Weyl laws and closed geodesics on typical manifolds

Joint with Y. Canzani

9-9-2022

Typicality?:

Typicality?: predominance

Typicality?: predominance

Definition

\mathscr{G} (open subset of) Banach space. $G \subset \mathscr{G}$ is predominant if

Typicality?: predominance

Definition

\mathscr{G} (open subset of) Banach space. $G \subset \mathscr{G}$ is predominant if

- for each g there is a submanifold $\mathcal{L}_{g} \subset \mathscr{G}$ with Borel measure μ_{g} : $G \cap \mathcal{L}_{g}$ has full measure.

Typicality?: predominance

Definition

\mathscr{G} (open subset of) Banach space. $G \subset \mathscr{G}$ is predominant if

- for each g there is a submanifold $\mathcal{L}_{g} \subset \mathscr{G}$ with Borel measure μ_{g} : $G \cap \mathcal{L}_{g}$ has full measure.
- $g \in \mathcal{L}_{g}$ and $g \mapsto \mathcal{L}_{g}$ is C^{1}.

Typicality?: predominance

Definition

\mathscr{G} (open subset of) Banach space. $G \subset \mathscr{G}$ is predominant if

- for each g there is a submanifold $\mathcal{L}_{g} \subset \mathscr{G}$ with Borel measure μ_{g} : $G \cap \mathcal{L}_{g}$ has full measure.
- $g \in \mathcal{L}_{g}$ and $g \mapsto \mathcal{L}_{g}$ is C^{1}.
- $\mu_{g}\left(U_{g}\right)>0$ for every open neighborhood of g.

Typicality?: predominance

Definition

\mathscr{G} (open subset of) Banach space. $G \subset \mathscr{G}$ is predominant if

- for each g there is a submanifold $\mathcal{L}_{g} \subset \mathscr{G}$ with Borel measure μ_{g} : $G \cap \mathcal{L}_{g}$ has full measure.
- $g \in \mathcal{L}_{g}$ and $g \mapsto \mathcal{L}_{g}$ is C^{1}.
- $\mu_{g}\left(U_{g}\right)>0$ for every open neighborhood of g.

Properties.

Typicality?: predominance

Definition

\mathscr{G} (open subset of) Banach space. $G \subset \mathscr{G}$ is predominant if

- for each g there is a submanifold $\mathcal{L}_{g} \subset \mathscr{G}$ with Borel measure μ_{g} : $G \cap \mathcal{L}_{g}$ has full measure.
- $g \in \mathcal{L}_{g}$ and $g \mapsto \mathcal{L}_{g}$ is C^{1}.
- $\mu_{g}\left(U_{g}\right)>0$ for every open neighborhood of g.

Properties.

- predominant sets are dense

Typicality?: predominance

Definition

\mathscr{G} (open subset of) Banach space. $G \subset \mathscr{G}$ is predominant if

- for each g there is a submanifold $\mathcal{L}_{g} \subset \mathscr{G}$ with Borel measure μ_{g} : $G \cap \mathcal{L}_{g}$ has full measure.
- $g \in \mathcal{L}_{g}$ and $g \mapsto \mathcal{L}_{g}$ is C^{1}.
- $\mu_{g}\left(U_{g}\right)>0$ for every open neighborhood of g.

Properties.

- predominant sets are dense
- intersection of predominant sets are predominant

Typicality?: predominance

Definition

\mathscr{G} (open subset of) Banach space. $G \subset \mathscr{G}$ is predominant if

- for each g there is a submanifold $\mathcal{L}_{g} \subset \mathscr{G}$ with Borel measure μ_{g} : $G \cap \mathcal{L}_{g}$ has full measure.
- $g \in \mathcal{L}_{g}$ and $g \mapsto \mathcal{L}_{g}$ is C^{1}.
- $\mu_{g}\left(U_{g}\right)>0$ for every open neighborhood of g.

Properties.

- predominant sets are dense
- intersection of predominant sets are predominant
- in finite dimensions, predominant sets have full measure

Typicality?: predominance

Definition

\mathscr{G} (open subset of) Banach space. $G \subset \mathscr{G}$ is predominant if

- for each g there is a submanifold $\mathcal{L}_{g} \subset \mathscr{G}$ with Borel measure μ_{g} : $G \cap \mathcal{L}_{g}$ has full measure.
- $g \in \mathcal{L}_{g}$ and $g \mapsto \mathcal{L}_{g}$ is C^{1}.
- $\mu_{g}\left(U_{g}\right)>0$ for every open neighborhood of g.

Properties.

- predominant sets are dense
- intersection of predominant sets are predominant
- in finite dimensions, predominant sets have full measure

Note. We will work with \mathscr{G} being the space of Riemannian metrics over a manifold M.

Counting Geodesics

$\left(M^{n}, g\right)$ compact, no boundary.

Counting Geodesics

(M^{n}, g) compact, no boundary.
$\mathfrak{c}(T, M, g):=\#\{\gamma$ a primitive, periodic, unit speed geodesic of length $\leq T\}$.

Counting Geodesics

(M^{n}, g) compact, no boundary.
$\mathfrak{c}(T, M, g):=\#\{\gamma$ a primitive, periodic, unit speed geodesic of length $\leq T\}$.

- $\mathfrak{c}(T, M, g)<\infty$ for a Baire generic g
[Abraham '70, Anosov '82]

Counting Geodesics

(M^{n}, g) compact, no boundary.
$\mathfrak{c}(T, M, g):=\#\{\gamma$ a primitive, periodic, unit speed geodesic of length $\leq T\}$.

- $\mathfrak{c}(T, M, g)<\infty$ for a Baire generic g
- $\mathfrak{c}(T, M, g) \rightarrow \infty$ for a Baire generic g
[Abraham '70, Anosov '82]
[Hingston '84]

Counting Geodesics

(M^{n}, g) compact, no boundary.
$\mathfrak{c}(T, M, g):=\#\{\gamma$ a primitive, periodic, unit speed geodesic of length $\leq T\}$.

- $\mathfrak{c}(T, M, g)<\infty$ for a Baire generic g
- $\mathfrak{c}(T, M, g) \rightarrow \infty$ for a Baire generic g
- $c(T, M, g) \geq c e^{c T}$ for an open dense set of g
[Abraham '70, Anosov '82]
[Hingston '84]
[Contreras '10]

Counting Geodesics

$\left(M^{n}, g\right)$ compact, no boundary.
$\mathfrak{c}(T, M, g):=\#\{\gamma$ a primitive, periodic, unit speed geodesic of length $\leq T\}$.

- $\mathfrak{c}(T, M, g)<\infty$ for a Baire generic g
- $\mathfrak{c}(T, M, g) \rightarrow \infty$ for a Baire generic g
- $c(T, M, g) \geq c c^{c T}$ for an open dense set of g
- $\mathfrak{c}(T, M, g) \sim c e^{h T}$ for g with negative curvature
[Abraham '70, Anosov '82]
[Hingston '84]
[Contreras '10]
[Bowen '72]

Counting Geodesics

$\left(M^{n}, g\right)$ compact, no boundary.
$\mathfrak{c}(T, M, g):=\#\{\gamma$ a primitive, periodic, unit speed geodesic of length $\leq T\}$.

- $\mathfrak{c}(T, M, g)<\infty$ for a Baire generic g
- $\mathfrak{c}(T, M, g) \rightarrow \infty$ for a Baire generic g
- $c(T, M, g) \geq c c^{c T}$ for an open dense set of g
- $\mathfrak{c}(T, M, g) \sim c e^{h T}$ for g with negative curvature
[Abraham '70, Anosov '82]
[Hingston '84]
[Contreras '10]
[Bowen '72]

What about quantitative upper bounds for 'typical' g ?

Counting Geodesics

$\left(M^{n}, g\right)$ compact, no boundary.
$\mathfrak{c}(T, M, g):=\#\{\gamma$ a primitive, periodic, unit speed geodesic of length $\leq T\}$.

- $\mathfrak{c}(T, M, g)<\infty$ for a Baire generic g
- $\mathfrak{c}(T, M, g) \rightarrow \infty$ for a Baire generic g
- $c(T, M, g) \geq c c^{c T}$ for an open dense set of g
[Abraham '70, Anosov '82]
[Hingston '84]
[Contreras '10]

```
[Bowen '72]
```

- $\mathfrak{c}(T, M, g) \sim c e^{h T}$ for g with negative curvature

What about quantitative upper bounds for 'typical' g ?

Theorem (Canzani-G ('22))

Let M be a smooth manifold of dimension n. Then for all $\nu \geq 5$ the set of metrics, $g \in \mathcal{C}^{\nu}$, such that there is $C>0$

$$
\mathfrak{c}(T, M, g) \leq C e^{C T^{\alpha_{\nu}}}
$$

is predominant in the space of \mathcal{C}^{ν} metrics on M, where $\alpha_{\nu}=C_{n}+\log _{2} \nu$.

Counting Eigenvalues

$\left(M^{n}, g\right)$ compact, no boundary.

Counting Eigenvalues

$\left(M^{n}, g\right)$ compact, no boundary. Eigenvalues of $-\Delta_{g}: \quad 0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$

Counting Eigenvalues

$\left(M^{n}, g\right)$ compact, no boundary. Eigenvalues of $-\Delta_{g}: \quad 0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$

$$
\#\left\{\lambda_{j} \leq \lambda\right\}=\frac{\operatorname{vol}_{\mathbb{R}^{n}}\left(B_{1}\right) \operatorname{vol}_{g}(M)}{(2 \pi)^{n}} \lambda^{n}+E_{\lambda}
$$

Counting Eigenvalues

$\left(M^{n}, g\right)$ compact, no boundary. Eigenvalues of $-\Delta_{g}: \quad 0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$

$$
\#\left\{\lambda_{j} \leq \lambda\right\}=\frac{\operatorname{vol}_{\mathbb{R}^{n}}\left(B_{1}\right) \operatorname{vol}_{g}(M)}{(2 \pi)^{n}} \lambda^{n}+E_{\lambda}
$$

- (M, g) general: $\quad E_{\lambda}=O\left(\lambda^{n-1}\right) \quad$ [Levitan '52, Avakumoic '56, Hörmander '68]

Counting Eigenvalues

$\left(M^{n}, g\right)$ compact, no boundary. Eigenvalues of $-\Delta_{g}: \quad 0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$

$$
\#\left\{\lambda_{j} \leq \lambda\right\}=\frac{\operatorname{vol}_{\mathbb{R}^{n}}\left(B_{1}\right) \operatorname{vol}_{g}(M)}{(2 \pi)^{n}} \lambda^{n}+E_{\lambda}
$$

- (M, g) general: $\quad E_{\lambda}=O\left(\lambda^{n-1}\right) \quad$ [Levitan '52, Avakumoic '56, Hörmander '68]
- (M, g) Zoll: $\quad E_{\lambda} \neq o\left(\lambda^{n-1}\right) \quad$ [Duistermaat-Guillemin '75, Weinstein '74]

Counting Eigenvalues

$\left(M^{n}, g\right)$ compact, no boundary. Eigenvalues of $-\Delta_{g}: \quad 0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$

$$
\#\left\{\lambda_{j} \leq \lambda\right\}=\frac{\operatorname{vol}_{\mathbb{R}^{n}}\left(B_{1}\right) \operatorname{vol}_{g}(M)}{(2 \pi)^{n}} \lambda^{n}+E_{\lambda}
$$

- (M, g) general: $\quad E_{\lambda}=O\left(\lambda^{n-1}\right) \quad$ [Levitan '52, Avakumoic '56, Hörmander '68]
- (M, g) Zoll: $\quad E_{\lambda} \neq o\left(\lambda^{n-1}\right) \quad$ [Duistermaat-Guillemin '75, Weinstein '74]
- (M, g) aperiodic: $E_{\lambda}=o\left(\lambda^{n-1}\right)$ [Duistermaat-Guillemin '75, Ivrii '80]

Counting Eigenvalues

(M^{n}, g) compact, no boundary. Eigenvalues of $-\Delta_{g}: \quad 0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$

$$
\#\left\{\lambda_{j} \leq \lambda\right\}=\frac{\operatorname{vol}_{\mathbb{R}^{n}}\left(B_{1}\right) \operatorname{vol}_{g}(M)}{(2 \pi)^{n}} \lambda^{n}+E_{\lambda}
$$

- (M, g) general: $\quad E_{\lambda}=O\left(\lambda^{n-1}\right) \quad$ [Levitan '52, Avakumoic '56, Hörmander '68]
- (M, g) Zoll: $\quad E_{\lambda} \neq o\left(\lambda^{n-1}\right) \quad$ [Duistermaat-Guillemin '75, Weinstein '74]
- (M, g) aperiodic: $E_{\lambda}=o\left(\lambda^{n-1}\right) \quad$ [Duistermaat-Guillemin '75, Ivrii '80]
- (M, g) no conjugate points: $\quad E_{\lambda}=O\left(\frac{\lambda^{n-1}}{\log \lambda}\right) \quad$ [Berard '77 + Bonthoneau '17]

Counting Eigenvalues

(M^{n}, g) compact, no boundary. Eigenvalues of $-\Delta_{g}: \quad 0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$

$$
\#\left\{\lambda_{j} \leq \lambda\right\}=\frac{\operatorname{vol}_{\mathbb{R}^{n}}\left(B_{1}\right) \operatorname{vol}_{g}(M)}{(2 \pi)^{n}} \lambda^{n}+E_{\lambda}
$$

- (M, g) general: $\quad E_{\lambda}=O\left(\lambda^{n-1}\right) \quad$ [Levitan '52, Avakumoic '56, Hörmander '68]
- (M, g) Zoll: $\quad E_{\lambda} \neq o\left(\lambda^{n-1}\right) \quad$ [Duistermaat-Guillemin '75, Weinstein '74]
- (M, g) aperiodic: $E_{\lambda}=o\left(\lambda^{n-1}\right) \quad$ [Duistermaat-Guillemin '75, Ivrii '80]
- (M, g) no conjugate points: $\quad E_{\lambda}=O\left(\frac{\lambda^{n-1}}{\log \lambda}\right) \quad$ [Berard ' $77+$ Bonthoneau '17]
- (M, g) Baire generic: $E_{\lambda}=o\left(\lambda^{n-1}\right)$ [Duistermaat-Guillemin '75, Anosov '82]

Counting Eigenvalues

(M^{n}, g) compact, no boundary. Eigenvalues of $-\Delta_{g}: \quad 0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$

$$
\#\left\{\lambda_{j} \leq \lambda\right\}=\frac{\operatorname{vol}_{\mathbb{R}^{n}}\left(B_{1}\right) \operatorname{vol}_{g}(M)}{(2 \pi)^{n}} \lambda^{n}+E_{\lambda}
$$

- (M, g) general: $\quad E_{\lambda}=O\left(\lambda^{n-1}\right) \quad$ [Levitan '52, Avakumoic '56, Hörmander '68]
- (M, g) Zoll: $\quad E_{\lambda} \neq o\left(\lambda^{n-1}\right) \quad$ [Duistermaat-Guillemin '75, Weinstein '74]
- (M, g) aperiodic: $E_{\lambda}=o\left(\lambda^{n-1}\right) \quad$ [Duistermaat-Guillemin '75, Ivrii '80]
- (M, g) no conjugate points: $\quad E_{\lambda}=O\left(\frac{\lambda^{n-1}}{\log \lambda}\right) \quad$ [Berard '77+ Bonthoneau '17]
- (M, g) Baire generic: $E_{\lambda}=o\left(\lambda^{n-1}\right)$ [Duistermaat-Guillemin '75, Anosov '82]

Theorem (Canzani-G '22)

Let M be a smooth manifold of dimension n. Then there is $\nu_{0}>0$ such that for all $\nu>\nu_{0}$ the set of metrics, $g \in \mathcal{C}^{\nu}$ such that

$$
E_{\lambda}=O\left(\frac{\lambda^{n-1}}{(\log \lambda)^{1 / \alpha_{\nu}}}\right)
$$

is predominant in the space of \mathcal{C}^{ν} metrics on M, where $\alpha_{\nu}=C_{n}+\log _{2} \nu$.

Weyl laws on Baire generic manifolds

Theorem (Duistermaat-Guillemin ('75) + Anosov ('82))
Let M be a smooth manifold of dimension n. The property

$$
\#\left\{\lambda \leq \lambda_{j}\right\}=\frac{\operatorname{vol}_{\mathbb{R}^{n}}\left(B_{1}\right) \operatorname{vol} g(M)}{(2 \pi)^{n}} \lambda^{n}+E_{\lambda}, \quad E_{\lambda}=o\left(\lambda^{n-1}\right)
$$

is Baire generic in the space of smooth metrics.

Proof.

Weyl laws on Baire generic manifolds

Theorem (Duistermaat-Guillemin ('75) + Anosov ('82))

Let M be a smooth manifold of dimension n. The property

$$
\#\left\{\lambda \leq \lambda_{j}\right\}=\frac{\operatorname{vol}_{\mathbb{R}^{n}}\left(B_{1}\right) \operatorname{vol} g(M)}{(2 \pi)^{n}} \lambda^{n}+E_{\lambda}, \quad E_{\lambda}=o\left(\lambda^{n-1}\right)
$$

is Baire generic in the space of smooth metrics.

Proof.

- [Duistermaat-Guillemin ('75)] If the set of closed geodesics has measure zero in $S^{*} M$, then $E_{\lambda}=o\left(\lambda^{n-1}\right)$.

Weyl laws on Baire generic manifolds

Theorem (Duistermaat-Guillemin ('75) + Anosov ('82))

Let M be a smooth manifold of dimension n. The property

$$
\#\left\{\lambda \leq \lambda_{j}\right\}=\frac{\operatorname{vol}_{\mathbb{R}^{n}}\left(B_{1}\right) \operatorname{vol} g(M)}{(2 \pi)^{n}} \lambda^{n}+E_{\lambda}, \quad E_{\lambda}=o\left(\lambda^{n-1}\right)
$$

is Baire generic in the space of smooth metrics.

Proof.

- [Duistermaat-Guillemin ('75)] If the set of closed geodesics has measure zero in $S^{*} M$, then $E_{\lambda}=o\left(\lambda^{n-1}\right)$.
- [Anosov ('82)] The set of metrics such that for all $T>0$, there are finitely many closed geodesics with length $\leq T$ is Baire generic.

Weyl laws for predominant metrics

Theorem (Canzani-G ('22))

Let M be a smooth manifold of dimension n. Then there is $\nu_{0}>0$ such that for all $\nu>\nu_{0}$ the set of metrics, $g \in \mathcal{C}^{\nu}$ such that

$$
\#\left\{\lambda_{j} \leq \lambda: \lambda_{j}^{2} \in \sigma\left(-\Delta_{g}\right)\right\}=\frac{\operatorname{vol}_{\mathbb{R}^{n}}\left(B_{1}\right) \operatorname{vol}_{g}(M)}{(2 \pi)^{n}} \lambda^{n}+E_{\lambda}, \quad E_{\lambda}=O\left(\frac{\lambda^{n-1}}{(\log \lambda)^{1 / \alpha_{\nu}}}\right)
$$

is predominant in the space of \mathcal{C}^{ν} metrics on M, where $\alpha_{\nu}=C_{n}+\log _{2} \nu$.
Idea of Proof:

Weyl laws for predominant metrics

Theorem (Canzani-G ('22))

Let M be a smooth manifold of dimension n. Then there is $\nu_{0}>0$ such that for all $\nu>\nu_{0}$ the set of metrics, $g \in \mathcal{C}^{\nu}$ such that

$$
\#\left\{\lambda_{j} \leq \lambda: \lambda_{j}^{2} \in \sigma\left(-\Delta_{g}\right)\right\}=\frac{\operatorname{vol}_{\mathbb{R}^{n}}\left(B_{1}\right) \operatorname{vol}_{g}(M)}{(2 \pi)^{n}} \lambda^{n}+E_{\lambda}, \quad E_{\lambda}=O\left(\frac{\lambda^{n-1}}{(\log \lambda)^{1 / \alpha_{\nu}}}\right)
$$

is predominant in the space of \mathcal{C}^{ν} metrics on M, where $\alpha_{\nu}=C_{n}+\log _{2} \nu$.
Idea of Proof:

Definition

(M, g) is said to be $T(R)$ non-periodic if

$$
\operatorname{vol}\left(\rho: \exists t \in\left[t_{0}, \mathbf{T}(R)\right] \text { s.t. } d\left(\rho, \varphi_{t}^{g}(B(\rho, R))\right) \leq R\right) \leq \frac{C}{\mathbf{T}(R)}, \quad R \rightarrow 0^{+}
$$

Weyl laws for predominant metrics

Theorem (Canzani-G ('22))

Let M be a smooth manifold of dimension n. Then there is $\nu_{0}>0$ such that for all $\nu>\nu_{0}$ the set of metrics, $g \in \mathcal{C}^{\nu}$ such that

$$
\#\left\{\lambda_{j} \leq \lambda: \lambda_{j}^{2} \in \sigma\left(-\Delta_{g}\right)\right\}=\frac{\operatorname{vol}_{\mathbb{R}^{n}}\left(B_{1}\right) \operatorname{vol}_{g}(M)}{(2 \pi)^{n}} \lambda^{n}+E_{\lambda}, \quad E_{\lambda}=O\left(\frac{\lambda^{n-1}}{(\log \lambda)^{1 / \alpha_{\nu}}}\right)
$$

is predominant in the space of \mathcal{C}^{ν} metrics on M, where $\alpha_{\nu}=C_{n}+\log _{2} \nu$.
Idea of Proof:

Definition

(M, g) is said to be $T(R)$ non-periodic if

$$
\operatorname{vol}\left(\rho: \exists t \in\left[t_{0}, \mathbf{T}(R)\right] \text { s.t. } d\left(\rho, \varphi_{t}^{g}(B(\rho, R))\right) \leq R\right) \leq \frac{C}{\mathbf{T}(R)}, \quad R \rightarrow 0^{+}
$$

Theorem (Canzani- G '20)
If (M, g) is $T(R)$ non-periodic, then $E_{\lambda}=O\left(\lambda^{n-1} / \mathrm{T}\left(\lambda^{-1}\right)\right)$.

Weyl laws for predominant metrics

Theorem (Canzani-G ('22))

Let M be a smooth manifold of dimension n. Then there is $\nu_{0}>0$ such that for all $\nu>\nu_{0}$ the set of metrics, $g \in \mathcal{C}^{\nu}$ such that

$$
\#\left\{\lambda_{j} \leq \lambda: \lambda_{j}^{2} \in \sigma\left(-\Delta_{g}\right)\right\}=\frac{\operatorname{vol}_{\mathbb{R}^{n}}\left(B_{1}\right) \operatorname{vol}_{g}(M)}{(2 \pi)^{n}} \lambda^{n}+E_{\lambda}, \quad E_{\lambda}=O\left(\frac{\lambda^{n-1}}{(\log \lambda)^{1 / \alpha_{\nu}}}\right)
$$

is predominant in the space of \mathcal{C}^{ν} metrics on M, where $\alpha_{\nu}=C_{n}+\log _{2} \nu$.
Idea of Proof:

Definition

(M, g) is said to be $T(R)$ non-periodic if

$$
\operatorname{vol}\left(\rho: \exists t \in\left[t_{0}, \mathbf{T}(R)\right] \text { s.t. } d\left(\rho, \varphi_{t}^{g}(B(\rho, R))\right) \leq R\right) \leq \frac{C}{\mathbf{T}(R)}, \quad R \rightarrow 0^{+}
$$

Theorem (Canzani- G '20)

If (M, g) is $\mathrm{T}(R)$ non-periodic, then $E_{\lambda}=O\left(\lambda^{n-1} / \mathrm{T}\left(\lambda^{-1}\right)\right)$.

- We need $\mathrm{T}(R)=\left(\log R^{-1}\right)^{1 / \alpha_{\nu}}$ non-periodicity for a predominant set of metrics.

Examples of non-periodic manifolds

Examples of T non-periodic manifolds with $\mathrm{T}(R)=\log \left(R^{-1}\right)$

Examples of non-periodic manifolds

Examples of T non-periodic manifolds with $\mathrm{T}(R)=\log \left(R^{-1}\right)$

- product manifolds

Examples of non-periodic manifolds

Examples of T non-periodic manifolds with $\mathrm{T}(R)=\log \left(R^{-1}\right)$

- product manifolds
- manifolds with no conjugate points

Examples of non-periodic manifolds

Examples of T non-periodic manifolds with $\mathrm{T}(R)=\log \left(R^{-1}\right)$

- product manifolds
- manifolds with no conjugate points (in fact, no 'maximal self conjugate' points)

Examples of non-periodic manifolds

Examples of T non-periodic manifolds with $\mathrm{T}(R)=\log \left(R^{-1}\right)$

- product manifolds
- manifolds with no conjugate points (in fact, no 'maximal self conjugate' points)
- non-Zoll convex analytic surfaces of revolution

Examples of non-periodic manifolds

Examples of T non-periodic manifolds with $\mathrm{T}(R)=\log \left(R^{-1}\right)$

- product manifolds
- manifolds with no conjugate points (in fact, no 'maximal self conjugate' points)
- non-Zoll convex analytic surfaces of revolution
- compact Lie group of rank >1 with a bi-invariant metric

Examples of non-periodic manifolds

Examples of T non-periodic manifolds with $\mathrm{T}(R)=\log \left(R^{-1}\right)$

- product manifolds
- manifolds with no conjugate points (in fact, no 'maximal self conjugate' points)
- non-Zoll convex analytic surfaces of revolution
- compact Lie group of rank >1 with a bi-invariant metric
- But is it predominant?

Closed geodesics on predominant manifolds.

Theorem (Canzani-G '22)
The set of metrics, $g \in \mathcal{C}^{\nu}$, such that there is $C>0$

$$
\#\{\gamma: \gamma \text { is a closed geodesic for } g \text { with length } \leq T\} \leq C e^{C T^{\alpha_{\nu}}}
$$

is predominant in the space of \mathcal{C}^{ν} metrics on M, where $\alpha_{\nu}=C_{n}+\log _{2} \nu$.

Closed geodesics on predominant manifolds.

Theorem (Canzani-G '22)

The set of metrics, $g \in \mathcal{C}^{\nu}$, such that there is $C>0$

$$
\#\{\gamma: \gamma \text { is a closed geodesic for } g \text { with length } \leq T\} \leq C e^{C T^{\alpha_{\nu}}}
$$

is predominant in the space of \mathcal{C}^{ν} metrics on M, where $\alpha_{\nu}=C_{n}+\log _{2} \nu$.

Theorem (Canzani-G '22)

The set of metrics, $g \in \mathcal{C}^{\nu}$, such that there is $B>0$ such that

$$
\operatorname{vol}\left(\rho: \exists t \in\left[t_{0}, T\right] \text { s.t. } d\left(\rho, \varphi_{t}^{g}(\rho) \leq \epsilon\right) \leq \epsilon^{2 n-2} e^{B T^{\alpha_{\nu}}}\right.
$$

is predominant in the space of \mathcal{C}^{ν} metrics on M, where $\alpha_{\nu}=C_{n}+\log _{2} \nu$.

Closed geodesics on predominant manifolds.

Theorem (Canzani-G '22)

The set of metrics, $g \in \mathcal{C}^{\nu}$, such that there is $C>0$

$$
\#\{\gamma: \gamma \text { is a closed geodesic for } g \text { with length } \leq T\} \leq C e^{C T^{\alpha_{\nu}}}
$$

is predominant in the space of \mathcal{C}^{ν} metrics on M, where $\alpha_{\nu}=C_{n}+\log _{2} \nu$.

Theorem (Canzani-G '22)

The set of metrics, $g \in \mathcal{C}^{\nu}$, such that there is $B>0$ such that

$$
\operatorname{vol}\left(\rho: \exists t \in\left[t_{0}, T\right] \text { s.t. } d\left(\rho, \varphi_{t}^{g}(\rho) \leq \epsilon\right) \leq \epsilon^{2 n-2} e^{B T^{\alpha_{\nu}}} .\right.
$$

is predominant in the space of \mathcal{C}^{ν} metrics on M, where $\alpha_{\nu}=C_{n}+\log _{2} \nu$.

Corollary (Canzani-G '22)

The set of metrics, $g \in \mathcal{C}^{\nu}$ such that

$$
\#\left\{\lambda_{j} \leq \lambda: \lambda_{j}^{2} \in \sigma\left(-\Delta_{g}\right)\right\}=\frac{\operatorname{vol}_{\mathbb{R}^{n}}\left(B_{1}\right) \operatorname{vol}_{g}(M)}{(2 \pi)^{n}} \lambda^{n}+E_{\lambda}, \quad E_{\lambda}=O\left(\frac{\lambda^{n-1}}{(\log \lambda)^{1 / \alpha_{\nu}}}\right)
$$

is predominant in the space of \mathcal{C}^{ν} metrics on M, where $\alpha_{\nu}=C_{n}+\log _{2} \nu$.

Reduction to the Poincare map

$$
\mathcal{C}(T, g)=\{\gamma: \text { periodic geodesic for } g, T \leq \text { length }(\gamma) \leq 2 T\}
$$

The Poincare map, \mathcal{P}_{γ} associated to a closed geodesic γ

Reduction to the Poincare map

$$
\mathcal{C}(T, g)=\{\gamma: \text { periodic geodesic for } g, T \leq \text { length }(\gamma) \leq 2 T\}
$$

The Poincare map, \mathcal{P}_{γ} associated to a closed geodesic γ

Reduction to the Poincare map

$$
\mathcal{C}(T, g)=\{\gamma: \text { periodic geodesic for } g, T \leq \text { length }(\gamma) \leq 2 T\}
$$

The Poincare map, \mathcal{P}_{γ} associated to a closed geodesic γ

Theorem (Canzani-G '22)

The set of metrics $g \in \mathcal{C}^{\nu}$, such that there is $C>0$ satisfying

$$
\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha \nu}}, \quad \gamma \in \mathcal{C}(T, g)
$$

is predominant.

Goal: (G) $\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha_{\nu}}}$ for $\gamma \in \mathcal{C}(T, g)$

- Hypothesis: Suppose $\mathcal{C}\left(2^{j}, g_{\ell}\right)$ satisfies (G) for $j \leq \ell$

Goal: (G) $\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha_{\nu}}}$ for $\gamma \in \mathcal{C}(T, g)$

- Hypothesis: Suppose $\mathcal{C}\left(2^{j}, g_{\ell}\right)$ satisfies (G) for $j \leq \ell$
- Want to find: large family of $g_{\ell+1}$ near g_{ℓ} such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell+1$.

Goal: (G) $\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha_{\nu}}}$ for $\gamma \in \mathcal{C}(T, g)$

- Hypothesis: Suppose $\mathcal{C}\left(2^{j}, g_{\ell}\right)$ satisfies (G) for $j \leq \ell$
- Want to find: large family of $g_{\ell+1}$ near g_{ℓ} such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell+1$.

What to do:

Goal: (G) $\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha_{\nu}}}$ for $\gamma \in \mathcal{C}(T, g)$

- Hypothesis: Suppose $\mathcal{C}\left(2^{j}, g_{\ell}\right)$ satisfies (G) for $j \leq \ell$
- Want to find: large family of $g_{\ell+1}$ near g_{ℓ} such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell+1$.

What to do:

- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell$

Goal: (G) $\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha_{\nu}}}$ for $\gamma \in \mathcal{C}(T, g)$

- Hypothesis: Suppose $\mathcal{C}\left(2^{j}, g_{\ell}\right)$ satisfies (G) for $j \leq \ell$
- Want to find: large family of $g_{\ell+1}$ near g_{ℓ} such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell+1$.

What to do:

- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell$ (Small enough perturbation is good enough)

Goal: (G) $\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha_{\nu}}}$ for $\gamma \in \mathcal{C}(T, g)$

- Hypothesis: Suppose $\mathcal{C}\left(2^{j}, g_{\ell}\right)$ satisfies (G) for $j \leq \ell$
- Want to find: large family of $g_{\ell+1}$ near g_{ℓ} such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell+1$.

What to do:

- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell$ (Small enough perturbation is good enough)
- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right) \cap\{$ primitive $\}$ satisfies (G)

Goal: (G) $\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha_{\nu}}}$ for $\gamma \in \mathcal{C}(T, g)$

- Hypothesis: Suppose $\mathcal{C}\left(2^{j}, g_{\ell}\right)$ satisfies (G) for $j \leq \ell$
- Want to find: large family of $g_{\ell+1}$ near g_{ℓ} such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell+1$.

What to do:

- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell$ (Small enough perturbation is good enough)
- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right) \cap\{$ primitive $\}$ satisfies (G)
- But!!! There are multiple geodesics in $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right)$ so this is not enough

Goal: (G) $\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha_{\nu}}}$ for $\gamma \in \mathcal{C}(T, g)$

- Hypothesis: Suppose $\mathcal{C}\left(2^{j}, g_{\ell}\right)$ satisfies (G) for $j \leq \ell$
- Want to find: large family of $g_{\ell+1}$ near g_{ℓ} such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell+1$.

What to do:

- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell$ (Small enough perturbation is good enough)
- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right) \cap\{$ primitive $\}$ satisfies (G)
- But!!! There are multiple geodesics in $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right)$ so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic.

Goal: (G) $\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha_{\nu}}}$ for $\gamma \in \mathcal{C}(T, g)$

- Hypothesis: Suppose $\mathcal{C}\left(2^{j}, g_{\ell}\right)$ satisfies (G) for $j \leq \ell$
- Want to find: large family of $g_{\ell+1}$ near g_{ℓ} such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell+1$.

What to do:

- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell$ (Small enough perturbation is good enough)
- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right) \cap\{$ primitive $\}$ satisfies (G)
- But!!! There are multiple geodesics in $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right)$ so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we need a condition that is 'inheritable'.

Goal: (G) $\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha_{\nu}}}$ for $\gamma \in \mathcal{C}(T, g)$

- Hypothesis: Suppose $\mathcal{C}\left(2^{j}, g_{\ell}\right)$ satisfies (G) for $j \leq \ell$
- Want to find: large family of $g_{\ell+1}$ near g_{ℓ} such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell+1$.

What to do:

- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell$ (Small enough perturbation is good enough)
- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right) \cap\{$ primitive $\}$ satisfies (G)
- But!!! There are multiple geodesics in $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right)$ so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we need a condition that is 'inheritable'.

Observe:

$$
d \mathcal{P}_{k \gamma}=\left(d \mathcal{P}_{\gamma}\right)^{k}
$$

Goal: (G) $\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha_{\nu}}}$ for $\gamma \in \mathcal{C}(T, g)$

- Hypothesis: Suppose $\mathcal{C}\left(2^{j}, g_{\ell}\right)$ satisfies (G) for $j \leq \ell$
- Want to find: large family of $g_{\ell+1}$ near g_{ℓ} such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell+1$.

What to do:

- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell$ (Small enough perturbation is good enough)
- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right) \cap\{$ primitive $\}$ satisfies (G)
- But!!! There are multiple geodesics in $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right)$ so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we need a condition that is 'inheritable'.

Observe:

$$
d \mathcal{P}_{k \gamma}=\left(d \mathcal{P}_{\gamma}\right)^{k} \quad \longrightarrow \quad\left(I-d \mathcal{P}_{k \gamma}\right)^{-1} \text { exists } \Leftrightarrow e^{2 \pi i p / k} \notin \operatorname{Spec}\left(d \mathcal{P}_{\gamma}\right)
$$

Goal: (G) $\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha_{\nu}}}$ for $\gamma \in \mathcal{C}(T, g)$

- Hypothesis: Suppose $\mathcal{C}\left(2^{j}, g_{\ell}\right)$ satisfies (G) for $j \leq \ell$
- Want to find: large family of $g_{\ell+1}$ near g_{ℓ} such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell+1$.

What to do:

- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell$ (Small enough perturbation is good enough)
- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right) \cap\{$ primitive $\}$ satisfies (G)
- But!!! There are multiple geodesics in $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right)$ so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we need a condition that is 'inheritable'.

Observe:

$$
d \mathcal{P}_{k \gamma}=\left(d \mathcal{P}_{\gamma}\right)^{k} \quad \longrightarrow \quad\left(I-d \mathcal{P}_{k \gamma}\right)^{-1} \text { exists } \Leftrightarrow e^{2 \pi i p / k} \notin \operatorname{Spec}\left(d \mathcal{P}_{\gamma}\right)
$$

Hope 1: $\gamma \in \mathcal{C}\left(2^{j}, g_{\ell+1}\right)$, then $d \mathcal{P}_{\gamma}$ has eigenvalues 'far' from the unit circle.

Goal: (G) $\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha_{\nu}}}$ for $\gamma \in \mathcal{C}(T, g)$

- Hypothesis: Suppose $\mathcal{C}\left(2^{j}, g_{\ell}\right)$ satisfies (G) for $j \leq \ell$
- Want to find: large family of $g_{\ell+1}$ near g_{ℓ} such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell+1$.

What to do:

- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell$ (Small enough perturbation is good enough)
- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right) \cap\{$ primitive $\}$ satisfies (G)
- But!!! There are multiple geodesics in $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right)$ so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we need a condition that is 'inheritable'.

Observe:

$$
d \mathcal{P}_{k \gamma}=\left(d \mathcal{P}_{\gamma}\right)^{k} \quad \longrightarrow \quad\left(I-d \mathcal{P}_{k \gamma}\right)^{-1} \text { exists } \Leftrightarrow e^{2 \pi i p / k} \notin \operatorname{Spec}\left(d \mathcal{P}_{\gamma}\right)
$$

Hope 1: $\gamma \in \mathcal{C}\left(2^{j}, g_{\ell+1}\right)$, then $d \mathcal{P}_{\gamma}$ has eigenvalues 'far' from the unit circle. (This doesn't work since $d \mathcal{P}_{\gamma}$ is symplectic)

Goal: (G) $\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha_{\nu}}}$ for $\gamma \in \mathcal{C}(T, g)$

- Hypothesis: Suppose $\mathcal{C}\left(2^{j}, g_{\ell}\right)$ satisfies (G) for $j \leq \ell$
- Want to find: large family of $g_{\ell+1}$ near g_{ℓ} such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell+1$.

What to do:

- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell$ (Small enough perturbation is good enough)
- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right) \cap\{$ primitive $\}$ satisfies (G)
- But!!! There are multiple geodesics in $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right)$ so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we need a condition that is 'inheritable'.

Observe:

$$
d \mathcal{P}_{k \gamma}=\left(d \mathcal{P}_{\gamma}\right)^{k} \quad \longrightarrow \quad\left(I-d \mathcal{P}_{k \gamma}\right)^{-1} \text { exists } \Leftrightarrow e^{2 \pi i p / k} \notin \operatorname{Spec}\left(d \mathcal{P}_{\gamma}\right)
$$

Hope 1: $\gamma \in \mathcal{C}\left(2^{j}, g_{\ell+1}\right)$, then $d \mathcal{P}_{\gamma}$ has eigenvalues 'far' from the unit circle. (This doesn't work since $d \mathcal{P}_{\gamma}$ is symplectic)
Hope 2: $\gamma \in \mathcal{C}\left(2^{j}, g_{\ell+1}\right)$, then $d \mathcal{P}_{\gamma}$ has eigenvalues 'far' from roots of unity.

Goal: (G) $\left\|\left(I-d \mathcal{P}_{\gamma}\right)^{-1}\right\| \leq C e^{C T^{\alpha_{\nu}}}$ for $\gamma \in \mathcal{C}(T, g)$

- Hypothesis: Suppose $\mathcal{C}\left(2^{j}, g_{\ell}\right)$ satisfies (G) for $j \leq \ell$
- Want to find: large family of $g_{\ell+1}$ near g_{ℓ} such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell+1$.

What to do:

- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{j}, g_{\ell+1}\right)$ satisfies (G) for $j \leq \ell$ (Small enough perturbation is good enough)
- $g_{\ell+1}$ such that $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right) \cap\{$ primitive $\}$ satisfies (G)
- But!!! There are multiple geodesics in $\mathcal{C}\left(2^{\ell+1}, g_{\ell+1}\right)$ so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we need a condition that is 'inheritable'.

Observe:

$$
d \mathcal{P}_{k \gamma}=\left(d \mathcal{P}_{\gamma}\right)^{k} \quad \longrightarrow \quad\left(I-d \mathcal{P}_{k \gamma}\right)^{-1} \text { exists } \Leftrightarrow e^{2 \pi i p / k} \notin \operatorname{Spec}\left(d \mathcal{P}_{\gamma}\right)
$$

Hope 1: $\gamma \in \mathcal{C}\left(2^{j}, g_{\ell+1}\right)$, then $d \mathcal{P}_{\gamma}$ has eigenvalues 'far' from the unit circle. (This doesn't work since $d \mathcal{P}_{\gamma}$ is symplectic)
Hope 2: $\gamma \in \mathcal{C}\left(2^{j}, g_{\ell+1}\right)$, then $d \mathcal{P}_{\gamma}$ has eigenvalues 'far' from roots of unity. This works, but requires delicate adjustments at every step of the induction

How to perturb g_{ℓ} ?

Let $\gamma_{g_{\ell}} \in \mathcal{C}\left(2^{\ell+1}, g_{\ell}\right)$ is primitive. How can we perturb?

How to perturb g_{ℓ} ?

Let $\gamma_{g_{\ell}} \in \mathcal{C}\left(2^{\ell+1}, g_{\ell}\right)$ is primitive. How can we perturb?

- Use primitivity: find a (physical!) ball, B over which $\gamma_{g_{\ell}}$ passes only once.

How to perturb g_{ℓ} ?

Let $\gamma_{g_{\ell}} \in \mathcal{C}\left(2^{\ell+1}, g_{\ell}\right)$ is primitive. How can we perturb?

- Use primitivity: find a (physical!) ball, B over which $\gamma_{g_{\ell}}$ passes only once.
- Make a family of perturbations $\mathbb{R}^{N} \ni \sigma \rightarrow g_{\sigma}$ in B so that $\sigma \mapsto\left(\mathcal{P}_{\sigma}, d \mathcal{P}_{\sigma}\right)$ is a submersion.

How to perturb g_{ℓ} ?

Let $\gamma_{g_{\ell}} \in \mathcal{C}\left(2^{\ell+1}, g_{\ell}\right)$ is primitive. How can we perturb?

- Use primitivity: find a (physical!) ball, B over which $\gamma_{g_{\ell}}$ passes only once.
- Make a family of perturbations $\mathbb{R}^{N} \ni \sigma \rightarrow g_{\sigma}$ in B so that $\sigma \mapsto\left(\mathcal{P}_{\sigma}, d \mathcal{P}_{\sigma}\right)$ is a submersion.
- Use a quantitative Sard theorem due to Yomdin to guarantee that

$$
\begin{gathered}
\mathrm{m}\left(\left\{\sigma:\left(\mathcal{P}_{\sigma}, d \mathcal{P}_{\sigma}\right) \text { is near }\left(I d, \mathcal{M}_{K}\right)\right\}\right) \ll 1 \\
\mathcal{M}_{K}:=\left\{\text { matrices with eigenvalue } e^{2 \pi i p / k} \text { for some } 1 \leq k \leq K\right\}
\end{gathered}
$$

How to perturb g_{ℓ} ?

Let $\gamma_{g_{\ell}} \in \mathcal{C}\left(2^{\ell+1}, g_{\ell}\right)$ is primitive. How can we perturb?

- Use primitivity: find a (physical!) ball, B over which $\gamma_{g_{\ell}}$ passes only once.
- Make a family of perturbations $\mathbb{R}^{N} \ni \sigma \rightarrow g_{\sigma}$ in B so that $\sigma \mapsto\left(\mathcal{P}_{\sigma}, d \mathcal{P}_{\sigma}\right)$ is a submersion.
- Use a quantitative Sard theorem due to Yomdin to guarantee that

$$
\begin{gathered}
\mathrm{m}\left(\left\{\sigma:\left(\mathcal{P}_{\sigma}, d \mathcal{P}_{\sigma}\right) \text { is near }\left(I d, \mathcal{M}_{K}\right)\right\}\right) \ll 1 \\
\mathcal{M}_{K}:=\left\{\text { matrices with eigenvalue } e^{2 \pi i p / k} \text { for some } 1 \leq k \leq K\right\}
\end{gathered}
$$

- Note! This only allows to inherit up to iterates of length K, have to update these later.

Happy birthday!

