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Typicality?:

predominance

Definition

G (open subset of) Banach space. G ⊂ G is predominant if

• for each g there is a submanifold Lg ⊂ G with Borel measure µg :

G ∩ Lg has full measure.

• g ∈ Lg and g 7→ Lg is C 1.

• µg (Ug ) > 0 for every open neighborhood of g .

Properties.

• predominant sets are dense

• intersection of predominant sets are predominant

• in finite dimensions, predominant sets have full measure

Note. We will work with G being the space of Riemannian metrics over a manifold M.
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Counting Geodesics

(Mn, g) compact, no boundary.

c(T ,M, g) := #{γ a primitive, periodic, unit speed geodesic of length ≤ T}.

• c(T ,M, g) <∞ for a Baire generic g [Abraham ‘70, Anosov ’82]

• c(T ,M, g)→∞ for a Baire generic g [Hingston ‘84]

• c(T ,M, g) ≥ cecT for an open dense set of g [Contreras ‘10]

• c(T ,M, g) ∼ cehT for g with negative curvature [Bowen ’72]

What about quantitative upper bounds for ‘typical’ g?

Theorem (Canzani–G (’22))

Let M be a smooth manifold of dimension n. Then for all ν ≥ 5 the set of metrics,
g ∈ Cν , such that there is C > 0

c(T ,M, g) ≤ CeCT
αν

is predominant in the space of Cν metrics on M, where αν = Cn + log2 ν.
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Counting Eigenvalues

(Mn, g) compact, no boundary.

Eigenvalues of −∆g : 0 = λ2
0 < λ2

1 ≤ λ2
2 ≤ . . .

#{λj ≤ λ} =
volRn (B1)volg (M)

(2π)n
λn + Eλ

• (M, g) general: Eλ = O(λn−1) [Levitan ’52, Avakumoic ’56, Hörmander ’68]

• (M, g) Zoll: Eλ 6= o(λn−1) [Duistermaat-Guillemin ’75, Weinstein ’74]

• (M, g) aperiodic: Eλ = o(λn−1) [Duistermaat-Guillemin ’75, Ivrii ’80]

• (M, g) no conjugate points: Eλ = O(λ
n−1

log λ
) [Berard ’77 + Bonthoneau ’17]

• (M, g) Baire generic: Eλ = o(λn−1) [Duistermaat-Guillemin ’75, Anosov ’82]

Theorem (Canzani–G ’22)

Let M be a smooth manifold of dimension n. Then there is ν0 > 0 such that for all
ν > ν0 the set of metrics, g ∈ Cν such that

Eλ = O
( λn−1

(log λ)1/αν

)
is predominant in the space of Cν metrics on M, where αν = Cn + log2 ν.
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• (M, g) Zoll: Eλ 6= o(λn−1) [Duistermaat-Guillemin ’75, Weinstein ’74]

• (M, g) aperiodic: Eλ = o(λn−1) [Duistermaat-Guillemin ’75, Ivrii ’80]

• (M, g) no conjugate points: Eλ = O(λ
n−1

log λ
) [Berard ’77 + Bonthoneau ’17]

• (M, g) Baire generic: Eλ = o(λn−1) [Duistermaat-Guillemin ’75, Anosov ’82]

Theorem (Canzani–G ’22)

Let M be a smooth manifold of dimension n. Then there is ν0 > 0 such that for all
ν > ν0 the set of metrics, g ∈ Cν such that

Eλ = O
( λn−1

(log λ)1/αν

)
is predominant in the space of Cν metrics on M, where αν = Cn + log2 ν.



Counting Eigenvalues

(Mn, g) compact, no boundary. Eigenvalues of −∆g : 0 = λ2
0 < λ2

1 ≤ λ2
2 ≤ . . .

#{λj ≤ λ} =
volRn (B1)volg (M)

(2π)n
λn + Eλ

• (M, g) general: Eλ = O(λn−1) [Levitan ’52, Avakumoic ’56, Hörmander ’68]
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Weyl laws on Baire generic manifolds

Theorem (Duistermaat–Guillemin (‘75) + Anosov (’82))

Let M be a smooth manifold of dimension n. The property

#{λ ≤ λj} =
volRn (B1)volg (M)

(2π)n
λn + Eλ, Eλ = o(λn−1)

is Baire generic in the space of smooth metrics.

Proof.

• [Duistermaat–Guillemin (’75)] If the set of closed geodesics has measure zero in
S∗M, then Eλ = o(λn−1).

• [Anosov (’82)] The set of metrics such that for all T > 0, there are finitely many
closed geodesics with length ≤ T is Baire generic.
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Weyl laws for predominant metrics

Theorem (Canzani–G (’22))

Let M be a smooth manifold of dimension n. Then there is ν0 > 0 such that for all ν > ν0 the set
of metrics, g ∈ Cν such that

#{λj ≤ λ : λ2
j ∈ σ(−∆g )} =

volRn (B1)volg (M)

(2π)n
λ
n + Eλ, Eλ = O

( λn−1

(log λ)1/αν

)
is predominant in the space of Cν metrics on M, where αν = Cn + log2 ν.

Idea of Proof:

Definition

(M, g) is said to be T(R) non-periodic if

vol
(
ρ : ∃t ∈ [t0,T(R)] s.t. d(ρ, ϕg

t (B(ρ,R))) ≤ R
)
≤

C

T(R)
, R → 0+

.

Theorem (Canzani– G ’20)

If (M, g) is T(R) non-periodic, then Eλ = O(λn−1/T(λ−1)).
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Closed geodesics on predominant manifolds.

Theorem (Canzani–G ’22)

The set of metrics, g ∈ Cν , such that there is C > 0

#{γ : γ is a closed geodesic for g with length ≤ T} ≤ CeCT
αν

is predominant in the space of Cν metrics on M, where αν = Cn + log2 ν.

Theorem (Canzani–G ’22)

The set of metrics, g ∈ Cν , such that there is B > 0 such that

vol
(
ρ : ∃t ∈ [t0,T ] s.t. d(ρ, ϕg

t (ρ) ≤ ε
)
≤ ε2n−2eBTαν

.

is predominant in the space of Cν metrics on M, where αν = Cn + log2 ν.

Corollary (Canzani–G ’22)

The set of metrics, g ∈ Cν such that

#{λj ≤ λ : λ2
j ∈ σ(−∆g )} =
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Reduction to the Poincare map

C(T , g) = {γ : periodic geodesic for g ,T ≤ length(γ) ≤ 2T}.

The Poincare map, Pγ associated to a closed geodesic γ

γ

v
dPγ v

Theorem (Canzani–G ’22)

The set of metrics g ∈ Cν , such that there is C > 0 satisfying

‖(I − dPγ)−1‖ ≤ CeCT
αν
, γ ∈ C(T , g),

is predominant.
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Goal: (G) ‖(I − dPγ)−1‖ ≤ CeCT
αν

for γ ∈ C(T , g)

• Hypothesis: Suppose C(2j , g`) satisfies (G) for j ≤ `

• Want to find: large family of g`+1 near g` such that C(2j , g`+1) satisfies (G) for j ≤ ` + 1.

What to do:

• g`+1 such that C(2j , g`+1) satisfies (G) for j ≤ `

(Small enough perturbation is good enough)

• g`+1 such that C(2`+1, g`+1) ∩ {primitive} satisfies (G)

• But!!! There are multiple geodesics in C(2`+1, g`+1) so this is not enough

• It is difficult to control the effect of a perturbation on a multiple geodesic.

To fix this, we
need a condition that is ‘inheritable’.

Observe:

dPkγ = (dPγ)k

−→ (I − dPkγ)−1 exists ⇔ e2πip/k
/∈ Spec(dPγ)

.

Hope 1: γ ∈ C(2j , g`+1), then dPγ has eigenvalues ‘far’ from the unit circle.

(This doesn’t work
since dPγ is symplectic)

Hope 2: γ ∈ C(2j , g`+1), then dPγ has eigenvalues ‘far’ from roots of unity.

This works, but requires
delicate adjustments at every step of the induction
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• But!!! There are multiple geodesics in C(2`+1, g`+1) so this is not enough

• It is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we
need a condition that is ‘inheritable’.

Observe:

dPkγ = (dPγ)k −→ (I − dPkγ)−1 exists ⇔ e2πip/k
/∈ Spec(dPγ).

Hope 1: γ ∈ C(2j , g`+1), then dPγ has eigenvalues ‘far’ from the unit circle. (This doesn’t work
since dPγ is symplectic)

Hope 2: γ ∈ C(2j , g`+1), then dPγ has eigenvalues ‘far’ from roots of unity.

This works, but requires
delicate adjustments at every step of the induction
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How to perturb g`?

Let γg` ∈ C(2`+1, g`) is primitive. How can we perturb?

• Use primitivity: find a (physical!) ball, B over which γg` passes only once.

• Make a family of perturbations RN 3 σ → gσ in B so that σ 7→ (Pσ , dPσ) is a
submersion.

• Use a quantitative Sard theorem due to Yomdin to guarantee that

m
(
{σ : (Pσ , dPσ) is near (Id ,MK )}

)
� 1

MK := {matrices with eigenvalue e2πip/k for some 1 ≤ k ≤ K}

• Note! This only allows to inherit up to iterates of length K , have to update these
later.
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Happy birthday!


