
1/35

A generic Discontinuous Galerkin solver based on
OpenCL task graph. Application to

electromagnetic compatibility.

Philippe HELLUY 1,2

1IRMA, Université de Strasbourg, 2Inria Tonus, France

CEMRACS, July 2015, Luminy

2/35

ITER

Context: International Thermonuclear Experimental Reactor (ITER
project). Thermonuclear fusion in a hot hydrogen plasma (more
than 100 million degrees °C). Clean energy of the future. Tokamak:
magnetic plasma con�nement in a torus.

3/35

Plasma physics modeling: Vlasov-Maxwell

I Unknowns: distribution function f (x , v , t) =number of ions at
point x and time t having velocity v ; electromagnetic �eld
(E ,B).

I Vlasov equation (6D (x , v) phase space)

∂t f + v · ∇x f + (E + v × B) · ∇v f = 0.

I Maxwell equations (3D x space)

∂tE −∇× B = j , ∂tB +∇× E = 0.

The current j couples Vlasov and Maxwell

j(x , t) =

ˆ
v

f (x , v , t)v dv .

I General framework: conservation laws.

4/35

Conservation laws

Many equations in physics are systems of conservation laws:

∂tW +
d∑
i=1

∂iF
i (W) = 0.

I W = W (x , t) ∈ Rm: vector of conserved quantities;

I x = (x1 . . . xd): space variable, d : space dimension, t: time;

I ∂t = ∂
∂t , ∂i = ∂

∂xi
;

I W =

[
E

B

]
(Maxwell) or W =

...´

v
fvkdv
...

 (Vlasov);

I F i (W): �ux vector (contains the physics).

5/35

SCHNAPS

I Factorize software developments: design of a generic,
non-linear conservation laws solver.

I Optimizations for addressing hybrid CPU/GPU clusters.

I Fundamental and industrial applications.

SCHNAPS: �Solveur Conservatif Hyperbolique Non-linéaire
Appliqué aux PlasmaS�.

I OpenCL: SIMD �ne grain parallelism (GPU).

I MPI for dealing with MIMD coarse grain parallelism.

I Task graph programming model.

6/35

Outlines

1. Simple approach:

I 2D structured grids;
I Finite Di�erence (FD) + Strang directional splitting;
I OpenCL;
I Synchronous OpenCL/MPI numerical simulations.

2. More general approach:

I 3D unstructured grids;
I Discontinuous Galerkin (DG);
I Asynchronous OpenCL/MPI numerical simulations.

7/35

1) 2D Structured grid

I Grid step: ∆x , time step ∆t ≤ ∆x/Vmax, grid directions
n1 = (1, 0), n2 = (0, 1).

I Approximation W
p
i ,j 'W (i∆x , j∆x , p∆t).

I Finite Di�erence (FD) method + Strang splitting:

W ∗i ,j −W
p
i ,j

∆t
+

F (Wi , j ,Wi+1, j , n1)− F (Wi−1, j ,Wi , j , n1)

∆x
= 0,

W
p+1
i ,j −W ∗i ,j

∆t
+
F (Wi , j ,Wi , j+1, n2)− F (Wi , j−1,Wi , j , n2)

∆x
= 0.

I Numerical �ux: F (WL,WR , n), F (W ,W , n) = F (W) · n.

8/35

OpenCL

I OpenCL: �Open Computing Language�. Library of C functions
for driving the GPU (or any multicore accelerator). Similar to
but more general than CUDA. SYCL: C++ templated version.

I API managed by the Khronos Group (in charge also of
OpenGL) https://www.khronos.org/

I Industry standard: the very same program can really run on
many accelerators. Drivers exist for: NVIDIA GPUs, AMD
CPUs and GPUs, Intel CPUs and GPUs, MIC, ARM
(CPU+GPU), IBM, etc.

I An OpenCL program can access accelerators of di�erent
vendors at the same time (kernels compilation at runtime).

I Also �Meta� drivers: SOCL (StarPU), SnuCL, etc.

I Python bindings: PyOpenCL
https://github.com/pyopencl/pyopencl

https://www.khronos.org/
https://github.com/pyopencl/pyopencl

9/35

OpenCL abstraction

I An accelerator is made of
compute units
(�work-groups�) of several
processors (�work-items�)
sharing a small local cache
memory.

I All the processors have
access to the global
memory.

I The same program (a
�kernel�) can be executed
by all the work-items at the
same time.

I OpenCL manages the
asynchronous distribution
of the work-items on the
actual processors.

PE 1

PE 2 Lo
ca

l m
em

.

CU 1

PE 3

PE 4 Lo
ca

l m
em

.

CU 2

G
lo

b
a
l
m

e
m

.

Host

GPU

10/35

OpenCL speci�cities

I The local (cache) memory is small but fast.

I The global memory is bigger but slower.

I Accessing the global memory of the GPU is faster if
neighboring processors access neighboring locations
(�coalescent� access).

I Accessing the host memory is very slow.

I Branching may be costly (SIMD parallelism).

I Kernel compilation at runtime: increase verbosity, but very
interesting for metaprogramming and performance

portability.

I OpenCL manages events and a task graph for

asynchronous kernel launching.

11/35

OpenCL implementation

The data are arranged in a (i , j) matrix. 1 work-item = 1 cell (i , j).
1 work-group = 1 row i .
For each time step p:

I compute the �uxes balance in the x1-direction for each cell of
each row of the grid.

I transpose the matrix (exchange i and j) in a coalescent way.

I compute the �uxes balance in the x2-direction for each row of
the transposed grid.

I transpose again the matrix.

12/35

Kernel code

13/35

OpenCL + synchronous MPI

I Use of several GPUs;

I Subdomain decomposition
compatible with the
transposition algorithm;

I 1 GPU = 1 subdomain = 1
MPI node;

I MPI for exchanging data
between GPUs (greyed cells
layers).

GPU 0

MPI 0

GPU 1

MPI 1

GPU 2

MPI 2

GPU 3

MPI 3

0 L

L

14/35

Comparisons (M. Massaro)
On large grids (> 1024× 1024). We compare:

I a naive C implementation (compiled with -O3)
I an optimized (tiling) OpenMP implementation of the FD

scheme on 2x6-core CPUs;
I the OpenCL implementation running on 2x6-core CPUs,

NVidia or AMD GPU;
I the OpenCL+MPI implementation running on 4 GPUs.

Implementation Time Speedup

Naive C & -O3 ' 1/20

OpenMP (CPU Intel 2x6 cores) 717 s 1

OpenCL (CPU Intel 2x6 cores) 996 s 0.7

OpenCL (NVidia Tesla K20) 45 s 16

OpenCL (AMD Radeon HD 7970) 38 s 19

OpenCL + MPI (4 x NVIDIA K20) 12 s 58

The GPU performance depends essentially on the transposition
kernel... We achieve approximately 800 GFLOP/s/GPU.

15/35

Shock-bubble interaction (J. Jung)

W = (ρ, ρu1, ρu2, ρQ, ρϕ)T , Q = e + |u|2 /2, p = p(ρ, e, ϕ),

F (w) · n = (ρu · n, ρ(u · n)uT + pnT , (ρQ + p)u · n, ρϕu · n)T .

I Simulation of a compressible two-�uid �ow: interaction of a
shock wave in a liquid with a gas bubble

I Coarse mesh OpenCL simulation on an AMD HD 5850

I OpenGL/OpenCL interop + video capture.

https://www.youtube.com/watch?v=c8hcqihJzbw

https://www.youtube.com/watch?v=c8hcqihJzbw

16/35

Very �ne mesh

I Very �ne mesh OpenCL + MPI simulation, 40,000x20,000
grid. 4 billions unknowns per time step

I 10xNVIDIA K20 GPUs, 30 hours

I Red=high density (compressed liquid); blue=low density (gas).

17/35

Zoom 1

18/35

Zoom 2

19/35

Unstructured grids

(Project with Thales, AxesSim,
Body Cap, Citizens Sciences)

I Unstructured hexahedra
mesh for representing
complex geometries.

I Subdomain decomposition.
1 domain = 1 MPI node =
1 OpenCL device.

I Zone decomposition. Each
subdomain is split into
volume zones and interface
zones.

I Non-conformity between
zones is allowed.

20/35

Mesh example

A non-conforming mesh with two subdomains, three volume zones
and three interface zones.

I Subdomain 1: only one big
re�ned volume zone. Two
interface zones.

I Subdomain 2: two small
volume zones (coarse and
re�ned). Three interface
zones.

21/35

Mesh structure

Subdomain 1

Subdomain 2

Volume
zone 1

Volume
zone 2

Volume
zone 3

Interface
zone 1′

Interface
zone 2′

Interface
zone 3

Interface
zone 1

Interface
zone 2

22/35

Discontinuous Galerkin (DG) approximation [4]

In each cell L of the mesh, the conserved quantities are expanded
on Lagrange polynomial basis functions

W (x , t) =
∑
j

W
j
L(t)ψL

j (x), x ∈ L.

I L is a (possibly stretched)
hexahedron

I W is determined by its
values at blue (volume)
Gauss points

I W is discontinuous at
green (faces) Gauss points.

23/35

DG formulation [7, 8]

The numerical solution satis�es the DG approximation scheme

∀L, ∀i
ˆ
L

∂tWLψ
L
i −
ˆ
L

F (WL,WL,∇ψL
i)+

ˆ
∂L

F (WL,WR , nLR)ψL
i = 0.

I R denotes the neighbor
cells along ∂L.

I nLR is the unit normal
vector on ∂L oriented from
L to R .

I F (WL,WR ,n): numerical
�ux.

I F (W,W,n) =∑
kF

k(W)nk .

nLR

∂L ∩ ∂R

L

R

Time integration of a system of ordinary di�erential equations.

24/35

Tasks

I Elementary tasks attached to volume or interface zones

I A task is associated to a computational OpenCL kernel or to
memory operations (GPU↔CPU and MPI transfers).

I The optimized design of the computational kernels is tricky...

I Hexahedra mesh optimizations ((D + 1)3 → 3(D + 1)
complexity).

I Idling work-item strategy for avoiding cache misses.
I Our FLOPs are good FLOPs !

I See
https://hal.archives-ouvertes.fr/hal-01134222v2

https://hal.archives-ouvertes.fr/hal-01134222v2

25/35

Tasks

26/35

Tasks graph: two domains

DAG: Direct Acyclic Graph

27/35

Tasks graph: one domain

28/35

MPI/OpenCL events management [6]

Problem: how to express the dependency between MPI and
OpenCL operations ?

I We decided to rely only on the OpenCL events management.

I The beginning of a task depends on the completions of a list
of OpenCL events. The task is itself associated to an OpenCL
event.

I At an interface zone between two subdomains, an extraction
task contains a GPU to host memory transfer, a MPI
send/receive communication and a host to GPU transfer.

I we create an OpenCL user event, and launch a MPI blocking
sendrecv in a thread. At the end of the communication, in the
thread, the OpenCL event is marked as completed. Using
threads avoids blocking the main program �ow.

Simple runtime tasks management based only on well-established
standards...

29/35

Roo�ine model

I Peak computation perfs: P = 3.5T�ops.

I Memory bandwidth: B = 208GB/s.

I Computational intensity of an algorithm
I = number of computations

number of memory transfers .

Maximal perfs of one GPU:

PA = max(P,B × I).

30/35

Roo�ine model

31/35

Sync./Async. comparison (T. Strub)

Big mesh, polynomial order D = 3, NVIDIA K20 GPUs, in�niband
network, single-precision �oats.

1 GPU 2 GPUs 4 GPUs 8 GPUs

Sync. TFLOPS/s 1.01 1.84 3.53 5.07

ASync. TFLOPS/s 1.01 1.94 3.74 7.26

We achieve ' 30% of the peak performance.s

32/35

Electromagnetic compatibility application [3]

I Electromagnetic wave interaction with an aircraft.

I Aircraft geometry described with up to 3.5M hexaedrons ('1
billion unknowns per time step): mesh of the interior and
exterior of the aircraft. PML transparent boundary conditions.

I We use 8 GPUs to perform the computation. The biggest
simulation does not �t into a single GPU memory.

33/35

Other applications [9, 5]

I MHD

I 4D Vlasov Landau damping

34/35

Conclusion

I Generally a huge computational power is lost in scienti�c
software !

I Necessity of generic programming approaches: mathematicians
and compter scientists collaborations

I task-graph programming model is probably the future.

I as of today lack of standard API (OpenMP ?):

I technologies exist: StarPU [2, 1], PaRSEC, OmpSs,
CHARM++, etc.

I static or dynamic DAG, dynamic compilation, codelets, load
balancing, data driven.

I Data: automatic choice between saving or recomputing data,
compression, coherency check, restart after failure.

I Colleagues are often ready to rewrite their codes, but in a
stable environment.

35/35

Bibliography
[1] Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Stojce Nakov, and Jean Roman.

Task-based conjugate-gradient for multi-GPUs platforms.
2012.

[2] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
StarPU: a uni�ed platform for task scheduling on heterogeneous multicore architectures.
Concurrency and Computation: Practice and Experience, 23(2):187�198, 2011.

[3] Tristan Cabel, Joseph Charles, and Stephane Lanteri.
Multi-GPU acceleration of a DGTD method for modeling human exposure to electromagnetic
waves, 2011.

[4] Gary Cohen, Xavier Ferrieres, and Sébastien Pernet.
A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time
domain.
Journal of Computational Physics, 217(2):340�363, 2006.

[5] Philippe Helluy, Laurent Navoret, Nhung Pham, and Anaïs Crestetto.
Reduced Vlasov-Maxwell simulations.
Comptes Rendus Mécanique, 342(10-11):619�635, 2014.

[6] Philippe Helluy, Thomas Strub, Michel Massaro, and Malcolm Roberts.
Asynchronous OpenCL/MPI numerical simulations of conservation laws.

[7] A. Klöckner, T. Warburton, J. Bridge, and J. S. Hesthaven.
Nodal discontinuous Galerkin methods on graphics processors.
J. Comput. Phys., 228(21):7863�7882, 2009.

[8] A Kloeckner.
Hedge: Hybrid and Easy Discontinuous Galerkin Environment
http://mathema.tician.de/software/hedge/, 2010.

[9] Michel Massaro, Philippe Helluy, and Vincent Loechner.
Numerical simulation for the MHD system in 2D using OpenCL.
ESAIM: Proceedings and Surveys, 45:485�492, 2014.

