Kinetic Approximations

Philippe Helluy

University of Strasbourg, IRMA CNRS, Inria Tonus

Wiirzburg, February 2024



Plan

Convection-Diffusion Equation
Hyperbolic Systems

Kinetic Approximation
Examples

Schemes without CFL
Boundary Conditions

Bibliography



Convection-Diffusion Equation



Diffusion Equation

Consider the diffusion (or heat) equation
wr — pwxx =0,

where:
» the unknown w(x, t) is a function of x € R and time t,
> Wi = %v Wy = %7;/(‘/1

with an initial condition
w(x,0) = wp(x).

The parameter u is the diffusion coefficient.



Fourier Transform

The Fourier Transform on R is defined by (i = —1)

w(&) = /X=+00 w(x) exp(—ix§)dx.

Convolution is defined by

X=—400
(f+g)(x) = / f(x = y)eg(y)dy.
Some properties:
> w(x) = % g:j;o w (&) exp(+ix§)dE (Inverse Fourier
Transform)
> [ lw|? = i |W|? (Parseval's equality, the Fourier Transform is
an isometry of L2(R))

> (f % g) = f& (transform of the convolution into a product)



Exact Solution
Fourier Transform in x (0x — i§)
We = _M§2VAV
so
W(E, t) = exp(—p&>t) .
Remarks:
» Energy decreases if 1 > 0 (increases otherwise)

» Convolution in x

1
2 /Tt exp( ut )

w = E(-, t) % wp, with E(x,t) =

» Smoothing effect when 1 > 0.

Issue if 4 < 0. Suppose that the spectrum of wy (the support of
Wo) is bounded, included in the interval [—¢, ¢], then

Iw(, )2 < exp(|p| ¢°t) [[w(-, 0|l 2,

but this estimate cannot be improved: the solution 'explodes’ in
time.



Convection Equation

Convection (or transport) equation with velocity ¢
we +cwy =0,  w(-,0) = wo(+).

Fourier Transform
Wy = —icéw.
We find
W(€7 t) = exp(—icft)v?/(f, 0)

Hence (Fourier shift)

w(x, t) = wo(x — ct).



Convection-Diffusion

For the convection-diffusion equation
We + cwx — s = 0, w(x,0) = wp(x),
where i is the viscosity coefficient, we find

—(x — 2
w = E(- )  wo, with E(x,) = — (x —ct)

- 2\/mut P



Stability

From the previous formula, we can deduce:
» Maximum principle: if 0 < wp < M then 0 < w(-, t) < M,
t > 0.
> Decay of energy £(t) = [ w(x, t)?dx: E(t) < £(0), t > 0.



Upwind scheme

We consider the transport equation
wr+cwy =0, x€e€R, t>0,

with initial condition w(x,0) = wy(x) and ¢ > 0.
Time step 7, space step h. Discretization at points x; = ih,
tn = n7, w/' ~ w(x;, t,). Upwind scheme, WP = w(x;,0) and

n_
i :+CWi
T h

n
Wi_q

=0.

Very natural: information comes from the left.



Maximum principle

We introduce the CFL number § = c7/h. Then:
Wt = (1= B)w! + Bw/ ;.

Under the condition 8 < 1 we have the discrete maximum principle.
If forall i, 0 < Wlpg M then for all iand n >0, 0 < w < M.



Equivalent Equation

We can construct a continuous version of the previous scheme. We
seek a function w(x, t) (which we still denote w) that solves the
difference equation

w(x,t+7) — w(x,t) n CW(X, t) —w(x —h,t) _0
T h

This solution coincides with the discrete solution at the points

(x,t) = (xi, tn). What does w satisfy formally when h and 7 tend

to 0 with ¢7/h = 3 fixed?



Energy stability

Shift operator (notation: /2 = —1)
(Drw)(x) = w(x — h), (Dpw)"(§) = exp(—1h§)W(§).
The finite difference equation becomes, with c¢7/h = 3,
w(S,t+7) = A& hw(E, 1),

with A(&, h) = (1 — B+ Be~ M), the amplification coefficient. The
scheme is stable in L2 iff A is in the unit disk for all frequencies &.

We retrieve the condition
g <1



Using Fourier
Shift operator (notation: /2 = —1)

(Daw)(x) = w(x = h), (Dpw)"(€) = exp(—1h&)w(§).
The difference equation becomes, with c7/h = §,
w(E, t+7) = A& T)W(E, 1),
with A(¢, h) = (1 — B+ Be M%), So we have

otrn) MEET) L (s aen)) wen =0

With a Taylor expansion at 7 = 0 and inverse Fourier transform, we
find c

we + cwy = (1= B)hwse = 0+ O(h?).
The upwind scheme introduces a numerical viscosity

p = 5(1— B)h. The consistency is therefore of order 1. We recover
the CFL stability condition.



Remark on the equivalent equation

The equivalent equation often provides information on the CFL
stability, but not always [5]. Example: heat equation

Wi — Wy = 0,
discretized by the classical explicit scheme

u(x,t+7) — u(x,7) N —u(x —h,7)+2u(x,7) —u(x+ h, 1)
T h?

The equivalent equation is

1
Ut — Uxx — E(l - 6ﬂ)h2Uxxxx = O(h4),

which is stable under the condition 5 > 1/6 while the scheme is
stable if 5 < 1/2!

=0.



Hyperbolic Systems



Conservation Laws
First-order conservation laws system (CLS). Notation convention:
vectors and matrices with capital letters, scalars with lowercase
letters.
d
We+ ) 0,Q/(W) =0,
i=1
» Unknown vector: W(X,t) € R™, X = (x},...,x9) € RY
space variable, t > 0, time variable;
> 8;:%. If d =1 wenote w =W, x! =x, Q4(W) = q(w)
and 9; QY (W) = g(w)x.
> Q'(W): flux in the direction i. If Q/(W,VxW): second-order
system...
For a spatial vector N € R? we can also define the flux in the
direction N by

d
QIW,N) =) Q(W)- Ni(W) = QW) - N(W).

i=1



Conservation ?

Integrate the CLS over a space domain  and note the "mass"
contained in this domain at time ¢t

M(t) = o W(X,t).

The Stokes formula leads to

d
EM(t) N /Xeaﬂ QU B, M)

where N(X) is the outward normal vector to Q at point X on the
boundary 09.

In other words, the variation of the mass in the domain over time is
given by the integral of the flux on the boundary.



Hyperbolicity

The CLS is hyperbolic if for all directions N and all vector W the
Jacobian matrix of the flux

AW, N) =DwQ(W,N)

is diagonalizable with real eigenvalues. We note \;(W, N) the
eigenvalues (often arranged in ascending order) and R;(W) the
corresponding eigenvectors.

Note that in the scalar case m = 1 the system is necessarily
hyperbolic.



Hyperbolicity?

Consider the linear CLS W = (a, b)T

() (2 0)(2))-0 o

In Fourier space

e (7)o men=( %)

There are non-trivial solutions if and only if det M(&, 7) = 0 which
gives
a— 652 =0.

If € =1, this resembles the equation of a hyperbola and the system
is said to be hyperbolic. If ¢ = —1, the system is said to be elliptic.



Examples: transport, Burgers

Consider d =1, m =1, and g(w) = cw. This gives the 1D
transport equation
w: + cwy = 0.

The eigenvalue \; = c.
The Burgers equation is obtained by choosing q(w) = w?/2. This

yields
W2
we + (2>X =0.

For smooth solutions, the Burgers equation can also be written
wy + ww, = 0.

Here,
A1(w) = w.

In the Burgers equation, the wave speed is also the unknown
conservative quantity w.



Example: Traffic Flow

Vehicle density on a highway lane w(x, t) > 0. Vehicle speed
v = v(w). Conservation law of vehicles

we + (v(w)w)x = 0.
The flux is therefore
g(w) = wv(w).

Vehicle driver behavior law. For a maximum density w = way, the
speed v(Wmax) = 0. For a very fluid traffic, drivers travel at the
maximum allowed speed v(0) = vjax. Therefore, we can take

w

v(w) = (1~

) Vmax-
Wmax

Here the wave speed is therefore

2w

Aw) =q'(w) =(1-

)Vmax S [_Vmam Vmax] .
Wmax



Other Examples

» Saint-Venant Model (or shallow water): m =2, d = 1, water
height h(x, t), mean horizontal velocity u(x, t), gravity
g = 9.81Im/s>.

W= ( hhu > QY(W) = ( hu? +hL;rh2/2 )

oW + 0, QY (W) = 0.

Compressible Gas;
Maxwell's Equations;
Multiphase Fluid,;
MHD Equations;

etc.

vVvyYVYyyvyy



Method of Characteristics

Consider a scalar 1D conservation law (m =1, d = 1)
Wt + q(W)x =0.

Characteristic curve: parameterized curve t — (x(t), t) in the (x, t)
plane along which w is constant

d
aw(x(t), t) = 0.

We find that x'(t) = ¢'(w(x(t), t) = ¢'(w(x(0),0) is constant.
The characteristics are therefore straight lines. This allows to
compute the solutions (strong solutions).



Critical Time

>

>

Transport: if g(w) = cw then x(t) = ct + xg. Therefore
w(x, t) = w(x(0),0) = w(x — ct,0).

Burgers: if q(w) = w?/2 then x(t) = w(xp,0)t + xo. If the
initial condition is decreasing and g convex, one can see that
the characteristics intersect while transporting different values
of w. The strong solution ceases to exist after a certain time

that can be calculated as:
_ -1
infx ¢'(wo(x))

The concept of a strong solution is not sufficient. It will be
necessary to generalize.



Hyperbolicity and Transport

Hyperbolicity is a necessary condition for stability. Example: a
one-dimensional (d = 1) linear CLS with constant coefficients:

Wi+ QW) =0, Q(W)=AW.
If Ais diagonalizable with real eigenvalues
diag(A1,...,Am) = A = R7IAR,

where the columns of R are the eigenvectors R;. Positing
W = PY, we have
Y +AY, =0

and each component Y/ of Y is a solution to a transport equation
with velocity ;. The eigenvalues can be interpreted as wave
speeds.



Hyperbolicity and Stability

If an eigenvalue ); is not real, thatis \; =a-+ /b, b#0. y = Y'is
a solution to the transport equation

ye +(a+ Ib)y, = 0.

In Fourier space:
e+ (a+ Ib)Igy = 0.

This implies that

}7(5’ t) — eflagtebgt}/}(g’ 0)

High-frequency modes are exponentially unstable...



Weak Solution

Definition: W(X, t) is a weak solution of W; + Vx - Q(W) =0,
W(X,0) = Wy(X) if for any regular test function ¢(X, t) with
bounded support,

/ (Wee + QW) - Vxp) = / Woie(-.0).
X,t>0 X

By integration by parts: strong = weak and weak + regular =
strong.
What happens in the weak + discontinuous case?



Rankine-Hugoniot

Weak solution with discontinuity on a surface X of the space-time
(“shock™). Normal vector (N, n;) to this surface, oriented from side
L to side R. We note [a] = ag — a; the jump of the quantity a
across the discontinuity.

Rankine-Hugoniot relations:

neW] + N-[Q(W)] =o.

If N is a unit spatial vector then n; = —o where o is the normal
speed of the discontinuity. We find

o[W] = N - [Q(W)).

Caution: some calculations are no longer valid for weak solutions.
For example, if w is a weak solution of w; + (w?/2), =0, w is not
necessarily a weak solution of (w?/2); + (w3/3)x = 0.



Loss of Uniqueness

There is no uniqueness of weak solutions for the Cauchy problem.
Example (with Burgers g(w) = w?/2):

we + g(w)x =0,
if
w(x,0) =40 "x<0
1 otherwise.

At least two weak solutions:

wi(x, 1) {0 if x < t/2,

1 otherwise.

0 if x <0,
wa(x,t) =<1 if x > t,
x/t otherwise.

We only keep the second solution (as it is less “discontinuous”).



Lax Characteristic Criterion

There is no need to introduce a shock when the characteristics do
not intersect. A shock of velocity o satisfies the Lax characteristic
criterion (m=1, d =1) if

q'(we) > o > q'(wg).

In the case m > 1, d > 1, the Lax characteristic criterion becomes:
there exists an index i such that

)\,‘(WL, N) >0 > )\,‘(WR7 N)

Here, N is the normal vector to the discontinuity surface, unitary,
and oriented from L to R.



Entropy

The characteristic criterion is geometric. Not practical for
numerics. We seek an integral criterion.

An entropy s(W) associated with the entropy flux G(W) is a
function that satisfies an additional conservation law

s(W)e+ ) 9,6'(W) =0
when W is a strong solution.
Then, setting A(W) = Dy, Q'(W),
Dws(W)A (W) = Dy, G'(W).

For m = 1 any function is an entropy. It is more complicated if
m> 1.



Practical Calculation

As we work with strong solutions, we can change variables. If
W = W(Y)

DyWY; + AIDyWd;Y =0, A =DywQ',
which implies
Yi+B(Y)0;)Y =0, B'=PlAP, P=DyW.
With s(W) = u(Y) and G'(W) = H'(Y), we have

DyuB' = Dy H'.



Example: Saint-Venant

Saint-Venant equations, m = 2, d = 1, water height h, velocity u,
gravity g = 9.81m/s?.

W= (hhu> QW) = (hu2 :2/72/2) ‘

By performing calculations in variables Y = (h, u) ", we find
(non-unique solution)

2 h2
s(W)y=ht 1 &

3
u
2 = h— h?.
5 > G(W) h2+ug



Lax Entropy

An entropy s(W) is a Lax entropy if s is strictly convex with respect
to W. A weak solution is a Lax solution if, in the weak sense,

s(W); +8;G'(W) <0.
Lax entropy criterion for shocks
ne[s(W)] + N - [6(W)] <0,
or with shock velocity o
als(W)] = N-[G(W)].

Often, but not always, Lax entropy criterion < Lax characteristic
criterion [14].



Legendre Transform

An important tool: the Legendre transformation. Consider a
function s from R C R™ to R. Assume that the gradient of s,
Vws(W) from R to S = Vs(C) is invertible.

This is the case if s is strictly convex, for example. The Legendre
transformation s* of s is defined for V € S by

S(V)=V-W—s(W), V=Vs(W).

Examples: s(x) = x2/2, s(x) = x3/3, s(x,y) = y?/2/x + x?/2.
When s is strictly convex, the Legendre transformation coincides
with the Fenchel transformation

s*(V) =sup (V- W —s(W)).
w

In the general case, Vs(W) is multivalued, it requires differential
geometry...



Useful General Properties

> V=Vs(W)&s W =Vs*(V).

> S** =S

> ds(W) = Vs(W)-dW = V - dW. And
ds*(V) = Vs*(V)-dV = W . dV. Exchange of variables and
derivatives. Justifies the term conjugate or dual function.
Useful in thermodynamics.



Convex Case

If s is strictly convex.
» s* is strictly convex

» the Hessian matrices of s and s* are symmetric and positive
definite.

» The inf-convolution

51|:|52(W) = W:WL—WQ Sl(Wl) + 52(W2)

is changed into an addition:

s'(V) =si(V) +s(V).



Duality and Lax Entropy

If s is a Lax entropy, we can calculate its Legendre transform s*.
Entropic variables:

V =Vs(W) & W =Vs*(V).
We then define the dual entropy flux:
G (V)= V. Q(W)-G(W).

(Note: this is not a Legendre transformation, hence the symbol “x
is different from “x"). Property:

VGH*(V) = QI(W).

In other words: the gradient of the dual entropy is the conservative
variables. The gradient of the dual entropy flux, is the flux of the
CLS.

The scalar functions (s*, G'**) contain all the information on the
CLS. It can be seen that the existence of a Lax entropy is a strong
property: one reconstructs d -+ 1 vectorial functions from only

d + 1 scalar functions!



Mock's Theorem

Theorem

A system is symmetrizable if and only if it admits a Lax entropy
[15, 4, 10].

Proof.
< 0:W + 9;Q'(W) = 0 can also be written as
0:Vs*(V) + 0;VG'*(V) = 0. Therefore,

D%s*(V)d,V + D*G"*(V)d;V = 0.

The Hessian matrices are symmetric and s* is strictly convex,
therefore D2s*( V) is positive definite.

=: if there exists a change of variables that symmetrizes the CLS,
then 0, W (V) + 9;W(V)Q (W) = 0 with W(V) symmetric and
positive definite and W (V)Q'(W) symmetric. By Poincaré lemma,
these are the Hessians of s* and G'*. Thus, s = s** and

G' = G, O



Example: Saint-Venant

Calculate s, G', s*, G'*. See [9]



Vanishing Viscosity

Entropic solutions are limits of viscous solutions:
OtWe + 0, Q(W*®) — €D W = 0.

The viscosity € > 0 ensures that W* is regular. It is assumed that
W€ — W (in a suitable sense). By integration by parts and passing
to the limit, W is a weak solution. Multiply by Ds(W¢):

Ors(W€) + 0k g(W€) — eVsOu W =0,
or, since DsD® = Dg,
Drs(W) 40, g(W®) = eDsd W€ = € DsO W —eD?*sd, W -0, W,

As s is convex D?sO,W - 9, W > 0. Then we multiply by a test
function ¢ > 0 and we integrate by parts

/ (—s(W®)0rp — g(W*)0xp) < e/ W€ 0, DsOx .
X,t X,t

Thus, when € — 0, we have in the weak sense

Oes(W) + Oxg(W) < 0.



Kinetic Approximation



Kinetic Representation

System of Conservation Laws (CSL)
W +0;Q'(W) = 0.

Kinetic vectors Fy

W = i Fi.
k=1

Global kinetic vector F, made of all the Fj stacked together:

F=(F],....,F] ).

? 7 Nnpy

Or
W = PF,

with P a constant matrix, called the projection matrix.



BGK Model

Kinetic velocities V) constants, k = 1...n,. Transport with
BGK-type relaxation

1
8tFk+Vk'VFk:g(F:q—Fk), k=1...n,.

Kinetic equilibrium F.7 = FS9(W).
Noting 1,, the identity matrix of size m x m and V' the diagonal
matrices

Vil
Vi = R ;
Vi 1m
the BGK system can also be written in the full vector form

d
OF +) 0 (VIF) = é(Feq(W) —F).
i=1



Consistency

As ¢ — 0, we expect Fj ~ F,fq. The kinetic system is therefore an
approximation of the CLS (1) if

W= FEW), QW)=Y VIFW), ()
k k=1



Kinetic Scheme
BGK relaxation: nonlinear coupling between all kinetic vectors Fy.
To decouple, a decomposition scheme (splitting) is used. Each time
step At is divided into:
» Transport: computation of Fi (-, t™) from Fi(-, t — At™) by
solving

d
OF +> 0; (VIF) =0.
i=1
» Get the conservative variables

W(,t)=> Fil(-t7).
k

» Relaxation: computation of Fy(-, t")
Fk('v t+) = WFlfq(W(‘a t)) + (1 - W)Fk(" t_)'

Note: w € [1,2] is the relaxation parameter. First-order scheme if
w = 1, second-order scheme if w = 2 (over-relaxation). W is
continuous in time, but not Fy.



Kinetic Entropy

A kinetic Lax-Mock theory can be developed. Suppose we find
functions s; (V) such that

ny
g sp=5s", E Visi = G"™.
k=1 k

Let
FA(W(V)) = Vysp(V).
Then, by taking the gradient:
> Y FI=Vyst =W,
> S VIFT =Vy G = Q'
Moreover, if the s are convex, the equilibrium is also a minimum
of the kinetic entropy:



Entropic Stability

It then becomes easy to prove the entropic stability of the kinetic
scheme. The total entropy (x is assumed to be in an infinite or

periodic domain)
s = [ YsF)
Xk
is conserved during the transport step. It is sufficient to show that

Zsk(Fk(', t+)) < Zsk(Fk('> t_))‘
k k

This is the case (proof) when w =1 and also (diagram) for w ~ 2.



Sub-characteristic Condition

The above proof works as long as the s, are convex, which is
equivalent to s; being convex. Taking the case d =1 and n, = 2,

we have
* *

Sip = % + %
Since s* is strictly convex, if A is large enough, we expect s to also
be strictly convex, at least locally. The condition of s; being
strictly convex leads to the sub-characteristic condition. Examples:

transport, Burgers, Saint-Venant.



Approximate Flux

Another way to study stability: equivalent equation. The projection
matrix P is a matrix with m rows and mn, columns. It is extended

to an invertible matrix
p
(%)

called the moment matrix, such that

(Y )-wr

The vector Z = RF is called the “approximate flux". The “flux
error’ is also defined as

Y = R(F — F%9).

It is enlightening to find the PDE satisfied by the couple (W, Y).



Equivalent PDE Algorithm

The kinetic scheme is a functional operator that computes
F(-,t+ At™) from F(-,t"). With the previous change of variables,
we have thus a well-defined operator M(At), such that

< " )(-,t+At+) :M(At)< " > (. t9).
To find the equivalent PDE, we perform a Taylor expansion in At of

M(At)2) —AtM(—At/z) ( V\Y > :at< V\Y

) + O(At?).

This expansion can be automated with Maple or SymPy for
instance.



Flux Error Oscillations

In the set of variables (W, Y'), the relaxation step
Fk('? t+) = wFlfq(W('7 t)) + (1 - W)Fk('v t_)7

becomes simply

(¥)em=(atiy)eo

In particular, if w = 2, the flux error Y is changed to —Y. To
remove this rapid oscillation of frequency 1/At, we can replace
M(At) by M(At/2) o M(At/2) in the analysis.



Form of the Equivalent PDE

The operator M is composed of shifts and nonlinear relaxations. In
the asymptotic development, the shifts produce partial derivatives.
The result is a system of nonlinear PDEs of the form

at(vg>+g?(3)+§ma,(vx)

tar S0 B"’fé?,-d-< " > _ o(ap). (3)

1<ij<d



Examples



Jin-Xin Model [13]

We apply the previous theory to the Xin-Jin model for d = 1,
nV = 21

. (A0 [ F* (11
V_<O)\’F_ ) M=, 2\ )




Jin-Xin, Equivalent System

With § =w — 1, we find

w 161
O(Atz):af( Y) At 262 (

v
- ( m(Ag(cV;() WP) QW ) % (

)
v)

At52 -1/ (A2 =v¥)(=82+45-1) 3(52+1)Q'W) 5 w
3262 \ 3(62 +1)(A%2 — v?)Q'W) V3 *\Yy )°
(6 —1)* (52 +1) 5 +1
T = 52 y 2= 252

v3 = —(5Q'(W)? +3A2)(6% + 1) + 4(\% — Q"(W)?)s



Jin-Xin, Equivalent Equation

Under the assumption that Y = O(At), we obtain, to order 2 in
At:

W + 0, Q(W) =

(2~ DAL — (WP,

N~
€lr



Jin-Xin Stability

» The terms of the first order of the equivalent system are
symmetrizable (thus hyperbolic) if

A> QW)

» Under the same condition, the equivalent equation is stable.

In this case, the two stability conditions are equivalent.



D2Q4 Model [9, 2]

We apply the previous theory to the D2Q4 model for transport
(W=w, Q(W)-N:aN1+bN2), d=2, n, =4,

A 0
—A 0
1 2
V' = 0 , Vo= \ ,
0 —-A

1 1 1 1

A =2 0 0

M= 0 0 X =X
AN a2 )2

w + 2aw /A

Feq—l w — 2aw /A
4| w+2bw/A
w — 2bw /X



D2Q4, equivalent system

We recover the form (3)

(1) (3) ()

+At > B’Ja,J< ';‘// > = 0(At?).

1<ij<d

Details in [9].



D2Q4, equivalent equation

Under the assumption that Y = O(At), we obtain to order 2 in

At At 1 1
7(; - E)V ) (DVW)a

D:(/\2/2—a2 —ab >

Orw + adxw + bo,w =
with

—ab  A2/2— b2



D2Q4 stability

» The first order terms of the equivalent system are
symmetrizable (hence hyperbolic) if and only if

A > V2y/a2 4 b2,
» The equivalent equation is stable if and only if

A > 2max(|al, |b]).

100

biA

The hyperbolicity condition s
more restrictive than the diffusion
condition.

000
alk

Stability condition
mm Hyperbolicity condition



D2Q4 Numerical Results

Transport of a Gaussian with w = 1.6, (a, b) = (1,0) on the unit

square, Ny = 200 cells in x and in y. Left A\ = 1.6 (stable
diffusion), right A = 2.2 (stable entropy)

10 10

08 0.8

Lt (e

0.2 0.2

o

=

0.4

0.0 T T T T 0.0
0.0 0.2 0.4 0.6 08 10

The most constraining condition appears to be necessary.




Lattice-Boltzmann [8]

The standard D2Q9 model could be analyzed using this approach.
TODO !



Schemes without CFL



DG Approximation
In the LBM, the transport equation

Oef + V- VF =0 (4)

is solved by shifting. It no longer works on unstructured meshes
(since it is non-conservative). It can be solved with a DG
(Discontinuous Galerkin) scheme. Computational domain: Q.
Triangulation of Q: T = (L;) in open cells L; such that

Q=L LnL=0ifi#]

At time t, = nAt, on cell L € T, the solution is approximated by
the discontinuous function f".

P
f(X, nAt) => " ), XeL
k=1

where the ¢f are DG basis functions on the cell L.



Implicit DG Scheme

A DG scheme, implicit, first-order in time, is given by:

fn_ fn—l X B
R e KA
L L

t

+/ (V-NTf + V- N fr) ¢f = 0.
oL

» The outward normal to L on
OL is noted N. LN AR

> We use the upwind flux
(at = max(a,0), N
a~ = min(a,0)).

» R denotes the neighbor of L
along OL.



Explicit Algorithm
The "implicit" scheme is actually explicit, thanks to the upwind
flux. Cell R is "upstream" of cell L if V - Ng; > 0. Construction of
the dependency graph: oriented arc R — L if R is upstream of L.
The time step can then be solved explicitly by traversing the graph
in a topological order.
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Application: Antenna Simulation

» Maxwell’s equations: W = (ET,HT)T, electric field E € R3,
magnetic field H € R3.

> Maxwell's flux:
—N x H
» Source term, conductivity o, Ohm's law
S(W) = ( _gE )

W +V - QW) = S(W).



Numerical Results

» Unstructured mesh of an electrical wire in a cube. Sending a
plane pulse.

» Second order DG-LBM solver in time (implicit Euler replaced
by Crank-Nicolson).

1 .
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(a) Solution at time t = 0.75; left panel: i, _, ;; middle panel: Ba|, _, ; right panel: Ha|, _, .
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Comparison of FDTD and DG

It is possible to make 0 = +00 in the scheme while remaining
explicit. The source term is resolved in the relaxation step. This is
equivalent to doing E <— —E in this step. Comparison with a finite
difference code (Yee's FDTD scheme) on a uniform mesh.

--=- TEMSI PEC (FDTD) ‘ --=- TEMSI PEC (FDTD)

.10-3 |— KOUGLOFV (CFL =7) 102 KOUGLOFV (CFL =7)
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Boundary Conditions



Boundary Conditions

» A fundamental challenge with numerical schemes: stable and
precise handling of boundary conditions.

» Still an open problem for LBM.

» \We present an attempt for stabilizing a second order boundary
condition.



Transport Equation

For w = 2, the LBM is second-order. In practice, the application of
boundary conditions can reduce the order or stability.

Consider the 1D transport equation with speed ¢ > 0 and a
boundary condition on the left, W = w, Q' (W) = cw,

Otw 4+ coxw =0, x € [L,R]
w(x,0) =0,
w(0, t) = wp(x).
» Grid points: x; = L+ ih+ h/2, 0 < i< N, with
h=(R—L)/N.
» Time step: At = h/\. Time t, = nAt.



LBM

F:<F1>, W=F +F.
Fa

We denote F;"~ the value of F(x;, t,) before relaxation. In the
shifting step

n— _ rn-—1 n— _ rn-—1
Fl,i - Fl,i+1’ F2,i - F2,i—1’

the values F;j (left boundary) and F1’77v1 (right boundary) are
missing. Ghost cell method

n—1 __ n—1 n—1 n—1 __ n—1 n—1
F2,71 - bL(Fl,O =F2,o )7 F1,N = bR(Fl,N—D Fz,/v_1)~



Entropic Stability [3, 7, 1]

The incoming kinetic entropy must be smaller than the outgoing
one:

s2(bi(F1, F2)) < si(F1),  si(br(F1, F2)) < s2(F2).  (5)

Application to the D1Q2 model. We impose W = F; + F, =0 on
the left and Y =0 = A(F2 — F1) — ¢(F1 + F2) on the right. Thus:

A—cC
At c

b (F1,F2) = —F1, br(Fi,F2) = Fy

Simple calculations show that (5) is satisfied. The scheme is stable,
but even when w = 2, it is experimentally only first-order.



Scheme of Order 2

It is more accurate to apply a Neumann condition[6] 9xY = 0 on
the right. This extends the stencil of the ghost function to the right
as
-1 -1 -1 -1 -1
Fln,/\/ = bR(F1n,N_1a F2n,N—1? Fln,N—27 an,/v_z)‘ (6)

To prevent an increase in entropy, the following scheme is applied:

» Calculate Flnﬂl with (6);

> If the entropy condition is not satisfied, i.e. if

st(F'Y) > s2(Fyyt ;) then replace F'3! with the closest

—~— o

value Fﬂfvl such that sl(Fl"JVl) = 52(/-‘2"7,*\/1_1).



Extension to D2Q4

» For d > 1, on a boundary point, in general, the number of
incoming characteristics of the kinetic model and the
equivalent system are different.

» This phenomenon leads to unstable or inaccurate results when
w >~ 2.

» Entropy limiter improves the results.

Transport equation in 2D with velocity ¢ = (a, b) on the square
Q =]0,1[x]0, 1[.

2
OW + D 0Q(W) =0, Q(W)=aW, Q(W)=bW.
i=1



Second Order Boundary Conditions[11, 12]

» Transport equation in 2D with velocity ¢ = (a, b) on the
square Q2 =]0, 1[x]0, 1[.
» Normal vector (ni, n2) on 0SQ2.

» Test of two boundary condition strategies.

Boundary conditions Entropy stable Second order accurate
E luti .
Inflow border xact solution on w Exact solution on w
y3=0
yin +y2n2 =0
Outflow border ¥ 0 Neumann on viy; + vay»
5 =
. . Exact solution on w Exact solution on w
Corner inflow/inflow
y3=0 y3=0
Exact solution on w .
Corner inflow/outflow niy1 + n2y> =0 Exact solution on w
171 Neumann on viy; + vay»
y3=0
y1=0 N
eumann o
Corner outflow/outflow y2=0 umann on viy1 + vay2

y3=0

y3=0




Entropy Evolution
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Left without entropy limitation, Right with limitation.



Order
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Left: First-order stable boundary condition (CL), Right:
Second-order boundary condition with entropy stabilization




Conclusion

» Systems of conservation laws provide a very rich class of
models for physics.

» The kinetic approach is a general and highly effective method
for building numerical approximations.

» The numerical viscosity intuition is useful but not always
correct.

» Entropic theory allows for the mathematical study of stability
and consistence of these schemes.
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