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Context

I flow of weakly compressible grains (powder, sand, etc.) inside
a compressible gas;

I averaged model (the solid phase is represented by an
equivalent continuous media);

I 2 densities, 2 velocities, 2 pressures, 1 volume fraction;

I relaxation approach to return to a 1 pressure model (classical:
cf. bibliography);

I novelty: granular stress treated in a rigorous way;

I stable approximation;

I application.



Hyperbolicity and stability
Hyperbolicity
Numerical viscosity

A general granular flow model
Two-pressure model
Entropy
Hyperbolicity
Granular stress
Reduction: one pressure model

Numerical approximation: splitting method
Convection step
Relaxation step
Numerical application
Combustion chamber

Conclusion

Biblio



Hyperbolicity and stability



Hyperbolicity

Consider w(x , t) ∈ R2 solution of

wt + Awx = 0,

A =

[
0 ε
1 0

]
, ε = ±1.

Space Fourier transform ŵ(ξ, t) :=
∫∞
−∞ e−ixξw(x , t)dx .

ŵ(ξ, t) = e−iξtAŵ(ξ, 0). (1)

I Hyperbolic case (ε = 1): the L2 norm of w(., t) is constant

I Elliptic case (ε = −1): the frequency ξ is amplified by a factor
e |ξ|t (unstable)



Numerical viscosity

Classical approximations introduce a ”numerical viscosity”, which
can be modelled by

wt + Awx − hswxx = 0.

h is the size of the cells, s = ρ(A) the spectral radius of A. The
amplification is now

ŵ(ξ, t) = e−iξtA−hsξ2tŵ(ξ, 0). (2)

But in the elliptic case, the limit system when h→ 0 is still
unstable !
Problem: many models in the two-phase flow community are
non-hyperbolic...



A general granular flow model



I flow of compressible grains (powder, sand, etc.) inside a
compressible gas;

I averaged model;

I 2 densities, 2 velocities, 2 pressures, 1 volume fraction;

I relaxation approach to return to a 1 pressure model (classical:
cf. bibliography);

I novelty: ”rigorous” granular stress (tramway);

I stable approximation;

I application.



Two-pressure model

A gaz phase k = 1, a solid (powder) phase k = 2
7 unknowns: partial densities ρk , velocities uk , internal energies ek ,
gas volume fraction α1.

Pressure law: pk = pk (ρk , ek ) = (γk − 1)ρkek − γkπk , γk > 1

Other definitions: mk = αkρk α2 = 1− α1 Ek = ek +
u2

k

2

The balance of mass, momentum and energy reads

mk,t + (mkuk )x = 0,

(mkuk )t + (mku2
k + αkpk )x − p1αk,x = 0,

(mkEk )t + ((mkEk + αkpk )uk )x + p1αk,t = 0,

αk,t + u2αk,x = ±P,



Entropy

The phase entropies satisfy the following PDEs

T1ds1 = de1 −
p1

ρ2
1

dρ1

T2ds2 = de2 −
p2

ρ2
2

dρ2 −Θdα2

After some computations, we find the following entropy dissipation
equation

(
∑

mksk )t + (
∑

mkuksk )x =
P

T2
(p1 + m2Θ− p2)

Natural choice to ensure positive dissipation

P =
1

ε
(p1 + m2Θ− p2), ε→ 0 + .

R := m2Θ is called the granular stress.



Hyperbolicity
Let

Y = (α1, ρ1, u1, s1, ρ2, u2, s2)T .

In this set of variables the system becomes

Yt + B(Y )Yx = S(P),

B(Y ) =



u2
ρ1(u1−u2)

α1
u1 ρ1

c2
1

ρ1
u1

p1,s1

ρ1

u1

u2 ρ2

p1−p2

m2

c2
2

ρ2
u2

p2,s2

ρ2

u2


ck =

√
γk (pk + πk )

ρk

The characteristic polynomial is

P(λ) = (u2−λ)2(u1−λ)(u1−c1−λ)(u1 +c1−λ)(u2−c2−λ)(u2 +c2−λ)



Granular stress

How to choose the granular stress R = m2Θ ?

Θ = Θ(α2)⇒ Θ = 0

Thus a more general choice is necessary.
Exemple: for a stiffened gas equation of state

p2 = (γ2 − 1)ρ2e2 − γ2π2 , γ2 > 1.

We suppose Θ = Θ(ρ2, α2). We find

Θ(ρ2, α2) = ργ2−1
2 θ(α2)

Particular choice

θ(α2) = λαγ2−1
2 ⇒ R = λmγ2

2 .



Reduction: one pressure model

When ε→ 0+, formally, we end up with a standard one pressure
model

p2 = p1 + m2Θ (3)

We can remove an equation (for example the volume fraction
evolution) and we find a 6 equations system

Z = (ρ1, u1, s1, ρ2, u2, s2)T .

Zt + C (Z )Zx = 0.
(4)

Let
∆ = α1α2 + δ(α1ρ2a

2
2 + α2ρ1c

2
1 ), (5)

and

δ =
α

1−1/γ2

2

λγ2ρ
γ2
2

. (6)



Then we find

The eigenvalues can be computed only numerically.
We observe that when λ→ 0, the system is generally not
hyperbolic.
We observe also that when λ→∞, we recover hyperbolicity.



Numerical approximation: splitting method

Approximation of the one-pressure model by the more general
two-pressure model.
At the end of each time step, we have to return to the pressure
equilibrium
Relaxation approach.



Convection step
Let

w = (α1,m1,m1u1,m1E1,m2,m2u2,m2E2)T

The system can be written

wt + f (w)x + G (w)wx = Σ(P).

In the first half step the source term is omitted. We use a standard
Rusanov scheme

w∗i − wn
i

∆t
+

f n
i+1/2 − f n

i−1/2

∆x
+ G (wn

i )
wn

i+1 − wn
i−1

2∆x
= 0,

f n
i+1/2 = f (wn

i ,w
n
i+1) numerical conservative flux

f (a, b) =
f (a) + f (b)

2
− s

2
(b − a)

For s large enough, the scheme is entropy dissipative. Typically, we
take

s = max
(
ρ(f ′(a)), ρ(f ′(b))

)



Relaxation step

In the second half step, we have formally to solve

αk,t = ±P,

mk,t = uk,t = 0,

(mkek )t + p1αk,t = 0.

(7)

Because of mass and momentum conservation we have mk = m∗k
and uk = u∗k . In each cell we have to compute (α1, p1, p2) from
the previous state w∗

p2 = p1 + λmγ2
2 ,

m1e1 + m2e2 = m∗1e
∗
1 + m∗2e

∗
2 ,

(m1e1 −m∗1e
∗
1 ) + p1(α1 − α∗1) = 0.



After some manipulations, we have to solve

H(α2) = (π2 − π1)(α1 + (γ1 − 1)(α1 − α∗1))(α2 + (γ2 − 1)(α2 − α∗2))

+(λα2m
γ2
2 − A2)(α1 + (γ1 − 1)(α1 − α∗1))

+A1(α2 + (γ2 − 1)(α2 − α∗2)) = 0

with
with Ak = α∗k (p∗k + πk ) > 0.

The solution is unique in the interval [0, 1− β1] with

β1 =
γ1 − 1

γ1
α∗1 (8)



Numerical application

We have constructed an entropy dissipative approximation of a
non-hyperbolic system !
What happens numerically ?
Consider a simple Riemann problem in the interval [−1/2, 1/2].
γ1 = 1.0924 and γ2 = 1.0182. We compute the solution at time
t = 0.0008. The CFL number is 0.9.
Data:

(L) (R)
ρ1 76.45430093 57.34072568
u1 0 0
p1 200× 105 150× 105

ρ2 836.1239718 358.8982226
u2 0 0
p2 200× 105 150× 105

α1 0.25 0.25

(9)



Figure: Void fraction, 50 cells, no granular stress .



Figure: Void fraction, 1000 cells, no granular stress .



Figure: Void fraction, 10000 cells, no granular stress .



Figure: Void fraction, 100000 cells, no granular stress .

Linearly unstable but non-linearly stable...



Combustion chamber

We consider now a simplified gun. The right boundary of the
computational domain is moving. We activate the granular stress
and other source terms (chemical reaction and drag), which are all
entropy dissipative. The instabilities would occur on much finer
grids...



Figure: Pressure evolution at the breech and the shot base during time.
Comparison between the Gough and the relaxation model.



Figure: Porosity at the final time. Relaxation model with granular stress.



Figure: Velocities at the final time. Relaxation model with granular
stress.



Figure: Pressures at the final time. Relaxation model with granular stress.



Figure: Density of the solid phase at the final time. Relaxation model
with granular stress.



Conclusion

I Good generalization of the one pressure models;

I Rigorous entropy dissipation and maximum principle on the
volume fraction;

I Stability for a finite relaxation time;

I The instability is (fortunately) preserved by the scheme for
fast pressure equilibrium;

I The model can be used in practical configurations (the solid
phase remains almost incompressible).



Biblio

M. R. Baer and J. W. Nunziato.

A two phase mixture theory for the deflagration to detonation transition (ddt) in reactive granular materials.
Int. J. for Multiphase Flow, 16(6):861–889, 1986.
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