,
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We then have
dit
gty = .\. < uly +89) —ug, —(y + bp) > dz,
=R dt
where w = du/dt is the solution of the tangential problem {we suppose that n® = 1
for simplicity)
ikow, +w,: = 0,
w0, z) 0,
w(r,0) 0,
wa{r, z) + iyw(r, z) —igp(riuly + tgsr z).

It

It

The Géateau derivative of J is then, with ¢ =0,
.._w__ﬁ)_,.,ﬁ.vn.\. <u—ugw > dz.
r=Ii

The adjoint state p is written here as

2ikopy +p:: = 0,
pli,z) = u—ug,

p(r,0) = 0,

pelr.z) —iTFplr,z) = 0O

This equation is backwards in r, and the boundary condition is still dissipative in
spite of the change of sign of 4! Integrating by parts, we obtain

\\.A ﬁ.a p>=0
Wy = oWz, P >=
zdr M_ﬁo : !

[<urp> -k <innpomo
s r: P 2%g e, p2=1U,

\.\!AE.FV+\ AE..@V!..V\\.AE_%«“v._.
=de sr=R 2hg J. ],

P\ < iw V||H|.\ <idw;p>=10
o )y D= o i 'z :

WE=p

1 1 .
< W, U—Ug > <dw,p. > - < i{—iyw—iug),p >=0,
\L SR> A, %o Jroms, #)
.\‘ < ﬁV.H < fw i V+H.\‘ < ifiug),p>=0
w,u— o VPe =1 Y iliug). p >=0,
- LT T fyen, ST Ty ), ST

1
.\ A:Inqmevuﬂ\ < g, p =,
zr=R 2ko ra=zy

r A H
J(v.) = ﬁ.\.

which can be rewritten as

whence the result
<up.g >,
b

= P
(3.2) V=g
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3.3. A non local impedance boundary condition. The nonlocal boundary
condition provides us with a formula for the acoustic pressure field u at range
r+ Ar in terms of the already calculated field between 0 and r at z = z,. This
is obtained by expanding the vertical wave number operator in powers of an expo-
nential translation operator R = exp(—Ar 8,). Note that

Flu(r,z) = ulr = jAr,2).

In terms of the operator R, the Crank-Nicolson diseretization of our paraxial
equation becomes

a°
(3.3) ﬁﬂr + i ulr +Ar,z) =0
where the z—space vertical wave number operator is defined by

o f 1-R
Ti=ki(ni-1+0P—=
TR 1+R
with v* = 47 /koAr, the index b relates to the bottom parameters and the index w
to those of the water at the water-sediment interface. Factoring the equation (3.3)
into upgoing and downgoing components, we can identify the one-way radiation
condition satisfied by the downgoing field at z = z; as

(3.4) —%m - mwy_ wlr + Ar z) = 0.

This equation acounts for the tofal impedance jump (sound speed, attenuation
and density) encountered by waves that cross the lower boundary of the waveg-
uide. It is for this reason that we obtain an excellent model of the physical reality.
From a numerical point of view, this nonlocal impedance condition is computed by
expanding Iy in terms of I, which gives

g
ﬁ% - m.& u[(J + 1)Ar, 2] = ﬂ_.mwn.ccu.: [(J +1— j)Ar, z]
where 3 = (pu/p)ko/n] — L+ 7 and the go,; are the terms of the expansion of
I'y. We note that the right-hand side depends only on the known values of the
pressure field along the interface z = z,. This is clearly convenient for a marching
type scheme of numerical solution.
Our approach is to generalize these equations in order to be able to treat any
type of sea bottom. To this end we rewrite the nonlocal impedance condition as

—%m - %?L ulr, z) = Fr)

where # an F' are complex functions of r. This vields a vector function for the
control which is now defined as

) g

= _H F “_ .

We do not go through the detailed derivation of the gradient (see [JCLth]) but
only present the final resuit. It suffices to say that the steps are identical. Finally
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we obtain

ENLS

(35) VI=| e

[0, A
2kg

3.4. The conjugate gradient method. Once the gradient of the cost fonction
W.J is known, we can seek a local minimum of J(v). The simplest metlod for doing
this is by steepest descent which uses the update

4?.+H__ ”J.:.; IQﬂ_.LA\w_._;J" a> D.,
for n = 0,1, ._until convergence. In order to accelerate the convergence we will use

a conjugate gradient method of Fletcher-Reeves or Polak-Ribiére type (see [NR]).
Here the update is given by

;_‘ﬂ:+: = 4 Tpin .

where ay, is the step-length that minimises ./ in the divection P and this direction
is computed in two steps:

g - VI Vs
TNV,

Prtt = =Vidng1 + fngapn -
We point out that our gradients are complex valued functionals. This implies a
very careful implementation of the minimization algortihm - see below.

3.5. Summary: formulation of the inverse problem. We recapitulate. The
inverse problem for a local (respectively nonlocal) impedance boundary condition is:
“For measurements of an acoustic field u4(R, z) at r = R and 0 < z < 2, caleulate
the impedance boundary control 7(r) (respectively ¥(r) = [8(r) F(r)]T) that
minimizes the cost function

I
(3.6) Jol =3 u(7: R, 2) - ua(R, 2)[* dz,
=0

where u(r, z) is the solution of the paraxial wave equation

L oGu FPu o, o,
(3.7) murom|ﬁ+%+wo_”= —Lu=0
in the rectangular domain [0 < 7 < ] x [0 < 2 < 2], with known initial condition
(3.8) uf0, 2} = uo(z),
known surface boundary condition
(3.9) u(r,0) =0

and unknown bottom boundary condition

(3.10)
{respectively
@1 (2 i) 2 = Py

u..“
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We assume that the initial boundary value problem (3.7, 3.8, 3.9, 3.10) (respec-
tively (3.7, 3.8, 3.9, 3.11}) is well-posed and we seek the control v(r) (respectively
#(r)} in a suitable space of admissible functions.

4. EXISTENCE FOR THE INVERSE PROBLEM

The question of existence of a solution to this inverse problem can be approached
in two ways:

(1) Through the use of control theory by proving controllability (or observabil-
ity.)

(2) By showing that the algorithm made up of the direct problem, the adjoint
problem, the gradient calculation and the mimimization converges to a
critical point of the cost funetional.

We will consider these two possibilities separately, but first of all we consider the
equation itself with the (local) impedance condition....

4.1. Control theory and existence. Let us recall what is known about the con-
trollability of the Schrédinger equation.

4.2. Convergence theory and existence. This approach attempts to avoid the
theoretical problems of control theory for non linear problems but, as we will see,
cannot avoid some rather technical estimations.

5. NUMERICAL RESULTS
5.1. Discretization and precision.
5.2, Minimization of a complex functional.
5.3. Resulis for the local impedance condition.

5.4. Resulis for the nonlocal impedance condition. In the Figure 5.1 we
show the initial acoustic field (top), the true field (middle) and the field obtained
after inversion (hottom). It should be noted that the initial feld is a propagating
field with very little reflection, whereas the field we seek is a highly reflective one.
The inversion succeeds admirably in both the reconstruction of the initial condition
at v =0 as well as the principal features of the field. Since the observation is at
r = 53500 m we have more precision for large ranges than for ranges close to the
source. The relative errors in a 2-norm, range from 2% at r = 5500 to 20% around
r = 0. These errors can be seen in Figure 5.2.
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FIGURE 3.1. Initial (top), true (middle) and inverted (bottom)
fields for the nonlocal houndary condition.
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Figure 5.2. Convergence and errors for the inversion with nonlo-

cal boundary condition.




