Résolution des systèmes linéaires

Exercice 1

Vérifier que pour :

$$L_1 = \begin{pmatrix} 1 & 0 & 0 \\ -l_{21} & 1 & 0 \\ -l_{31} & 0 & 1 \end{pmatrix} \text{ et } L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -l_{32} & 1 \end{pmatrix}$$

alors

$$L_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & 0 & 1 \end{pmatrix} \text{ et } L_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & l_{32} & 1 \end{pmatrix}$$

puis que

$$L = L_1^{-1} \times L_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix}$$

Appliquer la méthode de Gauss sans permutation au système Ax = b,

$$A = \begin{pmatrix} 4 & 8 & 12 \\ 3 & 8 & 13 \\ 2 & 9 & 18 \end{pmatrix} \qquad b = \begin{pmatrix} 4 \\ 5 \\ 11 \end{pmatrix}$$

Exercice 2

Utiliser la méthode de Gauss pour résoudre le système suivant :

$$\begin{cases} 2x + 3y + z = 4 \\ -x + my + 2z = 5 \\ 7x + 3y + (m-5)z = 7 \end{cases}$$

Discuter suivant les valeurs de m.

Exercice 3

Soient A une matrice $n \times n$ et u et v deux vecteurs colonnes de longueur n. Vérifier que :

$$(A - uv^t)^{-1} = A^{-1} + \alpha A^{-1}uv^t A^{-1} \text{ avec } \alpha = \frac{1}{1 - v^t A^{-1}u}.$$

Quelle est la condition d'existence de cette inverse? On considère la matrice

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{array}\right)$$

- 1. Quelle est la décomposition LU de A?
- 2. Résoudre, en utilisant la question précédente, les systèmes $AX_i = e_i$ où les e_i sont les vecteurs de la base canonique usuelle de \mathbb{R}^3 . En déduire A^{-1} .

Exercice 4

On considère le système

$$(S) = \begin{cases} 3x + 5y & = 2\\ (3+\varepsilon)x + (5+\varepsilon)y & = 2 \end{cases}$$

- Calculer la solution exacte de ce système. Que remarquez-vous?
- Prenez $\varepsilon = 10^{-p}$ où p est tel que $1 + 10^{-p} = 1$ sur votre calculatrice. Résolvez (S) à l'aide de Gauss sans recherche de pivot.
- Faites de même à l'aide de Gauss avec stratégie de pivot partiel. Comparez les résultats.

Exercice 5

1. Ecrire un programme FORTRAN 90 de factorisation LU (sans stratégie de pivot) qui à une matrice donnée A retourne la liste de matrices L et U

de la factorisation de
$$A$$
. Tester avec $A = \begin{pmatrix} 2 & 3 & 0 & 1 \\ 3 & 5 & -2 & 7 \\ 0 & -2 & 1 & 2 \\ -1 & 7 & 2 & 0 \end{pmatrix}$.

- 2. Utiliser votre programme pour trouver le déterminant de A.
- 3. Ecrire une procédure descente et une procédure remontée pour résoudre respectivement Ly = b et Ux = y.
- 4. Appliquer ces procédures pour résoudre $LUx_i = e_i$ où e_i est le i-ème vecteur de la base canonique de \mathbb{R}^N . Que vaut la matrice $(x_1 \mid x_2 \mid \ldots \mid x_n)$?
- 5. Modifier votre procédure afin qu'elle retourne un message d'erreur en cas

Modifier votre procédure afin qu'elle retourne un messe de pivots nuls. Tester avec
$$A = \begin{pmatrix} 1 & -1 & 1 & 1 \\ -1 & 1 & 2 & 2 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 4 \end{pmatrix}.$$

6. Tester votre programme avec la matrice de Hilbert $H \in \mathcal{M}_n(\mathbb{R}), H =$

$$\begin{pmatrix} 1 & 1/2 & 1/3 & 1/4 & \dots \\ 1/2 & 1/3 & 1/4 & 1/5 & \dots \\ 1/3 & 1/4 & 1/5 & 1/6 & \dots \\ 1/4 & 1/5 & 1/6 & 1/7 & \dots \\ \vdots & \vdots & \vdots & \vdots & \end{pmatrix}$$
. Conclusion?

Exercice 6

- 1. Soit $\|\cdot\|$ une norme matricielle, et b un vecteur non nul de $\mathbb{R}^N.$ Que vaut
- 2. Montrer que $x \mapsto \parallel xb^T \parallel$ est une norme vectorielle compatible avec la norme matricielle.

2

Exercice 7

Soit A une matrice carrée quelconque. Soit $\|\cdot\|$ une norme matricielle subordonnée à une norme vectorielle.

- 1. Montrer que $\rho(A) \leq ||A||$.
- 2. Supposons A inversible. Montrer que $\operatorname{Cond}(A) \geq \frac{|\lambda_{\max}(A)|}{|\lambda_{\min}(A)|}$ où $\lambda_{\max}(A)$ et $\lambda_{\min}(A)$ désignent respectivement la plus grande et la plus petite valeur propre de A, en module.

Exercice 8

- 1. Vérifier que A^TA est symétrique réelle et que A^TA est définie positive si et seulement si A est inversible.
- 2. Montrer que $\parallel A \parallel_2 = \sup \frac{\parallel Ax \parallel_2}{\parallel x \parallel_2} = \sqrt{\rho(A^TA)}$
- 3. Que se passe-t-il si A est symétrique? Qu'en déduisez-vous sur $\operatorname{Cond}(A)$ dans ce cas?
- 4. Que se passe-t-il si A est orthogonale $(A^TA = AA^T = I)$? Qu'en déduisez-vous sur Cond(A) dans ce cas?
- 5. Soit U une matrice orthogonale ($U^TU = UU^T = I$). Calculer $\parallel U \parallel_2$. Vérifier que $\parallel AU \parallel_2 = \parallel UA \parallel_2 = \parallel A \parallel_2$ pour toute matrice A.

Exercice 9

Soient

$$A = \left(\begin{array}{cc} 10 & 7 \\ 14 & 10 \end{array}\right) \qquad b = \left(\begin{array}{c} 17 \\ 24 \end{array}\right)$$

- 1. Résoudre le système linéaire Ax = b.
- 2. Résoudre le système linéaire $Ax = b + \delta b$ avec

$$\delta b = \left(\begin{array}{c} 0.5\\ -0.5 \end{array}\right)$$

3. Résoudre le système linéaire $(A + \delta A)x = b$ avec

$$\delta A = \left(\begin{array}{cc} 0 & 0.5 \\ -0.5 & 0 \end{array} \right)$$

4. Que pensez-vous des résultats obtenus?

Exercice 10

Programmer et tester l'algorithme de décomposition LU pour une matrice tridiagonale (on supposera que le pivot n'est jamais nul).

Exercice 11

Programmer et tester l'algorithme de Cholesky pour une matrice tridiagonale symétrique définie positive.