# Weyl laws and closed geodesics on typical manifolds

Joint with Y. Canzani

9-9-2022

Jeffrey Galkowski



#### Definition

 $\mathscr{G}$  (open subset of) Banach space.  $G \subset \mathscr{G}$  is predominant if

#### Definition

- $\mathscr{G}$  (open subset of) Banach space.  $G \subset \mathscr{G}$  is predominant if
  - for each g there is a submanifold  $\mathcal{L}_g \subset \mathscr{G}$  with Borel measure  $\mu_g$ :

 $G \cap \mathcal{L}_g$  has full measure.

#### Definition

 $\mathscr{G}$  (open subset of) Banach space.  $G \subset \mathscr{G}$  is predominant if

• for each g there is a submanifold  $\mathcal{L}_g \subset \mathscr{G}$  with Borel measure  $\mu_g$ :

 $G \cap \mathcal{L}_g$  has full measure.

•  $g \in \mathcal{L}_g$  and  $g \mapsto \mathcal{L}_g$  is  $C^1$ .

#### Definition

 $\mathscr{G}$  (open subset of) Banach space.  $G \subset \mathscr{G}$  is predominant if

• for each g there is a submanifold  $\mathcal{L}_g \subset \mathscr{G}$  with Borel measure  $\mu_g$ :

 $G \cap \mathcal{L}_g$  has full measure.

- $g \in \mathcal{L}_g$  and  $g \mapsto \mathcal{L}_g$  is  $C^1$ .
- $\mu_g(U_g) > 0$  for every open neighborhood of g.

#### Definition

 $\mathscr{G}$  (open subset of) Banach space.  $G \subset \mathscr{G}$  is predominant if

• for each g there is a submanifold  $\mathcal{L}_g \subset \mathscr{G}$  with Borel measure  $\mu_g$ :

 $G \cap \mathcal{L}_g$  has full measure.

- $g \in \mathcal{L}_g$  and  $g \mapsto \mathcal{L}_g$  is  $C^1$ .
- $\mu_g(U_g) > 0$  for every open neighborhood of g.

Properties.

#### Definition

 $\mathscr{G}$  (open subset of) Banach space.  $G \subset \mathscr{G}$  is predominant if

• for each g there is a submanifold  $\mathcal{L}_g \subset \mathscr{G}$  with Borel measure  $\mu_g$ :

 $G \cap \mathcal{L}_g$  has full measure.

- $g \in \mathcal{L}_g$  and  $g \mapsto \mathcal{L}_g$  is  $C^1$ .
- $\mu_g(U_g) > 0$  for every open neighborhood of g.

Properties.

• predominant sets are dense

#### Definition

 $\mathscr{G}$  (open subset of) Banach space.  $G \subset \mathscr{G}$  is predominant if

• for each g there is a submanifold  $\mathcal{L}_g \subset \mathscr{G}$  with Borel measure  $\mu_g$ :

 $G \cap \mathcal{L}_g$  has full measure.

- $g \in \mathcal{L}_g$  and  $g \mapsto \mathcal{L}_g$  is  $C^1$ .
- $\mu_g(U_g) > 0$  for every open neighborhood of g.

Properties.

- predominant sets are dense
- intersection of predominant sets are predominant

#### Definition

 $\mathscr{G}$  (open subset of) Banach space.  $G \subset \mathscr{G}$  is predominant if

• for each g there is a submanifold  $\mathcal{L}_g \subset \mathscr{G}$  with Borel measure  $\mu_g$ :

 $G \cap \mathcal{L}_g$  has full measure.

- $g \in \mathcal{L}_g$  and  $g \mapsto \mathcal{L}_g$  is  $C^1$ .
- $\mu_g(U_g) > 0$  for every open neighborhood of g.

Properties.

- predominant sets are dense
- intersection of predominant sets are predominant
- in finite dimensions, predominant sets have full measure

#### Definition

 $\mathscr{G}$  (open subset of) Banach space.  $G \subset \mathscr{G}$  is predominant if

• for each g there is a submanifold  $\mathcal{L}_g \subset \mathscr{G}$  with Borel measure  $\mu_g$ :

 $G \cap \mathcal{L}_g$  has full measure.

- $g \in \mathcal{L}_g$  and  $g \mapsto \mathcal{L}_g$  is  $C^1$ .
- $\mu_g(U_g) > 0$  for every open neighborhood of g.

Properties.

- predominant sets are dense
- intersection of predominant sets are predominant
- in finite dimensions, predominant sets have full measure

Note. We will work with  $\mathscr{G}$  being the space of Riemannian metrics over a manifold M.

 $(M^n, g)$  compact, no boundary.

 $(M^n, g)$  compact, no boundary.

 $(M^n, g)$  compact, no boundary.

 $\mathfrak{c}(\mathcal{T}, \mathcal{M}, \mathfrak{g}) := \#\{\gamma \text{ a primitive, periodic, unit speed geodesic of length } \leq \mathcal{T}\}.$ 

• 
$$\mathfrak{c}(T, M, g) < \infty$$
 for a Baire generic g

[Abraham '70, Anosov '82]

 $(M^n,g)$  compact, no boundary.

 $\mathfrak{c}(T, M, g) := \#\{\gamma \text{ a primitive, periodic, unit speed geodesic of length } \leq T\}.$ 

- $\mathfrak{c}(\mathcal{T}, \mathcal{M}, g) < \infty$  for a Baire generic g
- $\mathfrak{c}(T, M, g) \to \infty$  for a Baire generic g

[Abraham '70, Anosov '82] [Hingston '84]

 $(M^n,g)$  compact, no boundary.

• 
$$c(T, M, g) < \infty$$
 for a Baire generic  $g$  [Abraham '70, Anosov '82]  
•  $c(T, M, g) \rightarrow \infty$  for a Baire generic  $g$  [Hingston '84]  
•  $c(T, M, g) \ge ce^{cT}$  for an open dense set of  $g$  [Contreras '10]

 $(M^n,g)$  compact, no boundary.

• 
$$c(T, M, g) < \infty$$
 for a Baire generic  $g$  [Abraham '70, Anosov '82]  
•  $c(T, M, g) \rightarrow \infty$  for a Baire generic  $g$  [Hingston '84]  
•  $c(T, M, g) \ge ce^{cT}$  for an open dense set of  $g$  [Contreras '10]  
•  $c(T, M, g) \sim ce^{hT}$  for  $g$  with negative curvature [Bowen '72]

 $(M^n,g)$  compact, no boundary.

• 
$$c(T, M, g) < \infty$$
 for a Baire generic  $g$  [Abraham '70, Anosov '82]  
•  $c(T, M, g) \to \infty$  for a Baire generic  $g$  [Hingston '84]  
•  $c(T, M, g) \ge ce^{cT}$  for an open dense set of  $g$  [Contreras '10]  
•  $c(T, M, g) \sim ce^{hT}$  for  $g$  with negative curvature [Bowen '72]  
What about *quantitative* upper bounds for 'typical'  $g$ ?

 $(M^n,g)$  compact, no boundary.

 $c(T, M, g) := #\{\gamma \text{ a primitive, periodic, unit speed geodesic of length } \leq T\}.$ 

•  $c(T, M, g) < \infty$  for a Baire generic g [Abraham '70, Anosov '82] •  $c(T, M, g) \to \infty$  for a Baire generic g [Hingston '84] •  $c(T, M, g) \ge ce^{cT}$  for an open dense set of g [Contreras '10] •  $c(T, M, g) \sim ce^{hT}$  for g with negative curvature [Bowen '72] What about *quantitative* upper bounds for 'typical' g?

#### Theorem (Canzani–G ('22))

Let M be a smooth manifold of dimension n. Then for all  $\nu \ge 5$  the set of metrics,  $g \in C^{\nu}$ , such that there is C > 0

$$c(T, M, g) \leq Ce^{CT^{\alpha_{\nu}}}$$

 $(M^n,g)$  compact, no boundary.

 $(M^n,g)$  compact, no boundary. Eigenvalues of  $-\Delta_g$ :  $0 = \lambda_0^2 < \lambda_1^2 \le \lambda_2^2 \le \dots$ 

 $(M^n,g)$  compact, no boundary. Eigenvalues of  $-\Delta_g$ :  $0 = \lambda_0^2 < \lambda_1^2 \le \lambda_2^2 \le \dots$ 

$$\#\{\lambda_j \leq \lambda\} = \frac{\operatorname{vol}_{\mathbb{R}^n}(B_1)\operatorname{vol}_g(M)}{(2\pi)^n}\lambda^n + E_\lambda$$

 $(M^n, g)$  compact, no boundary. Eigenvalues of  $-\Delta_g$ :  $0 = \lambda_0^2 < \lambda_1^2 \le \lambda_2^2 \le \dots$  $\#\{\lambda_j \le \lambda\} = \frac{\operatorname{vol}_{\mathbb{R}^n}(B_1)\operatorname{vol}_g(M)}{(2\pi)^n}\lambda^n + E_\lambda$ 

• (M,g) general:  $E_{\lambda} = O(\lambda^{n-1})$  [Levitan '52, Avakumoic '56, Hörmander '68]

 $(M^n, g)$  compact, no boundary. Eigenvalues of  $-\Delta_g$ :  $0 = \lambda_0^2 < \lambda_1^2 \le \lambda_2^2 \le \dots$  $\#\{\lambda_j \le \lambda\} = \frac{\operatorname{vol}_{\mathbb{R}^n}(B_1)\operatorname{vol}_g(M)}{(2\pi)^n}\lambda^n + E_\lambda$ 

- (M,g) general:  $E_{\lambda} = O(\lambda^{n-1})$  [Levitan '52, Avakumoic '56, Hörmander '68]
- (M,g) Zoll:  $E_{\lambda} \neq o(\lambda^{n-1})$  [Duistermaat-Guillemin '75, Weinstein '74]

 $(M^n, g)$  compact, no boundary. Eigenvalues of  $-\Delta_g$ :  $0 = \lambda_0^2 < \lambda_1^2 \le \lambda_2^2 \le \dots$ 

$$\#\{\lambda_j \leq \lambda\} = \frac{\operatorname{vol}_{\mathbb{R}^n}(B_1)\operatorname{vol}_g(M)}{(2\pi)^n}\lambda^n + E_\lambda$$

- (M, g) general:  $E_{\lambda} = O(\lambda^{n-1})$  [Levitan '52, Avakumoic '56, Hörmander '68]

• (M, g) Zoll:  $E_{\lambda} \neq o(\lambda^{n-1})$  [Duistermaat-Guillemin '75, Weinstein '74] • (*M*, *g*) aperiodic:  $E_{\lambda} = o(\lambda^{n-1})$  [Duistermaat-Guillemin '75, Ivrii '80]

 $(M^n,g)$  compact, no boundary. Eigenvalues of  $-\Delta_g$ :  $0 = \lambda_0^2 < \lambda_1^2 \le \lambda_2^2 \le \dots$ 

$$\#\{\lambda_j \leq \lambda\} = \frac{\operatorname{vol}_{\mathbb{R}^n}(B_1)\operatorname{vol}_g(M)}{(2\pi)^n}\lambda^n + E_\lambda$$

- (M,g) general:  $E_{\lambda} = O(\lambda^{n-1})$  [Levitan '52, Avakumoic '56, Hörmander '68]
- (M,g) Zoll:  $E_{\lambda} \neq o(\lambda^{n-1})$  [Duistermaat-Guillemin '75, Weinstein '74]
- (*M*, *g*) aperiodic:  $E_{\lambda} = o(\lambda^{n-1})$  [Duistermaat-Guillemin '75, lvrii '80]
- (M,g) no conjugate points:  $E_{\lambda} = O(\frac{\lambda^{n-1}}{\log \lambda})$  [Berard '77 + Bonthoneau '17]

 $(M^n,g)$  compact, no boundary. Eigenvalues of  $-\Delta_g$ :  $0 = \lambda_0^2 < \lambda_1^2 \le \lambda_2^2 \le \dots$ 

$$\#\{\lambda_j \leq \lambda\} = \frac{\operatorname{vol}_{\mathbb{R}^n}(B_1)\operatorname{vol}_g(M)}{(2\pi)^n}\lambda^n + E_\lambda$$

- (M,g) general:  $E_{\lambda} = O(\lambda^{n-1})$  [Levitan '52, Avakumoic '56, Hörmander '68]
- (M,g) Zoll:  $E_{\lambda} \neq o(\lambda^{n-1})$  [Duistermaat-Guillemin '75, Weinstein '74]
- (M,g) aperiodic:  $E_{\lambda} = o(\lambda^{n-1})$  [Duistermaat-Guillemin '75, Ivrii '80]
- (M,g) no conjugate points:  $E_{\lambda} = O(\frac{\lambda^{n-1}}{\log \lambda})$  [Berard '77 + Bonthoneau '17]
- (M,g) Baire generic:  $E_{\lambda} = o(\lambda^{n-1})$  [Duistermaat-Guillemin '75, Anosov '82]

 $(M^n,g)$  compact, no boundary. Eigenvalues of  $-\Delta_g$ :  $0 = \lambda_0^2 < \lambda_1^2 \le \lambda_2^2 \le \dots$ 

$$\#\{\lambda_j \leq \lambda\} = \frac{\operatorname{vol}_{\mathbb{R}^n}(B_1)\operatorname{vol}_g(M)}{(2\pi)^n}\lambda^n + E_\lambda$$

- (M,g) general:  $E_{\lambda} = O(\lambda^{n-1})$  [Levitan '52, Avakumoic '56, Hörmander '68]
- (M,g) Zoll:  $E_{\lambda} \neq o(\lambda^{n-1})$  [Duistermaat-Guillemin '75, Weinstein '74]
- (M,g) aperiodic:  $E_{\lambda} = o(\lambda^{n-1})$  [Duistermaat-Guillemin '75, Ivrii '80]
- (M,g) no conjugate points:  $E_{\lambda} = O(\frac{\lambda^{n-1}}{\log \lambda})$  [Berard '77 + Bonthoneau '17]
- (M,g) Baire generic:  $E_{\lambda} = o(\lambda^{n-1})$  [Duistermaat-Guillemin '75, Anosov '82]

#### Theorem (Canzani–G '22)

Let M be a smooth manifold of dimension n. Then there is  $\nu_0 > 0$  such that for all  $\nu > \nu_0$  the set of metrics,  $g \in C^{\nu}$  such that

$$E_{\lambda} = O\left(\frac{\lambda^{n-1}}{(\log \lambda)^{1/\alpha_{\nu}}}\right)$$

Theorem (Duistermaat–Guillemin ('75) + Anosov ('82))

Let M be a smooth manifold of dimension n. The property

$$\#\{\lambda \leq \lambda_j\} = \frac{\operatorname{vol}_{\mathbb{R}^n}(B_1)\operatorname{vol}_g(M)}{(2\pi)^n}\lambda^n + E_\lambda, \qquad E_\lambda = o(\lambda^{n-1})$$

is Baire generic in the space of smooth metrics.

#### Proof.

Theorem (Duistermaat–Guillemin ('75) + Anosov ('82))

Let M be a smooth manifold of dimension n. The property

$$\#\{\lambda \le \lambda_j\} = \frac{\operatorname{vol}_{\mathbb{R}^n}(B_1)\operatorname{vol}_g(M)}{(2\pi)^n}\lambda^n + E_\lambda, \qquad E_\lambda = o(\lambda^{n-1})$$

is Baire generic in the space of smooth metrics.

#### Proof.

• [Duistermaat–Guillemin ('75)] If the set of closed geodesics has measure zero in  $S^*M$ , then  $E_{\lambda} = o(\lambda^{n-1})$ .

Theorem (Duistermaat–Guillemin ('75) + Anosov ('82))

Let M be a smooth manifold of dimension n. The property

$$\#\{\lambda \leq \lambda_j\} = \frac{\operatorname{vol}_{\mathbb{R}^n}(B_1)\operatorname{vol}_g(M)}{(2\pi)^n}\lambda^n + E_\lambda, \qquad E_\lambda = o(\lambda^{n-1})$$

is Baire generic in the space of smooth metrics.

#### Proof.

- [Duistermaat–Guillemin ('75)] If the set of closed geodesics has measure zero in  $S^*M$ , then  $E_{\lambda} = o(\lambda^{n-1})$ .
- [Anosov ('82)] The set of metrics such that for all T > 0, there are finitely many closed geodesics with length  $\leq T$  is Baire generic.

#### Theorem (Canzani–G ('22))

Let M be a smooth manifold of dimension n. Then there is  $\nu_0 > 0$  such that for all  $\nu > \nu_0$  the set of metrics,  $g \in C^{\nu}$  such that

$$\#\{\lambda_j \leq \lambda \, : \, \lambda_j^2 \in \sigma(-\Delta_g)\} = \frac{\mathsf{vol}_{\mathbb{R}^n}(B_1)\mathsf{vol}_g(M)}{(2\pi)^n}\lambda^n + E_\lambda, \qquad E_\lambda = O\Big(\frac{\lambda^{n-1}}{(\log \lambda)^{1/\alpha_\nu}}\Big)$$

is predominant in the space of  $C^{\nu}$  metrics on M, where  $\alpha_{\nu} = C_n + \log_2 \nu$ .

Idea of Proof:

#### Theorem (Canzani–G ('22))

Let M be a smooth manifold of dimension n. Then there is  $\nu_0 > 0$  such that for all  $\nu > \nu_0$  the set of metrics,  $g \in C^{\nu}$  such that

$$\#\{\lambda_j \leq \lambda \, : \, \lambda_j^2 \in \sigma(-\Delta_g)\} = \frac{\mathsf{vol}_{\mathbb{R}^n}(B_1)\mathsf{vol}_g(M)}{(2\pi)^n}\lambda^n + E_\lambda, \qquad E_\lambda = O\Big(\frac{\lambda^{n-1}}{(\log \lambda)^{1/\alpha_\nu}}\Big)$$

is predominant in the space of  $C^{\nu}$  metrics on M, where  $\alpha_{\nu} = C_n + \log_2 \nu$ .

Idea of Proof:

#### Definition

(M,g) is said to be T(R) non-periodic if

$$\operatorname{vol}\left(
ho \,:\, \exists t\in [t_0,\mathsf{T}(R)] \,\, ext{s.t.} \,\, d(
ho, arphi^g_t(B(
ho,R)))\leq R
ight)\leq rac{\mathsf{C}}{\mathsf{T}(R)}, \qquad R o 0^+$$

#### Theorem (Canzani–G ('22))

Let M be a smooth manifold of dimension n. Then there is  $\nu_0 > 0$  such that for all  $\nu > \nu_0$  the set of metrics,  $g \in C^{\nu}$  such that

$$\#\{\lambda_j \leq \lambda \, : \, \lambda_j^2 \in \sigma(-\Delta_g)\} = \frac{\mathsf{vol}_{\mathbb{R}^n}(B_1)\mathsf{vol}_g(M)}{(2\pi)^n}\lambda^n + E_\lambda, \qquad E_\lambda = O\Big(\frac{\lambda^{n-1}}{(\log \lambda)^{1/\alpha_\nu}}\Big)$$

is predominant in the space of  $C^{\nu}$  metrics on M, where  $\alpha_{\nu} = C_n + \log_2 \nu$ .

Idea of Proof:

#### Definition

(M,g) is said to be T(R) non-periodic if

$$\mathsf{vol}\left(\rho\,:\,\exists t\in[t_0,\mathsf{T}(R)]\;\mathsf{s.t.}\;d(\rho,\varphi^g_t(B(\rho,R)))\leq R\right)\leq \frac{C}{\mathsf{T}(R)},\qquad R\to 0^+$$

#### Theorem (Canzani– G '20)

If (M, g) is T(R) non-periodic, then  $E_{\lambda} = O(\lambda^{n-1}/T(\lambda^{-1}))$ .

#### Theorem (Canzani–G ('22))

Let M be a smooth manifold of dimension n. Then there is  $\nu_0 > 0$  such that for all  $\nu > \nu_0$  the set of metrics,  $g \in C^{\nu}$  such that

$$\#\{\lambda_j \leq \lambda \, : \, \lambda_j^2 \in \sigma(-\Delta_g)\} = \frac{\mathsf{vol}_{\mathbb{R}^n}(B_1)\mathsf{vol}_g(M)}{(2\pi)^n}\lambda^n + E_\lambda, \qquad E_\lambda = O\Big(\frac{\lambda^{n-1}}{(\log \lambda)^{1/\alpha_\nu}}\Big)$$

is predominant in the space of  $C^{\nu}$  metrics on M, where  $\alpha_{\nu} = C_n + \log_2 \nu$ .

Idea of Proof:

#### Definition

(M,g) is said to be T(R) non-periodic if

$$\mathsf{vol}\left(\rho\,:\,\exists t\in[t_0,\mathsf{T}(R)]\;\mathsf{s.t.}\;d(\rho,\varphi^g_t(\mathcal{B}(\rho,R)))\leq R\right)\leq \frac{\mathsf{C}}{\mathsf{T}(R)},\qquad R\to 0^+$$

#### Theorem (Canzani– G '20)

If (M, g) is T(R) non-periodic, then  $E_{\lambda} = O(\lambda^{n-1}/T(\lambda^{-1}))$ .

We need T(R) = (log R<sup>-1</sup>)<sup>1/α<sub>ν</sub></sup> non-periodicity for a predominant set of metrics.

• product manifolds

- product manifolds
- manifolds with no conjugate points

- product manifolds
- manifolds with no conjugate points (in fact, no 'maximal self conjugate' points)

- product manifolds
- manifolds with no conjugate points (in fact, no 'maximal self conjugate' points)
- non-Zoll convex analytic surfaces of revolution
   [Volovoy '90]

- product manifolds
- manifolds with no conjugate points (in fact, no 'maximal self conjugate' points)
- non-Zoll convex analytic surfaces of revolution [Volovoy '90]
   compact Lie group of rank > 1 with a bi-invariant metric [Volovoy '90]

- product manifolds
- manifolds with no conjugate points (in fact, no 'maximal self conjugate' points)
- non-Zoll convex analytic surfaces of revolution [Volovoy '90]
   compact Lie group of rank > 1 with a bi-invariant metric [Volovoy '90]
- But is it predominant?

### Closed geodesics on predominant manifolds.

#### Theorem (Canzani–G '22)

The set of metrics,  $g \in \mathcal{C}^{\nu}$ , such that there is C > 0

$$\#\{\gamma : \gamma \text{ is a closed geodesic for g with length } \leq T\} \leq Ce^{CT^{\alpha_1}}$$

### Closed geodesics on predominant manifolds.

#### Theorem (Canzani–G '22)

The set of metrics,  $g\in \mathcal{C}^{\nu}$  , such that there is C>0

$$\#\{\gamma : \gamma \text{ is a closed geodesic for g with length } \leq T\} \leq Ce^{CT^{\alpha_{1}}}$$

is predominant in the space of  $C^{\nu}$  metrics on M, where  $\alpha_{\nu} = C_n + \log_2 \nu$ .

#### Theorem (Canzani–G '22)

The set of metrics,  $g \in \mathcal{C}^{\nu}$ , such that there is B > 0 such that

$$\operatorname{vol}\left(\rho \, : \, \exists t \in [t_0, \, T] \, s.t. \, d(\rho, \varphi_t^g(\rho) \leq \epsilon\right) \leq \epsilon^{2n-2} e^{BT^{\alpha}\nu}$$

### Closed geodesics on predominant manifolds.

#### Theorem (Canzani–G '22)

The set of metrics,  $g\in \mathcal{C}^{\nu}$  , such that there is C>0

$$\#\{\gamma : \gamma \text{ is a closed geodesic for g with length } \leq T\} \leq Ce^{CT^{\alpha_1}}$$

is predominant in the space of  $C^{\nu}$  metrics on M, where  $\alpha_{\nu} = C_n + \log_2 \nu$ .

#### Theorem (Canzani–G '22)

The set of metrics,  $g \in \mathcal{C}^{\nu}$ , such that there is B > 0 such that

$$\operatorname{vol}\left(\rho \, : \, \exists t \in [t_0, \, T] \, s.t. \, d(\rho, \varphi_t^g(\rho) \leq \epsilon\right) \leq \epsilon^{2n-2} e^{BT^{\alpha}\nu}$$

is predominant in the space of  $C^{\nu}$  metrics on M, where  $\alpha_{\nu} = C_n + \log_2 \nu$ .

#### Corollary (Canzani–G '22)

The set of metrics,  $g \in \mathcal{C}^{
u}$  such that

$$\#\{\lambda_j \leq \lambda \, : \, \lambda_j^2 \in \sigma(-\Delta_g)\} = \frac{\operatorname{vol}_{\mathbb{R}^n}(B_1)\operatorname{vol}_g(M)}{(2\pi)^n}\lambda^n + E_\lambda, \qquad E_\lambda = O\Big(\frac{\lambda^{n-1}}{(\log \lambda)^{1/\alpha_\nu}}\Big)$$

### **Reduction to the Poincare map**





### **Reduction to the Poincare map**

 $\mathcal{C}(T,g) = \{\gamma : \text{ periodic geodesic for } g, T \leq \text{length}(\gamma) \leq 2T\}.$ 



### **Reduction to the Poincare map**

 $\mathcal{C}(T,g) = \{\gamma : \text{ periodic geodesic for } g, T \leq \text{length}(\gamma) \leq 2T\}.$ 



#### Theorem (Canzani–G '22)

The set of metrics  $g \in C^{\nu}$ , such that there is C > 0 satisfying

$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}, \qquad \gamma \in \mathcal{C}(T, g),$$

is predominant.

Goal: (G) 
$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}$$
 for  $\gamma \in \mathcal{C}(T,g)$ 

• Hypothesis: Suppose  $\mathcal{C}(2^j, g_\ell)$  satisfies (G) for  $j \leq \ell$ 

Goal: (G) 
$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}$$
 for  $\gamma \in \mathcal{C}(T,g)$ 

- Hypothesis: Suppose  $\mathcal{C}(2^j, g_\ell)$  satisfies (G) for  $j \leq \ell$
- Want to find: large family of  $g_{\ell+1}$  near  $g_{\ell}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell + 1$ .

Goal: (G) 
$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}$$
 for  $\gamma \in \mathcal{C}(T, g)$ 

• Hypothesis: Suppose  $\mathcal{C}(2^j, g_\ell)$  satisfies (G) for  $j \leq \ell$ 

• Want to find: large family of  $g_{\ell+1}$  near  $g_{\ell}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell + 1$ . What to do:

Goal: (G) 
$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}$$
 for  $\gamma \in \mathcal{C}(T, g)$ 

- Hypothesis: Suppose  $\mathcal{C}(2^j, g_\ell)$  satisfies (G) for  $j \leq \ell$
- Want to find: large family of  $g_{\ell+1}$  near  $g_{\ell}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell + 1$ . What to do:
  - $g_{\ell+1}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell$

Goal: (G) 
$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}$$
 for  $\gamma \in \mathcal{C}(T, g)$ 

- Hypothesis: Suppose  $\mathcal{C}(2^j, g_\ell)$  satisfies (G) for  $j \leq \ell$
- Want to find: large family of  $g_{\ell+1}$  near  $g_\ell$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell+1$ .

•  $g_{\ell+1}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell$  (Small enough perturbation is good enough)

Goal: (G) 
$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}$$
 for  $\gamma \in \mathcal{C}(T, g)$ 

- Hypothesis: Suppose  $\mathcal{C}(2^j, g_\ell)$  satisfies (G) for  $j \leq \ell$
- Want to find: large family of  $g_{\ell+1}$  near  $g_{\ell}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell+1$ .

- $g_{\ell+1}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell$  (Small enough perturbation is good enough)
- $g_{\ell+1}$  such that  $\mathcal{C}(2^{\ell+1}, g_{\ell+1}) \cap \{\text{primitive}\}\$ satisfies (G)

Goal: (G) 
$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}$$
 for  $\gamma \in \mathcal{C}(T, g)$ 

- Hypothesis: Suppose  $\mathcal{C}(2^j, g_\ell)$  satisfies (G) for  $j \leq \ell$
- Want to find: large family of  $g_{\ell+1}$  near  $g_{\ell}$  such that  $C(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell + 1$ . What to do:
  - $g_{\ell+1}$  such that  $C(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell$  (Small enough perturbation is good enough)
  - $g_{\ell+1}$  such that  $\mathcal{C}(2^{\ell+1}, g_{\ell+1}) \cap \{\text{primitive}\}\ \text{satisfies (G)}$
  - But!!! There are multiple geodesics in  $\mathcal{C}(2^{\ell+1}, g_{\ell+1})$  so this is not enough

Goal: (G) 
$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}$$
 for  $\gamma \in \mathcal{C}(T, g)$ 

• Hypothesis: Suppose  $\mathcal{C}(2^j, g_\ell)$  satisfies (G) for  $j \leq \ell$ 

• Want to find: large family of  $g_{\ell+1}$  near  $g_{\ell}$  such that  $C(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell + 1$ . What to do:

- $g_{\ell+1}$  such that  $C(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell$  (Small enough perturbation is good enough)
- $g_{\ell+1}$  such that  $\mathcal{C}(2^{\ell+1}, g_{\ell+1}) \cap \{\text{primitive}\}\$ satisfies (G)
- But!!! There are multiple geodesics in  $\mathcal{C}(2^{\ell+1}, g_{\ell+1})$  so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic.

Goal: (G) 
$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}$$
 for  $\gamma \in \mathcal{C}(T, g)$ 

- Hypothesis: Suppose  $\mathcal{C}(2^j, g_\ell)$  satisfies (G) for  $j \leq \ell$
- Want to find: large family of  $g_{\ell+1}$  near  $g_{\ell}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell+1$ .

- $g_{\ell+1}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell$  (Small enough perturbation is good enough)
- $g_{\ell+1}$  such that  $\mathcal{C}(2^{\ell+1}, g_{\ell+1}) \cap \{\text{primitive}\}\$ satisfies (G)
- But!!! There are multiple geodesics in  $\mathcal{C}(2^{\ell+1}, g_{\ell+1})$  so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we need a condition that is 'inheritable'.

Goal: (G) 
$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}$$
 for  $\gamma \in \mathcal{C}(T,g)$ 

- Hypothesis: Suppose  $\mathcal{C}(2^j, g_\ell)$  satisfies (G) for  $j \leq \ell$
- Want to find: large family of  $g_{\ell+1}$  near  $g_{\ell}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell+1$ .

- $g_{\ell+1}$  such that  $C(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell$  (Small enough perturbation is good enough)
- $g_{\ell+1}$  such that  $\mathcal{C}(2^{\ell+1}, g_{\ell+1}) \cap \{\text{primitive}\}\$ satisfies (G)
- But!!! There are multiple geodesics in  $\mathcal{C}(2^{\ell+1}, g_{\ell+1})$  so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we need a condition that is 'inheritable'.

Observe:

 $d\mathcal{P}_{\boldsymbol{k}\boldsymbol{\gamma}} = \left(d\mathcal{P}_{\boldsymbol{\gamma}}\right)^{\boldsymbol{k}}$ 

Goal: (G) 
$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}$$
 for  $\gamma \in \mathcal{C}(T, g)$ 

- Hypothesis: Suppose  $\mathcal{C}(2^j, g_\ell)$  satisfies (G) for  $j \leq \ell$
- Want to find: large family of  $g_{\ell+1}$  near  $g_{\ell}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell+1$ .

- $g_{\ell+1}$  such that  $C(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell$  (Small enough perturbation is good enough)
- $g_{\ell+1}$  such that  $\mathcal{C}(2^{\ell+1}, g_{\ell+1}) \cap \{\text{primitive}\}\$ satisfies (G)
- But!!! There are multiple geodesics in  $\mathcal{C}(2^{\ell+1}, g_{\ell+1})$  so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we
  need a condition that is 'inheritable'.

Observe:

$$d\mathcal{P}_{k\gamma} = \left(d\mathcal{P}_{\gamma}\right)^{k} \qquad \longrightarrow \qquad \left(I - d\mathcal{P}_{k\gamma}\right)^{-1} \text{ exists } \Leftrightarrow e^{2\pi i p/k} \notin \operatorname{Spec}(d\mathcal{P}_{\gamma}).$$

Goal: (G) 
$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}$$
 for  $\gamma \in \mathcal{C}(T, g)$ 

- Hypothesis: Suppose  $\mathcal{C}(2^j, g_\ell)$  satisfies (G) for  $j \leq \ell$
- Want to find: large family of  $g_{\ell+1}$  near  $g_{\ell}$  such that  $C(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell + 1$ .

- $g_{\ell+1}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell$  (Small enough perturbation is good enough)
- $g_{\ell+1}$  such that  $\mathcal{C}(2^{\ell+1}, g_{\ell+1}) \cap \{\text{primitive}\}\$ satisfies (G)
- But!!! There are multiple geodesics in  $\mathcal{C}(2^{\ell+1}, g_{\ell+1})$  so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we
  need a condition that is 'inheritable'.

Observe:

$$d\mathcal{P}_{k\gamma} = (d\mathcal{P}_{\gamma})^{k} \longrightarrow (I - d\mathcal{P}_{k\gamma})^{-1} \text{ exists } \Leftrightarrow e^{2\pi i p/k} \notin \operatorname{Spec}(d\mathcal{P}_{\gamma}).$$

Hope 1:  $\gamma \in \mathcal{C}(2^{j}, g_{\ell+1})$ , then  $d\mathcal{P}_{\gamma}$  has eigenvalues 'far' from the unit circle.

Goal: (G) 
$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}$$
 for  $\gamma \in \mathcal{C}(T, g)$ 

- Hypothesis: Suppose  $\mathcal{C}(2^j, g_\ell)$  satisfies (G) for  $j \leq \ell$
- Want to find: large family of  $g_{\ell+1}$  near  $g_{\ell}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell+1$ .

- $g_{\ell+1}$  such that  $C(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell$  (Small enough perturbation is good enough)
- $g_{\ell+1}$  such that  $\mathcal{C}(2^{\ell+1}, g_{\ell+1}) \cap \{\text{primitive}\}\$ satisfies (G)
- But!!! There are multiple geodesics in  $\mathcal{C}(2^{\ell+1}, g_{\ell+1})$  so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we
  need a condition that is 'inheritable'.

Observe:

$$d\mathcal{P}_{k\gamma} = (d\mathcal{P}_{\gamma})^{k} \longrightarrow (I - d\mathcal{P}_{k\gamma})^{-1} \text{ exists } \Leftrightarrow e^{2\pi i p/k} \notin \operatorname{Spec}(d\mathcal{P}_{\gamma}).$$

Hope 1:  $\gamma \in C(2^j, g_{\ell+1})$ , then  $d\mathcal{P}_{\gamma}$  has eigenvalues 'far' from the unit circle. (This doesn't work since  $d\mathcal{P}_{\gamma}$  is symplectic)

Goal: (G) 
$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}$$
 for  $\gamma \in \mathcal{C}(T, g)$ 

- Hypothesis: Suppose  $\mathcal{C}(2^j, g_\ell)$  satisfies (G) for  $j \leq \ell$
- Want to find: large family of  $g_{\ell+1}$  near  $g_{\ell}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell+1$ .

- $g_{\ell+1}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell$  (Small enough perturbation is good enough)
- $g_{\ell+1}$  such that  $\mathcal{C}(2^{\ell+1}, g_{\ell+1}) \cap \{\text{primitive}\}\$ satisfies (G)
- But!!! There are multiple geodesics in  $\mathcal{C}(2^{\ell+1}, g_{\ell+1})$  so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we
  need a condition that is 'inheritable'.

Observe:

$$d\mathcal{P}_{k\gamma} = (d\mathcal{P}_{\gamma})^{k} \longrightarrow (I - d\mathcal{P}_{k\gamma})^{-1} \text{ exists } \Leftrightarrow e^{2\pi i p/k} \notin \operatorname{Spec}(d\mathcal{P}_{\gamma}).$$

Hope 1:  $\gamma \in C(2^j, g_{\ell+1})$ , then  $d\mathcal{P}_{\gamma}$  has eigenvalues 'far' from the unit circle. (This doesn't work since  $d\mathcal{P}_{\gamma}$  is symplectic)

Hope 2:  $\gamma \in \mathcal{C}(2^j, g_{\ell+1})$ , then  $d\mathcal{P}_{\gamma}$  has eigenvalues 'far' from roots of unity.

Goal: (G) 
$$\|(I - d\mathcal{P}_{\gamma})^{-1}\| \leq Ce^{CT^{\alpha_{\nu}}}$$
 for  $\gamma \in \mathcal{C}(T,g)$ 

- Hypothesis: Suppose  $\mathcal{C}(2^j, g_\ell)$  satisfies (G) for  $j \leq \ell$
- Want to find: large family of  $g_{\ell+1}$  near  $g_{\ell}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell+1$ .

- $g_{\ell+1}$  such that  $\mathcal{C}(2^j, g_{\ell+1})$  satisfies (G) for  $j \leq \ell$  (Small enough perturbation is good enough)
- $g_{\ell+1}$  such that  $\mathcal{C}(2^{\ell+1}, g_{\ell+1}) \cap \{\text{primitive}\}\ \text{satisfies (G)}$
- But!!! There are multiple geodesics in  $C(2^{\ell+1}, g_{\ell+1})$  so this is not enough
- It is difficult to control the effect of a perturbation on a multiple geodesic. To fix this, we
  need a condition that is 'inheritable'.

Observe:

$$d\mathcal{P}_{k\gamma} = (d\mathcal{P}_{\gamma})^{k} \longrightarrow (I - d\mathcal{P}_{k\gamma})^{-1} \text{ exists } \Leftrightarrow e^{2\pi i p/k} \notin \operatorname{Spec}(d\mathcal{P}_{\gamma}).$$

- Hope 1:  $\gamma \in C(2^{j}, g_{\ell+1})$ , then  $d\mathcal{P}_{\gamma}$  has eigenvalues 'far' from the unit circle. (This doesn't work since  $d\mathcal{P}_{\gamma}$  is symplectic)
- Hope 2:  $\gamma \in C(2^{j}, g_{\ell+1})$ , then  $d\mathcal{P}_{\gamma}$  has eigenvalues 'far' from roots of unity. This works, but requires delicate adjustments at every step of the induction

### How to perturb $g_{\ell}$ ?

Let  $\gamma_{g_{\ell}} \in \mathcal{C}(2^{\ell+1}, g_{\ell})$  is primitive. How can we perturb?

Let  $\gamma_{g_{\ell}} \in \mathcal{C}(2^{\ell+1}, g_{\ell})$  is primitive. How can we perturb?

• Use primitivity: find a (physical!) ball, B over which  $\gamma_{g_{\ell}}$  passes only once.

### How to perturb $g_{\ell}$ ?

Let  $\gamma_{g_{\ell}} \in \mathcal{C}(2^{\ell+1}, g_{\ell})$  is primitive. How can we perturb?

- Use primitivity: find a (physical!) ball, B over which  $\gamma_{g_{\ell}}$  passes only once.
- Make a family of perturbations  $\mathbb{R}^N \ni \sigma \to g_\sigma$  in B so that  $\sigma \mapsto (\mathcal{P}_\sigma, d\mathcal{P}_\sigma)$  is a submersion.

Let  $\gamma_{g_{\ell}} \in \mathcal{C}(2^{\ell+1}, g_{\ell})$  is primitive. How can we perturb?

- Use primitivity: find a (physical!) ball, B over which  $\gamma_{g_{\ell}}$  passes only once.
- Make a family of perturbations  $\mathbb{R}^N \ni \sigma \to g_\sigma$  in B so that  $\sigma \mapsto (\mathcal{P}_\sigma, d\mathcal{P}_\sigma)$  is a submersion.
- Use a quantitative Sard theorem due to Yomdin to guarantee that

$$\begin{split} &\mathrm{m}\big(\{\sigma\,:\,(\mathcal{P}_{\sigma},d\mathcal{P}_{\sigma})\text{ is near }(\textit{Id},\mathcal{M}_{K})\}\big)\ll 1\\ \mathcal{M}_{\mathcal{K}}:=\{\text{matrices with eigenvalue }e^{2\pi i p/k}\text{ for some }1\leq k\leq K\} \end{split}$$

Let  $\gamma_{g_{\ell}} \in \mathcal{C}(2^{\ell+1}, g_{\ell})$  is primitive. How can we perturb?

- Use primitivity: find a (physical!) ball, B over which  $\gamma_{g_{\ell}}$  passes only once.
- Make a family of perturbations  $\mathbb{R}^N \ni \sigma \to g_\sigma$  in B so that  $\sigma \mapsto (\mathcal{P}_\sigma, d\mathcal{P}_\sigma)$  is a submersion.
- Use a quantitative Sard theorem due to Yomdin to guarantee that

 $m(\{\sigma : (\mathcal{P}_{\sigma}, d\mathcal{P}_{\sigma}) \text{ is near } (Id, \mathcal{M}_{K})\}) \ll 1$ 

 $\mathcal{M}_{\mathcal{K}} := \{ \text{matrices with eigenvalue } e^{2\pi i p/k} \text{ for some } 1 \leq k \leq \mathcal{K} \}$ 

• Note! This only allows to inherit up to iterates of length K, have to update these later.

## Happy birthday!