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Semiclassical scarring on KAM tori

• Background: my work showing that the stadium billiard is
non-QUE for almost every value of the aspect ratio; in fact, that
there is scarring onto the codimension-one set of ‘bouncing
ball’ trajectories. (2008, published in 2010).

• I talked to Steve about this in 2008 at MSRI. He asked
whether this method could be used to say something about
non-equidistribution of KAM systems.

• Specifically he asked me if it could be used to show
concentration onto KAM tori, using Popov’s construction of
exponentially accurate quasimodes.



Comparison of the two problems (stadium/KAM)

• Both have a 1-parameter family of variations

• Both have quasimodes concentrating onto a codimension 1
subset of the energy shell

• The stadium is known to be QE (Schnirelman, Zelditch,
Colin de Verdière, Gérard-Leichtnam, Zelditch-Zworski), KAM
expected not to be (Gomes)

• KAM quasimodes are exponentially accurate, stadium is only
O(h2) quasimode

• KAM tori are individually measure zero but together form a
large measure set



The KAM problem has been studied in work of Sean Gomes in
his thesis and then in collaboration with me:

• S. Gomes, Generic KAM Hamiltonians are not Quantum
Ergodic, A&PDE, to appear; arXiv:1811.07718.

• S. Gomes, A. Hassell, Semiclassical scarring on tori in KAM
Hamiltonian systems, J. Eur. Math. Soc. 2022.

Would not have been tackled without Steve’s original question
from 2008!



Spectral concentration

The key point in both problems is to bound the spectral
concentration that can occur near the quasi-eigenvalues.
Recall two key principles about eigenvalue/eigenfunction
approximation: let T be a self-adjoint operator, and φ, ‖φ‖ = 1
a normalized approximate eigenfunction, with ‖(T − λ)φ‖ ≤ ε.
Then:



• For M > 1 the spectral projector Π[λ−Mε,λ+Mε] on the larger
interval [λ−Mε, λ+ Mε] satisfies

‖Π[λ−Mε,λ+Mε]φ− φ‖ ≤
1
M
,

i.e. for large M φ is essentially composed of a sum of
eigenfunctions with eigenvalues in the range [λ−Mε, λ+ Mε].

• if the spectral projector Π[λ−Mε,λ+Mε] has rank ≤ R, then
there is a normalized eigenfunction u with eigenvalue in the
range [λ−Mε, λ+ Mε] such that

|〈u, φ〉| ≥ R−1/2(1 + O(M−1)).



Now, given a quasimode, i.e. a sequence φj with
‖(Hhj − λj)φj‖ ≤ εj for some sequence hj → 0, the goal is to find
a uniform M and R so that there are at most R eigenvalues
(counted with multiplicity) in [λj −Mεj , λj + Mεj ], as j →∞.
From this we can show that if the φj scar onto a set E of
measure zero, then there is scarring of a sequence of true
eigenfunctions uj selected as above.



Key challenge: bound the multiplicity R uniformly for a
sequence of quasimodes as h→ 0.

To do this we use the ‘time’ parameter t , and a formula for the
flow of eigenvalues in t , to show that we avoid spectral
concentration (i.e. R →∞) for most values of t .



Stadium case
Using semiclassical notation, we look at eigenvalues of h2∆t
where ∆t is the Dirichlet Laplacian for the stadium with aspect
ratio t , i.e. the central rectangle is [0, t ]× [0,1].
Quasimodes are φj(x , y) = χ(x) sin(jπy) (supported in the
central rectangle). Then for h = 1/j we have

(h2∆t − π2)φj = OL2(h2).

Assume, for a contradiction, that the stadium St is QUE for
each t . The assumption of QUE implies a very uniform flow of
eigenvalues, in fact

Ėj(t) = −c(t)Ej(t)(1 + o(1)).

Consideration of this flow together with Weyl’s Law shows that,
as the aspect ratio of the stadium ranges over an interval, most
of the time we have a bounded number of eigenvalues in
intervals [π2 −Mh2, π2 + Mh2].



Why? There are O(h−2) eigenvalues that cross the value π2 in
a given time interval, but each only spends time O(h2) in the
interval [π2 −Mh2, π2 + Mh2].



KAM system

Here we look at a one parameter variation H + tP of a
completely integrable Hamiltonian H, written in action-angle
coordinates (θ1, θ2, I1, I2) as H(I1, I2), where (θ1, θ2) ∈ T2. The
Hamiltonian flow is

θ̇ = ω(I) :=
∂H
∂I
, İ = 0.

We assume nondegeneracy, i.e. the frequency ω(I) is a locally
invertible function of I. KAM theory tells us that the Lagrangian
tori T(I) corresponding to ‘sufficiently irrational’ frequencies
persist for some small time t , where sufficiently irrational
corresponds to a Diophantine, or nonresonance, condition

|k · ω| ≥ κ

|k |2
, k ∈ Z2 \ {0}, κ > 0 fixed, small.



Assume that H and P have Gevrey regularity. We quantize
H + tP to a semiclassical pseudodifferential operator, Ĥ + tP̂.
Using a quantum Birkhoff normal form, Popov constructed
exponentially accurate quasimodes for small t . These are
simply standard eigenfunctions eim·θ on the torus, mapped onto
a nonresonant torus for H + tP via the QBNF. For each
nonresonant torus there is a sequence with semiclassical
measure concentrated completely on that torus. Two key
properties of Popov’s construction:

• The quasimode error is O(e−1/hα); actually, we only need
O(hγ) accuracy for fixed (but fairly large, e.g. γ = 6 will do)
exponent γ.

• The nonresonant tori fill up a positive fraction of phase
space. (So the density of quasimodes is comparable to that
given by Weyl’s Law.)



The variation of quasi-eigenvalue H(I) corresponding to the
torus with frequency ω = ω(I) is, at time t = 0,

f (I) :=

∫
Tω

Ḣ(θ, I) dθ.

We impose the generic condition that dH and df are linearly
independent functions of I. This means that (H, f ) furnish local
coordinates in place of (I1, I2).

Using this condition, we are able to prove the following key
property: if two quasi-eigenvalues H(I1; t) and H(I2; t),
corresponding to two nonresonant frequencies ω1, ω2, are very
close, then their time-derivatives are not close. That allows us
to conclude that for most values of time t , all the
quasi-eigenvalues are separated by some amount Mh6.



Now recall that there are around ∼ h−2 quasi-eigenvalues, all
distinct up to Mh6 for the typical t . By the pigeonhole principle,
there can’t be more than a fixed number R of eigenvalues in
each interval [λ−Mh6, λ+ Mh6]. Thus we have obtained
bounded multiplicity and the argument to obtain scarring is as
described above.


