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Part I: 2d quantum gravity
Which random geometries for 2d quantum gravity?



Euclidean 2d quantum gravity

Let M be a 2d manifold (without boundary) and M be the set of Riemannian metrics g on
M (modulo diffeomorphisms).

Main question: give sense to the integral on M

/M Zm(9)Dg

where
» Dg is the volume form of the L2-metric on M:

1612 = /M tr(g~"5gg~"59)dv

Other choices are possible!!! — Bilal-Ferrari-Klevtsov-Zelditch 11-14.

» Zn(9g) is the partition function of some model of statistical physics, called
matter field, on the Riemannian manifold (M, g). Typically

det(—Ag)y —Cm/2
Zm(9) = (Tl\/l)g)

where Ay is the Laplacian and ¢ is a constant called central charge.



Polyakov/DDK ansatz

Polyakov/DDK ansatz (80s): if the matter field is a CFT (take Z,,(g) as above) then the
random metric g has law ruled by Liouville CFT (D-K-R-V 14°).

Question: What if matter fields (slightly) move away from conformal symmetries?

Idea : Law of the random metric g determined by the way matter fields react to
background changes of metrics (Weyl anomaly).



Polyakov/DDK ansatz

Polyakov/DDK ansatz (80s): if the matter field is a CFT (take Z,,(g) as above) then the
random metric g has law ruled by Liouville CFT (D-K-R-V 14°).

Question: What if matter fields (slightly) move away from conformal symmetries?

Idea : Law of the random metric g determined by the way matter fields react to
background changes of metrics (Weyl anomaly).

Conformal matter: partition function 2, satisfies Polyakov’s anomaly formula: for
w : M — R smooth

Zm(eWQO) Cmat cl,0
Inizm(go) 96 S 7 (9o, w)

where S;"%(go,w) := [,, (|dw[2, + 2Rg,w)dvg, is the classical Liouville functional and
cmat < 1is called central charge of the matter field.



Polyakov/DDK ansatz

Polyakov/DDK ansatz (80s):
/ Zm(g)Dg = / Zm(9-)2rp(9-)21(97) D7 (1)
M

where
» Dr is Weil-Petersson volume form and g, family of metrics.

» Zrp(g.) Fadeev-Popov ghosts, i.e. determinant of some Laplacian on forms (anomaly
with constant —26)

» Z;(g.) Liouville partition function (anomaly with constant ¢)

Changing g, — e“~ g, does not change r.h.s. of (1) if ¢,y — 26 + ¢ = 0.



Simplest model of massive matter
» Massive GFF: partition function (g € R and mass m > 0)

1 .
Z(g,q,m) = /exp ( - E/M (|0X[2 + ig RgX + mPX?) dvg) DX

problem: hard to understand the coupling of quantum gravity with this model
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» m = 0 model: remove divergencies to compute the m — 0 partition function

2(9,q) == lim Z(g,q,m)
m—0



Simplest model of massive matter
» Massive GFF: partition function (g € R and mass m > 0)
1 2 i 2 y2
2(g.q.m) = /exp ( - E/M (|0X[2 + ig RgX + mPX )dvg)DX
problem: hard to understand the coupling of quantum gravity with this model

» m = 0 model: remove divergencies to compute the m — 0 partition function

24(9,9) = lim Z(g,q, m)

m—0
Weyl anomaly: if w : M — R smooth and h genus of M

Z5(€90,9) _ 1-6G o (1 -h)
" Z(g.q)  S6r SL7(90,w) + =4 Su(o,w)

where Sy the Mabuchi K-energy.

— Bilal-Ferrari-Klevtsov-Zelditch 11-14.



Simplest model of massive matter
» Massive GFF: partition function (g € R and mass m > 0)
1 )
Z(g,g,m) = /exp ( - /M (|0X[2 + ig RgX + mPX?) dvg) DX
problem: hard to understand the coupling of quantum gravity with this model

» m = 0 model: remove divergencies to compute the m — 0 partition function

24(9,9) = lim Z(g,q, m)

m—0
Weyl anomaly: if w : M — R smooth and h genus of M

Z5(€90,9) _ 1-6G o (1 -h)
" Z(g.q)  S6r SL7(90,w) + =4 Su(o,w)

where Sy the Mabuchi K-energy.

— Bilal-Ferrari-Klevtsov-Zelditch 11-14.

» Upshot: Polyakov/DDK ansatz tells us that coupling 2d quantum gravity to this m=0
GFF produces a random geometry governed by a path integral involving
Liouville+K-energy.
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What is a (natural) random geometry?

» In geometry, basic objects in view of classification are manifolds with uniformized
curvature

» such manifolds can generally be found by solving variational problems: one looks for
the minimizer of some functional

v €Y S(p).

» Corresponding random geometry is a functional measure (path integral) on
e~ S#) Dy
where Dy is the "Lebesgue measure” on ¥.

Approach inherited from Feynmann’s view on quantum mechanics.



Classical Liouville functional
Let v, u > 0 be some parameters.
The map w : M — R such that the metric g = €7“ gy has uniformized curvature
Ry = —2mu~?

is a critical point of the Liouville functional

1
s SU(gow) = 7 /M (10, + Q:Rayeo + dmue™ ) dvg,

with

2
Qc:*
Y

Notations: Ag = Laplacian, = Rg=Ricci curvature, vg=volume form



Kahler geometry

Consider a 2d manifold M equipped with a Riemannian metric go.

» Kahler potential ¢ of the metric g = e~ gy w.r.t. go defined by

e _ 1
vg(M)  vg (M)

= %Agodj

Another parametrization of the set of metrics that allows one to translate the search
for constant curvature metrics in terms of complex Monge-Ampére equation.

» This has led to classification of Kahler manifolds (any dimension) with successive
works by Aubin, Yau, Tian, Donaldson etc (1978-2015).

Notations: Ay = Laplacian, ~ Rg=Ricci curvature, vg=volume form



Mabuchi K-energy

» Let ¢ be the Kahler potential of the metric g = e“gp w.r.t. go

» Definition of Mabuchi K-energy
. 87(1 —h) 2 "
Sulan.0) = | (2r(t =t (G~ Fado s et
with h := genus of M.

» Critical points give metrics g := e“gp with uniformized curvature

Notations: Ag = Laplacian, = Rg=Ricci curvature, vg=volume form
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Random Riemannian geometry (or Liouville CFT)

Consider a Riemann surface M equipped with a metric go, and parameters p > 0,
v €(0,2).

Quantum Liouville theory is a measure formally defined by

(Flug = [ Fle)o S1D,

where
» S, is the quantum Liouville functional

1
SL(gov <P) = E ~/M <|d§0|§0 + QRQOQO + 47TIU'e’YLp) dVQO

» Dy is the "Lebesgue measure” on the space of maps ¢ : M — R.
» Qs a parameter tuned at its quantum value
2

Q=-+
Y

N2

[§ DAvID, GUILLARMOU, KUPIAINEN, R., V. (2014-2016):
Construction on compact Riemann surfaces



Random Riemannian geometry (or Liouville CFT)

» Random geometry is then understood as associated to the random metric tensor

e’YSOgo
where the random “function” ¢ has probability law characterized by functional
expectations
y
E[F(9)] = 5 (F)Lg,
with

(Flrg = [ Fe)o Sty

and Z = (1), 4, is the normalizing constant to have mass 1.



Random Riemannian geometry (or Liouville CFT)

» Random geometry is then understood as associated to the random metric tensor

e’YSOgo
where the random “function” ¢ has probability law characterized by functional
expectations
y
E[F(9)] = 5 (F)Lg,
with

(Flrg = [ Fe)o Sty
and Z = (1), 4, is the normalizing constant to have mass 1.

» As it turns out, ¢ is not a fairly defined function a.s. = rich multifractal geometry
» Volume form: uses Gaussian multiplicative chaos (GMC) theory for v € (0, 2)

[ KAHANE (1985)
» Distance: understood for v € (0, 2)

@ DING, DUBEDAT, DUPLANTIER, FALCONET, GWYNNE, MILLER, SHEFFIELD,...
(2014-2022)



Symmetries of CFTs are encoded in the way they react to changes of background metrics

Conformal anomaly (David-Kupiainen-Rhodes-Vargas 14’)

Consider a conformal metric g = e gp then
CL
(FlLg = (F(- = §w))L.g exp (5=t (g0, w)) )
967
where S0 is the classical Liouville functional (with 1 = 0)
510(go,w) 1= /M (Jdw[2, + 2Rgw)dvg,, 3)

and ¢ = 1 + 6@ is the central charge of the Liouville theory.



Symmetries of CFTs are encoded in the way they react to changes of background metrics

Conformal anomaly (David-Kupiainen-Rhodes-Vargas 14’)

Consider a conformal metric g = e gp then
(Flrg = (F(- = S exp (= S(g0,w)) @
where S0 is the classical Liouville functional (with 1 = 0)
1°(g0,) i= [ (1ol +2F0)ve, @)

and ¢ = 1 + 6@ is the central charge of the Liouville theory.

Contains a great deal of information about the theory:
» connection with quantum gravity models (Polyakov, David-Distler-Kawai,...)
» Question: can we come up with a path integral producing a further Mabuchi term?
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Random Kahler geometry
-Riemann surface M with genus h and metric gy
-Bilal-Ferrari-Klevtsov-Zelditch’s proposal: construct the path integral
,:,_>/ F(¢)e™5u(90:9)=Su(d0:¢) D
{¢:M—R}

where g = €7?gy and
» S is the quantum Liouville functional and Sy, is the Mabuchi K-energy
> g = e"%gy and ¢ is the Kahler potential of the metric g w.r.t. go



Random Kahler geometry
-Riemann surface M with genus h and metric gy

-Bilal-Ferrari-Klevtsov-Zelditch’s proposal: construct the path integral
/:,_>/ F(¢)efﬁsm(go,g)*&(go7w)D¢
{¢:M—R}

where g = €7?gy and
» S is the quantum Liouville functional and Sy, is the Mabuchi K-energy
> g = e"%gy and ¢ is the Kahler potential of the metric g w.r.t. go

-Our approach: change the integration variable ¢ — ¢

» Jacobian of the form e—St(%.#)
» leads to the study of the path integral

F = F(w)e—ﬁSM(QmQ)—SL(Qo,@)DSO
{o:M—R}



Random Kahler geometry

Riemann surface M with genus h and metric gy

Path integral (measure on a Sobolev type space)
<F>ML,go 1:/ F(SO)efﬁSm(go,e‘ng)*SL(go#P)DSD
{p:M—R}

where 5 > 0
» S, is the quantum Liouville functional with > 0, v € (0, 2)

1 2
Si(90,2) = — | (192 + QRyp + drpe?)dvy, Q==+
4’7'(' M ’)/ 2

» Sy is the quantum Mabuchi K-energy: if g = €7%gq

87(1 —h)

1
Sm(9o,9) = /M (27r(1 —h)pANg ¢ + (W — Rgy)o + . meew)dVgo

%

and ¢ is the Kahler potential of the metric €7 gy w.r.t. go



Existence: main results
Assume M has genush >2and~ € (0,1) and g > 0.

Theorem (LRV '18)

Probabilistic construction of the path integral
(P, = [ Flp)e?Sutomer =S,

This path integral has finite mass, i.e. (1)m1,g, < 400 provided that the Mabuchi coupling

constant is small enough
h-1 2
Be(0—5(%-%)

Remark:
» the constraint on 3 is not a technical restriction, it is a topological obstruction!

» QFT with global conformal invariance but no locality...not a CFT!



Weyl anomaly (LRV 18)

Consider a conformal metric g = e gp then
CL o
(F)mig = (F(- — §w))mL g exp (ﬁsﬂ’o(go,w) + 3Su(9, 9)) (4)

where Sﬁ"o, Swm are respectively classical Liouville functional (with ;2 = 0) and classical
Mabuchi K-energy.



Weyl anomaly (LRV 18)

Consider a conformal metric g = e gp then
CL o
(F)mig = (F(- — §w))mL g exp (ﬁsﬂ’o(go,w) + 3Su(9, 9)) (4)

where Sﬁ"o, Swm are respectively classical Liouville functional (with ;2 = 0) and classical
Mabuchi K-energy.

String susceptibility (LRV 18’)

Under (-)mw,g,» the "volume of the manifold” [,, €7¥dvy, has Gamma law (s, 11).
The area scaling exponent s, called string susceptibility, has the expression
2 2
S .= @ p

h-1)- =
v 1-2

Remark: agrees with the asymptotic expansion v — 0 given in physics by
Bilal-Ferrari-Klevtsov-Zelditch.
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Path integral for Liouville CFT

Riemann surface M, metric gy
F s / F(®)e~5@9) D,y
Liouville action
1 2 e
S(00.¢) = 4 | (1065, + QR + 4mue™ ) v,

Parameters

7

76(072)5 Q= + 7//">0

=1MN
\V]



Gaussian Free Field on (M, go):

with
> (ap)n iid standard Gaussians
> (en)n 0.n.b. of eigenfunctions of Laplacian Ag,

Ag,€n = Anén, / €ndvg, =0
M
» Covariance E[Xg, (X)X, (x")] = Gg,(x, x") Green function of the Laplacian.

Gaussian integral:

[ Fo)er# ot Dy = (get (8g) (M) [
{o:M—R}

]E[F(c+ Xgo)} dc




Gaussian Multiplicative chaos (GMC)
» Goal: construct a random measure formally given by
7% ) dvg ().
ll-defined as Xy, is not a fairly defined function. At short scale

B[ (X6, ()] ~ I o=

» Call X. a regularization of the field X, at scale ¢

1

E[X.(2)X.(Z)] =~ In Gz T e

Theorem (Kahane 1985)
For~ € (0,2) there exists a non trivial random measure Gg, such that, almost surely, the
limit

2
lim % 7% vg, (dz) = Gg,(d2)

holds in the space of Radon measure. G does not depend on the regularization.



Liouville path integral

Path integral defined by (assuming go is uniformized)
(F)igo = /R o 21 NE [ F(c + Xg,) exp ( — 173, (M)) ] de

where
» his the genus of M

> Xy is a Gaussian Free Field under E

> Gg(M) is a Gaussian multiplicative chaos (GMC) formally understood as

Gy (M) = / &% dvg,

M



Liouville-Mabuchi path integral: construction
Assuming gy is uniformized, defined by

(F)uLg = /]R e—20(1-h)cg [eﬂssM(go-,g),:(C+ Xg, ) exp ( _ ue”cggo(l\/l))] de

with g = e7(¢+*%) gy and
87(1 —h) 2 DgO(M)

Swi(go, g) = /M (27r(1 —h)dAgd + (W — Rgo)¢)dvgo T (]



Liouville-Mabuchi path integral: construction
Assuming gy is uniformized, defined by

(F)uLg = /]R e—20(1-h)cg [eﬂasM(go-,g),:(C+ Xg, ) exp ( _ ue”cggo(l\/l))] de

with g = e7(¢+*%) gy and

ot B0 ) o) + 2 Do)
31\/[(9079) — /M (27‘(‘(1 h)d)Agocb—f—( VgO(M) Rgo)d))d 9 + 1_ ,YTQ g;O(M)

Involves:
» Kahler potential of the "Liouville random metric”

2
2(2) =~ =17y | Gz W 0
> Dy (M) (formally f[,, vpe7?dvgy,) is a variant of GMC that we call derivative GMC

2
D3 (M) 1= iy [ (1X.(2) + 9% In ) €749 v, (k)



Technical backbone

Establish negative exponential moments for the entropy

V3 >0, E[exp(ﬁjg)g%:(l\nj)))] < 400

Simple consequence of
» left Gaussian concentration for derivative GMC

vx >0 large, P(Dg,(M)< —x) < Cexp(—C ' x?)

» sharp small deviation result for GMC (for some s > 0)

vx >0small, P(Gg (M) < x)< Cexp(— c | |nx‘ﬁxf4/w)



Technical backbone

Establish negative exponential moments for the entropy

V5 > 0, E[exp(ﬁgg:(l\nj)))] < 400

Simple consequence of
» left Gaussian concentration for derivative GMC

vx >0 large, P(Dg,(M)< —x) < Cexp(—C ' x?)
A
€ the field X" is not bounded from below

» sharp small deviation result for GMC (for some s > 0)

Vx> 0small, P(Gg (M) < x)< Cexp(— c | |nX‘KX74/w2)
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Conjecture |
Recall that the Liouville path integral is the invariant measure of the stochastic Ricci flow
(see Dubedat/Shen)
0tg = —2Ric(g) — 2Ag + 2k,

with £ > 0 and &g L2-white noise on the metrics on M, i.e.

(f:]R—> Cc>(M, sZT*M)) — &5(f) Gaussian and  E[¢(F)?] = / (f, f;) gdvg dt.
M

Notations: Ag = Laplacian, ~ Rg=Ricci curvature, Rg=mean curvature, vg=volume form



Conjecture |
Recall that the Liouville path integral is the invariant measure of the stochastic Ricci flow
(see Dubedat/Shen)
0tg = —2Ric(g) — 2Ag + 2k,

with £ > 0 and &g L2-white noise on the metrics on M, i.e.
(f ‘R — C®(M, s2T*M)) — &5(f) Gaussian and  E[¢(F)?] = / (f, f;) gdvg dt.
M

» Conjecture: Liouville+Mabuchi path integral= invariant measure of the flow

1

g = —2Ric(g) — 2\g — mzm(wg +1)g + 2r&e9

with 14 the Ricci potential

~Agyg=Ry—Ry  and /R/ng dvg = 0.

Notations: Ag = Laplacian, — Rg=Ricci curvature, Rg=mean curvature, vg=volume form



Conjecture |
Recall that

]
ZWﬂmﬂ=/wM}Z;dﬂﬂﬁ+M%x+WWﬂwgax

and
2(g.q) = lim Z(g,q, m)

» Random planar maps: put the flat metric on the faces of a triangulation T with N
faces conformally embedded onto the manifold M to get a metric gr on M. Pick such
a T at random with law
Pn(T) = cZo(9r. q)

In the scaling limit N — oo, the law of gr is described by the Liouville+Mabuchi path
integral with
g’(h - 1)

@QP=4+¢°> and pB=
4









	Part I: 2d quantum gravity
	Which random geometries for 2d quantum gravity?
	Random geometries and classical functionals
	Liouville path integral

	Part II: Mabuchi path integral
	Main result
	Construction
	Conjectures

	Appendix

