
OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Introduction à OpenCL

Philippe HELLUY1

1UDS/IRMA

Journée GPU Strasbourg, février 2010

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Sommaire

1 OpenCL

2 Solving a transport equation with OpenCL

3 Solving the shock tube problem with OpenCL

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

GPU architecture

A modern Graphics Processing Unit (GPU) is made of:

Global memory (typically 1 Gb)

Compute units (typically 27)

Each compute unit is made of:

Processing elements (typically 8)

Local memory (typically 16 kb)

The same program can be executed on all the processing elements
at the same time.

All the processing elements have access to the global memory

The processing elements have only access to the local memory
of their compute unit.

The access to the global memory is slow while the access to
the local memory is fast.

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

A (virtual) GPU with 2 Compute Units and 4 Processing Elements

PE 1

PE 2 Lo
ca

l m
em

.

CU 1

PE 3

PE 4 Lo
ca

l m
em

.

CU 2

G
lo

b
a
l 
m

e
m

.

Host

GPU

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

OpenCL

Host: the computer into which the GPU is plugged.

Kernel: a program that is executed on the processing elements.

OpenCL means �Open Computing Language�. It includes:

A library of C functions, called from the host, in order to drive

the GPU.

A C-like language for writing the kernels that will be executed

on the processing elements.

Practically available since september 2009. The speci�cation is
managed by the Khronos Group (OpenGL).

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Work-items and work-groups

In order to perform a complex task, a kernel has to be executed
many times.

Each execution of a kernel is called a work-item.

Each work-item is identi�ed globally by a global ID,
i , 0≤ i < Nglobal .

A work-group is a collection of work-items running on the
processing elements of a given compute unit. They can access
the local memory of their compute unit.

Each work-item is identi�ed locally, in its work-group, by a
local ID, j , 0≤ j < Nlocal .

Each work-group is identi�ed by a group ID,
k , 0≤ k < Ngroup.

i = k×Nlocal + j .

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Work-items and work-groups

If Nglobal is the total number of work-items, Nlocal the
number of work-items in a work-group and Ngroup the
number of work-groups, then

Nglobal = Ngroup×Nlocal .

For e�ciency reasons, it is advised that Ngroup� 27 and
Nlocal � 8.

The distribution of the work-groups on the compute units and
the work-items on the processing elements is managed by the
OpenCL implementation.

The order of execution is completely arbitrary. The algorithm
has to take it into account...

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

OpenCL/CUDA

CUDA OpenCL

multiprocessor compute unit

scalar core processing element

global memory global memory

shared memory local memory

local memory private memory

kernel kernel

block work-group

thread work-item

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Transport equation

We want to solve numerically the transport equation

∂tw +u∂xw = 0.

The unknown is a function w(x , t) that depends on the space
variable x ∈ [0,L] and the time variable t ∈ [0,T ].

The constant velocity u > 0 is given.

The initial condition at t = 0 is known w(x ,0) = w0(x).

We also know the left boundary value w(0, t) = 0.

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Finite volume approximation

We consider a space step ∆x = L/N, a time step
∆t = β ∆x/u, the instants tn = n∆t and the points
xi = (i + 1

2)∆x (xi is the middle of the cell
Ci =]i∆x ,(i +1)∆x [, i = 0 · · ·N−1).

N is the number of approximations points in the x direction.

The CFL number β is such that 0 < β < 1.

We want to compute an approximation wn
i
' w(xi , tn).

The approximation is given by an upwind �nite volume scheme

wn+1
i
−wn

i

∆t
+u

wn
i
−wn

i−1
∆x

= 0, n = 0,1,2 · · ·

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

A simple kernel

At a given time-step n the values of wn
i
for i = 0 · · ·N−1 are stored

in the global memory of the GPU in an array wn[]. The work-item
of global ID i , will compute the new value wn+1

i
. The kernel is the

following

__kernel void transport(__global float* wn) {

int i = get_global_id(0);

int N =get_global_size(0);

float dx=1.f/N;

float dt=dx*0.8f;

if(i>0 && i<N) wn[i] = wn[i]-dt/dx*(wn[i]-wn[i-1]);

}

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

The boring part

Now, we have to plug all the wires between this kernel, the GPU
and the host, initialize the variables and the OpenCL framework,
etc.

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

1) Create an OpenCL context

// context creation

Context = clCreateContext(

0, // optional

1, // number of detected devices

&Devices[0], // chosen device

NULL, // optional

NULL, // optional

&status); // error code

assert (status == CL_SUCCESS);

The devices list is obtained from other OpenCL API calls...

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

2) Create a command queue

CommandQueue = clCreateCommandQueue

(Context, // the context

Devices[0], // the chosen device

0, // optional

&status); // error code

assert (status == CL_SUCCESS);

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

3) Create a program

Program = clCreateProgramWithSource

(Context, // the context

1, // number of source strings

(const char **) & prog, // string with

// kernel source

NULL, // optional

&err);

assert(Program);

The kernel source is read from a �le and put into a C++ string.
Note that at this point, the kernel is still not build. Compilation is
made at runtime.

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

4) Build the program

err = clBuildProgram(Program, 0, NULL, NULL,

NULL, NULL);

assert(err == CL_SUCCESS);

The OpenCL kernel compiler is invoked at runtime. If the build is
not successful, it is of course possible to obtain the compiler errors
with the function clGetProgramBuildInfo(...).

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

5) Create a kernel

Kernel = clCreateKernel(

Program, // the program

"transport", // name of the function

// that defines the kernel

&err);

A program source may contain several kernel functions. This
instruction is needed to select a particular function in the program
source.

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

6) Create a bu�er for the initial data in the GPU

wa_gpu = clCreateBuffer(

Context, // the context

CL_MEM_READ_WRITE, // the buffer will be r/w

sizeof(cl_float) * _N, // size of the buffer

NULL, // optional

NULL); // optional

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

7) Copy the initial data in the GPU

err = clEnqueueWriteBuffer

(CommandQueue, // the command queue

wa_gpu, // the buffer that has

// to be filled in the gpu

CL_TRUE, // indicates a blocking write

0, // optional

sizeof(float) * _N, // size of the buffer

wa, // pointer to the host

// memory to copy in the gpu

0, // optional

NULL, // optional

NULL); // optional

assert(err == CL_SUCCESS);

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

8) Link the arguments of the kernel to the right bu�er

err = clSetKernelArg(

Kernel, // the kernel

0, // number of the argument (0,1,2,...)

sizeof(cl_mem), // size of the argument value

&wa_gpu); // pointer to the gpu buffer

//in global memory

The same function has to be called for de�ning each argument of
the kernel. We present here only the case of an argument pointing
to global memory. For local or constant memory arguments, the
call to clSetKernelArg(...) is slightly di�erent. See [OCL] and
below.

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

9) Compute the time-steps on the GPU

while(t<0.25){

t=t+dt;

err = clEnqueueNDRangeKernel(

CommandQueue, // the command queue

Kernel, // the kernel to execute

1,NULL,

&NbGlobal, // total number of work-items

// (= N the number cells)

&NbWorks, // number of work-items

// inside a work-group

0,NULL,NULL);

}

In our simple example, the value of NbWorks is not very important
because we do not use the local memory.

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

10) Read back the results from the GPU

clEnqueueReadBuffer(

CommandQueue,

wa_gpu,

CL_TRUE,0,

sizeof(float) * _N,

wa,

0,NULL,NULL);

This call to clEnqueueReadBuffer(...) copy the bu�er pointed
by wa_gpu to the bu�er pointed by wa. Then, we can compare to
the results obtained on the host CPU.

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

11) Enjoy your work !

Execution on a MacBook GPU (NVidia GeForce 9400M)

Données calcul: Mem GPU=512Gb

Nb Procs=4

Nb Works Max=512

Mem locale=16kb

Plateformes:1

Devices:2

copie dans le gpu

NbGlobal=51200 _N=51200

début du calcul...

temps gpu=3 s

temps cpu=14 s

Computed 48205/51200correct values!

speedup=4.66667

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Other important notions

Atomic operations (next talk)

Optimizations in local memory (next talk)

Sharing objects with OpenGL

Using multiple devices (including CPU)

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Sod's shock tube

We consider a model for an inviscid compressible gas

∂tw + ∂x f (w) = 0.

w(x , t) is now a vector ∈ R3. w = (ρ,ρu,ρE )T . The density
is ρ , the velocity u and the total energy E . The �ux is given
by f (w) = (ρu,ρu2 +p,(ρE +p)u)T .

The pressure is given by p = (γ−1)(ρE − 1
2ρu2) where γ > 1

is the polytropic constant.

The initial condition is piecewise constant (Riemann's problem)

w(x ,0) =

{
wL if x < 0,
wR if x > 0.

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Finite volume scheme

The approximation is given by a �nite volume scheme

wn+1
i
−wn

i

∆t
+

f n
i+1/2− f n

i−1/2

∆x
= 0.

The numerical �ux at the cell boundaries

f n
i+1/2 = f (wn

i ,wn
i+1)

has a rather complex expression (we use the VFRoe scheme
[MFG99] with an entropy correction at sonic points [HHMM09]).

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Main kernel

At a given time-step n the values of wn
i
and wn+1

i
for

i = 0 · · ·N−1 are stored in the global memory of the GPU in
two arrays of cl_float4 (a value is unused).

In order to avoid too much access to global memory, we �rst
copy for each work-group a part of the array containing wn

i

in local memory. The cache size imposes the maximal size of
the work-group.

The �rst and the last cell in a work-group are not computed,
which implies a two-cell overlap between the work-groups.

At the end of the time step the updated values are written
back in the other array in global memory.

A pointer exchange permits to avoid another transfer in global
memory before the next time step.

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Work-group overlap

k: work-group number

i: global work-item number

j: local work-item number in work-group k

i-1 i+1i

Work-group k-1

Work-group k

This cell is not computed in
work-group k

This cell is not computed in
work-group k-1

j=0 j=1 j=2 ...

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Perfs

We compare several GPUs for a 100,000 cells computations.
time (s) proc. CPU/GPU

NVIDIA GeForce GTX 260 75 216 63

ATI Radeon HD 5750 102 720 46

NVIDIA GeForce 9400M 572 16 8

NVIDIA GeForce 9600M GT 281 32 17

AMD Phenom II x4 i810 (OpenCL) 2057 4 2.3

AMD Phenom II x4 i810 (on one core) 4722 1 1

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Results

Comparison between the exact and the numerical solution with or
without entropy correction for 12,600 cells.

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Comments

2D version coming soon...

�aws in the current OpenCL implementations: memory (ATI),
crashes (ATI/NVIDIA), computations on the CPU device
(NVIDIA), documentation (ATI), double precision
(ATI/NVIDIA), etc.

lack of libraries for numerical algorithms.

But OpenCL is already portable and e�cient. It looks very
promising.

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Atomic operations

Philippe HELLUY Introduction à OpenCL



OpenCL
Solving a transport equation with OpenCL

Solving the shock tube problem with OpenCL

Helluy, Hérard, Mathis, Müller. A simple parameter-free
entropy correction for approximate Riemann solvers, 2009.

Masella, Faille, Gallouët. On an approximate Godunov scheme.
Int. J. Comput. Fluid Dyn. 12 (1999), no. 2, 133�149.

NVIDIA. OpenCL Best Practices Guide. August 2009.

Khronos Group.The OpenCL speci�cation, version 1.0. june
2009.

Philippe HELLUY Introduction à OpenCL


	OpenCL
	Solving a transport equation with OpenCL
	Solving the shock tube problem with OpenCL

