NUMERICAL SIMULATION OF LASER-INDUCED CAVITATION BUBBLES

Mathieu Bachmann

Institut für Geometrie und Praktische Mathematik, RWTH Aachen

Joint work with :

Josef Ballmann, Siegfried Müller, *RWTH Aachen*. Dennis Kröninger, Thomas Kurz, *Universität Göttingen*. Philippe Helluy, Hélène Mathis, *Université de Louis Pasteur Strasbourg*.

Outline

- 1. Introduction
- 2. Experiments
- 3. Mathematical Model
- 4. Discretization
- 5. Initial data
- 6. Numerical simulation and validation
- 7. Conclusion and Outlook

Introduction

• **Goal** : Investigation of flow phenomena caused by a collapsing bubble.

- Need: Mathematical model + Initial data
 - \Rightarrow Focus on the modelling and the simulation of a single bubble.

Experiments

- Bubbles induced by laser pulses in a container of size $50 \times 50 \times 50 \text{ mm}^3$.
- $R_{max} = 1 mm$.
- $R_{min} = 10 \ \mu m$.
- The experiment last $200 \mu s$.

Mathematical Model

• The 1d-Euler equations in spherical coordinates

$$\frac{\partial}{\partial t}(r^2 \rho) + \frac{\partial}{\partial r}(r^2(\rho v_r)) = 0$$

$$\frac{\partial}{\partial t}(r^2 \rho v_r) + \frac{\partial}{\partial r}(r^2(\rho v_r^2 + p)) = 2 p r$$

$$\frac{\partial}{\partial t}(r^2 \rho E) + \frac{\partial}{\partial r}(r^2(\rho v_r(E + p/\rho))) = 0$$
(1)

• The stiffened gas pressure law is used to close the system. $p(\rho, e, \varphi) = (\gamma(\varphi) - 1)\rho e - \gamma(\varphi)\pi(\varphi).$ (2)

 φ is the phase indicator function (gas fraction, level set function).

Saurel Abgrall Approach

• The two phases (gas and liquid) are distinguished by the mass fraction φ which satisfies a transport equation without mass transfer.

$$\frac{\partial \varphi}{\partial t} + v_r \frac{\partial \varphi}{\partial r} = 0.$$

- \bullet For the pure phases, the coefficients γ and π are obtained by measurements.
- A linear interpolation between the two phases is used for the mixture,

$$\beta_1(\varphi) = \varphi \beta_1(1) + (1 - \varphi) \beta_1(0),$$

$$\beta_2(\varphi) = \varphi \beta_2(1) + (1 - \varphi) \beta_2(0).$$

where β_1 and β_2 are defined by $\beta_1 = 1/(\gamma - 1)$ and $\beta_2 = \gamma \pi/(\gamma - 1)$.

Level Set Method

• This approach represents the interface as a zero level set of a smooth function ϕ which is the signed distance from the interface.

$$\phi(r,t) = \begin{cases} r_I - r, & r < r_I \\ 0, & r = r_I \\ r - r_I, & r > r_I \end{cases}$$

• The evolution of this function ϕ is governed by a transport equation,

$$\frac{\partial \phi}{\partial t} + v_r \frac{\partial \phi}{\partial r} = 0 \quad \text{with} \quad \left| \frac{\partial \phi}{\partial r} \right| = 1.$$

 \bullet The level set is reinitialized to keep ϕ a distance function,

$$\frac{\partial \tilde{\phi}}{\partial \tau} = S(\tilde{\phi}) \left(1 - \left| \frac{\partial \tilde{\phi}}{\partial r} \right| \right) \qquad S(\tilde{\phi}) = \begin{cases} -1, \quad \tilde{\phi} < 0 \\ 0, \quad \tilde{\phi} = 0 \\ 1, \quad \tilde{\phi} > 0 \end{cases}$$

Discretization Fluid Equations

• The Euler equations are solved by a finite volume scheme

$$\mathbf{v}_{i}^{n+1} = \mathbf{v}_{i}^{n} - \frac{\Delta t}{\Delta r_{i}^{3}} \left(r_{i+\frac{1}{2}}^{2} \mathbf{F}_{i+\frac{1}{2}}^{n,-} - r_{i-\frac{1}{2}}^{2} \mathbf{F}_{i-\frac{1}{2}}^{n,+} \right) + \frac{\Delta r_{i} \Delta t}{\Delta r_{i}^{3}} \mathbf{S}_{i}^{n}$$

with $\mathbf{v} = (\rho, \rho \, v_r, \rho \, E)^T,$ $\Delta r_i := r_{i+\frac{1}{2}} - r_{i-\frac{1}{2}}, \quad \Delta r_i^3 := \frac{1}{3} \left(r_{i+\frac{1}{2}}^3 - r_{i-\frac{1}{2}}^3 \right), \quad \hat{r}_i := \frac{1}{2} \left(r_{i+\frac{1}{2}} + r_{i-\frac{1}{2}} \right),$ $\mathbf{S}_i^n := (0, 2\hat{r}_i \, p_i^n, 0).$

• Multiscale grid adaptation (Müller)

Strasbourg, 23rd. January 2008

Numerical Flux: Saurel Abgrall Method

- Second order ENO reconstruction of primitive variables ho, v_r , p, arphi
- Exact Riemann solver for the flux

 \Rightarrow 1D contact discontinuities are preserved

Numerical Flux: Real Ghost Fluid Method (Wang, Liu, Khoo)

- A Riemann problem is defined at the interface and solved for predicting the interfacial states (ρ_{IL} , ρ_{IR} , p_I and u_I).
- This state redefines the real fluid next to the interface and the ghost cells as boundary conditions.
- The solution can be advanced to the next time step.

Discretization : Indicator Function

• Mass gas fraction:

Upwind discretization (Saurel/Abgrall)

$$\varphi_i^{n+1} = \varphi_i^n - \frac{\Delta t}{\Delta r_i^3} \left(r_{i+\frac{1}{2}}^2 \overline{v}_{r,i+\frac{1}{2}}^n (\overline{\varphi}_{i+\frac{1}{2}}^n - \varphi_i^n) - r_{i-\frac{1}{2}}^2 \overline{v}_{r,i-\frac{1}{2}}^n (\overline{\varphi}_{i-\frac{1}{2}}^n - \varphi_i^n) \right)$$

• Level set:

First order time discretization and a second order upwind space discretization

Initial Data

- It's not possible to measure experimentally the state inside the bubble.
- It is possible to approximate the state inside the bubble from the equilibrium radius R_{eq} using the static equilibrium and the perfect gas law.
 - At static equilibrium we have $p_i(R_{eq}) = p_0 + \frac{2\sigma}{R_{eq}}$.
- The equilibrium radius R_{eq} is calculated from the Keller-Miksis model.

Strasbourg, 23rd. January 2008

With the adiabatic law, we obtain the pressure

$$p_i(R_b) = p_0 \left(\frac{R_{eq}^3}{R_b^3}\right)^2$$

- With the adiabatic law we obtain the density $\rho_i(R_b) = \rho_0 \left(\frac{p_i(R_b)}{p_0}\right)^{1/\gamma}.$
- With $R_{eq} = 6.92 \times 10^{-5}$ m we compute the initial states,

	Initial of	Material parameters					
	$ ho~[{ m kg/m}^3]$	p [Pa]	γ [-]	π [Pa]	$c_v \; [{J}/{kg} \; {K}]$	${\cal R}~[{\sf J}/{\sf kg}~{\sf K}]$	
Gas	9.5e-4	4.57	1.4	0	708.3	283.32	
Liquid	998	100000	1.1	2.e+9	4190.0	418	

Keller-Miksis Model

- Model for liquid motion induced by a spherical cavity in an infinite medium.
- Incompressibility, sound radiation, the van der Waals gas law, ...

$$\left(1 - \frac{\dot{R}_b}{c}\right) R_b \ddot{R}_b + \frac{3}{2} \dot{R}_b^2 \left(1 - \frac{\dot{R}_b}{3c}\right) = \left(1 + \frac{\dot{R}_b}{c}\right) \frac{P_R - p_0}{\rho} + \frac{R_b}{\rho c} \frac{d(P_R - p_0)}{dt},$$
(3)

where P_R denotes the pressure at bubble radius R_b given by

$$P_{R} = \left(p_{0} - p_{v} + \frac{2\sigma}{R_{eq}}\right) \left(\frac{R_{eq}^{3} - b R_{0}^{3}}{R_{b}^{3} - b R_{0}^{3}}\right)^{\gamma} - \frac{2\sigma}{R_{b}} - \frac{4\mu \dot{R}_{b}}{R_{b}} + p_{v}.$$
 (4)

Fitting of Equilibrium Radius

Numerical Results: Saurel-Abgrall Approach

Numerical Results: Saurel-Abgrall Approach

Numerical Results: Real Ghost Fluid Method

Numerical Results: Validation

19

Numerical Results: Validation

Saurel-Abgrall Approach					Real Ghost Fluid Method				K-M		
Levels of refinement		L13	L14	L15	L16	L17	L14	L16	L18		Model
1st collapse	time [μ s]	64.1	65.4	66.3	67.0	67.4	69.2	68.5	68.5		69.33
	radius [μ m]	16.0	17.5	17.8	17.54	16.7	25.8	17.5	18.7		9.176
	pressure [$f 10^5~f Pa$]	56.6	87.0	131	196	290	100.6	398	300		1510
1st rebound	time [μ s]	111.5	114.3	115.4	115.2	113.9	84.5	83.6	83.7		85.8
	radius [μ m]	462	487	500	500	491	166.6	161.6	165.17		167.8
	pressure [Pa]	0.97	4	7.6	11.8	17	3450	3226	3140		4348
2nd collapse	time [μ s]	159.6	163.8	164.8	163.8	161.1	101.2	99.3	99.5		101.2
	radius $[\mu m]_{-}$	12.8	17.24	19.32	20.07	20.0	29.5	22.6	22		16.4
	pressure [$f 10^5~f Pa$]	27	41	59	83	112	58	130	150		369

Conclusion

Saurel-Abgrall:

- Severe numerical phase transition No phase transition
- Rebound overpredicted
- Slow grid convergence
- Shock strength underpredicted

Real Ghost Fluid Method:

- Rebound well-predicted
- Slow grid convergence
- Shock strength underpredicted

Future Work

- Van der Waals + Real Ghost Fluid method
- 2D/3D implementation of the Real Ghost Fluid method
- Collapse near a wall and comparison with Saurel-Abgrall