
1/58

Schéma ALE aléatoire pour les écoulements
bifluides compressibles. Application à la simulation

du déferlement.

Philippe Helluy (et Olivier Hurisse, Jonathan Jung)

IRMA Strasbourg, France

Séminaire LAMA, Chambéry, Janvier 2025



2/58

Outlines

Two-fluid model

Random Interface Sampling

Two-dimensional computations



3/58

Two-fluid model



4/58

Physical problem I

Wave breaking



5/58

Physical problem II

Shock-bubble or shock-droplet interaction

Shock

Post-

shock

Pre-

shock

Y2

Y3

Y1

y

x



6/58

Systems of conservation laws

The unknown is a vector W (X , t) ∈ Rm that depends on space
X ∈ Rd (d = 2), time t ∈ R and satisfies

∂tW +∇X ·F (W ) = S(W ).

The flux F is supposed to be hyperbolic in all the directions
N ∈ Rd :

A(W ,N) := ∇WF (W ) ·N

is diagonalizable with real eigenvalues.
▶ The solutions are complex: shock waves, non uniqueness,

turbulence, etc.
▶ Needs of precise and robust numerical methods.
▶ Algorithms must be adapted to multicore computers.



7/58

Compressible two-fluid model

Vector of conservative variables W = (ρ,ρu,ρv ,ρQ,ρϕ)T , where
▶ ρ is the density,
▶ U = (u,v)T is the velocity vector,
▶ Q is the total energy,
▶ ϕ the color function (ϕ = 0 in the liquid and ϕ = 1 in the gas).
▶ The internal energy is e = Q− (u2+ v2)/2.
▶ The pressure is defined by p = p(ρ,e,ϕ).

▶ The flux and source are given by

F (W )·N =(ρU ·N,ρ(U ·N)UT +pNT ,(ρQ+p)U ·N,ρϕU ·N)T ,

S(W ) = (0,0,−g ,−ρgv ,0)T , g = 9.81m/s2.



8/58

Diffusion of the color function

The color function is a solution of

∂tϕ +U ·∇ϕ = 0,

thus
∀(x , t) ϕ(x , t) ∈ {0}∪{1}.

However most numerical schemes will produce numerical diffusion
and we have to interpolate the pressure law p(ρ,e,ϕ) for

ϕ ∈]0,1[.



9/58

Pressure law

For instance, we can consider a simple stiffened gas model for an
air-water mixture

p(ρ,e,ϕ) = (γ(ϕ)−1)ρe− γ(ϕ)π(ϕ).

The gas corresponds to ϕ = 1:

γ(1) = γ1 = 1.4, π(1) = π1 = 0 (perfect gas).

The liquid corresponds to ϕ = 0:

γ(0) = γ2 = 3, π(0) = π2 = 8500×105 Pa (stiffened gas).

We can use a linear interpolation of 1/(γ −1) and γπ/(γ −1) for
0 < ϕ < 1 [13].



10/58

Hyperbolicity

Let

Wad(ϕ)=
{
W = (ρ,ρu,ρv ,ρQ,ρϕ)T ∈ Rm, ρ > 0, p+π(ϕ)> 0

}
,

and
Wad =

⋃
ϕ∈[0,1]

Wad(ϕ).

Let c =
√

γ(p+π)/ρ . The system is hyperbolic for W ∈ Wad with
eigenvalues U ·N− c , U ·N, U ·N+ c . The pressure can be < 0
(liquid tension).
For a given ϕ , the set Wad(ϕ) is convex. But Wad is not convex.



11/58

Riemann solver

First we consider the 1D framework X = (x ,y)T , W =W (x , t),
N = (1,0)T ,

∂tW +∂x(F (W ) ·N) = 0.

Let VL and VR be two constant states in Wad . We can prove that
the Riemann problem

∂tV +∂x(F (V ) ·N) = 0

V (x ,0) =
{

VL if x < 0,
VR if x ≥ 0,

admits a unique global entropy solution, which is denoted by

R(VL,VR ,x/t) = V (x , t) ∈ Wad .

The function R is called the Riemann solver. The negative
pressures are not a problem.



12/58

Mesh

▶ We consider a 1D mesh made of cells Ci =]xi−1/2,xi+1/2[,
i ∈ Z. The size of cell Ci is ∆x i = xi+1/2−xi−1/2.

▶ We also consider time steps ∆tn > 0 satisfying a CFL condition
and a sequence of times tn satisfying tn+1 = tn+∆tn.

▶ The solution W (x , t) is approximated in each cell by a
constant value

W n
i ≃W (x , tn), x ∈ Cn

i .



13/58

Godunov scheme

The Godunov scheme reads

∆xi
(
W n+1

i −W n
i

)
+∆tn

(
F n
i+1/2−F n

i−1/2

)
= 0.

The numerical flux is defined from the Riemann solver
R(WL,WR ,x/t) and

F n
i+1/2 = F (W n

i+1/2),

W n
i+1/2 = R(W n

i ,W
n
i+1,0).

Construction: (1) exact resolution of interface Riemann problems.
(2) averaging over the cells. In the convex case, CFL condition and
entropy stability follow from Jensen inequality.



14/58

Pressure “oscillations”

Problem: Wad is generally not convex. The Godunov scheme is not
stable and may fail after only one time step [12].
Even when the computations are possible, the results are not
accurate (spurious pressure “oscillations”).

Better accuracy with the non-conservative scheme of Abgrall-Saurel
[13], but with the same stability issue [11].



15/58

Possible cures

We can:
1. Construct another pressure law that ensures convexity of Wad .

It’s possible, we can discuss it during the lunch...
2. Construct another scheme that keeps W n

i in Wad .



16/58

Random Interface Sampling



17/58

Lagrange and remap schemes

We consider the family of Lagrange plus remap schemes. The mesh
is now moving within a time step. The cells depend on n

Cn
i =]xni−1/2,x

n
i+1/2[, ∆xni = xni+1/2−xni−1/2.

The cell boundary xni+1/2 moves at the velocity uni+1/2. Just before
the remap step (time “n+1,−”) the cell boundaries are given by

xn+1,−
i+1/2 = xni+1/2+∆tnu

n
i+1/2.

∆xn+1,−
i = xn+1,−

i+1/2 −xn+1,−
i−1/2 =∆xni +∆tn(u

n
i+1/2−uni−1/2).



18/58

Lagrange-remap mesh



19/58

Lagrange and remap schemes

Each time step of a Lagrange plus remap scheme is made of two
stages.
In the first stage, we approximate the solution with a Lagrange
scheme

∆xn+1,−
i W n+1,−

i −∆xni W
n
i +∆tn

(
F n
i+1/2−F n

i−1/2

)
= 0.

The Lagrange flux is defined from a Riemann solver
R(WL,WR ,x/t) and

F n
i+1/2 = F (W n

i+1/2)−uni+1/2W
n
i+1/2,

W n
i+1/2 = R(W n

i ,W
n
i+1,u

n
i+1/2),



20/58

Conservative remap

The classic remap step consists in returning to the Euler grid with
conservative averaging. We obtain

W n+1
i =W n+1,−

i −∆tn
∆xi

(
max(uni−1/2,0)(W

n+1,−
i −W n+1,−

i−1 )+

min(uni+1/2,0)(W
n+1,−
i+1 −W n+1,−

i )
)
.

And we go back to the initial Euler grid

xn+1
i = xni , Cn+1

i = Cn
i , ∆xn+1

i =∆xni .

The numerical results are similar to those obtained with the
conservative scheme.



21/58

Non-conservative remap

Instead of averaging ρϕ , the last component of W , we average ϕ

[2], which leads to

ϕ
n+1
i = ϕ

n+1,−
i −∆tn

∆xi

(
max(uni−1/2,0)(ϕ

n+1,−
i −ϕ

n+1,−
i−1 )+

min(uni+1/2,0)(ϕ
n+1,−
i+1 −ϕ

n+1,−
i )

)
.

The resulting scheme is non-conservative. It preserves constant
(u,p) states. The results are very similar to those obtained with the
Abgrall-Saurel approach [13]. In the sequel, this scheme is called
the BHRJ scheme.



22/58

Glimm remap (I)

We construct a sequence of random or pseudo-random numbers
ωn ∈ [0,1[. According to this number we take [3]

W n+1
i =W n+1,−

i−1 if ωn <
∆tn
∆xi

max(uni−1/2,0),

W n+1
i =W n+1,−

i+1 if ωn > 1+
∆tn
∆xi

min(uni+1/2,0),

W n
i =W n+1,−

i if
∆tn
∆xi

max(uni−1/2,0)≤ ωn ≤ 1+
∆tn
∆xi

min(uni+1/2,0).



23/58

Glimm remap (II)

A good choice for the pseudo-random sequence ωn is the (k1,k2)
van der Corput sequence, computed by the following C algorithm

float corput(int n,int k1,int k2){
float corput=0;
float s=1;
while(n>0){

s/=k1;
corput+=(k2*n%k1)%k1*s;
n/=k1;}

return corput;
}

In this algorithm, k1 and k2 are two relatively prime numbers and
k1 > k2 > 0. In practice, we consider the (5,3) van der Corput
sequence.



24/58

Glimm remap (III)

We recently discovered that the sequence

ωn = n
√

2 mod 1

also gives excellent results !



25/58

Glimm remap (IV)

Figure: Example of Glimm remap. The stars correspond to the sampling
points. In cells i −1 and i , we keep the values of the Lagrange cells. In
cell i +1, we take the values of Lagrange cell i +2.



26/58

Lagrange interface velocity

We have to provide the interface velocities uni+1/2.
In the resolution of the Riemann problem R(W n

i ,W
n
i+1,x/t) we

find four waves. The characteristic fields 2 and 3 are linearly
degenerated and λ2(w) = λ3(w) = u, thus the velocity is constant
across these waves. It corresponds to the interface velocity, which
we denote by u∗(Wi ,Wi+1). It is then natural to take

uni+1/2 = u∗(W n
i ,W

n
i+1).



27/58

Relaxation Riemann solver

For much faster numerical computations, we can use an
approximate Riemann solver based on relaxation techniques [11].
▶ it is positive and handles vacuum.
▶ entropy dissipative.



28/58

Properties

▶ The constant (u,p) states are exactly preserved.
▶ The gas fraction is not smeared at all.
▶ It is possible to use any approximate Riemann solver in the

Lagrange step.
▶ Statistically conservative.
▶ Convergence ?



29/58

Weak shock

The first test consists in a two-fluid shock tube. The stiffened gas
parameters are

γW = 2, πW = 1,
γA = 1.4, πA = 0.

We take for the left and right initial data

(ρL,uL,pL,ϕL) = (2,1/2,2,1),
(ρR ,uR ,pR ,ϕR) = (1,1/2,1,0).

We compare the non-conservative remap and the Glimm remap.
The Riemann solver is the approximate VFRoe solver in the
(ρ,u,p,ϕ) variables.



30/58

Convergence study

The convergence rate is approximately 0.6.

Figure: Convergence study: Glimm remap versus non-conservative
averaging remap, weak shock.



31/58

Strong shock

Interaction between a shock of velocity σ = 4 and a contact of
velocity v =−1.
The initial positions of the contact and the shock are chosen in
such way that they meet together at the abscissa x = 0 at time
t = 1. The EOS parameters are γ1 = 1.4, π1 = 0,γ2 = 2, π2 = 7.
The initial data are

(ρL,uL,pL,ϕL) = (3.4884,1.1333,23.333,1), x <−4,
(ρM ,uM ,pM ,ϕM) = (2,−1,2,1), −4 ≤ x ≤ 1,
(ρR ,uR ,pR ,ϕR) = (1,−1,2,0), x > 1.

After the interaction at time t = 1, the solution is simply given by
the resolution of a two-fluid Riemann problem between states (L)
and (R).



32/58

Strong shock

Similar phenomena in [4]

Figure: Glimm approach, density plot. TV explosion due to wall-heating
effect propagation, strong shock.



33/58

Modified interface velocity

Simple remark: if one takes uni+1/2 = 0, we fall back on the classic
Godunov scheme, which solves correctly the shock waves.
It is thus better to use the Glimm approach only at the interface,

uni+1/2 =

{
u∗(W n

i ,W
n
i+1) if ϕn

i ̸= ϕn
i+1,

0 if ϕn
i = ϕn

i+1.

The scheme has the same properties as before and the “TV
explosion” is removed in strong shocks.



34/58

Numerical results

Figure: Density. Comparison of the modified Glimm and averaging remap
schemes.



35/58

Convergence study

Better convergence rate !

Figure: strong shock-interface interaction. Convergence study. modified
Glimm remap and averaging remap.



36/58

Comparisons
Order of convergence of 1 on the density !

Figure: Gas-gas Riemann problem. Convergence study. Comparisons of
several schemes.

For rigorous convergence results see [6, 7, 8]



37/58

Conservation (I)

The numerical mass transfer between the two fluids should be zero.
We compare it for different schemes:
▶ Saurel-Abgrall scheme (SA) [13];
▶ A Lagrange and remap version of Saurel-Abgrall (BHRJ) [2];
▶ The “Ghost Fluid for the poor” (GF) scheme [1];
▶ The random scheme (RS).



38/58

Conservation (II)



39/58

Conservation (III)

The total energy should be exactly conserved. We compare the
energy conservation property of the four same schemes



40/58

Two-dimensional computations



41/58

Dimensional splitting

In order to perform 2D computations, we can use dimensional
splitting. For advancing a time step τ , we first numerically solve

W ∗−W n

τ
+∂xF

1(W n) = 0,

and then
W n+1−W ∗

τ
+∂yF

2(W ) = 0,

with the GRU scheme. But it’s not fully general...



42/58

Unstructured GRU
Finite volume mesh M . During the ALE step, the cell Ki (t) ∈ M
depends on time.
Suppose that at time tn the cell Ki is in phase α = ϕn

i ∈ {0,1} and
has neighbors that are not in the same phase. There exists
therefore at least one neighbor Kj ∈ V (Ki ) such that

β = ϕ
n
j = 1−ϕ

n
i = 1−α.

Let
Vα(Ki ) = {Kj ∈ V (Ki ),ϕj = α = ϕi} ,

Vβ (Ki ) = {Kj ∈ V (Ki ),ϕj = β} .

The area of the cell Ki swept by the other phase is estimated by

Aβ =−∆t ∑
Kj∈Vβ (Ki )

min(Uij ·Nij ,0)sij ,

where Uij is the ALE velocity chosen at the interface Ki | Kj .



43/58

Unstructured GRU

The area of the cell Ki swept by the displacement of the interface
Ki | Kj is given by

Aij =−∆tmin(Uij ·Nij ,0)sij .

Remember that Aij = 0 if Kj ∈ Vα(Ki ). At the end of the ALE step
the cell Ki is entirely in the phase α . It is therefore natural to note

W ∗
α =W n+1,−

i .

We can also compute the average value of the conservative
variables coming only from the phase β

W ∗
β
=

∑Kj∈Vβ (Ki )AijW
n+1,−
j

∑Kj∈Vβ (Ki )Aij
.



44/58

Unstructured GRU

We define the number between 0 and 1

δ =
∑Kj∈Vβ (Ki )Aij

Ai
,

where Ai is the area of cell Ki . This number is in [0,1] because of
the CFL condition. Taking a pseudo-random number ωn in [0,1],
we then choose the value of W n+1

i following the rule:

W n+1
i =

{
W ∗

α if δ ≤ ω,

W ∗
β

otherwise.

This procedure preserves constant states (U,p). It is (statistically)
conservative and entropy dissipative. It also does not depend on
the mesh numbering.



45/58

Unstructured GRU



46/58

Dam break 1



47/58

Dam break 2



48/58

Dam break 3



49/58

Shock-bubble interaction



50/58

Animation

http://www.youtube.com/watch?v=c8hcqihJzbw

http://www.youtube.com/watch?v=c8hcqihJzbw


51/58

Numerical results

tmax = 0.45 ms
Grid: 40,000×20,000 (4 billions unknowns for each time step)
GPU time: 30 h (10×NVIDIA K20)



52/58

Density



53/58

Zoom 1



54/58

Zoom 2



55/58

Shock-droplet interaction (III)



56/58

Conclusion

▶ Random scheme for solving two-fluid compressible flows with
non-convex hyperbolicity domain.

▶ Very simple !
▶ The random scheme enjoys interesting stability and

conservation properties.
▶ It can be extended to unstructured meshes.
▶ It is well adapted to multicore computations.



57/58

Bibliography I
[1] Rémi Abgrall and Smadar Karni.

Ghost-fluids for the poor: a single fluid algorithm for multifluids, volume 140, 141 of Internat. Ser.
Numer. Math.
Birkhäuser, Basel, 2001.

[2] Thomas Barberon, Philippe Helluy, and Sandra Rouy.
Practical computation of axisymmetrical multifluid flows.
Int. J. Finite Vol., 1(1):34, 2004.

[3] C. Chalons and F. Coquel.
Computing material fronts with lagrange-projection approach, 2010.
HYP2010 Proc. http://hal.archives-ouvertes.fr/hal-00548938/fr/.

[4] Phillip Colella.
Glimm’s method for gas dynamics.
SIAM J. Sci. Statist. Comput., 3(1):76–110, 1982.

[5] J.-P. Croisille.
Contribution à l’étude théorique et à l’approximation par éléments finis du système hyperbolique
de la dynamique des gaz multidimensionnelle et multiespèces.
PhD thesis, Université Paris VI, 1990.

[6] Thierry Gallouët and Olivier Hurisse.
Convergence of a multidimensional glimm-like scheme for the transport of fronts.
IMA Journal of Numerical Analysis, 42(4):2924–2958, 2022.

[7] Thierry Gallouët, Olivier Hurisse, and Samuel Kokh.
A random choice scheme for scalar advection.
International Journal for Numerical Methods in Fluids, 95(10):1656–1685, 2023.

[8] Thierry Gallouët, Olivier Hurisse, and Samuel Kokh.
Improving the accuracy of the Jin-Xin relaxation scheme.
PhD thesis, EDF R&D-dept. Mécanique des Fluides, Energies et Environnement, 2024.

http://hal.archives-ouvertes.fr/hal-00548938/fr/


58/58

Bibliography II

[9] A. Harten, P. D. Lax, C. D. Levermore, and W. J. Morokoff.
Convex entropies and hyperbolicity for general euler equations.
SIAM J. Numer. Anal., 35(6):2117–2127, 1998.

[10] P. Helluy and H. Mathis.
Pressure laws and fast legendre transform.
Math. Models Methods Appl. Sci., 21(4):745–775, 2011.

[11] J. Jung.
Schémas numériques adaptés aux accélérateurs multicœurs pour les écoulements bifluides.
PhD thesis, Université de Strasbourg, 2013.

[12] Siegfried Müller, Philippe Helluy, and Josef Ballmann.
Numerical simulation of a single bubble by compressible two-phase fluids.
Internat. J. Numer. Methods Fluids, 62(6):591–631, 2010.

[13] R. Saurel and R. Abgrall.
A simple method for compressible multifluid flows.
SIAM J. Sci. Comput., 21(3):1115–1145, 1999.



1/14

Convex mixture law



2/14

Extensive entropy of a single fluid

▶ The extensive entropy S(V ,E ,M) ∈ R∪{−∞} is a concave
function of volume, energy and mass.

▶ We suppose that it is C 2 on its (convex) domain
domS = {(V ,E ,M) ∈R3,S(V ,E ,M)>−∞} ⊂ {V ,E ,M ≥ 0}.

▶ We suppose that it is Positively Homogeneous of degree 1
(PH1 in short): S(λV ,λE ,λM) = λS(V ,E ,M), λ ≥ 0.

▶ We define PH0 (or intensive) quantities ρ =M/V , τ = V /M,
e = E/M and the intensive entropy s(τ,e) = S(τ,e,1).

▶ We define the temperature T = 1/∂es(τ,e), the pressure
p = T∂τs(τ,e).



3/14

Lax entropy of a single fluid flow

We consider the Lax entropies for a single fluid flow [5, 9].
The pressure p = p(ρ,e) is given by the previous construction (PH1
and concave extensive S , intensive s and p = ∂τs/∂es.)

Theorem
(ρ,ρUT ,ρQ) 7→ −ρs(τ,e) is a Lax entropy of the single fluid Euler
equations.



4/14

Proof

▶ Lemma 1 [5]: (x0,x1 · · ·xn) 7→ F (x0,x1 · · ·xn) convex and PH1.
sgnF ′′ = (0,1,n−1) iff (x1 · · ·xn) 7→ F (1,x1 · · ·xn) is strictly
convex.

▶ Lemma 2: if Tds = de+pdτ then Euler ⇒additional
conservation law ∂t(ρs)+∇ · (ρs) = 0.

▶ S(V ,E ,M) = VS(1,ρe,ρ) =MS(τ,e,1)⇒ρs(τ,e) =
S(1,ρe,ρ) thus ρs is concave with respect to (ρ,ρe).

▶ Lemma 3: (ρ,ρU,ρQ) 7→ −ρs(τ,e) is strictly convex (if
T > 0) and thus a Lax entropy.

▶ Mock’s theorem ⇒the Euler equations are hyperbolic on the
convex domain of the Lax entropy.



5/14

Generalization

Two-fluid model with a general pressure law p = p(ρ,e,ϕ)

▶ We consider a concave PH1 function
(V ,E ,M,M1) ∈ R4 7→ S(V ,E ,M,M1) ∈ R∪{−∞}: the
extensive entropy. C 2 on its (convex) domain
domS = {(V ,E ,M,M1) ∈ R4,S(V ,E ,M,M1)>−∞}.

▶ We define ρ =M/V , τ = V /M, e = E/M, ϕ =M1/M and
the specific entropy s(τ,e,ϕ) = S(τ,e,1,ϕ).

▶ We define the temperature T = 1/∂es, the pressure p = T∂τs
and the potential λ = T∂ϕs.

Theorem
(ρ,ρUT ,ρQ,ρϕ) 7→ −ρs(τ,e,ϕ) is a Lax entropy of the two-fluid
model.



6/14

Proof

▶ Lemma 2’: if Tds = de+pdτ +λdϕ then the two-fluid model
⇒additional conservation law ∂tρs+∇ · (ρs) = 0.

▶ S(V ,E ,M,M1) = VS(1,ρe,ρ,ρϕ) =
MS(τ,e,1,ϕ)⇒ρs(τ,e,ϕ) = S(1,ρe,ρ,ρϕ) thus ρs is
concave with respect to (ρ,ρe,ρϕ).

▶ Lemma 3’: (ρ,ρU,ρQ,ρϕ) 7→ −ρs(τ,e,ϕ) is strictly convex
and thus a Lax entropy (if T > 0).

▶ Mock’s theorem ⇒the two-fluid model is hyperbolic on the
convex domain of the Lax entropy.



7/14

Mixture pressure law

How to construct S(V ,E ,M,M1)? Entropy optimization! [10]

S(V ,E ,M,M1)= sup
V1,E1

S1(V1,E1,M1)+S2(V −V1,E−E1,M−M1).

▶ From its construction, S is concave and PH1.
▶ No optimization with respect to M1: no phase transition.

What happens with a mixture of a perfect gas and a stiffened gas ?

S1(τ,e,1) = (γ1−1) lnτ +χ1 lne,

S2(τ,e,1) = (γ2−1) lnτ +χ2 ln(e−π2τ).

S1 and S2 are extended by −∞ for non-positive arguments of the
logarithms.



8/14

Mixture pressure law

We introduce

χ = χ1ϕ+(1−ϕ)χ2, ζ =
χ1ϕ

χ1ϕ +(1−ϕ)χ2
, γ = ζ γ1+(1−ζ )γ2,

δ =−γ2π2, r = (δ +(γ −1)ρe)2−4δ (γ1−1)ζ ρe,

α =
δ +(γ −1)ρe−

√
r

2δ
.

Then, the entropy optimization procedure leads to

p =
∂τs

∂es
= (γ −1)ρe− γ(1−α)π2.



9/14

Pure phases

Pure gas ϕ = 1 then everything is OK

p = (γ1−1)ρe.

But when ϕ = 0 the liquid pressure is given by

p =max((γ2−1)ρe− γ2π2,0).

We recover the stability of the Godunov scheme, but:
▶ pressureless model for

ϕ = 0, ρe ≤ γ2π2

(γ2−1)
.

▶ spurious oscillations are still here.
The Glimm strategy is more comfortable...



10/14

GPU (I)
A modern Graphics Processing Unit (GPU) is made of:
▶ Global memory (typically 1 Gb)
▶ Compute units (typically 27).

Each compute unit is made of:
▶ Processing elements (typically 8).
▶ Local memory (typically 16 kb)

The same program can be executed on all the processing elements
at the same time.
▶ All the processing elements have access to the global memory.
▶ The processing elements have only access to the local memory

of their compute unit.
▶ If two processing elements write at the same location at the

same time, only one wins...
▶ The access to the global memory is slow while the access to

the local memory is fast.



11/14

GPU (II)

A (virtual) GPU with 2 Compute Units and 4 Processing Elements

PE 1

PE 2 Lo
ca

l m
em

.

CU 1

PE 3

PE 4 Lo
ca

l m
em

.

CU 2

G
lo

b
a
l 
m

e
m

.

Host

GPU



12/14

OpenCL

▶ OpenCL means “Open Computing Language”. It includes:
▶ A library of C functions, called from the host, in order to drive

the GPU.
▶ A C-like language for writing the kernels that will be executed

on the processing elements.

▶ Practically available since september 2009. The specification is
managed by the Khronos Group (OpenGL).

▶ Virtually, it allows to have as many compute units
(work-groups) and processing elements (work-items) as
needed.

▶ The threads are sent to the GPU thanks to a mechanism of
command queues on the real compute units and processing
elements.

▶ Portable: the same program can run on a multicore CPU or a
GPU.



13/14

Implementation of the splitting scheme

We organize the data in a (x ,y) grid and for each time step:
▶ we associate a processor to each cell of the grid.
▶ we compute the fluxes balance in the x-direction for each cell

of each row of the grid. A row (or a part of the row) is
associated to one compute unit and one cell to one processor.

▶ subdomain strategy in order to retain data into the local cache
memory. Covering of two cells between the subdomain (for the
correctness of the boundary values).

▶ we transpose the grid (exchange x and y) with an optimized
memory transfer algorithm.

▶ we compute the fluxes balance in the y -direction for each row
of the transposed grid. Memory access are optimal.

▶ we transpose again the grid.



14/14

Speedup


	Two-fluid model
	Random Interface Sampling
	Two-dimensional computations
	Appendix
	Convex mixture law


