A fourth-order entropic kinetic scheme

Thomas Bellotti, Philippe Helluy, Laurent Navoret

Université de Strasbourg, IRMA CNRS

ProHyp workshop, Trento, April 2024

Contents

The kinetic representation of conservation laws is a useful tool. Some applications:

- Very efficient schemes on structured grids (Lattice Boltzmann Method, LBM).
- CFL-less explicit schemes on structured or unstructured grids.
- In this talk we present an extension of the LBM to fourth-order accuracy that respects entropy dissipation.

Outline:

Kinetic representation

Entropy stability

Numerical results

Kinetic representation

Vectorial kinetic model¹

Abstract kinetic BGK model

$$\partial_t F + V \cdot \partial_x F = \frac{1}{\varepsilon} (F^{eq} - F),$$
 (1)

where

- Vector distribution: $F(x, t) \in \mathbb{R}^n$, space variable: $x \in \mathbb{R}$, time variable: t.
- V is a constant diagonal matrix.
- F^{eq} is the equilibrium distribution function, ε is a small positive parameter.

¹[Bouchut(1999), Aregba-Driollet and Natalini(2000)]

Macroscopic model

We consider a constant invertible $n \times n$ matrix M of the form

$$M = \left(\begin{array}{c} P \\ R \end{array}\right),$$

where P is of size $m \times n$ and R is of size $(n - m) \times n$. The macroscopic conserved variables are

$$W = PF$$
.

We impose that F^{eq} depends only on W = PF and that

$$W = PF = PF^{eq}(W).$$

We also introduce the "flux error", which vanishes when $F = F^{eq}$:

$$Y = RF - RF^{eq}.$$

System of conservation laws

When the relaxation parameter $\varepsilon \to 0^+$, the macroscopic data W formally satisfies the system of conservation laws

$$\partial_t W + \partial_x Q(W) = 0,$$
 (2)

where the flux Q is given by

$$Q(W) = PVF^{eq}(W).$$

Thus the kinetic BGK model (1) is an approximation of (2).

Formal proof

Multiply the BGK equation by P on the left, and use the relation $PF = PF^{eq}$:

$$\partial_t PF + \partial_x PVF = \frac{1}{\varepsilon} (PF - PF^{eq}) = 0.$$

Because W = PF and $F \simeq F^{eq}$, we get

$$\partial_t W + \partial_x PVF^{eq}(W) = \partial_t W + \partial_x Q(W) \simeq 0.$$

This proof is purely algebraic, without consideration about: hyperbolicity, entropy, H-principle, stability, *etc.* For a system of m equations in space dimension d it is always possible to find a kinetic representation of size n = m(d + 1).

Minimal example: Jin-Xin²

D1Q2 kinetic representation of a system of m conservation laws

 $\partial_t W + \partial_x Q(W) = 0.$

We take n = 2m and

$$V = \begin{pmatrix} -\lambda I & 0 \\ 0 & \lambda I \end{pmatrix}, \quad M = \begin{pmatrix} I & I \\ -\lambda I & \lambda I \end{pmatrix}, \quad F^{eq} = \begin{pmatrix} \frac{W}{2} - \frac{Q(W)}{2\lambda} \\ \frac{W}{2} + \frac{Q(W)}{2\lambda} \end{pmatrix}$$

The velocity $\lambda > 0$ is a large enough constant for ensuring stability. For simplicity, but without loss of generality, we consider only this model in the following. We also set

$$F = \begin{pmatrix} F_1 \\ F_2 \end{pmatrix}, \quad F_k \in \mathbb{R}^m.$$

Note that $Y = -\lambda F_1 + \lambda F_2 - Q(W)$ and it is indeed a "flux error".

²[Jin and Xin(1995)]

Lattice Boltzmann Method (LBM)

- 1. Start with $W(\cdot, 0)$. Construct a kinetic vector $F(\cdot, 0)$ such that W = PF.
- 2. Solve the free transport equations $\partial_t F + V \cdot \nabla F = 0$ for a duration of Δt . Because $V = \text{diag}(-\lambda I, \lambda I)$, explicit formula

$$F_1(X,\Delta t^-) = F_1(X+\lambda\Delta t,0), \quad F_2(X,\Delta t^-) = F_2(X-\lambda\Delta t,0).$$

3. Define

$$W(\cdot, \Delta t) = PF(\cdot, \Delta t^{-}).$$

4. Apply a relaxation towards equilibrium (this emulates $\partial_t F = (F^{eq} - F)/\varepsilon$)

$$F(\cdot, \Delta t^+) = \omega F^{eq}(W(\cdot, \Delta t)) + (1 - \omega)F(\cdot, \Delta t^-).$$

Interesting cases: $\omega = 1$ (first order splitting), $\omega = 2$ (second order splitting).

LBM in the (W, Y) variables

We rewrite the LBM in the (W, Y) variables:

Transport step

$$\left(egin{array}{c} W(\cdot,\Delta t) \ Y(\cdot,\Delta t^-) \end{array}
ight) = \mathcal{T}(\Delta t) \left(egin{array}{c} W(\cdot,0) \ Y(\cdot,0^+) \end{array}
ight).$$

Relaxation step

$$\left(\begin{array}{c}W(\cdot,\Delta t)\\Y(\cdot,\Delta t^{+})\end{array}\right) = \mathcal{R}_{\omega}\left(\begin{array}{c}W(\cdot,\Delta t)\\Y(\cdot,\Delta t^{-})\end{array}\right) = \left(\begin{array}{c}W(\cdot,\Delta t)\\(1-\omega)Y(\cdot,\Delta t^{-})\end{array}\right)$$

The application of one time-step of the LBM then reads, in the operator form,

$$\begin{pmatrix} W \\ Y \end{pmatrix} \leftarrow \mathcal{B}(\Delta t) \begin{pmatrix} W \\ Y \end{pmatrix}, \quad \mathcal{B}(\Delta t) = \underbrace{\mathcal{R}_{\omega}}_{\text{relax. transport}} \underbrace{\mathcal{T}(\Delta t)}_{\text{relax. transport}}.$$

.

Properties of the relaxation

For $\omega = 2$, the relaxation operator is an involution:

$$\mathcal{R}_2 = \left(\begin{array}{cc} I & 0 \\ 0 & -I \end{array} \right), \quad \mathcal{R}_2^2 = \left(\begin{array}{cc} I & 0 \\ 0 & I \end{array} \right).$$

It is reversible (\simeq entropy conservative). For $\omega = 1$, it is a projection:

$$\mathcal{R}_1 = \left(egin{array}{cc} I & 0 \\ 0 & 0 \end{array}
ight), \quad \mathcal{R}_1^2 = \mathcal{R}_1,$$

and thus not reversible (\simeq entropy dissipative).

Time-symmetric correction

The LBM scheme is second order in time. It is not obvious because it does not look like a Strang splitting algorithm³. We can write a time-symmetric version of the basic brick \mathcal{B} :

$$\mathcal{B}(\Delta t) = \mathcal{T}(rac{\Delta t}{4})\mathcal{R}_\omega\mathcal{T}(rac{\Delta t}{2})\mathcal{R}_\omega\mathcal{T}(rac{\Delta t}{4}).$$

Note that the transport step remains a shift algorithm if one takes $\Delta x = \lambda \Delta t/4$, for instance. Then we have, for $\omega = 2$:

$$\mathcal{B}(-\Delta t) = \mathcal{B}(\Delta t)^{-1}, \quad \mathcal{B}(0) = I.$$

Time-symmetry expresses the time reversibility of the scheme. This is not unreasonable as long as we are interested in smooth solutions. It ensures second order accuracy of the time integration⁴.

³[Dubois(2008), Dellar(2013)] ⁴[McLachlan and Quispel(2002)]

Equivalent equation

For $\omega = 2$, by Taylor expansions in Δt , we can compute the formal equivalent equation of the time-symmetric LBM scheme. We get

$$\partial_t \left(egin{array}{c} W \ Y \end{array}
ight) + \left(egin{array}{c} Q'(W) & 0 \ 0 & -Q'(W) \end{array}
ight) \partial_x \left(egin{array}{c} W \ Y \end{array}
ight) = O(\Delta t^2).$$

Up to second order, the evolution of W and Y are uncoupled.
The flux error Y does not need to be small.

▶ The waves for *W* and *Y* move in opposite directions.

Higher order by composition

We look for a higher order splitting scheme of the form

$$\mathcal{H}(\Delta t) = \mathcal{B}(\alpha \Delta t)^k \mathcal{B}(\beta \Delta t) \mathcal{B}(\alpha \Delta t)^k.$$

This palindromic composition scheme is fourth order, provided that⁵

$$2k\alpha + \beta = 1, \quad 2k\alpha^3 + \beta^3 = 0.$$
 (3)

Some worries:

- if $\alpha > 0$ then $\beta < 0$ (negative time-stepping).
- For most choices of the integer k, α/β is not rational and thus the LBM trick (exact shifts on a structured grid) does not apply.

But:

- negative time-stepping is not a problem, because of time reversibility in the smooth case.
- ▶ If you take k = 4, then $\alpha = 1/6$, $\beta = -1/3$ is a rational solution of (3) !

⁵[McLachlan and Quispel(2002)]

Fourth-order LBM strategy

Classical LBM: 24 steps, fourth-order scheme: 32 steps. The cost is 30% higher for advancing of Δt . Low-storage: only one time-step of the solution needs to be stored in memory.

Entropy stability

Kinetic entropies⁶

Lax entropy $\partial_t U(W) + \partial_x G(W) \le 0,$ U convex, $D_W U(W) D_W Q(W) = D_W G(W).$

Find kinetic entropies U_k satisfying

$$U(W) = \min_{PF=W} \sum_{k} U_k(F_k) = \sum_{k} U_k(F_k^{eq}(W)).$$

The sum of the kinetic entropies can be expressed as a function of (W, Y)

$$\Sigma(W,Y) = \sum_k U_k(F_k),$$

The equilibrium corresponds to Y = 0, and $\Sigma(W, 0) = U(W)$.

⁶[Bouchut(1999), Aregba-Driollet and Natalini(2000)]

Linear case

Simple example: D1Q2 with Q(W) = cW (linear transport). We can take $U(W) = W^2/2$.

$$egin{aligned} U_1(F_1) &= rac{\lambda}{\lambda-c} \left(F_1
ight)^2, \quad U_2(F_2) &= rac{\lambda}{\lambda+c} \left(F_2
ight)^2.\ \Sigma(W,Y) &= rac{W^2}{2} + rac{Y^2}{2(\lambda^2-c^2)}. \end{aligned}$$

The convexity of the kinetic entropies is equivalent to the sub-characteristic condition

$$\lambda \geq |\boldsymbol{c}|.$$

For a general non-linear system, the kinetic entropies can be found with Legendre transform calculations⁷.

⁷[Guillon et al.(2023)Guillon, Hélie, and Helluy]

Time-symmetric entropy conservative scheme

In the transport step, the kinetic entropies are separately conserved because

$$\partial_t U_k(F_k) + V_k \partial_x U_k(F_k) = 0.$$

But for $\omega=$ 2, the relaxation step does not preserve entropy in the non-linear case.

Fix: search the value $\omega(W, Y) \simeq 2$ such that

$$\sum_{k} U_k(F_k) = \sum_{k} U_k(F'_k), \quad F'_k = \omega F^{eq}_k + (1-\omega)F_k.$$

In the (W, Y) variables, this reads

$$\Sigma(W, Y) = \Sigma(W, (1 - \omega(W, Y))Y).$$

Entropy conservation

In the non-linear case the entropy isolines are no more symmetric with respect to Y = 0. But with the above fix we recover entropy conservation. The resulting scheme is still

time-symmetric because if

$$\mathcal{R}_{\omega(W,Y)}(W,Y) = (W',Y')$$

then

$$\mathcal{R}_{\omega(W',Y')}(W',Y')=(W,Y).$$

Numerical results

Alternative scheme

The fourth order scheme \mathcal{B} is a sort of ideal entropy preserving scheme. In shocks waves it will produce terrible oscillations. But we can mix projections on equilibrium \mathcal{R}_1 with entropy conservative relaxations $\mathcal{R}_{\omega(W,Y)}$. We tested several strategies. We found the following choice to be excellent: we just modify the basic brick with a final projection onto equilibrium

$$\mathcal{B}(\Delta t) = \mathcal{R}_1 \mathcal{T}(rac{\Delta t}{4}) \mathcal{R}_\omega \mathcal{T}(rac{\Delta t}{2}) \mathcal{R}_\omega \mathcal{T}(rac{\Delta t}{4}).$$

And take, as before

$$\mathcal{H}(\Delta t) = \mathcal{B}(rac{\Delta t}{6})^4 \mathcal{B}(rac{-\Delta t}{3}) \mathcal{B}(rac{\Delta t}{6})^4.$$

This scheme remains fourth-order and entropy dissipative. More details $\ensuremath{\mathsf{in}}^8.$

⁸[Bellotti et al.(2024)Bellotti, Helluy, and Navoret]

Order tests

The test is done with the Burgers equation.

	Scheme 0		Scheme 1		Scheme 2	
Δx	L^2 error	order	L^2 error	order	L ² error	order
2.000E-03	8.592E-05		3.370E-06		3.374E-06	
1.250E-03	3.358E-05	2.00	1.552E-06	1.65	1.551E-06	1.65
7.813E-04	1.404E-05	1.86	1.742E-07	4.65	1.742E-07	4.65
4.883E-04	5.494E-05	2.00	3.365E-08	3.50	3.365E-08	3.50
3.053E-04	2.160E-06	1.99	5.184E-09	3.98	5.184E-09	3.98

Scheme 0: second order LBM

Scheme 1: fourth-order time-symmetric LBM

Scheme 2: fourth-order with periodic projections

Stability tests

We check the non-linear stability of the first scheme with $\omega = 2$ and with the $\omega = \omega(W, Y)$ ensuring entropy conservation. This test is done with shallow water equations.

2D computations

Euler equations. 2D Lax Riemann problem

Conclusion

- ► Fourth-order LBM for hyperbolic conservation laws.
- ► Full entropy stability analysis.
- Ongoing work: boundary conditions.

Bibliography I

[Aregba-Driollet and Natalini(2000)] D. Aregba-Driollet and R. Natalini.

Discrete Kinetic Schemes for Multidimensional Systems of Conservation Laws.

SIAM J. Numer. Anal., 37(6):1973-2004, 2000.

doi: 10.1137/s0036142998343075.

URL https://doi.org/10.1137/s0036142998343075.

[Bellotti et al.(2024)Bellotti, Helluy, and Navoret] Thomas Bellotti, Philippe Helluy, and Laurent Navoret.

Fourth-order entropy-stable lattice Boltzmann schemes for hyperbolic systems.

working paper or preprint, March 2024. URL https://hal.science/hal-04510582.

[Bouchut(1999)] F. Bouchut.

Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws.

J. Stat. Phys., 95(1/2):113-170, 1999. doi: 10.1023/a:1004525427365. URL https://doi.org/10.1023%2Fa%3A1004525427365.

[Dellar(2013)] Paul J Dellar.

An interpretation and derivation of the lattice Boltzmann method using Strang splitting. *Computers & Mathematics with Applications*, 65(2):129–141, 2013.

[Dubois(2008)] François Dubois.

Equivalent partial differential equations of a lattice Boltzmann scheme. Computers & Mathematics with Applications, 55(7):1441–1449, 2008.

[Guillon et al.(2023)Guillon, Hélie, and Helluy] Kévin Guillon, Romane Hélie, and Philippe Helluy. Stability analysis of the vectorial lattice-Boltzmann method.

working paper or preprint, 2023. URL https://hal.science/hal-03986533.

Bibliography II

[Jin and Xin(1995)] Shi Jin and Zhouping Xin.

The relaxation schemes for systems of conservation laws in arbitrary space dimensions. *Communications on pure and applied mathematics*, 48(3):235–276, 1995.

[McLachlan and Quispel(2002)] Robert I McLachlan and G Reinout W Quispel. Splitting methods.

Acta Numerica, 11:341-434, 2002.