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% (open subset of) Banach space. G C ¥ is predominant if
® for each g there is a submanifold £, C ¢ with Borel measure pi,:
G N Lg has full measure.
® gcLyand g Lgis CL.
® 1g(Ug) > 0 for every open neighborhood of g.

Properties.
® predominant sets are dense
® intersection of predominant sets are predominant

® in finite dimensions, predominant sets have full measure

Note. We will work with ¢ being the space of Riemannian metrics over a manifold M.
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® (T, M,g) > ceT for an open dense set of g [Contreras ‘10]
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What about quantitative upper bounds for ‘typical’ g7

Theorem (Canzani-G ('22))

Let M be a smooth manifold of dimension n. Then for all v > 5 the set of metrics,
g € C¥, such that there is C >0

o(T,M,g) < CeCT

is predominant in the space of C¥ metrics on M, where o., = Cp + log, v.
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® (M, g) Baire generic: £, = o(A"71) [Duistermaat-Guillemin '75, Anosov '82

Theorem (Canzani-G '22)

Let M be a smooth manifold of dimension n. Then there is vy > 0 such that for all
v > 1y the set of metrics, g € C¥ such that

=il
Ex= o((log)\:\)l/“r )

is predominant in the space of C* metrics on M, where c;, = C, + log, v.
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Theorem (Duistermaat—Guillemin (‘75) + Anosov ('82))

Let M be a smooth manifold of dimension n. The property

volgn (B1)volg (M)

A"+ Ey, Ey, = o(A" !
2n) + Ex A =0(A""7)

#{A< N =

is Baire generic in the space of smooth metrics.

® [Duistermaat—Guillemin ('75)] If the set of closed geodesics has measure zero in
S*M, then Ey = o(A"1).

® [Anosov ('82)] The set of metrics such that for all T > 0, there are finitely many
closed geodesics with length < T is Baire generic.

O
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Theorem (Canzani-G ('22))

Let M be a smooth manifold of dimension n. Then there is vy > 0 such that for all v > vy the set
of metrics, g € C¥ such that

volgn (B )volg (M)

Gt N B Ba= 0(7”_1 )

#{N <A M eo(—Ap)) = (log N/ 7

is predominant in the space of C¥ metrics on M, where «v,, = C, + log, v.

Idea of Proof:

(M, g) is said to be T(R) non-periodic if

vol(p : 3t € [to, T(R)] s.t. d(p, o5 (B(p, R))) < R) <——, R-o0".

Theorem (Canzani— G '20)

If (M, g) is T(R) non-periodic, then E; = O(A\"~/T(A71)).

® We need T(R) = (log R™!)'/“" non-periodicity for a predominant set of metrics.
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Theorem (Canzani-G '22)

The set of metrics, g € C¥, such that there is C > 0

#{v : ~v is a closed geodesic for g with length < T} < ceT

is predominant in the space of C* metrics on M, where v, = C, + log, v.

Theorem (Canzani-G '22)
The set of metrics, g € C¥, such that there is B > 0 such that

vol (p : 3t € [to, T] s.t. d(p, p¥(p) < e) < BB

is predominant in the space of C¥ metrics on M, where «v,, = C, + log, v.

Corollary (Canzani-G '22)

The set of metrics, g € C¥ such that
volgn (By)volg (M)
(2m)"

is predominant in the space of C* metrics on M, where ¢, = C, + log, V.

A"+ Ey, EA:O(L>

#{N <A M €o(-0g)) = Toe VT
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C(T,g) = {~ : periodic geodesic for g, T < length(vy) < 2T}.

The Poincare map, P associated to a closed geodesic v

Theorem (Canzani-G '22)

The set of metrics g € C¥, such that there is C > 0 satisfying
I —dP) M < T, yec(T,e),

is predominant.
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® gy such that (2571, goy1) N {primitive} satisfies (G)

® But!!l There are multiple geodesics in C(ZZH7 ge+1) so this is not enough

® |t is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we
need a condition that is ‘inheritable’.

Observe:

dPiy = (dP,)" — (I — dPry) ! exists < e™P/% ¢ Spec(dP.).

Hope 1: v € C(2j,gg+1), then d’P, has eigenvalues ‘far’ from the unit circle. (This doesn't work
since d’P is symplectic)

Hope 2: v € C(2j,gg+1), then dP, has eigenvalues ‘far’ from roots of unity.



Goal: (G) ||(/ — dP,)7 || < CeCT™ for vy € C(T,g)

L
® Hypothesis: Suppose C(2/, g;) satisfies (G) for j < ¢
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What to do:
® gy.1 such that C(2, gy1) satisfies (G) for j < £ (Small enough perturbation is good enough)

® gy such that (2571, goy1) N {primitive} satisfies (G)

® But!!l There are multiple geodesics in C(ZZH7 ge+1) so this is not enough

® |t is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we
need a condition that is ‘inheritable’.

Observe:

dPiy = (dP,)" — (I — dPry) ! exists < e™P/% ¢ Spec(dP.).

Hope 1: v € C(2j,gg+1), then d’P, has eigenvalues ‘far’ from the unit circle. (This doesn't work
since d’P is symplectic)

Hope 2: v € C(2j,gg+1), then dP, has eigenvalues ‘far’ from roots of unity. This works, but requires
delicate adjustments at every step of the induction
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How to perturb gy?

Let g, € C(2¢71, g¢) is primitive. How can we perturb?

® Use primitivity: find a (physicall) ball, B over which ~g, passes only once.

® Make a family of perturbations RN 5 ¢ — g, in B so that o — (Py,dP,) is a
submersion.
® Use a quantitative Sard theorem due to Yomdin to guarantee that
m({o : (Ps,dPs) is near (Id, Mk)}) < 1
My = {matrices with eigenvalue &2™P/k for some 1 < k < K}

® Note! This only allows to inherit up to iterates of length K, have to update these
later.



Happy birthday!



