A generic Discontinuous Galerkin solver based on
OpenCL task graph. Application to
electromagnetic compatibility.

Philippe HELLUY 12
LIRMA, Université de Strasbourg, 2Inria Tonus, France

CEMRACS, July 2015, Luminy

~ R 1
"""""" g laias NOXesSi



ITER

Context: International Thermonuclear Experimental Reactor (ITER
project). Thermonuclear fusion in a hot hydrogen plasma (more
than 100 million degrees °C). Clean energy of the future. Tokamak:
magnetic plasma confinement in a torus.




Plasma physics modeling: Vlasov-Maxwell

» Unknowns: distribution function f(x, v, t) =number of ions at
point x and time t having velocity v; electromagnetic field
(E, B).

» Vlasov equation (6D (x, v) phase space)
Of+v-Vyf+(E+vxB) -V, f=0.
» Maxwell equations (3D x space)
HE—-VxB=j, 0B+VxE=0

The current j couples Vlasov and Maxwell
Jj(x,t) = / f(x,v,t)vdv.
v

» General framework: conservation laws.



Conservation laws

Many equations in physics are systems of conservation laws:

d
W+ 9;F (W) =0,
i=1

v

W = W(x,t) € R™: vector of conserved quantities;

x = (x1...x9): space variable, d: space dimension, t: time;

>at:%lalzaar

Xi

v

w

v

[ g } (Maxwell) or W = | [ fvkdv | (Vlasov);

v

F/(W): flux vector (contains the physics).



SCHNAPS

» Factorize software developments: design of a generic,
non-linear conservation laws solver.

» Optimizations for addressing hybrid CPU/GPU clusters.
» Fundamental and industrial applications.
SCHNAPS: “Solveur Conservatif Hyperbolique Non-linéaire
Appliqué aux PlasmaS”.
» OpenCL: SIMD fine grain parallelism (GPU).
» MPI for dealing with MIMD coarse grain parallelism.

» Task graph programming model.



Outlines

1. Simple approach:

2D structured grids;

Finite Difference (FD) + Strang directional splitting;
OpenCL;

Synchronous OpenCL/MPI numerical simulations.

vV vy vy

2. More general approach:

» 3D unstructured grids;
» Discontinuous Galerkin (DG);
» Asynchronous OpenCL/MPI numerical simulations.



1) 2D Structured grid

v

Grid step: Ax, time step At < Ax/Viax, grid directions
n = (1,0), npy = (0, 1)
Approximation Wf:l ~ W(ilx,jAx, pAt).

Finite Difference (FD) method + Strang splitting:

v

v

Wi — VViI,)j N F(W, j, Wit1, j,m) — F(W;_1,j, Wi j,m)

=0
At Ax ’

+1

Wi~ = Wi, F(Wij W ja, m) = F(Wijo1, W j, mo)
At Ax

Numerical flux: F(Wy, Wg,n), F(W,W,n)=F(W)-n.

=0.

v



OpenCL

» OpenCL: “Open Computing Language”. Library of C functions
for driving the GPU (or any multicore accelerator). Similar to
but more general than CUDA. SYCL: C++ templated version.

» APl managed by the Khronos Group (in charge also of
OpenGL) https://www.khronos.org/

» Industry standard: the very same program can really run on
many accelerators. Drivers exist for: NVIDIA GPUs, AMD
CPUs and GPUs, Intel CPUs and GPUs, MIC, ARM
(CPU+GPU), IBM, etc.

» An OpenCL program can access accelerators of different
vendors at the same time (kernels compilation at runtime).

» Also “Meta” drivers: SOCL (StarPU), SnuCL, etc.
» Python bindings: PyOpenCL
https://github.com/pyopencl/pyopencl


https://www.khronos.org/
https://github.com/pyopencl/pyopencl

OpenCL abstraction

>

An accelerator is made of
compute units
(“work-groups”) of several
processors (“work-items”)
sharing a small local cache
memory.

All the processors have
access to the global
memory.

The same program (a
“kernel”) can be executed
by all the work-items at the
same time.

OpenCL manages the
asynchronous distribution
of the work-items on the
actual processors.

Global mem.

Local mem.

Local mem.

Host




OpenCL specificities

» The local (cache) memory is small but fast.

» The global memory is bigger but slower.

» Accessing the global memory of the GPU is faster if
neighboring processors access neighboring locations
(“coalescent” access).

> Accessing the host memory is very slow.

» Branching may be costly (SIMD parallelism).

» Kernel compilation at runtime: increase verbosity, but very
interesting for metaprogramming and performance
portability.

» OpenCL manages events and a task graph for
asynchronous kernel launching.



OpenCL implementation

The data are arranged in a (i,) matrix. 1 work-item = 1 cell (i, ).
1 work-group = 1 row i.
For each time step p:

» compute the fluxes balance in the x!-direction for each cell of
each row of the grid.

> transpose the matrix (exchange 7 and j) in a coalescent way.

» compute the fluxes balance in the x?-direction for each row of
the transposed grid.

> transpose again the matrix.



Kernel code

1|_kernel void flux_balance(int m, float dt_over_dx,
N __global float wnow[] [_NY][_NXI,
__global float wnext[][_NY][_NXI1)

int i = get_group_id(@);
int j = get_local_id(@);

float wilml, w2[m], fR[m], fL[m];
o  for(int ii = @; ii < m; ++ii)

12 wl[ii]
1 w2 [ii]
}

wnow [ii] [1] [§1;
wnow [1i] [1]1[j+1];

1 numflux(wl,w2,fR);

o for(int ii = @; ii < m; ++ii)
19 w2[ii] = wnow[ii] [i] [j-11;

2 numflux(w2,wl, fL);

o for(int ii = @; ii < m; ++ii)
2 wnext[ii] [i]1[j] -= dt_over_dx x (fR[ii] - fL[ii]);



OpenCL + synchronous MPI

» Use of several GPUs; L

» Subdomain decomposition
compatible with the
transposition algorithm;

» 1 GPU = 1 subdomain =1
MPI node;

» MPI for exchanging data ° |GPU °| |GPU 1| |GPU 2| |GP“ 3|
between GPUs (greyed cells
layers).

|MPI 0| |MPI 1 | |MPI 2| |MPI 3|




Comparisons (M. Massaro)
On large grids (> 1024 x 1024). We compare:
» a naive C implementation (compiled with -O3)

» an optimized (tiling) OpenMP implementation of the FD
scheme on 2x6-core CPUs;

» the OpenCL implementation running on 2x6-core CPUs,
NVidia or AMD GPU,;

» the OpenCL+MPI implementation running on 4 GPUs.

‘ Implementation ‘ Time ‘ Speedup ‘
Naive C & -0O3 ~1/20
OpenMP (CPU Intel 2x6 cores) | 717 s 1
OpenCL (CPU Intel 2x6 cores) 996 s 0.7
OpenCL (NVidia Tesla K20) 45 s 16
OpenCL (AMD Radeon HD 7970) | 38s 19
OpenCL + MPI (4 x NVIDIA K20) | 12s 58

The GPU performance depends essentially on the transposition
kernel... We achieve approximately 800 GFLOP/s/GPU.



Shock-bubble interaction (J. Jung)

W = (p,put, pu?, pQ,pp) T, Q@ =e+|u?/2, p=plp,e ),
F(w)-n = (pu-n.p(u - n)uT + pnT.(p@ + p)u- . pou ).

» Simulation of a compressible two-fluid flow: interaction of a
shock wave in a liquid with a gas bubble

» Coarse mesh OpenCL simulation on an AMD HD 5850
» OpenGL/OpenCL interop + video capture.
https://www.youtube.com/watch?v=c8hcqihJzbw


https://www.youtube.com/watch?v=c8hcqihJzbw

Very fine mesh

» Very fine mesh OpenCL + MPI simulation, 40,000x20,000
grid. 4 billions unknowns per time step

» 10xNVIDIA K20 GPUs, 30 hours
» Red=high density (compressed liquid); blue=low density (gas).

16/35



Zoom 1

0978 1.41e+03
[ ]



Zoom 2

127 693 1.38e+03 0.978 693 1.39e+03
I | — L



Unstructured grids

(Project with Thales, AxesSim,
Body Cap, Citizens Sciences)

Unstructured hexahedra
mesh for representing
complex geometries.

Subdomain decomposition.
1 domain = 1 MPI node =
1 OpenCL device.

Zone decomposition. Each
subdomain is split into
volume zones and interface
zones.

Non-conformity between
zones is allowed.



Mesh example

A non-conforming mesh with two subdomains, three volume zones
and three interface zones.

» Subdomain 1: only one big
refined volume zone. Two
interface zones.

» Subdomain 2: two small
volume zones (coarse and
refined). Three interface
zones.




Mesh structure

Subdomain 1
Volume
zone 1

Interface Interface
_ .zonel . zone2
Interface Interface
zone 1/ zone 2/
Volume Volume
zone 2 zone 3
) Interface
Subdomain 2

zone 3



Discontinuous Galerkin (DG) approximation [4]

In each cell L of the mesh, the conserved quantities are expanded
on Lagrange polynomial basis functions

Wixt)=> Wi(t)h(x), xelL.
J

(0,0,1)

» L is a (possibly stretched)
hexahedron

» W is determined by its
values at blue (volume)
Gauss points

(0,1,0)

» W is discontinuous at
green (faces) Gauss points.




DG formulation [7, 8]
The numerical solution satisfies the DG approximation scheme

vevi [ owt- [ FOR WL Veb [ W W)t =0
L L oL

» R denotes the neighbor OLNOR
cells along OL.
» n;gr is the unit normal
vector on JL oriented from
L to R.
» F(W,, Wg,n): numerical
flux.
» F(W,W,n) =
S (W)

Time integration of a system of ordinary differential equations.



Tasks

v

Elementary tasks attached to volume or interface zones

v

A task is associated to a computational OpenCL kernel or to
memory operations (GPU<>CPU and MPI transfers).

v

The optimized design of the computational kernels is tricky...

» Hexahedra mesh optimizations ((D +1)*> — 3(D + 1)
complexity).

» Idling work-item strategy for avoiding cache misses.

» Our FLOPs are good FLOPs !

> See
https://hal.archives-ouvertes.fr/hal-01134222v2


https://hal.archives-ouvertes.fr/hal-01134222v2

Tasks

Name

| Attached to | Description

Extraction

Interface

Copy or extrapolate the val-
ues of W from a neighboring
volume zone

Exchange

Interface

GPU/Host transfers and
MPI communication with
an interface of another
domain

Fluxes

Interface

Compute the fluxes at the
Gauss points of the interface

Sources

Volume

Compute the internal fluxes
and source terms inside a
volume zone

Boundaries

Interface

Apply the fluxes of an inter-
face to a volume zone

Time

Volume

Apply a step of the Runge-
Kutta time integration to a
volume zone

Start

Volume

Fictitious task: beginning of
the Runge-Kutta substep

End

Volume

Fictitious task: end of the
Runge-Kutta substep




Tasks graph: two domains

DAG: Direct Acyclic Graph



Tasks graph: one domain

Subdomain 2
Interface zone 1'

Extraction from volume 2 Extraction from volume 2

Subdomain 2
Interface zone 1'
Exchange interface 1

Subdomain 2

Subdomain 2
Interface zone 3

Subdomain 2
Volume zone 2

Internal Computations

Subdomain 2
Interface zone 3
Fluxes computation

Subdomain 2
Interface zone 1'
Flux computation

Subdomain 1
Interface zone 1'

n to volume 2 Contribution to volume 2

Subdomain 2
Interface zone 3

Subdomain 2
Volume zone 2
Time Progression

Subdomain 2

Subdomain 2
Interface zone 2'

Extraction from volume 3

Subdomain 2
Interface zone 2'
Exchange Interface 2

Subdomain 2
Volume zone 3

Internal computations

Subdomain 2

Interface zone 3
Contribution to volume 3

Sub domain 2
Surfacic zone 2
Flux computation

Subdomain 2
Interface zone 2
Contribution to volume 3

Subdomain 2
Volume zone 3
Time Progression

Subdomain 2
End




MPI1/OpenCL events management [6]

Problem: how to express the dependency between MPI and
OpenCL operations ?

>

>

We decided to rely only on the OpenCL events management.

The beginning of a task depends on the completions of a list
of OpenCL events. The task is itself associated to an OpenCL
event.

At an interface zone between two subdomains, an extraction
task contains a GPU to host memory transfer, a MPI
send/receive communication and a host to GPU transfer.

we create an OpenCL user event, and launch a MPI blocking
sendrecv in a thread. At the end of the communication, in the
thread, the OpenCL event is marked as completed. Using
threads avoids blocking the main program flow.

Simple runtime tasks management based only on well-established
standards...



Roofline model

» Peak computation perfs: P = 3.5Tflops.
» Memory bandwidth: B = 208GB/s.

» Computational intensity of an algorithm
| — number of computations
" number of memory transfers "

Maximal perfs of one GPU:

Pa = max(P, B x I).



Roofline model

lel2
3.5
3.0
o
o
92s
=4
g
520
=
=3
v
=
S5
CD
o
5 i
810 =0 Rooflnel
S 4= Intensité GDRK2-d =1
& ¥=¥ Intensité GD RK2 - d = 2
05 B=@ Intensité GD RK2 -d = 3
4= Intensité GD RK2 -d = 4
0.0 n
0 20 40 80 100

60
Intensité opérationnelle (FLOPS / Byte)



Sync./Async. comparison (T. Strub)

Big mesh, polynomial order D = 3, NVIDIA K20 GPUs, infiniband

network, single-precision floats.

|

|

| 1GPU [ 2 GPUs | 4 GPUs | 8 GPUs |

Sync.

TFLOPS/s

1.01

1.84

3.53

5.07

ASync.

TFLOPS/s

1.01

1.94

3.74

7.26

We achieve ~ 30% of the peak performance.s




Electromagnetic compatibility application [3]

» Electromagnetic wave interaction with an aircraft.

» Aircraft geometry described with up to 3.5M hexaedrons (~1
billion unknowns per time step): mesh of the interior and
exterior of the aircraft. PML transparent boundary conditions.

» We use 8 GPUs to perform the computation. The biggest
simulation does not fit into a single GPU memory.




Other applications [9, 5]

» MHD
» 4D Vlasov Landau damping




Conclusion

» Generally a huge computational power is lost in scientific
software !

» Necessity of generic programming approaches: mathematicians
and compter scientists collaborations

» task-graph programming model is probably the future.
» as of today lack of standard APl (OpenMP 7):

» technologies exist: StarPU [2, 1], PaRSEC, OmpSs,
CHARM++, etc.

» static or dynamic DAG, dynamic compilation, codelets, load
balancing, data driven.

» Data: automatic choice between saving or recomputing data,
compression, coherency check, restart after failure.

» Colleagues are often ready to rewrite their codes, but in a
stable environment.



Bibliography

[1] Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Stojce Nakov, and Jean Roman.
Task-based conjugate-gradient for multi-GPUs platforms.
2012.

[2] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
StarPU: a unified platform for task scheduling on heterogeneous multicore architectures.
Concurrency and Computation: Practice and Experience, 23(2):187-198, 2011.

[3] Tristan Cabel, Joseph Charles, and Stephane Lanteri.
Multi-GPU acceleration of a DGTD method for modeling human exposure to electromagnetic
waves, 2011.

[4] Gary Cohen, Xavier Ferrieres, and Sébastien Pernet.
A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time
domain.
Journal of Computational Physics, 217(2):340-363, 2006.

[5] Philippe Helluy, Laurent Navoret, Nhung Pham, and Anais Crestetto.
Reduced Vlasov-Maxwell simulations.
Comptes Rendus Mécanique, 342(10-11):619-635, 2014.

[6] Philippe Helluy, Thomas Strub, Michel Massaro, and Malcolm Roberts.
Asynchronous OpenCL/MPI numerical simulations of conservation laws.

[7] A. Kldckner, T. Warburton, J. Bridge, and J. S. Hesthaven.
Nodal discontinuous Galerkin methods on graphics processors.
J. Comput. Phys., 228(21):7863-7882, 2009.

[8] A Kloeckner.
Hedge: Hybrid and Easy Discontinuous Galerkin Environment
http://mathema.tician.de/software/hedge/, 2010.

[9] Michel Massaro, Philippe Helluy, and Vincent Loechner.
Numerical simulation for the MHD system in 2D using OpenCL.
ESAIM: Proceedings and Surveys, 45:485—-492, 2014.



