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Two-fluid model



Physical problem |
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Systems of conservation laws

The unknown is a vector W(X,t) € R™ that depends on space
X €RY (d =2), time t € R and satisfies

QW + V- F(W) = S(W).

The flux F is supposed to be hyperbolic in all the directions
N € RY:

AW, N):=VwF(W)-N
is diagonalizable with real eigenvalues.

» The solutions are complex: shock waves, non uniqueness,
turbulence, etc.

» Needs of precise and robust numerical methods.

» Algorithms must be adapted to multicore computers.



Compressible two-fluid model

Vector of conservative variables W = (p,pu,pv,pQ,p®)", where
> p is the density,
» U= (u,v)7 is the velocity vector,
> Q@ is the total energy,
» ¢ the color function (@ =0 in the liquid and ¢ =1 in the gas).
» The internal energy is e = Q — (u? +v?2)/2.
» The pressure is defined by p = p(p, e, 9).
>

The flux and source are given by
F(W)-N=(pU-N,p(U-N)UT +pN”,(pQ+p)U-N,ppU-N)T,

S(W) = (0707 —ga—PgV,O)T, g = 9.81m/s2.



Diffusion of the color function

The color function is a solution of
2o+ U-Vo =0,

thus
V(x,t) o@(x,t)e{0}U{1}.

However most numerical schemes will produce numerical diffusion
and we have to interpolate the pressure law p(p,e, @) for

¢ €]0,1].



Pressure law

For instance, we can consider a simple stiffened gas model for an
air-water mixture

p(p;e. @) = (r(9) —1)pe (@) (o).
The gas corresponds to ¢ = 1:
Y(1)=n =14, =n(l)=m =0 (perfect gas).
The liquid corresponds to ¢ = 0:
¥(0) =1 =3, n(0)=m = 8500 x 10° Pa (stiffened gas).

We can use a linear interpolation of 1/(y—1) and yr/(y—1) for
0<p<1]13].



Hyperbolicity

Let
%d((p)z{W= (p,pu,pv,pQ,pp)" €R™, p>0, p+n(p)> 0},

and

= |J (o)

0€[0,1]

Let c = +/Y(p+m)/p. The system is hyperbolic for W € #,4 with
eigenvalues U-N—c, U-N, U-N+c . The pressure can be <0
(liquid tension).

For a given ¢, the set #,4(¢) is convex. But #,4 is not convex.



Riemann solver

First we consider the 1D framework X = (x,y)", W = W(x,t),
N = (1,0)7,
oW + 0 (F(W)-N) =0.

Let V; and Vg be two constant states in #54. We can prove that
the Riemann problem

eV + o (F(V)-N)=0

. V0 if x <0,
V(X’O)_{ Vi if x>0,

admits a unique global entropy solution, which is denoted by
R(VL, VR, x/t) = V(x,t) € Wad.-

The function R is called the Riemann solver. The negative
pressures are not a problem.



Mesh

> We consider a 1D mesh made of cells C; =]xj_1 /2, Xj11/2],
i € Z. The size of cell C; is Ax; = Xj1/5 — Xj_1/2-

» We also consider time steps At, > 0 satisfying a CFL condition
and a sequence of times t, satisfying t,.1 = t, + At,.

» The solution W(x,t) is approximated in each cell by a
constant value

Wi~ W(x,t,), xeCC.
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Godunov scheme

The Godunov scheme reads

B (W = W) - Bt (Flyy g = FlLyjz ) =0,
The numerical flux is defined from the Riemann solver
R(WL, WR,X/t) and

Fi'3r1/2 = F( i,-7|-1/2)7

Wi’llp = R(W/, i,—7i-170)'

Construction: (1) exact resolution of interface Riemann problems.
(2) averaging over the cells. In the convex case, CFL condition and
entropy stability follow from Jensen inequality.



Pressure “oscillations”

Problem: #.4 is generally not convex. The Godunov scheme is not
stable and may fail after only one time step [12].

Even when the computations are possible, the results are not
accurate (spurious pressure “oscillations”).

Better accuracy with the non-conservative scheme of Abgrall-Saurel
[13], but with the same stability issue [11].



Possible cures

We can:

1. Construct another pressure law that ensures convexity of #,4.
It's possible, we can discuss it during the lunch...

2. Construct another scheme that keeps W in #.4.
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Random Interface Sampling



Lagrange and remap schemes

We consider the family of Lagrange plus remap schemes. The mesh
is now moving within a time step. The cells depend on n

n __ n n n __ n n
G _]Xi—1/27Xi+1/2[7 Axi' = Xit1/2 — Xi—1/2-

The cell boundary X}, 1/, Moves at the velocity Uy q/p- Just before

the remap step (time “n+1,—") the cell boundaries are given by

n+l,— _ _n n
Xiy1jo = Xiy1jo T Dtaliyy .
n+l— _ n+l—  n+l— n n _.n
Ax; =Xi\1p — X1 =X + Atn(ul g — Ul )0)-



Lagrange-remap mesh




Lagrange and remap schemes

Each time step of a Lagrange plus remap scheme is made of two

stages.
In the first stage, we approximate the solution with a Lagrange

scheme

AXTTET W AW+ A, (F 12— F ,-",1/2) =0

1 1

The Lagrange flux is defined from a Riemann solver
R(WL, WR,X/t) and

,'11/2 = F(Wi'll/z)— f+1/2Win+1/2a
i11/2 = R(W, W/, /+1/2)



Conservative remap

The classic remap step consists in returning to the Euler grid with
conservative averaging. We obtain

_ Atn n+1,— n+1,—
Wn+1 Wn+1 AX. (maX(U,{Ll/g,O)(VV; +1,— VV;_JEL )+
- n n+1,— n+1,—
min(uf, 5, 0)(W/LH =W )).

And we go back to the initial Euler grid
X[‘H‘l —_ X'n CI‘H—l Cn AXIH—I AX

The numerical results are similar to those obtained with the
conservative scheme.



Non-conservative remap

Instead of averaging p@, the last component of W, we average ¢
[2], which leads to

n ntl— Aty n n+1,— n+1,—
ot = o R Ax; (max(ui—l/Zvo)((Pi e 9”;—+1L )+

1

min(uf,1/2,0)(9f7" " — /7).

The resulting scheme is non-conservative. It preserves constant
(u, p) states. The results are very similar to those obtained with the
Abgrall-Saurel approach [13]. In the sequel, this scheme is called
the BHRJ scheme.



Glimm remap (1)

We construct a sequence of random or pseudo-random numbers
€ [0,1[. According to this number we take [3]

_ At
Wit = Wb if o, < < A max(uf 1 5.0),

At
Wt = W”++11 if a),,>1—i—A = min(u uiy1/2,0),
I

At
W'I‘l — W.n—&-l,— f n
] ] I A

Xi

max(uf 1 5,0) < @p < in(uy1/2,0).



Glimm remap (II)

A good choice for the pseudo-random sequence @, is the (ki, k2)
van der Corput sequence, computed by the following C algorithm

float corput(int n,int ki,int k2){
float corput=0;
float s=1;
while(n>0){
s/=k1;
corput+=(k2x*n¥%k1) fkl*s;
n/=k1;}
return corput;
}
In this algorithm, k; and ky are two relatively prime numbers and
ki > ky > 0. In practice, we consider the (5,3) van der Corput
sequence.



Glimm remap (III)

We recently discovered that the sequence
W, = n/2 mod1

also gives excellent results !



Glimm remap (IV)

n+l1 n+1/2
Xiv1/2 Xir12
T+ — = n+1
u uni-1l2 uni+1/2
t=t
. . . n . . n
i-2 i-1 i X, i1 i+2

Figure: Example of Glimm remap. The stars correspond to the sampling
points. In cells i —1 and 7, we keep the values of the Lagrange cells. In
cell i+ 1, we take the values of Lagrange cell j+2.



Lagrange interface velocity

We have to provide the interface velocities u;’+1/2.

In the resolution of the Riemann problem R(W,", W/ ;,x/t) we
find four waves. The characteristic fields 2 and 3 are linearly
degenerated and Ax(w) = A3(w) = v, thus the velocity is constant
across these waves. It corresponds to the interface velocity, which

we denote by u*(W;, Wi11). It is then natural to take

uiy1p = u" (W, WiL,).



Relaxation Riemann solver

For much faster numerical computations, we can use an
approximate Riemann solver based on relaxation techniques [11].

> it is positive and handles vacuum.

> entropy dissipative.



Properties

v

The constant (u, p) states are exactly preserved.

v

The gas fraction is not smeared at all.

v

It is possible to use any approximate Riemann solver in the
Lagrange step.

v

Statistically conservative.

» Convergence ?



Weak shock

The first test consists in a two-fluid shock tube. The stiffened gas
parameters are

w=2, mw=1,
}/A:1.4, EA:O.

We take for the left and right initial data

(L, uL,pL, @) =(2,1/2,2,1),
(pRa uRva7(pR) = (171/2ﬂ 170)

We compare the non-conservative remap and the Glimm remap.
The Riemann solver is the approximate VFRoe solver in the

(p,u,p,@) variables.



Convergence study

The convergence rate is approximately 0.6.

-LOGH)
28 30 32 34 36 38 40 42 44

LOG(error)

— Average — — Glimm

Figure: Convergence study: Glimm remap versus non-conservative

averaging remap, weak shock.



Strong shock

Interaction between a shock of velocity 6 =4 and a contact of

velocity v = —1.

The initial positions of the contact and the shock are chosen in

such way that they meet together at the abscissa x =0 at time
=1. The EOS parametersare 1 =14, ;1 =0, =2, m=1T7.

The initial data are

(pr,ui.pi,¢1) = (3.4884,1.1333,23.333,1), x < —4,
(Pm,upm, P PM) = (2,-1,2,1), —4<x<1,
(pR7URaPRa(PR) - (17_1,2,0), x> 1.

After the interaction at time t = 1, the solution is simply given by
the resolution of a two-fluid Riemann problem between states (L)

and (R).



Strong shock

Similar phenomena in [4]

a

2.5

@

1.5

1
-5 -4 -3 -2 -1 [ 1 2

Figure: Glimm approach, density plot. TV explosion due to wall-heating
effect propagation, strong shock.



Modified interface velocity

Simple remark: if one takes u,f’+1/2 =0, we fall back on the classic
Godunov scheme, which solves correctly the shock waves.
It is thus better to use the Glimm approach only at the interface,

u(l — U*(VV,-n, VVIZrl) 'f (pin 7é (p,‘n+17
/2 0if o =975

The scheme has the same properties as before and the “TV
explosion” is removed in strong shocks.



Numerical results

3.9 T
"rho-nixed”
“rho-average”
e —
3L
2.5
2L
1.5
1
-5 -4 -3 -2 -1 a 1 2

Figure: Density. Comparison of the modified Glimm and averaging remap
schemes.



Convergence study

Better convergence rate !

LOG(error)
o
i

-1,54

- 1.8

|— Mized remap — — Avemge‘

Figure: strong shock-interface interaction. Convergence study. modified
Glimm remap and averaging remap.



Comparisons
Order of convergence of 1 on the density !

Convergence curves / Rieman pb / perfect gas

—— phi-STD

—— tho-STD

-- U-STD

-- P-STD

— phi- GRU-TF
tho - GRU-TF
U - GRU-TF

log(err)

slope 172
slope 0.8
slope 1

R
log(dx)

Figure: Gas-gas Riemann problem. Convergence study. Comparisons of
several schemes.

For rigorous convergence results see [6, 7, 8]



Conservation (I)

The numerical mass transfer between the two fluids should be zero.
We compare it for different schemes:

» Saurel-Abgrall scheme (SA) [13];

» A Lagrange and remap version of Saurel-Abgrall (BHRJ) [2];
» The “Ghost Fluid for the poor” (GF) scheme [1];

» The random scheme (RS).



Conservation (1)

Mass total of gas (kg)

£
|

=]
1

o
1

[ e RS——BHRI —-— SA

[ .- .o

* A °

°

<

°

000010 0.00015
Time (s)

0.00005

-
0.00020




Conservation (I11)

The total energy should be exactly conserved. We compare the
energy conservation property of the four same schemes
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Two-dimensional computations



Dimensional splitting

In order to perform 2D computations, we can use dimensional
splitting. For advancing a time step 7, we first numerically solve

W* — wn
— o FY (WM =0,

and then »
wnti — W+
———+9,FA(W) =0,

with the GRU scheme. But it's not fully general...



Unstructured GRU

Finite volume mesh .#. During the ALE step, the cell Ki(t) € .#
depends on time.

Suppose that at time t, the cell Kj is in phase a = ¢/ € {0,1} and
has neighbors that are not in the same phase. There exists
therefore at least one neighbor K; € 7(K;) such that

ﬁ:q)jnzl—q)i”:]__a

Let
Va(Ki) = {Kj € V(Ki), ¢; = a = ¢i},

Vp(Ki) ={Kj € V(Ki), 9; = B}
The area of the cell K; swept by the other phase is estimated by

g = —At Z min(U; - Nj;,0)s;,
Kie15(Ki)

where Uj; is the ALE velocity chosen at the interface K; | K;.



Unstructured GRU

The area of the cell K; swept by the displacement of the interface
Ki | K; is given by

Remember that #7; = 0 if K; € 75(K;). At the end of the ALE step
the cell K; is entirely in the phase . It is therefore natural to note

Wk = Wt

o I

We can also compute the average value of the conservative
variables coming only from the phase 8

n+1,—
w; = Lery) Sy

Lrierp(k) i



Unstructured GRU

We define the number between 0 and 1

L) D

19 o ,

where 7; is the area of cell K;. This number is in [0,1] because of
the CFL condition. Taking a pseudo-random number ®, in [0,1],
we then choose the value of W™ following the rule:

Wt — W, if 6 <o,
! WE otherwise.

This procedure preserves constant states (U, p). It is (statistically)
conservative and entropy dissipative. It also does not depend on
the mesh numbering.



Unstructured GRU
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Dam break 1
) t = 0.091267 s.

) t =0.182222 s. ) t =0.363557 s.




Dam break 2

) t = 0.545282 s. ) t = 0.726496 s.

) t = 0.906857 s. ) t =1.087458 s.




Dam break 3

)t =1.267899 s. ) t =1.4447929 s.

) t = 1.628847 s. (1) t = 1.809698 s.




Shock-bubble interaction

We consider a shock that The initial datas are:
comes to a bubble at
velocity o = 415m.s™1 (see

[KL10]). | Quantities | Y1 [ Y2 [ Y3 |
p(kg.m=3) | 169 | 1.22 | 3.86
B u(ms™1) [ 1135 ] 0 0
v(m.s™1) 0 0 0
@ T p(Pa) | 1.6e5 | 1.0e5 | 1.0e5
@ 0 0 1
. v 14 | 14 [ 1.249
L T 0 | 0 | 0




Animation

http://www.youtube.com/watch?v=c8hcqihJzbw


http://www.youtube.com/watch?v=c8hcqihJzbw

Numerical results

tmax = 0.45 ms
Grid: 40,000%20,000 (4 billions unknowns for each time step)
GPU time: 30 h (10xNVIDIA K20)



Density
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0.978 141e+03
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Shock-droplet interaction (I11)




Conclusion

» Random scheme for solving two-fluid compressible flows with
non-convex hyperbolicity domain.

» Very simple !

» The random scheme enjoys interesting stability and
conservation properties.

> |t can be extended to unstructured meshes.

» It is well adapted to multicore computations.
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Convex mixture law



Extensive entropy of a single fluid

» The extensive entropy S(V,E,M) € RU{—c} is a concave
function of volume, energy and mass.

» We suppose that it is C2 on its (convex) domain
domS = {(V,E,M)cR3 S(V,E,M) > —o} C {V,E,M >0}.
» We suppose that it is Positively Homogeneous of degree 1
(PH1 in short): S(AV,AE,AM)=AS(V,E,M), A >0.
» We define PHO (or intensive) quantities p = M/V, 1= V/M,
e = E/M and the intensive entropy s(7,e) = S(t,e,1).
» We define the temperature T =1/d.s(7,e€), the pressure
p= Tds(t,e).



Lax entropy of a single fluid flow

We consider the Lax entropies for a single fluid flow [5, 9].

The pressure p = p(p,e) is given by the previous construction (PH1
and concave extensive S, intensive s and p = 0d;5/des.)

Theorem

(p,pUT,pQ) — —ps(t,e) is a Lax entropy of the single fluid Euler
equations.



Proof

» Lemma 1 [5]: (xo,X1---Xn)— F(X0,X1---Xn) convex and PH1.
sgnF" =(0,1,n—1) iff (x1---xp) — F(1,x1---x,) is strictly
convex.

» Lemma 2: if Tds = de+ pdt then Euler =additional
conservation law d¢(ps)+V-(ps) =0.

» S(V,E,M)=VS5(1,pe,p) = MS(7,e,1)=ps(t,e) =
S(1,pe,p) thus ps is concave with respect to (p,pe).

» Lemma 3: (p,pU,pQ)+— —ps(,e) is strictly convex (if
T > 0) and thus a Lax entropy.

> Mock's theorem =-the Euler equations are hyperbolic on the
convex domain of the Lax entropy.



Generalization

Two-fluid model with a general pressure law p = p(p, e, 9)

» We consider a concave PH1 function
(V.E,M,M;) € R* s S(V,E,M,M;) € RU{—co}: the
extensive entropy. C2 on its (convex) domain
domS = {(V,E,M, M) € R*, S(V,E, M, My) > —oo}.

» We definep=M/V, 1=V /M, e=E/M, ¢ =M;/M and
the specific entropy s(7,e, ) = S(1,e,1,9).

» We define the temperature T =1/0,s, the pressure p= Td;s
and the potential A = Tdys.

Theorem
(p,pUT,pQ,p0) — —ps(t,e, @) is a Lax entropy of the two-fluid
model.



Proof

Lemma 2": if Tds = de+ pdt+ Ad¢ then the two-fluid model
=-additional conservation law dips+V-(ps) =0.
S(VaEvMaMl) = V5(17peap7p(p) =
MS(z,e,1,9)=ps(t,e,9) = 5(1,pe,p,p@) thus ps is
concave with respect to (p,pe,po@).

Lemma 3": (p,pU,pQ,p@) — —ps(t,e, @) is strictly convex
and thus a Lax entropy (if T > 0).

Mock's theorem =-the two-fluid model is hyperbolic on the
convex domain of the Lax entropy.



Mixture pressure law

How to construct S(V,E, M, M;)? Entropy optimization! [10]

S(V,E, M, Ml): sup 51(V1,E1,M1)—|—52(\/— Vl,E—El,M—Ml).
V1,E1

» From its construction, S is concave and PHI.
» No optimization with respect to My: no phase transition.

What happens with a mixture of a perfect gas and a stiffened gas 7
Si(t,,1)=(n—1)Int+x1lne,

Sy(t,e,1) = (pr—1)InT+ y2In(e — m7).

S1 and S, are extended by —oo for non-positive arguments of the
logarithms.



Mixture pressure law

We introduce

= X1Q
10+ (1—0)x’
§=—pm, r=(6+(y—1)pe)>—45(n—1)¢pe,

g St (r=1pe—r
= 55 )
Then, the entropy optimization procedure leads to

d
p= a— — (y=1)pe—yY(1-a)m.

X=X10+(1-0)x2, y=Cn+1-0)p,




Pure phases

Pure gas ¢ =1 then everything is OK

p=(n—1)pe.

But when ¢ =0 the liquid pressure is given by

p=max((,—1)pe—1m,0).

We recover the stability of the Godunov scheme, but:

» pressureless model for

V2T

=0, e< .
¢ PE=m-1)

» spurious oscillations are still here.

The Glimm strategy is more comfortable...



GPU (1)
A modern Graphics Processing Unit (GPU) is made of:
» Global memory (typically 1 Gb)
» Compute units (typically 27).
Each compute unit is made of:
» Processing elements (typically 8).
» Local memory (typically 16 kb)

The same program can be executed on all the processing elements
at the same time.

» All the processing elements have access to the global memory.

» The processing elements have only access to the local memory
of their compute unit.

> If two processing elements write at the same location at the
same time, only one wins...

» The access to the global memory is slow while the access to
the local memory is fast.



GPU (1)

A (virtual) GPU with 2 Compute Units and 4 Processing Elements

Local mem.

Global mem.

Local mem.

Host




OpenCL

» OpenCL means “Open Computing Language”. It includes:
» A library of C functions, called from the host, in order to drive
the GPU.
» A C-like language for writing the kernels that will be executed
on the processing elements.
» Practically available since september 2009. The specification is
managed by the Khronos Group (OpenGL).

» Virtually, it allows to have as many compute units
(work-groups) and processing elements (work-items) as
needed.

» The threads are sent to the GPU thanks to a mechanism of
command queues on the real compute units and processing
elements.

» Portable: the same program can run on a multicore CPU or a
GPU.



Implementation of the splitting scheme

organize the data in a (x,y) grid and for each time step:
we associate a processor to each cell of the grid.

we compute the fluxes balance in the x-direction for each cell
of each row of the grid. A row (or a part of the row) is
associated to one compute unit and one cell to one processor.

subdomain strategy in order to retain data into the local cache
memory. Covering of two cells between the subdomain (for the
correctness of the boundary values).

we transpose the grid (exchange x and y) with an optimized
memory transfer algorithm.

we compute the fluxes balance in the y-direction for each row
of the transposed grid. Memory access are optimal.

we transpose again the grid.



Speedup

time (s)

AMD Phenom Il x4 945 (1 core) 192

AMD Phenom Il x4 945 (4 cores) 59

AMD Radeon HD5850 1.43

NVIDIA GTX 460 2.48

NVIDIA Geforce GT X470 0.93
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