Elemental numerical methods, 2h00

Exercise 1 (Cholesky decomposition)

Let L be a lower triangular $n \times n$ matrix of the form

$$L = \begin{bmatrix} d_1 & & 0 \\ b_1 & \ddots & & \\ & \ddots & \ddots & \\ 0 & & b_{n-1} & d_n \end{bmatrix}$$

- 1. Compute the product LL^T when n = 4.
- 2. Let A be a tridiagonal $n \times n$ matrix, which is symmetric positive definite

$$A = \begin{bmatrix} \delta_1 & \beta_1 & & 0 \\ \beta_1 & \ddots & \ddots & \\ & \ddots & \ddots & \\ & \ddots & \ddots & \beta_{n-1} \\ 0 & & \beta_{n-1} & \delta_n \end{bmatrix}.$$

Write an algorithm in order to compute L such that

$$A = LL^T.$$

Exercise 2 (Newton's method)

We consider a smooth function $f : \mathbb{R} \to \mathbb{R}$ with only one point r in \mathbb{R} such that f(r) = 0. The Newton's method for finding r consists in choosing an initial guess $x^{(0)}$ and then computing the sequence $x^{(p)} \to r$ defined by

$$x^{(p+1)} = x^{(p)} - \frac{f(x^{(p)})}{f'(x^{(p)})}, \quad p = 1, 2, 3, \cdots$$

The function f and its derivative f' are given in two fortran functions f(x) and df(x). Write a fortran subroutine newton(x0,r,eps) that computes r with a precision of $\varepsilon = eps$, starting from $x^{(0)} = x0$.

Exercise 3 (Second order implicit scheme)

We consider the following scheme for solving the differential equation $x'(t) = g(x(t)), x_n \simeq x(n\Delta t),$

$$x_n = x_{n-1} + \frac{\Delta t}{2} \left(g(x_{n-1}) + g(x_n) \right), \quad n = 1, 2, 3, \cdots, \quad x_0 = x(0).$$

- 1. Prove that this scheme is of order 2.
- 2. What are the advantages and drawbacks of this scheme ?
- 3. With the Newton's method of Exercise 2, construct for each fixed n a sequence $(x_n^{(p)})_{p\in\mathbb{N}}$, depending on p, such that $x_n^{(p)} \xrightarrow[p\to\infty]{} x_n$. Describe the algorithm. For a given n, how do you choose the initial guess $x_n^{(0)}$ in the Newton's method ?
- The function g and g' are given in two fortran functions g(x) and dg(x). Write a fortran program for computing the numerical values (x_n)_{n∈N} with a precision ε =eps. Your program has to use the subroutine newton(x0,r,eps) of Exercise 2. Write the fortran functions f(x) and df(x).

Exercise 4

We consider the square $\Omega = [a, b] \times [c, d]$. Write a simple 9-point numerical integration rule, based on the Simpson's method, for computing

$$I = \int_{\Omega} f = \int_{x=a}^{b} \int_{y=c}^{a} f(x, y) dx dy.$$