
1/99

Discontinuous Galerkin (DG) methods for
hyperbolic equations

Basic theory and parallel implementations

Philippe Helluy

Math. Institute Strasbourg & Inria ToNuS, France

November 20, 2017

2/99

Forewords: ITER project

International Thermonuclear Experimental Reactor, ITER project:
thermonuclear fusion in a hot hydrogen plasma (more than 100
million degrees ◦C). Clean energy of the future.

The plasma is confined in a doughnut-shaped device: a tokamak

3/99

Tokamak

Tokamak: magnetic plasma confinement in a torus. Poloidal coils
⇒ toroidal field. Plasma current ⇒ poloidal field ⇒ plasma
stability. Tamm-Sakharov in the 50’s. Another solution: stellarator.

Strong magnetic field, few collisions: gyrokinetic turbulence.

4/99

Vlasov transport equation
I Unknown: the distribution function f (x ,v , t). Number of ions

at point x and time t having velocity v . The problem is
time-dependent in a six-dimensional phase space.

I The magnetic field B is given. Poisson equation for the
electric field E and potential Φ.

∇ ·E = ρ−ρ0, E =−∇Φ.

The charge ρ is given by

ρ(x , t) =
∫
v
f (x ,v , t)dv .

I Vlasov equation

∂t f + v ·∇x f + (E + v ×B) ·∇v f = 0.

It is a transport equation.
I Boundary conditions.

5/99

Outlines

Discontinuous Galerkin methods

Nodal DG on GPU with OpenCL

ADER approaches

Parallel transport solver

Kinetic schemes

6/99

Discontinuous Galerkin methods

7/99

Transport equation
The simplest hyperbolic Partial Differential Equation (PDE) is the
1D transport equation

∂tw + c∂xw = 0.

I The unknown is w(x , t) ∈ R. The space position x ∈ R and
the time t ∈ [0,T].

I ∂t = ∂

∂ t , ∂x = ∂

∂x .

I For simplicity, we assume that the transport velocity c is
constant.

I The solution has the form

w(x , t) = w0(x− ct),

where w0(x) is the initial condition at time t = 0.
I The graph of w0 is transported at the velocity c .

8/99

Boundary conditions

Generally one wishes to solve the transport equation for x in a finite
domain Ω =]a,b[.
If c > 0 we have to provide boundary values at x = a and no
condition at x = b

w(a, t) = β (a, t).

If c < 0 we have to provide boundary values at x = b and no
condition at x = a

w(b, t) = β (b, t).

9/99

Boundary conditions

In 1D the boundary of Ω =]a,b[is ∂ Ω = {a,b}.
We denote by n the unit normal vector on ∂ Ω directed toward the
exterior of Ω

n(a) =−1, n(b) = 1.

We also use the notations x+ = max(x ,0) and x− = min(x ,0)
The boundary condition can then be written

(c ·n)−w = (c ·n)−β

(it reduces to 0 = 0 when c ·n ≥ 0).

10/99

Conservation

I Conservation property

d

dt

∫ b

x=a
w(x , t)dx =−

∫ b

x=a
c∂xw(x , t)dx = cw(a, t)−cw(b, t).

I Other terminology: hyperbolic conservation law
I "Hyperbolic" ? will be explained later

11/99

Higher Dimensions
In general dimension D ≥ 1. The transport equation reads

∂tw + c ·∇xw = 0

I x = (x1, . . . ,xD) ∈ Ω⊂ RD , c = (c1, . . . ,cD) ∈ RD

I c ·∇xw = ∑
D
i=1 c

i∂iw , ∂i = ∂

∂x i

I Exact solution in Ω = RD : w(x , t) = w0(x− tc) (fundamental
formula for Lagrangian and semi-Lagrangian solvers: LBM,
PIC).

I For bounded Ω: unit outward vector n(x) at x ∈ ∂ Ω. Inflow
boundary: Γ− = {x ∈ ∂ Ω,n(x) · c < 0}

I Boundary conditions must be given only on the inflow
boundary

I Can be written w(n · c)− = β (n · c)− with
(n · c)− = min(n · c ,0).

12/99

Numerical approximation

End of the story ? at slide 12 ???
Of course not:

I Lagrangian or semi-Lagrangian methods exist, but have some
drawbacks.

I How to deal with non-constant c(x , t)?
I Transport on complex geometries.
I High order schemes on complex geometries.
I Solving other PDEs, coupling with other PDEs.
I How to ensure exact conservation ?
I Solvers with better data locality.
I Parallel algorithms, etc.

13/99

Continuous Galerkin method c>0
We start with the dimension D = 1 and c > 0. Take the transport
equation, multiply by a continuous test function ϕ(x) and integrate
between a and b

d

dt

∫ b

a
wϕ +

∫ b

a
c∂xwϕ = 0.

Integration by parts

d

dt

∫ b

a
wϕ−

∫ b

a
cw∂xϕ + cw(b, t)ϕ(b)− cw(a, t)ϕ(a) = 0.

Boundary condition (only at x = a)

d

dt

∫ b

a
wϕ−

∫ b

a
cw∂xϕ + cw(b, t)ϕ(b)− cβ (a, t)ϕ(a) = 0.

We also have (with another integration by parts)

d

dt

∫ b

a
wϕ +

∫ b

a
c∂xwϕ + c(w(a, t)−β (a, t))ϕ(a) = 0.

14/99

Continuous Galerkin method

For general c and Ω =]a,b[we obtain (flux formulation)

d

dt

∫
Ω
wϕ−

∫
Ω
w∂xϕ +

∫
∂Ω

ϕ
{

(c ·n)+wL + (c ·n)−wR

}
= 0

where, on ∂ Ω, wL denotes the value of w inside Ω and wR the
outside value (given by the boundary condition).
In other words, if x = a or x = b

wL(x , t) = lim
ε→0,ε<0

w(x + εn(x), t) = w(x , t),

wR(x , t) = β (x , t).

We also have (fluctuation formulation)

d

dt

∫
Ω
wϕ +

∫
Ω

∂xwϕ +
∫

∂Ω
ϕ(c ·n)−(wR −wL) = 0

The two formulations can be used now for D > 1.

15/99

Conservation laws

Many equations in physics are systems of conservation laws:

∂tw + ∂iF
i (w) = 0.

I w = w(x , t) ∈ Rm: vector of conserved quantities;
I x = (x1 . . .xD): space variable, D: space dimension, t: time;
I ∂t = ∂

∂ t , ∂i = ∂

∂xi
;

I sum on repeated indices: ∂iF
i means ∑

D
i=1 ∂iF

i ;
I F i (w): flux vector (contains the physics).

Applications: fluid mechanics, electromagnetics, and . . . transport
equation !

m = 1, F i (w) = c iw .

16/99

Hyperbolicity

The model is mathematically stable under a hyperbolicity condition:
Consider the jacobian matrix

Ai (w) = ∇wF
i (w).

It is an m×m matrix defined by

(Ai)k` (w) =
∂

∂w `

(
F i (w)

)k
, 1≤ k ≤m, 1≤ `≤m.

We also define

A(w ,n) = Aini = ∇wF
i (w)ni .

The system is hyperbolic iff A(w ,n) is diagonalizable with real
eigenvalues λ1 ≤ λ2 . . .≤ λm.
Transport equation: m = 1 and λ1 = c .

17/99

Generalization of the CG method

We can still use the CG formulation for a general system of
conservation laws

d

dt

∫
Ω
wϕ−

∫
Ω
F i (w)∂iϕ +

∫
∂Ω

ϕF (wL,wR ,n) = 0

F (wL,wR ,n) is the numerical flux. It satisfies
I F (w ,w ,n) = F i (w)ni
I F (wL,wR ,n) =−F (wR ,wL,−n).

For transport we have the so-called upwind numerical flux:

F (wL,wR ,n) = (c ·n)+wL + (c ·n)−wR

We indeed check that:
I F (w ,w ,n) = ((c ·n)+ + (c ·n)−)w = c ·nw
I F (wR ,wL,−n) = (−c ·n)+wR + (−c ·n)−wL = F (wL,wR ,n)

18/99

Finite elements mesh
Go back to D = 1. We consider the subdivision

a = x0 < x1 . . . < xNe = b.

For 0≤ i < Ne , Element L corresponds to the interval

L = [xi ,xi+1] (Notation: L = i).

We also consider the reference element

L̂ = [−1,1]

and a linear mapping from the reference element L̂ to element L

τL(x̂) = x(x̂) = xi +
x̂ +1
2

(xi+1−xi).

This mapping has a constant jacobian

τ
′ =

dx

dx̂
=

xi+1−xi
2

and can be reversed

x̂ = 2
x−xi

xi+1−xi
−1.

19/99

Gauss-Lobatto points

On the reference element, we can consider the order d
Gauss-Lobatto points and associated weights

ξq, ωq, q = 0 . . .d

(d (order) should not be confused with D (space dimension))
Those points are such that ξ0 =−1, ξd = 1 and

∫ 1

−1
P(t)dt =

d

∑
q=0

ωqP(ξq)

when P is a polynomial of degree ≤ 2d −1
We could also use Gauss-Legendre points (exact for polynomial of
order ≤ 2d +1 but then ξ0 >−1 and ξd < 1.)

20/99

Numerical integration

For instance if d = 1 (trapezoidal rule)

ξ0 =−1, ξ1 = 1, ω0 = 1, ω1 = 1;

for d = 2 (Simpson’s rule)

ξ0 =−1, ξ1 = 0, ξ2 = 1, ω0 = 1/3, ω1 = 4/3 ω2 = 1/3;

for d = 3 (First non equally spaced Gauss Lobatto rule)

ξ0 =−1, ξ1 =−1/
√
5, ξ2 = 1/

√
5, ξ3 = 1,

ω0 = 1/6, ω1 = 5/6 ω2 = 5/6, ω3 = 1/6.

etc.

21/99

Lagrange interpolation

To the Gauss-Lobatto points we can associate Lagrange
interpolation polynomials

Ij(x̂) = ∏
0≤ k ≤ d
k 6= j

x̂−ξk

ξj −ξk
, j = 0 . . .d .

The Lagrange polynomials are of order d and satisfy the
interpolation property

Ij(ξj) = δij =

{
1 if i = j ,
0 otherwise.

22/99

Mesh nodes

The nodes of the finite element mesh are obtained by mapping the
Gauss-Lobatto points with τL. The number of nodes is
Nn = dNe +1. The nodes are denoted yi , i = 0 . . .Nn−1. We also
use a local numbering in each finite element L. In the end, we have
the relation

yk = τL(ξi),

with
k = connec(L, i) = dL+ i .

The table connec is the finite element connectivity array.

23/99

Nodal Approximation space

We now construct the continuous basis functions ϕk . They are
associated to the finite element nodes yk and satisfy the
interpolation property

ϕi (yj) = δij .

They are defined as follows: let x ∈ [a,b] then x necessarily belongs
to one (or more) element L. If node k is not a node of L then

ϕk(x) = 0,

otherwise, there is a local node ξi of L such that

k = connec(L, i)

and then
ϕk(x) = Ii (τ

−1
L (x)).

(see Maple demo.)

24/99

Continuous Galerkin (CG) scheme
Now we construct the Galerkin approximation. We expand w on
the basis function

w(x , t)'∑
j

wj(t)ϕj(x)

and insert the expansion in the CG formulation with ϕ = ϕi . We
obtain

∑
j

∫
Ω

ϕiϕj∂twj −
∫

Ω
F (∑

j

wjϕj)ϕ
′
i +
∫

∂Ω
F (∑

j

wjϕj ,β ,n)ϕi = 0.

If we use a Gauss-Lobatto quadrature and the interpolation
property, we obtain

ω
i
L∂twi −∑

k

ω
k
LF (wk)ϕ

′
i (yk)+

F (w1,β ,−1)δ1,i +F (wNn ,β ,1)δNn,i = 0

where ωk
L are the mapped quadrature weights

ω
k
L = ω`

τ ′L
dx̂

k = connec(L, `)

25/99

System of differential equation

Define the big vector

W (t) =

 w1(t)
...

wNn(t)

We end up with a system of differential equations

W ′(t) = G (W (t))

26/99

Time integration
Any method for time integration could be used. Time step ∆t.
Discrete times tp = p∆t, p = 0,1,2, . . .

W p 'W (p∆t)

Taylor expansion

W (t + ∆t) = W (t) + ∆tW ′(t) +o(∆t)

This lead to the explicit Euler scheme

W p+1 = W p + ∆tG (W p)

Never stable !
Implicit scheme

W p+1 = W p + ∆tG (W p+1)

Unconditionaly stable but requires solving a linear system at each
time-step

27/99

Higher order, CFL condition

Other possibilities. For instance second order explicit Runge-Kutta
scheme (RK2):

W ∗ = W p +
∆t

2
G (W p), W p+1 = W p + ∆tG (W ∗)

Also: explicit RK4, Adams-Bashforth, etc.
The explicit schemes require a stability CFL condition

∆t ≤ C
∆x

λmax

where ∆x is the maximal size of the elements, λmax is the maximal
wave speed and C is a constant (depending on the method, d ,
etc.).

28/99

Numerical results

I Small demo (implicit, various d , first order in time and then
second order in time)

I Convergence rate for smooth solution (and ∆t very small)
‖error‖L2(Ω) ' C (w)∆xd .

I Oscillations with discontinuous solutions (demo).

29/99

Discontinuous Galerkin

We can also solve the transport equations with a DG solver. The
unknown numbering is modified in the following way. First

k = connec(L, i) = (d +1)L+ i

the number of nodes is thus

Nn = (d +1)Ne .

The basis functions are also defined in a different way. Now they
are associated to a given element L and a local node i = 0 . . .d and

ϕk(x) = ϕL,i (x) = Ii (τ
−1
L (x)) if x ∈ L, ϕL,i (x) = 0 otherwise.

The basis functions are discontinous at the element boundaries xi .
(see Maple demo.)

30/99

Discontinuous Galerkin (DG) formulation
We expand w in this discontinuous basis function in each element L

w(x , t)'
d

∑
j=0

wL,j(t)ϕL,j(x), x ∈ L. (1)

The DG formulation is simply obtained by using the CG
formulation independently on each element∫

L
∂twϕL,i −

∫
L
F (w)∂xϕL,i+

F (wL,d ,wL+1,0,1)ϕL,i (xL+1)−F (wL−1,d ,wL,0,1)ϕL,i (xL) = 0,

where F (wL,wR ,n) is the numerical flux.
In addition, in the DG formulation we have

ϕL,i (xL+1) = δi ,d , ϕL,i (xL) = δi ,0,

This shows that coupling only occurs at the element boundary
nodes (this would not be true anymore for Gauss-Legendre
integration).

31/99

Bibliography

I [Reed and Hill, 1973]
I [Lesaint and Raviart, 1974]
I [Johnson et al., 1984]
I [Bourdel et al., 1992]
I [Cockburn and Shu, 1998]
I [Barth, 2006]
I [Hesthaven and Warburton, 2007]
I [Zingan et al., 2013]

32/99

Numerical results
I As for the CG method we have to solve a system of differential

equations
W ′(t) = Gd(W (t)).

Same kind of CFL conditions for explicit time solver.
I Small demo (implicit, various d , first order in time and then

second order in time)
I Convergence rate for smooth solution and regular grids (∆t

very small) ‖error‖L2(Ω) ' C (w)∆xd+1.

I Less oscillations with discontinuous solutions than for the CG
method (demo).

I Nice feature of the upwind flux for transport: the implicit
Euler scheme

W p+1 = W p + ∆tG (W p+1)

can be solved without inverting a global linear system.

33/99

Upwind implicit DG solver (flux version)

We assume c > 0 and we use the notation w = wp (p: time index)∫
L

w −wp−1

∆t
ϕL,i −

∫
L
cw∂xϕL,i + cwL,dδi ,d − cwL−1,dδi ,0 = 0.

Applying Gauss-Lobatto integration, we obtain

τ
′
ωi

wL,i −wp−1
L,i

∆t
−

d

∑
k=0

cwL,kωk I
′
i (ξk)

+ cwL,dδi ,d − cwL−1,dδi ,0 = 0.

We observe that if we know wL−1,d then we can compute directly
all the values of wL,i for i = 0 . . .d by solving a small
(d +1)× (d +1) linear system.

34/99

Upwind DG solver for transport

It is also possible to write the same system, but without an
integration by parts. We obtain∫

L
∂twϕL,i +

∫
L
c∂xwϕL,i + (cwL,0− cwL−1,d)ϕL,i (xL) = 0.

Then we apply Gauss-Lobatto integration and time discretisation

ωiτ
′wL,i −wp−1

L,i

∆t
+c

d

∑
j=0

wL,j∂xϕj(τL(ξi))ωiτ
′+(cwL,0−cwL−1,d)δi ,0 = 0.

wL,i +
c∆t

τ ′

(
d

∑
j=0

I ′j (ξi)wL,j +
1

ω0
wL,0δi ,0

)
= wp−1

L,i +
c∆t

ω0τ ′
wL−1,dδi ,0

35/99

Local linear system
We define the (d +1)× (d +1) matrix Λ by

Λij = I ′j (ξi) +
δ0,jδ0,i

ω0
.

In element L we consider the right hand side vector

r = (wp−1
L,0 +

c∆t

ω0τ ′
wL−1,d ,w

p−1
L,1 , . . . ,wp−1

L,d)T

(if element L−1 does not exist we replace wL−1,d by the (upwind)
boundary condition). Then the vector

w = (wL,0, . . . ,wL,d)T

is solution of (
I +

c∆t

τ ′
Λ

)
w = r .

Solving this small linear system step by step from L = 0 to
L = Ne −1 gives the solution of the implicit time step.

36/99

Nodal DG on GPU with OpenCL

37/99

Conservation laws

Many equations in physics are systems of conservation laws:

∂tw + ∂iF
i (w) = 0.

I w = w(x , t) ∈ Rm: vector of conserved quantities;
I x = (x1 . . .xD): space variable, D: space dimension, t: time;
I ∂t = ∂

∂ t , ∂i = ∂

∂xi
;

I sum on repeated indices: ∂iF
i means ∑

D
i=1 ∂iF

i ;
I F i (w): flux vector (contains the physics).

Applications: fluid mechanics, electromagnetics, and . . . transport
equation !

m = 1, F i (w) = c iw .

38/99

FDTD on a 2D Structured grid

I Grid step: ∆x , time step ∆t ≤∆x/Vmax, grid directions
n1 = (1,0), n2 = (0,1).

I Approximation wp
i ,j ' w(i∆x , j∆x ,p∆t).

I Finite Difference (FD) method + Strang splitting:

w∗i ,j −wp
i ,j

∆t
+

F (wi , j ,wi+1, j ,n1)−F (wi−1, j ,wi , j ,n1)

∆x
= 0,

wp+1
i ,j −w∗i ,j

∆t
+

F (wi , j ,wi , j+1,n2)−F (wi , j−1,wi , j ,n2)

∆x
= 0.

I Numerical flux: F (wL,wR ,n), F (w ,w ,n) = F (w) ·n.

39/99

OpenCL

I OpenCL: “Open Computing Language”. Library of C functions
for driving the GPU (or any multicore accelerator). Similar to
but more general than CUDA. SYCL: C++ templated version.

I API managed by the Khronos Group (in charge also of
OpenGL) https://www.khronos.org/

I Industry standard: the very same program can really run on
many accelerators. Drivers exist for: NVIDIA GPUs, AMD
CPUs and GPUs, Intel CPUs and GPUs, MIC, ARM
(CPU+GPU), IBM, etc.

I An OpenCL program can access accelerators of different
vendors at the same time (kernels compilation at runtime).

I Also “Meta” drivers: SOCL (StarPU), SnuCL, etc.
I Python bindings: PyOpenCL

https://github.com/pyopencl/pyopencl

https://www.khronos.org/
https://github.com/pyopencl/pyopencl

40/99

OpenCL abstraction

I An accelerator is made of
compute units
(“work-groups”) of several
processors (“work-items”)
sharing a small local cache
memory.

I All the processors have
access to the global
memory.

I The same program (a
“kernel”) can be executed
by all the work-items at the
same time.

I OpenCL manages the
asynchronous distribution
of the work-items on the
actual processors.

PE 1

PE 2 Lo
ca

l m
em

.

CU 1

PE 3

PE 4 Lo
ca

l m
em

.

CU 2

G
lo

b
a
l
m

e
m

.

Host

GPU

41/99

OpenCL specificities

I The local (cache) memory is small but fast.
I The global memory is bigger but slower.
I Accessing the global memory of the GPU is faster if

neighboring processors access neighboring locations
(“coalescent” access).

I Accessing the host memory is very slow.
I Branching may be costly (SIMD parallelism).
I Kernel compilation at runtime: increase verbosity, but very

interesting for metaprogramming and performance
portability.

I OpenCL manages events and a task graph for
asynchronous kernel launching.

42/99

OpenCL implementation

The data are arranged in a (i , j) matrix. 1 work-item = 1 cell (i , j).
1 work-group = 1 row i .
For each time step p:

I compute the fluxes balance in the x1-direction for each cell of
each row of the grid.

I transpose the matrix (exchange i and j) in a coalescent way.
I compute the fluxes balance in the x2-direction for each row of

the transposed grid.
I transpose again the matrix.

43/99

Kernel code

44/99

OpenCL + synchronous MPI

I Use of several GPUs;

I Subdomain decomposition
compatible with the
transposition algorithm;

I 1 GPU = 1 subdomain = 1
MPI node;

I MPI for exchanging data
between GPUs (greyed cells
layers).

GPU 0

MPI 0

GPU 1

MPI 1

GPU 2

MPI 2

GPU 3

MPI 3

0 L

L

45/99

Comparisons

On large grids (> 1024×1024). We compare:
I an optimized (tiling) OpenMP implementation of the FD

scheme on 2x6-core CPUs;
I the OpenCL implementation running on 2x6-core CPUs,

NVidia or AMD GPU;
I the OpenCL+MPI implementation running on 4 GPUs.

Implementation Time Speedup
OpenMP (CPU Intel 2x6 cores) 717 s 1
OpenCL (CPU Intel 2x6 cores) 996 s 0.7
OpenCL (NVidia Tesla K20) 45 s 16

OpenCL (AMD Radeon HD 7970) 38 s 19
OpenCL + MPI (4 x NVIDIA K20) 12 s 58

The GPU performance depends essentially on the transposition
kernel... We achieve approximately 800 GFLOP/s/GPU.

46/99

Shock-bubble interaction

[Helluy and Jung, 2014]

w = (ρ,ρu1,ρu2,ρQ,ρϕ)T , Q = e + |u|2 /2, p = p(ρ,e,ϕ),

F (w) ·n = (ρu ·n,ρ(u ·n)uT +pnT ,(ρQ +p)u ·n,ρϕu ·n)T .

I Simulation of a compressible two-fluid flow: interaction of a
shock wave in a liquid with a gas bubble

I Coarse mesh OpenCL simulation on an AMD HD 5850
I OpenGL/OpenCL interop + video capture.

https://www.youtube.com/watch?v=c8hcqihJzbw

https://www.youtube.com/watch?v=c8hcqihJzbw

47/99

Very fine mesh

I Very fine mesh OpenCL + MPI simulation, 40,000x20,000
grid. 4 billions unknowns per time step

I 10xNVIDIA K20 GPUs, 30 hours
I Red=high density (compressed liquid); blue=low density (gas).

48/99

Zoom 1

49/99

Zoom 2

50/99

Discontinous Galerkin

[Strub, 2015], joint work with AxesSim company.

I Unstructured hexahedrons mesh for representing complex
geometries.

I Subdomain decomposition. 1 domain = 1 MPI node = 1
OpenCL device.

I Zone decomposition. Each subdomain is split into volume
zones and interface zones.

I Non-conformity between zones is allowed.

51/99

Mesh example

A non-conforming mesh with two subdomains, three volume zones
and three interface zones (created with gmsh http://gmsh.info).

I Subdomain 1: only one big
refined volume zone. Two
interface zones.

I Subdomain 2: two small
volume zones (coarse and
refined). Three interface
zones.

http://gmsh.info

52/99

Mesh structure

Subdomain 1

Subdomain 2

Volume
zone 1

Volume
zone 2

Volume
zone 3

Interface
zone 1′

Interface
zone 2′

Interface
zone 3

Interface
zone 1

Interface
zone 2

53/99

Discontinuous Galerkin (DG) approximation

DG method in a 3D space.
In each cell L of the mesh, the conserved quantities are expanded
on 3D mapped Lagrange polynomial basis functions

w(x , t) = w j
L(t)ϕ

L
j (x), x ∈ L.

I L is a (possibly stretched)
hexahedron. L̂ is a cube.

I w is determined by its
values at blue volume
Gauss points

I w is discontinuous at green
faces Gauss points.

54/99

DG formulation

The numerical solution satisfies the DG approximation scheme

∀L,∀i
∫
L

∂twϕ
L
i −

∫
L
F (w,w,∇ϕ

L
i) +

∫
∂L

F (wL,wR ,nLR)ϕ
L
i = 0.

I R denotes the neighbor
cells along ∂L.

I nLR is the unit normal
vector on ∂L oriented from
L to R .

I F (wL,wR ,n): numerical
flux.

I F (w ,w ,n) = F k(w)nk .

nLR

∂L∩∂R

L

R

Time integration of a system of ordinary differential equations.

55/99

Tasks

I Elementary tasks attached to volume or interface zones
I A task is associated to a computational OpenCL kernel or to

memory operations (GPU↔CPU and MPI transfers).
I The optimized design of the computational kernels is much

more tricky than for the FD method...
I Hexahedra mesh optimizations ((D +1)3→ 3(D +1)

complexity).
I Idling work-item strategy for avoiding cache misses.
I Our FLOPS are good FLOPS !

I See
https://hal.archives-ouvertes.fr/hal-01134222v2

https://hal.archives-ouvertes.fr/hal-01134222v2

56/99

Tasks

57/99

Tasks graph: two domains

58/99

Tasks graph: one domain

59/99

MPI/OpenCL events management

Problem: how to express the dependency between MPI and
OpenCL operations ?

I We decided to rely only on the OpenCL events management.
I The beginning of a task depends on the completions of a list

of OpenCL events. The task is itself associated to an OpenCL
event.

I At an interface zone between two subdomains, an extraction
task contains a GPU to host memory transfer, a MPI
send/receive communication and a host to GPU transfer.

I we create an OpenCL user event, and launch a MPI blocking
sendrecv in a thread. At the end of the communication, in the
thread, the OpenCL event is marked as completed. Using
threads avoids blocking the main program flow.

Simple runtime tasks management for the poor !

60/99

Sync./Async. comparison

Big mesh, polynomial order d = 3, NVIDIA K20 GPUs, infiniband
network.

1 GPU 2 GPUs 4 GPUs 8 GPUs
Sync. TFLOPS/s 1.01 1.84 3.53 5.07
ASync. TFLOPS/s 1.01 1.94 3.74 7.26

We achieve ' 30% of the peak performance.s

w =
(
E 1,E 2,E 3,H1,H2,H3)T , m = 6, D = 3.

F (w) ·n =

(
−n×H
n×E

)
.

61/99

Application
I Electromagnetic wave interaction with an aircraft (Maxwell

equations).
I Aircraft geometry described with 3,337,875 hexaedrons ('1

billion unknowns per time step): mesh of the interior and
exterior of the aircraft.

I We use 8 GPUs to perform the computation. The simulation
does not fit into a single GPU memory.

62/99

ADER approaches

63/99

Local time-stepping

Explicit Discontinuous Galerkin (DG) are constrained by an
annoying CFL condition. Empirical stability condition

∆t ≤ ∆x

2D(2d +1)Vmax

with:
I ∆x : cell size.
I D: space dimension
I d : polynomial degree
I Vmax: maximal speed
I Can be worse...

Is it possible to use different time steps on element of different
sizes?

64/99

DG scheme

The approximate solution is solution of the DG scheme: for all
element L =]xk ,xk+1[and all basis function ϕL

i∫
L

∂twϕ
L
i −

∫
L
Aw∂xϕ

L
i +

(A+w(x−k+1, t) +A−w(x+
k+1, t))ϕ

L
i (x−k+1) +

(−A−w(x+
k , t)−A+w(x−k , t))ϕ

L
i (x+

k) = 0.

∫
L

d

dt
wk
j ϕ

L
j ϕ

L
i −

∫
L
Awk

j ϕ
L
j ∂xϕ

L
i +

(A+wk
d +A−wk+1

0)δi ,d + (2)
(−A−wk

0 −A+wk−1
d)δi ,0 = 0.

65/99

Uncoupling predictor

In order to remove the coupling between elements]xk−1,xk [,
]xk ,xk+1[,]xk+1,xk+2[we consider an approximate differential
equation (also called “predictor”)∫

L

d

dt
vkj ϕ

L
j ϕ

L
i −

∫
L
Avkj ϕ

L
j ∂xϕ

L
i +

(A+vkd +A−vkd)δi ,d +

(−A−vk0 −A+vk0)δi ,0 = 0.

66/99

Space-time DG

Suppose that we know wk
j (t = α). For evaluating wk

j (t = β) we
integrate (2) from t = α to t = β(∫

L
ϕ
L
j ϕ

L
i

)(
wk
j (β)−wk

j (α)
)
−
∫

β

t=α

∫
L
Avkj ϕ

L
j ∂xϕ

L
i +∫

β

t=α

(A+vkd +A−vk+1
0)δi ,d + (3)∫

β

t=α

(−A−vk0 −A+vk−1
d)δi ,0 = 0.

67/99

Comments

I We can now advance each element with its own time step:
simply use the most recent predictors of the neighbour
elements.

I Allows to perform smaller time steps on smaller elements.
Interesting when we have geometrical mesh constraints.

I Interesting even in the case of a common time step: better
data locality in the predictor step.

I Many different possibilities for the predictor: local RK,
Adams-Bashforth, Cauchy-Kowaleska procedure, nilpotent
space-time discretisation etc.

I Large gain in CPU time when the mesh contains very few
small elements. A polyhedral paradise ?

(small demo, figures ?)

68/99

Parallel transport solver

69/99

Implicit DG solver for transport

Explicit Discontinuous Galerkin (DG) are constrained by an
annoying CFL condition. Empirical stability condition Explicit
Discontinuous Galerkin (DG) are constrained by an annoying CFL
condition. Empirical stability condition

∆t ≤ ∆x

2D(2d +1)Vmax

with:
I ∆x : cell size.
I D: space dimension
I d : polynomial degree
I Vmax: maximal speed
I Can be worse...

70/99

3D mesh

We want to solve ∂tw + c ·∇w = 0
We consider a coarse mesh made of hexahedral curved macrocells

I Each macrocell is itself split
into smaller subcells of
diameter '∆x .

I In each subcell L we
consider polynomial basis
functions ϕL

i of degree d .
I Possible non-conformity in

“∆x” and “d”.
I We need a conservative

scheme. We want to avoid
CFL condition.

71/99

DG approximation of the transport equation

Implicit scheme for going from time p−1 to time p:
∀L,∀i∫
L

wp−wp−1

∆t
ϕ
L
i −

∫
L
wpc ·∇ϕ

L
i +

∫
∂L

(
c ·n+wp

L + c ·n−wp
R

)
ϕ
L
i = 0.

I R denotes the neighbor
cells along ∂L.

I c ·n+ = max(c ·n,0),
c ·n− = min(c ·n,0).

I nLR is the unit normal
vector on ∂L oriented from
L to R .

nLR

∂L∩∂R

L

R

72/99

Upwind numbering

I L is upwind with respect to R if c ·nLR > 0 on ∂L∩∂R .
I In a macrocell, the solution depends only on the values of w in

the upwind macrocells.
I No assembly and factorization of the global system. Only

local-to-macrocell linear systems.
I Example with a simple mesh (curved meshes are also allowed):

73/99

Dependency graph

For a given velocity c we can build a dependency graph. Vertices
are associated to macrocells and edges to macrocells interfaces or
boundaries. We consider two fictitious additional vertices: the
“upwind” vertex and the “downwind” vertex.

74/99

Algorithm

I Topological ordering of the dependency graph.
I First time step: Assembly and LU decomposition of the

macrocells local matrices.
I For each macrocell (in topological order):

I Compute volume terms.
I Compute upwind fluxes.
I Solve the local linear system.
I Extract the results to the downwind macrocells.

Bibliography: [Duff and Reid, 1978, Johnson et al., 1984,
Wang and Xu, 1999, Natvig and Lie, 2008]
Parallelization ?

75/99

StarPU parallelization

I StarPU is a library developed at Inria Bordeaux
[Augonnet et al., 2012]: http://starpu.gforge.inria.fr

I Task-based parallelism.
I Task description: codelets, inputs (R), outputs (W or RW).
I The user submits tasks in a correct sequential order.
I StarPU schedules the tasks in parallel if possible.

http://starpu.gforge.inria.fr

76/99

StarPU implementation

I We start from a working sequential code
http://schnaps.gforge.inria.fr

I StarPU implementation was smooth: incremental migrations
task by task.

I Several implementations of the same task are possible (CPU,
optimized CPU, GPU I, GPU II, MIC, etc.)

http://schnaps.gforge.inria.fr

77/99

Preliminary results

We compare a global direct solver to the upwind StarPU solver
with several meshes.
Weak scaling. “dmda” scheduler. AMD Opteron 16 cores, 2.8 Ghz.
Timing in seconds for 200 iterations.

nb cores 0 1 2 4 8 16
10×10×8×8 direct 30 144 - - - -
10×10×8×8 upwind - 32 19 12 7 6
20×20×4×4 upwind - 41 26 17 12 17
20×20×8×8 upwind - 120 72 40 28 20

It is more efficient to apply the previous strategy to larger groups of
cells.

78/99

Task graph

Zoom of the task graph generated by StarPU

79/99

Gantt diagram

Gantt diagram generated by StarPU: sync point at the end of each
time step

80/99

Gantt diagram

Gantt diagram generated by StarPU: without sync point at the end
of each time step

81/99

Kinetic schemes

82/99

Kinetic framework

I Distribution function: f (x ,v , t), x ∈ Rd , v ∈ Rd , t ∈ [0,T].
I Microscopic “collision vector” K (v) ∈ Rm. Macroscopic

conserved data

w(x , t) =
∫
v
f (x ,v , t)K (v)dv .

I Microscopic entropy s and associated Maxwellian Mw (v):∫
v
MwK = w ,

∫
v
s(Mw) = max∫

v fK=w

{∫
v
s(f)

}
.

I Kinetic-BGK equation (a = a(x , t) is the acceleration):

∂t f + v ·∇x f +a ·∇v f =
1
τ

(Mw − f) .

83/99

Kinetic schemes

When the relaxation time τ is small, the kinetic equation provides
an approximation of the hyperbolic conservative system

∂tw + ∇ ·F (w) + Π(w) = 0,

with
F i (w) =

∫
v
v iMw (v)K (v)dv .

Π(w) = a ·
∫
v

∇vMw (v)K (v) =−a ·
∫
v
Mw (v)∇vK (v).

Main idea: numerical solvers for the linear scalar transport equation
lead to natural solvers for the non-linear hyberbolic system
[Deshpande, 1986]. Micro or macro approach.

84/99

Toy problem: Broadwell model

I Lattice "D1Q3": v ∈ V = {−1,0,1}. K (v) = (1,v)T .

I w = (ρ,ρu)T .

I f (x ,v , t) is solution of

∂t f + v∂x f = 1/τ(Mw − f).

I Mw (±1) = ρu(u±1)/2+ c2ρ/2,
Mw (0) = ρ(1−u2− c2).

I ρ =
∫
v∈V f = f (·,−1, ·) + f (·,0, ·) + f (·,1, ·),

ρu =
∫
v∈V fv = f (·,1, ·)− f (·,−1, ·),

ρu2 + c2ρ =
∫
v∈V fv2 = f (·,1, ·) + f (·,−1, ·).

I Then w = (ρ,ρu)T is solution of the isothermal Euler
equations

∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + c2
ρ) = 0.

85/99

First order splitting algorithm

For each time step of duration ∆t,
I free transport: solve (for v =−1,0,1)

∂t f + v∂x f = 0;

I relaxation: compute w = (ρ,u)T and return to

f (x ,v , t) = Mw(x ,t)(v).

The resulting scheme is O(∆t) with high numerical viscosity

86/99

Implicit upwind approximation

1D DG approximation with order d = 0 for the transport equation
(finite volume method)

I space step ∆x and time step ∆t.
I constant approximation of f in each cell Ci =]i∆x ,(i +1)∆x [,

i ∈ Z.
I If x ∈ Ci and t ∈ [p∆t,(p+1)∆t[then f (x ,v , t)' f pi (v).

I Upwind scheme

v > 0,
f pi − f p−1

i

∆t
+ v

f pi − f pi−1

∆x
= 0

v < 0,
f pi − f p−1

i

∆t
+ v

f pi+1− f pi
∆x

= 0

87/99

Comments

I Unconditionally stable. CFL number= ∆t/v∆x can be
arbitrary.

I Implicit scheme but upper or lower triangular linear system.
I Parallelism: uncoupled transport equations, local relaxation.
I Higher order in x : Discontinuous Galerkin (DG) method

(polynomial approximation of f in cells Ci)
I Issue: higher order in time ?

88/99

Second order extension

Spatial approximation leads to a differential equation

v ′(t) = g(v(t)), v(0) = v0.

First order numerical method

Φ(∆t)v0 = v0 +g(v0)∆t +E (v0)∆t2 +O(∆t3).

More precise method Ψ(∆t) = Φ(α∆t)Φ(β ∆t).
Second order is attained iff

α + β = 1, αβ =
1
2
.

We find α = 1+i
2 , β = 1−i

2 .

89/99

Comments and possible generalization

I Bibliography: [Fung, 1998, McLachlan and Quispel, 2002]
I Very easy to program: consider complex time-step ∆t. At the

end of the time-step change ∆t to ∆t.
I Transport: each sub-step is unstable. The global step is stable.
I Complexity: storage×2, CPU time approximately×2.5.
I Possible generalization to higher orders. Rely on the BCH

formula in the Lie algebra of vector fields

eZ = eX eY , Z = X +Y +
1
2

[X ,Y] + · · ·

90/99

Numerical results

I Riemann problem (discontinuous initial data made of two
constant states): ρL = 2, ρR = 1, uL = uR = 0.

I 200 cells (800 nodes). x ∈ [−1,1]

I Compare first and second order time integration at time
t = 0.4.

91/99

density, CFL=2

92/99

finer mesh
600 cells, CFL=0.5

Oscillations but nice stability and convergence

93/99

Imaginary part
600 cells, CFL=0.5

shock detector ?

94/99

Smooth solution

I Smooth initial data. No shock wave before final time.
I Implicit Discontinuous Galerkin scheme with third order

polynomials.
I 50 to 800 cells
I Convergence rate for first and second order time integration.

95/99

Convergence rate

I We obtain the expected convergence rate.
I Second order Strang splitting would degenerate to first order

scheme when τ → 0 [Jin, 1995]

96/99

Conclusion

I DG method is an old but still alive method.
I Research on DG is very active.
I Well adapted to mesh adaptation, to parallelism.
I Many applications: transport, fluid mechanics,

electromagnetism, etc.

97/99

Bibliography I

[Augonnet et al., 2012] Augonnet, C., Aumage, O., Furmento, N., Namyst, R., and Thibault, S.
(2012).
StarPU-MPI: Task Programming over Clusters of Machines Enhanced with Accelerators.
In Jesper Larsson Träff, S. B. and Dongarra, J., editors, EuroMPI 2012, volume 7490 of LNCS.
Springer.
Poster Session.

[Barth, 2006] Barth, T. (2006).
On the role of involutions in the discontinuous galerkin discretization of maxwell and
magnetohydrodynamic systems.
In Compatible spatial discretizations, pages 69–88. Springer.

[Bourdel et al., 1992] Bourdel, F., Mazet, P.-A., and Helluy, P. (1992).
Resolution of the non-stationary or harmonic maxwell equations by a discontinuous finite element
method. application to an emi (electromagnetic impulse) case.
In 10th international conference on computing methods in applied sciences and engineering on
Computing methods in applied sciences and engineering, pages 405–422. Nova Science Publishers,
Inc. Commack, NY, USA.

[Cockburn and Shu, 1998] Cockburn, B. and Shu, C.-W. (1998).
The runge–kutta discontinuous galerkin method for conservation laws v: multidimensional systems.
Journal of Computational Physics, 141(2):199–224.

[Deshpande, 1986] Deshpande, S. (1986).
Kinetic theory based new upwind methods for inviscid compressible flows.
In 24th AIAA Aerospace Sciences Meeting, volume 1.

[Duff and Reid, 1978] Duff, I. S. and Reid, J. K. (1978).
An implementation of tarjan’s algorithm for the block triangularization of a matrix.
ACM Transactions on Mathematical Software (TOMS), 4(2):137–147.

98/99

Bibliography II
[Fung, 1998] Fung, T. (1998).

Complex-time-step newmark methods with controllable numerical dissipation.
International Journal for numerical methods in Engineering, 41(1):65–93.

[Helluy and Jung, 2014] Helluy, P. and Jung, J. (2014).
Interpolated pressure laws in two-fluid simulations and hyperbolicity.
In Finite volumes for complex applications. VII. Methods and theoretical aspects, volume 77 of
Springer Proceedings in Mathematics & Statistics, pages 37–53. Springer.

[Hesthaven and Warburton, 2007] Hesthaven, J. S. and Warburton, T. (2007).
Nodal discontinuous Galerkin methods: algorithms, analysis, and applications.
Springer Science & Business Media.

[Jin, 1995] Jin, S. (1995).
Runge-kutta methods for hyperbolic conservation laws with stiff relaxation terms.
Journal of Computational Physics, 122(1):51–67.

[Johnson et al., 1984] Johnson, C., Nävert, U., and Pitkäranta, J. (1984).
Finite element methods for linear hyperbolic problems.
Computer methods in applied mechanics and engineering, 45(1):285–312.

[Lesaint and Raviart, 1974] Lesaint, P. and Raviart, P.-A. (1974).
On a finite element method for solving the neutron transport equation.
Mathematical aspects of finite elements in partial differential equations, (33):89–123.

[McLachlan and Quispel, 2002] McLachlan, R. I. and Quispel, G. R. W. (2002).
Splitting methods.
Acta Numerica, 11:341–434.

[Natvig and Lie, 2008] Natvig, J. R. and Lie, K.-A. (2008).
Fast computation of multiphase flow in porous media by implicit discontinuous galerkin schemes with
optimal ordering of elements.
Journal of Computational Physics, 227(24):10108–10124.

99/99

Bibliography III

[Reed and Hill, 1973] Reed, W. H. and Hill, T. (1973).
Triangularmesh methodsfor the neutrontransportequation.
Los Alamos Report LA-UR-73-479.

[Strub, 2015] Strub, T. (2015).
Resolution of tridimensional instationary Maxwell’s equations on massively multicore architecture.
Theses, Université de strasbourg.

[Wang and Xu, 1999] Wang, F. and Xu, J. (1999).
A crosswind block iterative method for convection-dominated problems.
SIAM Journal on Scientific Computing, 21(2):620–645.

[Zingan et al., 2013] Zingan, V., Guermond, J.-L., Morel, J., and Popov, B. (2013).
Implementation of the entropy viscosity method with the discontinuous galerkin method.
Computer Methods in Applied Mechanics and Engineering, 253:479–490.

	Discontinuous Galerkin methods
	Nodal DG on GPU with OpenCL
	ADER approaches
	Parallel transport solver
	Kinetic schemes

