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Introduction

pbubble ¿ pliquid

⇒ Oscillations and/or collapse

Several models (energy model /
isothermal model, bifluid
/monofluid...)

Different numerical approximations
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Euler System

Unknows:

Density: ρ(r , t)

Radial velocity: v(r , t)

Internal energy: e(r , t)

Fraction of gas: ϕ(r , t)

Pressure of the mixture: p = p(ρ, e, ϕ)

p(ρ, e, ϕ) =

{
(γ1 − 1)ρe if ϕ = 1,

(γ2 − 1)ρe − γ2π2 if ϕ = 0.
(1)

with γ1 = 1.4, γ2 = 1.1 and π2 = ρ0c
2
0/γ2.
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Euler System

Mass conservation of gas:

(rd−1ρϕ)t + (rd−1ρϕu)r = 0,

Mass conservation of liquid:

(rd−1ρ(1− ϕ))t + (rd−1ρ(1− ϕ)u)r = 0,

Momentuum conservation:

(rd−1ρu)t + (rd−1(ρu2 + p))x = (d − 1)pr (d−2),

Conservation of the total energy:

(rd−1ρE )t + (rd−1(ρE + p)u)x = 0,

Total energy: E = e + u2/2.

(2)

with d = 1, 2 or 3
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Isothermal Euler equations

ϕ is constant on the whole domain

Unknows:

Density: ρ(r , t)

Radial velocity: v(r , t)

(rd−1ρ)t + (rd−1ρv)r = 0,

(rd−1ρv)t + (rd−1(ρv2 + p))x = (d − 1)pr (d−2)
(3)

with d = 1, 2 or 3
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Isothermal Euler equations + monofluid model

Isobaric pressure law:

p = pvapor = pwater

= p0 + c2(ρ− (α(ρ, ϕ)ρA + (1− α(ρ, ϕ))ρW ))
(4)

where

α(ρ, ϕ) =
θ − 1 +

√
(θ − 1)2 + 4θϕ

2θ
and

θ =
ρW − ρA

ρ

Volume fraction of gas: α(ρ, ϕ)
Reference pressure: p0 = 105Pa
Reference density for water: ρW = 1000kg/m3

Reference density for air: ρA = 1kg/m3

Sound of speed: c = 1500m/s
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Boundary conditions

r ∈ [0, ARb], Rb =initial bubble radius

Y = (ρ, u, p, ϕ),

Y (r , 0) =

{
YL if r < Rb,
YR if r > Rb.

(5)

Y (0, t) = YL and Y (ARb, t) = YR

d > 1 ⇒ left boundary useless (because the first edge surface
is 0)
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Initial data

Reference parameters:

Sound speed: c0 = 1500m/s
Pressure: p0 = 105Pa
Density: ρ0 = 1000kg/m3

Vapor: γ1 = 1.4 (π1 = 0)

Water: γ2 = 1.1, π2 =
ρ0c

2
0

γ2

Left Side Right Side

ϕL = 1 ϕR = 0
uL = 0 uR = 0

pL = p0

(
Req

Rb

)3γ1

= 75208.8Pa pR = p0

ρL = ρeq

(
pL
p0

)1/γ1

= 0.948kg/m3 ρR = ρ0

eq: bubble state at equilibrium
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Numerical scheme

Eulerian approach: poor precision, smears the interface

Lagrangian approach: more precise at the interface,
constant states (u, p) when d=1,

if Rb −→ 0 ⇒ ∆t −→ 0
(because of the CFL condition)

⇒ Lagrangian approach only at the interface
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Numerical scheme

Conservative variables:

W =




ρϕ
ρ(1− ϕ)

ρu
ρE


 and W n

i = W (rn
i , tn)

Left boundary motionless
Time step: τn = tn+1 − tn
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Numerical scheme

r n+1
i+1/2 = r n

i+1/2 + τ nun
i+1/2. (6)

un
i+1/2 = 0 −→ Eulerian scheme

un
i+1/2 = vn

i+1/2 −→ Lagrangian scheme
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Numerical scheme

Integrating the balance laws on the space-time trapezoid

{(rn
i−1/2, t

n), (rn
i+1/2, t

n), (rn+1
i+1/2, t

n), (rn+1
i−1/2, t

n+1)},

V n+1
i W n+1

i − V n
i W n

i + τn
(
Sn

i+1/2F
n
i+1/2 − Sn

i−1/2F
n
i−1/2

)
= τnGn

i .

(7)

Volume of ce cell i : V n
i =

∫ rn
i+1/2

rn
i−1/2

rd−1dr

Surface of edge : i + 1/2 : Sn
i+1/2 =

(
rn
i+1/2

)d−1

Lagrangian flux : F n
i+1/2

Dimensional source term : Gn
i
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Numerical scheme

1 Solve de Riemann problem R(WL,WR , x/t) = W (x , t)

Wt + f (W )x = 0,

W (0, t) =

{
WL if x < 0,
WR if x > 0.

(8)

To take into account the edges velocity, we compute:

W n
i+1/2 = R(W n

i , W n
i+1, u

n
i+1/2)
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2 Compute the Lagrangian flux
F n

i+1/2 = f (W n
i+1/2)− vn

i+1/2W
n
i+1/2

3 Compute the dimensional source term :

Gn
i '

∫ rn
i+1/2

rn
i−1/2

(d − 1)p(r)rd−2dr

given by Gn
i = pn

i

(
Sn

i+1/2 − Sn
i−1/2

)
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Stability condition

hn
i =

V n
i

Sn
i−1/2 + Sn

i+1/2

The time step has to respect two conditions :
Non vanishing condition:

τn ≤ max
i


 hn

i∣∣∣vn
i±1/2

∣∣∣


 (9)

Stability condition :

τn ≤ max
i


 hn

i∣∣∣un
i±1/2 − vn

i±1/2

∣∣∣ + cn
i±1/2


 (10)
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Cell averaging

Only the bubble interface move

ϕn
k 6= ϕn

k+1 ⇒ vn
k+1/2 = un

k+1/2,

vn
i+1/2 = 0 if i 6= k.

(11)
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Cell averaging

The interface moves from right to left
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Cell averaging

1 Gather the two left cells

2 τn = min(τn,∆t ′) where

∆t ′ =
rn
k+1/2 − rn

k−1/2∣∣∣vn
k+1/2

∣∣∣
. (12)
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In the isothermal case

1 ϕ constant ⇒ Eulerian scheme

2 Godunov scheme is not employed (because the exact Riemann
solver is too much CPU consuming) ⇒ Rusanov scheme

f n
i+ 1

2
=

f n
i + f n

i+1

2
−

σn
i+ 1

2

2
(wn

i+1 − wn
i )
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Validate ALE + averaging approach in 1D

500 cells, CFL=0.8

Initial bubble radiusRb = 0.7469,×10−4, tfinal = 1× 10−7s,
r ∈ [0, 4 ∗ Rb]
Comparison between: Exact Riemann Solver and Godunov with
ALE and stiffened gas law
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Easy bubble test with d=3

c0 = 50m/s : decrease the numerical viscosity of the scheme
Rb = 0.7469× 10−4 : oscillations of smaller amplitude

Left Side Right Side
ϕL = 1 ϕR = 0
uL = 0 uR = 0

pL = p0

(
Req

Rb

)3γ1

pR = P0

ρL = ρeq

(
pL
p0

)1/γ1

ρR = ρ0

N=100 cells, CFL=0.8,tfinal = 1× 10−7s.
Comparison between: Keller-Miksis model and Godunov with ALE
and stiffened gas law
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Hard bubble test with d=3

c0 = 1500m/s : decrease the numerical viscosity of the scheme
Rb = 0.7469× 10−3 : oscillations of smaller amplitude
3000 and 10000 cells
Comparison between: Keller-Miksis model and Godunov with ALE
and stiffened gas law
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Isothermal case with d=3

2000 cells
ϕ = 10−3

Comparison between: Keller-Miksis model and Rusanov with
isobaric pressure law
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Conclusion

Future works

1 Second order in time

2 Employ the VFRoe scheme

3 Isothermal two-fluid model with “linear” pressure law
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