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Introduction

e Goal : Investigation of flow phenomena caused by a collapsing bubble.

e Need: Mathematical model + Initial data

= Focus on the modelling and the simulation of a single bubble.



Experiments

Bubbles induced by laser
pulses in a container of size
50 x 50 x 50 mm?.

Riae =1 mm.

The experiment last 200s.
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Mathematical Model

e The 1d-Euler equations in spherical coordinates

02 p) + (o)) = 0
%(’rzpvr) + %(7“2@@? +p)) =2pr (1)
%(TQ,OE) + %(TQ(MT(E +p/p))) =0

e The stiffened gas pressure law is used to close the system.
p(p,e,9) = (7(p) = 1)pe — v(p)m(p). (2)

¢ is the phase indicator function (gas fraction, level set function).
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Saurel Abgrall Approach

e The two phases (gas and liquid) are distinguished by the mass fraction
© which satisfies a transport equation without mass transfer.

8@ _H]T(?go

ot or 0.

e For the pure phases, the coefficients v and 7 are obtained by measure-
ments.
e A linear interpolation between the two phases is used for the mixture,

Bi(w) = ¢Bi(1) + (1 —¢)B1(0),
Ba(p) = ¢Ba(l) + (1 — ¢)B2(0).

where 3 and (3 are defined by 5y =1/(y —1) and B2 = ym/(y — 1). 6
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Level Set Method

e This approach represents the interface as a zero level set of a
smooth function ¢ which is the signed distance from the interface.
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e The evolution of this function ¢ is governed by a transport equation,

%—FUT% =0 with |%

ot or ar| = b

e The level set is reinitialized to keep ¢ a distance function,
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Discretization Fluid Equations

e The Euler equations are solved by a finite volume scheme

At Ar: At
n+l _ n n,— n,+ ?
Vi T TAR (hFly — R + R

1

S’n

with
v =(p,pvn,pE)T
Ar; .=

z—i—%_r— '

1
3
S := (0, 27; p*, 0).

e Multiscale grid adaptation (Miiller)
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Numerical Flux: Saurel Abgrall Method

e Second order ENO reconstruction of primitive variables p, v, p, ©

e Exact Riemann solver for the flux

= 1D contact discontinuities are preserved
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Numerical Flux: Real Ghost Fluid Method (wang, Liu, Khoo)

Mediuml @ Medium 2
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e A Riemann problem is defined at the interface and solved for predicting
the interfacial states (prr, prr, pr and uy).

e This state redefines the real fluid next to the interface and the ghost
cells as boundary conditions.

e The solution can be advanced to the next time step.
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Discretization : Indicator Function

e Mass gas fraction:
Upwind discretization (Saurel /Abgrall)

At
n+1 _  n 2 —=n —n n 2 n —n n
2 e (TH%UT,H%«OH; — i) =0 (@ ¢ ))
1
e Level set:

First order time discretization and a second order upwind space dis-
cretization

11
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Initial Data

e It's not possible to measure experimentally the state inside the bubble.

e It is possible to approximate the state inside the bubble from the
equilibrium radius R., using the static equilibrium and the perfect gas
law.

— At static equilibrium we have Pi(Req) = po + —.

e The equilibrium radius R, is calculated from the Keller-Miksis model.
12



Strasbourg, 23rd. January 2008

R\’
— With the adiabatic law, we obtain Pillty) = po <R3q> |
the pressure b

— With the adiabatic law we obtain
the density pi(Ry) = po (

pi(Rb)> 1./7

Po

e With R., = 6.92 x 107°m we compute the initial states,

Initial data Material parameters
plkg/m’] | p[Pa] | v [] [ 7[Pa] | co [J/kg K] | R [J/kg K]
Gas 0.5e-4 4.57 1.4 0 708.3 283.32
Liquid | 998 100000 || 1.1 2.e+9 | 4190.0 418

13
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Keller-Miksis Model

e Model for liquid motion induced by a spherical cavity in an infinite
medium.

e |Incompressibility, sound radiation, the van der Waals gas law, ...

Ry .3, Ry
— — l——] = 3
( C>RbRb+2Rb( 3) 3

Ry \ Pr — Ryd(Pg —
<1+ b) R p0+ b ( R po)’
c 0 pC dt

where Pr denotes the pressure at bubble radius R given by

20) <R2q — bR%)v 20 4Ry,

+pu. (4)

14
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Fitting of Equilibrium Radius

0.8
Initial conditions :
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Numerical Results: Saurel-Abgrall Approach
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Numerical Results: Saurel-Abgrall Approach
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Numerical Results: Real Ghost Fluid Method
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Numerical Results: Validation

Saurel-Abgrall (green)
Real GFM {blue
= Keller-Miksis model {pink)
0.0006
0.0004 |-
E L
x -
0.0002 -
g

19



Strasbourg, 23rd. January 2008

Numerical Results: Validation

Saurel-Abgrall Approach Real Ghost Fluid Method K-M

Levels of refinement L13 | L14 | L15 | L16 | L17 L14 | L16 | L18 Model
.9 time [us] 64.1 65.4 66.3 67.0 67.4 69.2 68.5 68.5 69.33
= (_% radius [pm] 16.0 17.5 17.8 17.54 16.7 25.8 17.5 18.7 9.176
E pressure [105 Pa] 56.6 87.0 131 196 290 100.6 398 300 1510
- 2 time [us] 111.5 114.3 115.4 115.2 113.9 84.5 83.6 83.7 85.8
,!.’_§ radius [pm] 462 487 500 500 491 166.6 161.6 165.17 167.8
0 pressure [Pal 0.97 4 7.6 11.8 17 3450 3226 3140 4348

< 9 time [us] 159.6 163.8 164.8 163.8 161.1 101.2 99.3 99.5 101.2
S& radius [pm] 12.8 17.24 19.32 20.07 20.0 29.5 22.6 22 16.4
E pressure [105 Pa] 27 41 59 83 112 58 130 150 369
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Conclusion

Saurel-Abgrall: Real Ghost Fluid Method:

e Severe numerical phase transition e No phase transition
e Rebound overpredicted e Rebound well-predicted
e Slow grid convergence e Slow grid convergence

e Shock strength underpredicted e Shock strength underpredicted

21



Strasbourg, 23rd. January 2008

Future Work

e Van der Waals + Real Ghost Fluid method
e 2D /3D implementation of the Real Ghost Fluid method

e Collapse near a wall and comparison with Saurel-Abgrall

22



