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Contents

The kinetic representation of conservation laws is a useful tool.
Some applications:
▶ Very efficient schemes on structured grids (Lattice Boltzmann

Method, LBM).
▶ CFL-less explicit schemes on structured or unstructured grids.

In this talk we present an extension of the LBM to fourth-order
accuracy that respects entropy dissipation.
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Kinetic representation
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Vectorial kinetic model1

Abstract kinetic BGK model

∂tF + V · ∂xF =
1
ε
(F eq − F ), (1)

where
▶ Vector distribution: F (x , t) ∈ Rn, space variable: x ∈ R, time

variable: t.
▶ V is a constant diagonal matrix.
▶ F eq is the equilibrium distribution function, ε is a small

positive parameter.

1[Bouchut(1999), Aregba-Driollet and Natalini(2000)]
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Macroscopic model

We consider a constant invertible n × n matrix M of the form

M =

(
P
R

)
,

where P is of size m × n and R is of size (n −m)× n. The
macroscopic conserved variables are

W = PF .

We impose that F eq depends only on W = PF and that

W = PF = PF eq(W ).

We also introduce the “flux error”, which vanishes when F = F eq:

Y = RF − RF eq.
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System of conservation laws

When the relaxation parameter ε→ 0+, the macroscopic data W
formally satisfies the system of conservation laws

∂tW + ∂xQ(W ) = 0, (2)

where the flux Q is given by

Q(W ) = PVF eq(W ).

Thus the kinetic BGK model (1) is an approximation of (2).



7/28

Formal proof

Multiply the BGK equation by P on the left, and use the relation
PF = PF eq:

∂tPF + ∂xPVF =
1
ε
(PF − PF eq) = 0.

Because W = PF and F ≃ F eq,we get

∂tW + ∂xPVF
eq(W ) = ∂tW + ∂xQ(W ) ≃ 0.

This proof is purely algebraic, without consideration about:
hyperbolicity, entropy, H-principle, stability, etc. For a system of m
equations in space dimension d it is always possible to find a kinetic
representation of size n = m(d + 1).
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Minimal example: Jin-Xin2

D1Q2 kinetic representation of a system of m conservation laws

∂tW + ∂xQ(W ) = 0.

We take n = 2m and

V =

(
−λI 0
0 λI

)
, M =

(
I I
−λI λI

)
, F eq =

(
W
2 −

Q(W )
2λ

W
2 + Q(W )

2λ

)
.

The velocity λ > 0 is a large enough constant for ensuring stability.
For simplicity, but without loss of generality, we consider only this
model in the following. We also set

F =

(
F1
F2

)
, Fk ∈ Rm.

Note that Y = −λF1 + λF2 −Q(W ) and it is indeed a “flux error”.

2[Jin and Xin(1995)]
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Lattice Boltzmann Method (LBM)

1. Start with W (·, 0). Construct a kinetic vector F (·, 0) such
that W = PF .

2. Solve the free transport equations ∂tF + V · ∇F = 0 for a
duration of ∆t. Because V = diag(−λI , λI ), explicit formula

F1(X ,∆t−) = F1(X+λ∆t, 0), F2(X ,∆t−) = F2(X−λ∆t, 0).

3. Define
W (·,∆t) = PF (·,∆t−).

4. Apply a relaxation towards equilibrium (this emulates
∂tF = (F eq − F )/ε)

F (·,∆t+) = ωF eq(W (·,∆t)) + (1− ω)F (·,∆t−).

Interesting cases: ω = 1 (first order splitting), ω = 2 (second order
splitting).
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LBM in the (W ,Y ) variables

We rewrite the LBM in the (W ,Y ) variables:
▶ Transport step(

W (·,∆t)
Y (·,∆t−)

)
= T (∆t)

(
W (·, 0)
Y (·, 0+)

)
.

▶ Relaxation step(
W (·,∆t)
Y (·,∆t+)

)
= Rω

(
W (·,∆t)
Y (·,∆t−)

)
=

(
W (·,∆t)

(1− ω)Y (·,∆t−)

)
.

The application of one time-step of the LBM then reads, in the
operator form,(

W
Y

)
← B(∆t)

(
W
Y

)
, B(∆t)= Rω︸︷︷︸

relax.

T (∆t)︸ ︷︷ ︸
transport

.
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Properties of the relaxation

For ω = 2, the relaxation operator is an involution:

R2 =

(
I 0
0 −I

)
, R2

2 =

(
I 0
0 I

)
.

It is reversible (≃ entropy conservative).
For ω = 1, it is a projection:

R1 =

(
I 0
0 0

)
, R2

1 = R1,

and thus not reversible (≃ entropy dissipative).
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Time-symmetric correction

The LBM scheme is second order in time. It is not obvious because
it does not look like a Strang splitting algorithm3. We can write a
time-symmetric version of the basic brick B:

B(∆t) = T (∆t

4
)RωT (

∆t

2
)RωT (

∆t

4
).

Note that the transport step remains a shift algorithm if one takes
∆x = λ∆t/4, for instance.
Then we have, for ω = 2:

B(−∆t) = B(∆t)−1, B(0) = I .

Time-symmetry expresses the time reversibility of the scheme. This
is not unreasonable as long as we are interested in smooth
solutions. It ensures second order accuracy of the time integration4.

3[Dubois(2008), Dellar(2013)]
4[McLachlan and Quispel(2002)]
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Equivalent equation

For ω = 2, by Taylor expansions in ∆t, we can compute the formal
equivalent equation of the time-symmetric LBM scheme. We get

∂t

(
W
Y

)
+

(
Q ′(W ) 0

0 −Q ′(W )

)
∂x

(
W
Y

)
= O(∆t2).

▶ Up to second order, the evolution of W and Y are uncoupled.
▶ The flux error Y does not need to be small.
▶ The waves for W and Y move in opposite directions.
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Higher order by composition
We look for a higher order splitting scheme of the form

H(∆t) = B(α∆t)kB(β∆t)B(α∆t)k .

This palindromic composition scheme is fourth order, provided that5

2kα+ β = 1, 2kα3 + β3 = 0. (3)

Some worries:
▶ if α > 0 then β < 0 (negative time-stepping).
▶ For most choices of the integer k , α/β is not rational and thus

the LBM trick (exact shifts on a structured grid) does not
apply.

But:
▶ negative time-stepping is not a problem, because of time

reversibility in the smooth case.
▶ If you take k = 4, then α = 1/6, β = −1/3 is a rational

solution of (3) !
5[McLachlan and Quispel(2002)]
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Fourth-order LBM strategy

4th-order LBM H(∆t)
0 ∆t

B(∆t
6 ) B(−∆t

3 )

B(∆t
6 )

2nd-order LBM 0 ∆t

RωT (∆t
24 )

Classical LBM: 24 steps, fourth-order scheme: 32 steps. The cost is
30% higher for advancing of ∆t. Low-storage: only one time-step
of the solution needs to be stored in memory.
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Entropy stability
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Kinetic entropies6

Lax entropy
∂tU(W ) + ∂xG (W ) ≤ 0,

U convex, DWU(W )DWQ(W ) = DWG (W ).

Find kinetic entropies Uk satisfying

U(W ) = min
PF=W

∑
k

Uk(Fk) =
∑
k

Uk(F
eq
k (W )).

The sum of the kinetic entropies can be expressed as a function of
(W ,Y )

Σ(W ,Y ) =
∑
k

Uk(Fk),

The equilibrium corresponds to Y = 0, and Σ(W , 0) = U(W ).

6[Bouchut(1999), Aregba-Driollet and Natalini(2000)]
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Linear case

Simple example: D1Q2 with Q(W ) = cW (linear transport). We
can take U(W ) = W 2/2.

U1(F1) =
λ

λ− c
(F1)

2 , U2(F2) =
λ

λ+ c
(F2)

2 .

Σ(W ,Y ) =
W 2

2
+

Y 2

2(λ2 − c2)
.

The convexity of the kinetic entropies is equivalent to the
sub-characteristic condition

λ ≥ |c | .

For a general non-linear system, the kinetic entropies can be found
with Legendre transform calculations7.

7[Guillon et al.(2023)Guillon, Hélie, and Helluy]
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Time-symmetric entropy conservative scheme

In the transport step, the kinetic entropies are separately conserved
because

∂tUk(Fk) + Vk∂xUk(Fk) = 0.

But for ω = 2, the relaxation step does not preserve entropy in the
non-linear case.
Fix: search the value ω(W ,Y ) ≃ 2 such that∑

k

Uk(Fk) =
∑
k

Uk(F
′
k), F ′

k = ωF eq
k + (1− ω)Fk .

In the (W ,Y ) variables, this reads

Σ(W ,Y ) = Σ(W , (1− ω(W ,Y ))Y ).
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Entropy conservation

W

Y
entropy levels: non linear case

entropy levels: linear case

[
W
Y

]

R2

[
W
Y

]
=

[
W
−Y

]

[
W
Y

]

Rω

[
W
Y

]
≃
[
W
−Y

]

In the non-linear case the
entropy isolines are no more
symmetric with respect to
Y = 0.
But with the above fix we
recover entropy conservation.
The resulting scheme is still
time-symmetric because if

Rω(W ,Y )(W ,Y ) = (W ′,Y ′)

then

Rω(W ′,Y ′)(W
′,Y ′) = (W ,Y ).
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Numerical results
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Alternative scheme

The fourth order scheme B is a sort of ideal entropy preserving
scheme. In shocks waves it will produce terrible oscillations. But we
can mix projections on equilibrium R1 with entropy conservative
relaxations Rω(W ,Y ). We tested several strategies.
We found the following choice to be excellent: we just modify the
basic brick with a final projection onto equilibrium

B(∆t) = R1T (
∆t

4
)RωT (

∆t

2
)RωT (

∆t

4
).

And take, as before

H(∆t) = B(∆t

6
)4B(−∆t

3
)B(∆t

6
)4.

This scheme remains fourth-order and entropy dissipative. More
details in8.

8[Bellotti et al.(2024)Bellotti, Helluy, and Navoret]
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Order tests

The test is done with the Burgers equation.

Scheme 0 Scheme 1 Scheme 2
∆x L2 error order L2 error order L2 error order

2.000E-03 8.592E-05 3.370E-06 3.374E-06
1.250E-03 3.358E-05 2.00 1.552E-06 1.65 1.551E-06 1.65
7.813E-04 1.404E-05 1.86 1.742E-07 4.65 1.742E-07 4.65
4.883E-04 5.494E-05 2.00 3.365E-08 3.50 3.365E-08 3.50
3.053E-04 2.160E-06 1.99 5.184E-09 3.98 5.184E-09 3.98

Scheme 0: second order LBM
Scheme 1: fourth-order time-symmetric LBM
Scheme 2: fourth-order with periodic projections
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Stability tests
We check the non-linear stability of the first scheme with ω = 2
and with the ω = ω(W ,Y ) ensuring entropy conservation. This
test is done with shallow water equations.
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2D computations

Euler equations. 2D Lax Riemann problem
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Conclusion

▶ Fourth-order LBM for hyperbolic conservation laws.
▶ Full entropy stability analysis.
▶ Ongoing work: boundary conditions.
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