Quelques modèles d'onde

9 février 2025

1 Schéma saute-mouton pour l'équation des ondes avec absorption sur le bord

1.1 Modèle mathématique

Nous souhaitons résoudre l'équation des ondes dans un domaine

$$\Omega =]0, L[\times]0, H[.$$

La source sonore est notée s(x, t). L'inconnue est la pression

$$p(x,t), \quad x \in \Omega, \quad t \in [0,T],$$

solution de l'équation des ondes

$$p_{tt} - c^2 \Delta p = s. \tag{1}$$

Sur le bord, nous allons considérer des conditions aux limites dissipatives. Pour cela, soit une onde plane incidente de la forme

$$p_0(x,t) = A \exp(-i\omega t + ik \cdot x),$$

d'amplitude A, de pulsation ω et de vecteur d'onde k. Rappelons que la pulsation est liée à la fréquence f de l'onde par

$$\omega = 2\pi f.$$

La longueur d'onde est

$$\lambda = \frac{c}{f}.$$

Cette fonction est solution de l'équation des ondes si

$$-\omega^2 + c^2 k^2 = 0,$$

$$\omega = c \left| k \right|.$$

En 2D nous pouvons aussi écrire

$$k = \frac{\omega}{c} \left(\begin{array}{c} \cos \theta \\ \sin \theta \end{array} \right),$$

où θ est l'angle d'incidence de l'onde par rapport à la paroi. L'onde est réfléchie et absorbée sur une paroi de normale unitaire n = (1, 0). Le vecteur d'onde réfléchie s'écrit

$$k' = k - 2(k \cdot n)n = \frac{\omega}{c} \begin{pmatrix} -\cos\theta \\ \sin\theta \end{pmatrix},$$

Et l'onde réfléchie a la forme

$$p_1 = rA\exp(-i\omega t + ik' \cdot x),$$

où le coefficient de réflexion r est compris entre 0 (absorption maximale) et 1 (réflexion maximale). Nous cherchons une condition vérifiée par l'onde totale

$$p = p_0 + p_1.$$

La dérivée normale de p s'écrit

$$\frac{\partial p}{\partial n} = A \exp(-i\omega t) \left(ik \cdot n \exp(ik \cdot x) + rik' \cdot n \exp(ik' \cdot x)\right),$$

 soit

$$\frac{\partial p}{\partial n} = iA\frac{\omega}{c}\exp(-i\omega t)\cos\theta\left(\exp(ik\cdot x) - r\exp(ik'\cdot x)\right).$$

D'autre part,

$$p = A \exp(-i\omega t) \left(\exp(ik \cdot x) + r \exp(ik' \cdot x) \right).$$

Nous trouvons, pour un point sur le bord de la forme $x = (0, x_2)$:

$$\frac{\frac{\partial p}{\partial n}}{p} = \frac{i\omega\cos\theta}{c}\frac{1-r}{1+r} = \frac{i\omega}{c}\frac{1-r}{1+r} + O(\theta^2).$$

Une condition aux limites approchée s'écrit donc

$$\frac{\partial p}{\partial n} = i\frac{\omega}{c}p\frac{1-r}{1+r}$$
$$\frac{\partial p}{\partial n} + \frac{1}{c}\frac{1-r}{1+r}\frac{\partial p}{\partial t} = 0.$$
(2)

ou encore

Cette condition limite est bien compatible avec une propriété de décroissance de l'énergie acoustique

$$E = \frac{1}{2} \left(p_t^2 + \left(\nabla p \right)^2 \right).$$

soit

En effet, en multipliant (1) par p_t et en intégrant sur Ω , nous trouvons

$$\int_{\Omega} \frac{1}{2} \left(p_t^2 \right)_t + \nabla p \cdot \nabla p_t - \int_{\partial \Omega} \frac{\partial p}{\partial n} p_t = 0.$$

Donc

$$\int_{\Omega} \frac{1}{2} (p_t^2)_t + \frac{1}{2} (\nabla p^2)_t - \int_{\partial \Omega} \frac{\partial p}{\partial n} p_t = 0,$$
$$\frac{d}{dt} \int_{\Omega} E = -\frac{1}{c} \int_{\partial \Omega} \frac{1-r}{1+r} (p_t)^2 \le 0.$$

Nous constatons que l'énergie décroît. Elle est conservée si r = 1 (réflexion maximale des ondes).

1.2 Approximation par différences finies 1D

Nous commençons par écrire le schéma en 1D sans source sonore. Nous considérons un nombre de points de discrétisation N > 1. Le pas d'espace est donné par

$$\Delta x = \frac{L}{N-1},$$

le pas de temps est noté Δt . Les points de discrétisation sont

$$x_i = i\Delta x, \quad i = 0\dots N - 1.$$

Nous cherchons une approximation

$$p_i^n \simeq p(x_i, n\Delta t).$$

Le schéma saute-mouton s'écrit

$$\frac{-p_i^{n-1} + 2p_i^n - p_i^{n+1}}{\Delta t^2} - c^2 \frac{-p_{i-1}^n + 2p_i^n - p_{i+1}^n}{\Delta x^2} = 0, \quad i = 1 \dots N - 2.$$

Soit

$$p_i^{n+1} = -p_i^{n-1} + 2(1-\beta^2)p_i^n + \beta^2 \left(p_{i-1}^n + p_{i+1}^n\right),\tag{3}$$

avec

$$\beta = \frac{c\Delta t}{\Delta x}.$$

C'est le coefficient de CFL, il doit être plus petit que 1.

Pour i=0 et i=N-1 le schéma doit être modifié pour tenir compte des conditions aux limites.

Si i = 0,

$$\frac{\partial p}{\partial n} = -p_x \simeq \frac{-p_{i+1}^n + p_{i-1}^n}{2\Delta x} = -\frac{1}{c} \frac{1-r}{1+r} \frac{p_i^{n+1} - p_i^{n-1}}{2\Delta t}.$$
$$p_{-1}^n = p_1^n - \frac{1}{\beta} \frac{1-r}{1+r} \left(p_0^{n+1} - p_0^{n-1} \right). \tag{4}$$

 Soit

De même, si i = N - 1,

$$\frac{\partial p}{\partial n} = p_x \simeq \frac{p_{i+1}^n - p_{i-1}^n}{2\Delta x} = -\frac{1}{c} \frac{1-r}{1+r} \frac{p_i^{n+1} - p_i^{n-1}}{2\Delta t}.$$

Soit

$$p_N^n = p_{N-2}^n - \frac{1}{\beta} \frac{1-r}{1+r} \left(p_{N-1}^{n+1} - p_{N-1}^{n-1} \right).$$
(5)

Grâce à (4) et (5), le schéma (3) a encore un sens pour i = 0 et i = N - 1. En remplaçant p_{-1}^n et p_N^n dans (3) par les valeurs données respectivement par (4) et (5), on obtient les formules de mise à jour suivantes pour les points de bord :

$$p_0^{n+1} = \frac{1}{1+r^*} \left((r^* - 1) \, p_0^{n-1} + 2\beta^2 (p_1^n - p_0^n) + 2p_0^n \right) \tag{6}$$

$$p_{N-1}^{n+1} = \frac{1}{1+r^*} \left((r^* - 1) \, p_{N-1}^{n-1} + 2\beta^2 (p_{N-2}^n - p_{N-1}^n) + 2p_{N-1}^n \right) \tag{7}$$

avec

$$r^* = \beta \frac{1-r}{1+r}$$

1.3 Approximation par différences finies 2D

En 2D, il faut rajouter la deuxième direction, avec un paramètre de discrétisation M>1

$$\Delta y = \frac{H}{M-1}.$$

De même

$$y_j = j\Delta y, \quad j = 0...M - 1,$$

 $p_{i,j}^n \simeq p(x_i, y_j, n\Delta t).$

Il y a maintenant deux coefficients de CFL

$$\beta_x = \frac{c\Delta t}{\Delta x}, \quad \beta_y = \frac{c\Delta t}{\Delta y}$$

En 2D, le schéma saute-mouton avec source sonore s'écrit

$$p_{i,j}^{n+1} = -p_{i,j}^{n-1} + 2(1 - \beta_x^2 - \beta_y^2)p_{i,j}^n + \beta_x^2 \left(p_{i-1,j}^n + p_{i+1,j}^n\right) + \beta_y^2 \left(p_{i,j-1}^n + p_{i,j+1}^n\right) + \Delta t^2 s_{i,j}^n.$$
(8)

Pour les bords, il faut utiliser les relations suivantes

$$p_{-1,j}^{n} = p_{1,j}^{n} - \frac{1}{\beta_x} \frac{1-r}{1+r} \left(p_{0,j}^{n+1} - p_{0,j}^{n-1} \right).$$
(9)

$$p_{N,j}^{n} = p_{N-2,j}^{n} - \frac{1}{\beta_x} \frac{1-r}{1+r} \left(p_{N-1,j}^{n+1} - p_{N-1,j}^{n-1} \right).$$
(10)

$$p_{i,-1}^{n} = p_{i,1}^{n} - \frac{1}{\beta_y} \frac{1-r}{1+r} \left(p_{i,0}^{n+1} - p_{i,0}^{n-1} \right).$$
(11)

$$p_{i,M}^{n} = p_{i,M-2}^{n} - \frac{1}{\beta_y} \frac{1-r}{1+r} \left(p_{i,M-1}^{n+1} - p_{i,M-1}^{n-1} \right).$$
(12)

Nous pouvons encore écrire (9) sous la forme

$$p_{0,j}^{n+1} = p_{0,j}^{n-1} + \left(p_{1,j}^n - p_{-1,j}^n\right) \frac{1+r}{1-r} \beta_x.$$
(13)

En faisant $\alpha(8){+}(1-\alpha)(13)$ nous trouvons

$$p_{0,j}^{n+1} = (1 - 2\alpha)p_{0,j}^{n-1} + 2\alpha(1 - \beta_x^2 - \beta_y^2)p_{0,j}^n + \alpha\beta_x^2 \left(p_{-1,j}^n + p_{1,j}^n\right) + \alpha\beta_y^2 \left(p_{0,j-1}^n + p_{0,j+1}^n\right) + \alpha\Delta t^2 s_{0,j}^n + (1 - \alpha) \left(p_{1,j}^n - p_{-1,j}^n\right) \frac{1 + r}{1 - r} \beta_x.$$

Il faut maintenant choisir α de sorte que les termes en $p_{-1,j}^n$ disparaissent. Nous trouvons

$$\alpha\beta_x - (1-\alpha)\frac{1+r}{1-r} = 0,$$

soit, en posant

$$\gamma = \frac{1-r}{1+r},$$
$$\alpha = \frac{1}{1+\beta_x \gamma}.$$

Notons que $0<\alpha\leq 1$ et que $\alpha=1$ correspond à la réflexion idéale (condition de Neumann). Finalement

$$\begin{split} p_{0,j}^{n+1} &= (1-2\alpha) p_{0,j}^{n-1} + 2\alpha (1-\beta_x^2 - \beta_y^2) p_{0,j}^n \\ &\quad + 2\alpha \beta_x^2 p_{1,j}^n + \alpha \beta_y^2 \left(p_{0,j-1}^n + p_{0,j+1}^n \right) + \alpha \Delta t^2 s_{0,j}^n. \end{split}$$

Nous obtenons des formules similaires pour les autres bords.