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Consider the wave equation on a Lorentzian spacetime (M, g):
Ogu =0, i.e. g is a symmetric 2-cotensor of signature (1,n —1).

Typically the Cauchy problem is considered: one takes an
(embedded) spacelike hypersurface S and specifies u and its
normal derivative Vu at §. Then

@ there is a unique local solution (near S), and

e if (M, g) is globally hyperbolic, i.e. there is a global time
function t with S as a level set, there is a unique global
solution.
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The Cauchy problem is equivalent to a forcing (or inhomogeneous)
problem: solve Lgu = f where f is supported in t > to, by finding
u which is supported in t > tp, together with its analogue where >
is replaced by <. This way one does not need to choose a Cauchy
surface S.

The solution operator D;k . f — u is the forward, or retarded
solution operator. If one replaces > by <, one obtains the
backward, or advanced, solution operator, Dg_lA.

One question we address here is what the natural inverses of [,
are. It turns out that in reasonable settings, there are two more
natural inverses, the Feynman and anti-Feynman propagators
(introduced by Feynman in the Minkowski setting!). These
propagators are much more global than the advanced and retarded
solution operator, i.e. even the local behavior of the solution
depends on the global structure of the spacetime, though this
dependence is via a smooth contribution.
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The settings in which these global inverses exist are usually
non-trapping, which says that the null-geodesic flow posesses a
good structure. A concrete example is symbolic of order 0
Lorentzian metrics on R, i.e. [D%;i(x)| < Co(1 + |x|)71%, such
as Minkowski metric or asymptotically Minkowski metrics, for
which there are source/sink manifolds at spacetime infinity for the
null-geodesic flow; in the asymptotically Minkowski case this is the
standard light cone at infinity.

As we shall see, a nice way to encode the inverses is via the choice
of appropriate function spaces (different spaces for the different
inverses) on which Oy is Fredholm.
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Concretely, these will be variable order weighted Sobolev spaces
H*", where an order function is microlocal, i.e. is a function on the
cotangent bundle, which is monotone along the Hamilton flow in
T*M, i.e. along the lifted null-geodesics, and satisfies certain
threshold inequalities at the sources/sinks.

Precisely which order function this is depends on the underlying
operator algebra. For L; in the symbolic metric setting this is the
b-pseudodifferential operator algebra of Melrose, and the variable
order for H,'" is the b-differential order s (the decay order is
constant). Here the regularity (differential order) outside a
compact set corresponds to homogeneous degree 0 vector fields,
such as x;Dy;, while the weight is simply powers of |x| there.
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A closely related question is the behavior of the spectral family,
Og — A, especially when A € C\ R. Under suitable global
assumptions, (g — A)~! then exists on either the Feynman

(Im A > 0) or the anti-Feynman (Im A < 0) function spaces.
Moreover, one can take limits as Im A — 0, and the resulting
inverses of Lz — A, when A € R now, are exactly the Feynman and
the anti-Feynman inverses.

In these cases the operator algebra is the scattering
pseudodifferential operator algebra of Melrose, and the decay order
r of H" is variable (the differential order is constant). There the
regularity (differential order) corresponds to translation invariant
vector fields, Dy, while the weight is still powers of |x|.
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This is then closely related to the essential self-adjointness of [
on C2°(M), which ends up being a regularity statement for

(Og £1)71, namely that they both map C°(M) to a suitable
subspace of L2 Concretely, this ‘domain’ can be taken to be

D = {ue HY Y2(M)n L2.(M): Ogu e L2(M)};

here Hy. is the standard weighted Sobolev space if M = R"; see V.
'20. In fact, even Schwartz functions would work as D. In a sense
this property is even more important than the actual
self-adjointness.

It is then not surprising that these propagator differences are
positive (important for QFT) (V. '16):

(O —A+i0) = (O =X —i0)1)>0:

this is the positivity of the spectral measure!
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This self-adjointness allows one to define, via the functional
calculus, (Og —2€)™® when Rea > 7. In a very nice recent paper
Dang and Wrochna (arXiv '20) showed for n even the on-diagonal
restriction of the Schwartz kernel has a meromorphic extension to
C with poles at {5,5 —1,...,1}, and at a = § — 1 the limit, as
€ — 0+, of the residue is, up to a constant factor, the scalar
curvature of g.

They also computed the residue at other poles giving rise to a
scalar Lorentzian version of the spectral action principle of
Chamseddine-Connes, expressing the restriction to the diagonal of
suitable functions of [z in terms of Hadamard coefficients.
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In fact, our discussion is not really specific for the wave equation,
rather it is a general non-elliptic phenomenon, so the basic setup
we discuss is compact manifolds without boundary since the
general setup is conceptually no more complicated.

Back in the setting of 2nd order PDE, another place where
(anti-)Feynman propagators arise is ultrahyperbolic PDE such as
211;1 D2 z P D , k,n— k > 2, or more generally the
Laplacian assooated to metrlcs of arbitrary non-Riemannian
signature (with suitable global conditions). These are in fact very
much like the wave equation except for the Cauchy problem — but
our approach of constructing inverses works just as well!
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There has been much work in mathematical quantum field theory
on Feynman propagators. The closest works in terms of general
outlook have been due to Bar, Derezinski, Gérard, Hafner,
Siemssen, Strohmaier and Wrochna... and some of Zelditch's work
also relates to this.

In particular, | became interested in this problem after some
discussions with Ch. Gérard, and in the self-adjointness issues after
discussions with Derezinski, who had partial results on this with
Siemssen. The self-adjointness issues have also been addressed
since then by Nakamura and Taira in other settings.

In this QFT setting one is interested in positivity properties of
various propagator differences. A weaker version, up to smoothing
(in a strong global sense) operators, follows from similar
arguments, but not a strict positivity statement in general.
However, the subject of this talk is not QFT, rather global
non-elliptic analysis.



Propagation of singularities
@®00000000

Before we discuss the full framework, let us discuss an aspect of it,
propagation of singularities. This actually already had a major
impact on quantum field theory due to the work of
Duistermaat-Hormander (early 70s) and Radzikowski (mid-90s).

Briefly recall that if M is a manifold (without boundary, not
necessarily compact), e.g. R", pseudodifferential operators,

P € W™(M), are essentially quantizations of symbols p € S™ on
T*M: P = Op(p). In local coordinates

D2 D p(x, €)| < Cap(€)™IAI:

(Pu)(x) = (27)" / &YV p(x, €)u(y) dE d.

The important behavior of p is |£| — oo; S™ corresponds to
growth as [£|™. Often one considers p with an asymptotic
expansion in powers of [¢] (as |£] — o0), p ~ Y [€|™pj; this
holds for differential operators.
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The behavior as |£| — oo, referred to as ‘fiber infinity’, is encoded
by using dilations in the fibers (i.e. in &) (or a compactification), so
the phase space can be considered as T*M \ o modulo dilations in
the fibers, i.e. S*M = (T*M \ o) /R*.

Functions b on §*M can be considered as homogeneous degree 0
functions on T*M \ o, thus (modulo W~>°(M))

B = Op(b) € WO(M). Such Op(b) is a microlocalizer to supp b,
and is non-degenerate, namely elliptic on {b > 0}; b is the
principal symbol of B, extending the notion for differential
operators, while supp(b) is the operator wave front set WF'(B).

More generally, for P = Op(p), the principal symbol, om(P) is the
equivalence class of p in $™/S™1, capturing P modulo W™~1(M);
in the example above |£|™py can be taken as a representative.

For P € Diff (M), m € N, o,,(P) captures the leading terms. If
P = Z\a|§m aOé(X)D)?' Um(P)(Xvé) = Z|a\:m aa(X)ga'
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In general an operator P is called elliptic at a point

a=(x,£) € T"M\ o if p=o0,(P) is invertible at «, i.e. non-zero
in the scalar setting. The set of elliptic points is Ell(P), its
complement of the characteristic set Char(P).

Near such points we have elliptic estimates:
1Brullns < C(||BsPullpys=m + [l y-n),

B; € WO, provided b3 # 0 on supp by (i.e. provided
WEF'(B;) C Ell(Bs)) and p # 0 on supp b;.
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The most basic non-elliptic phenomenon, when P € W' has real
principal symbol p, is propagation of singularities along the
bicharacteristics, i.e. integral curves of H,, the Hamilton vector
field given by the symplectic structure on T*M, inside

Char(p) = {p = 0}; locally

op 0 op 0
H, = grY _YF
Zagj dz; 0z 8CJ

i.e. H, = (O¢cp, —0,p), due to Hormander '71.

This is only a meaningful statement at points at which H, is not a
multiple of the dilation vector field £ - O¢. A different way to say
this is that H, induces a vector field on S*M (by making p
homogeneous of degree 1), and then these radial points are
stationary points of the induced vector field.
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This is an estimate of the form
[Brullps < C(I|Baullms + [| B3 Pul| pys—m+1 + ||ull y-n),

B; € WO, provided supp by C {b3 # 0}, and all bicharacteristics
from points in supp by N Char(P) reach {b, # 0} of while
remaining in {bs # 0}. This is usually proved via a positive
commutator estimate, which is a microlocal version of an energy
estimate.

b
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A complication for global non-elliptic theory, discussed later, is
that H® is often a variable order Sobolev space (see e.g.
Unterberger '71, Duistermaat '72), i.e. s is a real-valued function
on S*M. This space is defined by:
o Let sp =infs, and let A € W5(M) C Wi'P*(M), 6 € (0,1/2),
be elliptic,

HS ={uec H®: Auc [?},

o for instance if g is a Riemannian metric, one can take the
principal symbol of A to be [{[3.

Then P € W™ maps P: H® — H*~™ continuously still.

The microlocal elliptic and propagation estimates are valid if s is
variable, provided, for the propagation estimate, one either restricts
to forward bicharacteristics and requires H,s > 0, or to backward
bicharacteristics and requires Hps < 0.
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Duistermaat and Hormander in 1972 constructed parametrices, i.e.
approximate inverses, for operators with H, non-radial; these are
approximate inverses modulo smoothing operators.

@ The work uses Fourier integral operators to reduce to a model
case, Dy,.

@ This result in particular gave a proof of propagation of
singularities.

They also showed that if Char(P) has k connected components,
there are 2K distinguished parametrices, namely in each component
of the characteristic set one can specify whether one ‘solves away’
singularities forward or backward along the Hamilton flow.

This can be phrased in terms of the wave front set of the Schwartz
kernel of the parametrix instead.
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There are two extreme cases:
@ in each component of the characteristic set we can propagate
the estimates forwards, i.e. singularities backwards, or
@ in each component we can propagate the estimates backwards.

These are the Feynman and anti-Feynman parametrices.

Answering a question of Wightman they also showed that one can
choose the distinguished parametrices so that ¢ times their
difference from the Feynman parametrix is positive.

This positivity is important for quantum field theory purposes:
two-point functions, which are essentially such differences, must be
positive for basic constructions in QFT.

Radzikowski ('96) used the Duistermaat-Hormander work to

explain microlocally the Hadamard condition traditionally used in
QFT.
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Note that for the wave operator in a connected globally hyperbolic
spacetime, the characteristic set has 2 connected components,
hence there are 4 distinguished parametrices, up to smoothing:

retarded (forward in time),
advanced (backward in time),

Feynman (forward along Hp), and

anti-Feynman (backward along H,).

All this is up to smoothing, so there is quite a bit of freedom. As
for limiting it, Duistermaat and Hormander also stated that they
‘do not see how to fix the indetermination’.

In order to do so, we need to work globally, i.e. we need to have an
operator we can actually invert.
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(V. '18, Gell-Redman, Haber, V. '16) In the non-elliptic settings
considered here, if the characteristic set of P has k connected
components, then there are 2k natural Fredholm problems for P,
specified by the direction of propagation in each connected
component. The difference of the extreme (generalized) inverses is
.~1 times positive.

Recall that Fredholm is invertibility up to a finite dimensional
obstruction:

@ P: X — Y continuously,

@ Ran P closed

e Ker P, Y/Ran P are finite dimensional.

@ The settings include compact spaces as well as generalizations
of Minkowski-like spacetimes.
The spaces X, Y are essentially (weighted) Sobolev spaces.
The (generalized) inverses correspond to the D-H
parametrices, but there are (essentially) no choices.
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The Fredholm properties are guaranteed by the Fredholm estimates

lullx < C(l|Pully + [lullz)

and
[vily= < C([[P*v][x= + [lull2,),

where the inclusion maps X — Z; and Y* — Z, are compact.

One often wants actual invertibility; another interesting question is
the computation of the index of P.

Due to the lack of time, the boundary setting (Melrose's
b-analysis) will be underemphasized; most phenomena are present
already in the compact boundaryless setting (though of course the
actual wave operator then is not an example).
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The simplest example is elliptic (pseudo)differential operators on
compact manifolds without boundary M, basic geometric examples
being the Laplacian on differential forms, and Dirac operators.

e P € W™M(M) elliptic (at least principally classical), i.e. om(P)
invertible,

o X =H*=H’(M), Y =H™(M), s R,
0 so X* = H™S(M), Y* = H=StTm(M),
o Zy = HN(M), Zy = H~N(M), N large.

The Fredholm property follows from the elliptic estimate

10llHr < CAILN r-m + [[@l]-n),

with L =P, r = s, resp. L = P*, r = —s + m. Note that the
choice of s is irrelevant here (elliptic regularity).
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The non-elliptic problems we consider are problems in which the
elliptic estimate is replaced by estimates of the form

ulls < C(1Pullpys=mer + |lull y-n),
i.e. with a loss of one derivative relative to the elliptic setting, and
VIl < CUIP VI gt —mer + V] =),
with s’ = —s + m — 1 being the case of interest.
Such estimates imply that P : X — Y is Fredholm if
X={ueH: PueH ™} Yy =H""

Here X is a first order coisotropic space associated to the
characteristic set of P.
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Recall the propagation of singularities estimate
1Brullts < C(|B2ullns + (| B3 Pul| pg—msa + [|u| y-n),

B; € WO, provided WF’'(By) C ElI(Bs), and all bicharacteristics
from points in WF/(B;) N Char(P) reach the elliptic set Ell(B;) of
B; while remaining in Ell(Bs).

//(BQN
WE'(Bs) .

The basic problem with this estimate is the term ||Byul|ys on the
right hand side — how does one control this?
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One option is complex absorption. The point is then that
bicharacteristics reach the elliptic set of an operator @ with real
principal symbol, and one works with P — iQ. In this case one can
propagate estimates either forward or backward along the H,-flow
depending on the sign of the principal symbol of Q. This relates to
the Feynman propagators discussed earlier.

A more natural option is to have some structure of the

bicharacteristic flow: we need that there are submanifolds L of
S$*M which act as sources/sinks in the normal direction.

i
i
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@ The most natural place these arise is radial sets, i.e. points in
T*M where H, is tangent to the dilation orbits. Note that
Hormander's theorem provides no information here.

@ In non-degenerate settings, i.e. when H, is non-zero, the
biggest possible dimension of a radial set is that of M, in
which case it is a conic Lagrangian submanifold of T*M.

@ In this case, they act as source or sink within Char(P); in the

source case Hp flows to the zero section within A, in the sink
case from the zero section.

@ This also arises in scattering theory, where it was studied by
Melrose '94.
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Let p be the principal symbol of %(P — P*) € W1 and define ¢
by
5|, = fPP

p|/\:ﬁ ;
p

where p is an elliptic homogeneous degree 1 function, which is
independent of choices (even that of the metric defining the
adjoint!).

In this case there is an analogue of the propagation of singularity
theorem, but there is a threshold, (m —1)/2 — 5:
@ if the Sobolev order is higher than this, one can propagate
estimates from L = /\/]R*, without needing a priori control
like Byu,

o if the Sobolev order is below this, one can propagate estimates
to L, needing control in a punctured neighborhood of L.



o If s> sy >(m—1)/2— 3, then
[Brulls < C(||BsPul|ps—mer + [[u| o),

B; € WO elliptic on L, provided WF'(B;) C ElI(Bs), and all
bicharacteristics from points in WF/(B;) N Char(P) tend to L
while remaining in Ell(Bs).

o If s < (m—1)/2— [ then
[Brullns < C([|B2ullns + [|BsPul| ps=ms1 + [|ul[ =),

B; € WO elliptic on L, provided WF'(B;) C ElI(Bs), and all

bicharacteristics from points in (WF’(By) N Char(P)) \ L

reach the elliptic set Ell(B;) of B, while remaining in Ell(Bs).
Replacing P by P* changes the sign of 3, and it naturally leads to
estimates on the required dual spaces.
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As a consequence, if there are radial sets L1, Ly such that all
bicharacteristics in Char(P) \ (L3 U Lp) escape to L in one of the
directions along the bicharacteristics and to Ly in the other, one

has the required Fredholm estimate provided one can arrange the
Sobolev spaces so that

@ at L; the Sobolev order is above the threshold for P,

@ at Ly the Sobolev order is above the threshold for P* (i.e.
below threshold for P),

@ the Sobolev order is monotone decreasing from Ly to L.

@ One can actually do this independently in every one of the k
connected components of Char(P), hence the 2 Fredholm
problems.

Namely,
ullws < C(||Pullpgs—m + [[ull g-n),

VIlgs < CUP VI -mer + VI -nr)s

with ' = —s 4+ m — 1.






The simplest example is multiplication by a function with
non-degenerate zeros; locally this is P = x;. (We do need a global
problem though!)

@ The characteristic set is T; _oR"\ o.

@ The radial sets are the two halves of N _,R" \ o.

@ If the zero set is connected, there are 2 Fredholm problems.
A non-compact setting in which this arises is scattering theory:

o The Fourier conjugate of A — X, A > 0, is |£]? — A,

@ While R" is non-compact, this problem is fully elliptic at
infinity, including decay, in the scattering algebra

DeDPa| < Cog(x)/lol(gym=181.
x = B

@ Fredholm theory is applicable in the scattering setting directly,
giving two inverses, which are the incoming/outgoing
resolvents R(\ £ i0).

@ The positivity of ¢« times the difference of these is exactly the
positivity of the spectral measure.
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One can get more interesting problems if one has more than one
connected components of the characteristic set.

For instance: asymptotically Euclidean spaces with more than one
end:

@ The characteristic set is at infinity,

@ In each component one sets the direction of propagation
independently,

@ Always forward/backward along the flow gives R(\ % i0).

A perhaps more ‘natural’ example is the Klein-Gordon equation on
asymptotically Minkowski spaces with positive mass P = [, — m?.
The characteristic set has two connected components, and the
sources/sinks are at infinity. This agains fits into the scattering
algebra.
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Back to the wave equation on Minkowski-like spaces (M,g):

@ There is an analytic setup (Melrose's b-algebra) for the
Fredholm setup.

@ There is a principal symbol in this algebra, which is
completely analogous to the compact/scattering settings, and
all the analysis applies.

@ The principal symbol does not capture operators modulo
relatively compact operators unlike in the compact/scattering
settings.

@ An additional family of operators, the Mellin transformed
normal operators are needed for this.

@ One obtains Fredholm theory on weighted Sobolev spaces as
long as the weights avoid a discrete set of reals, with the same
amount of choice as in the compact/scattering settings
(principal symbols).
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e Let M = R with the Minkowski metric and [ be the wave
operator.

@ Let p be a homogeneous degree 1 positive function, e.g. a
Euclidean distance from the origin.

@ The conjugate of p?] by the Mellin transform along the
dilation orbits gives a family of operators P, o the Mellin dual
parameter, on S” (smooth transversal to the dilation orbits).

@ P, is elliptic inside the light cone, but Lorentzian outside the
light cone.

@ The conormal bundle of the light cone consists of radial
points.

@ The characteristic set has two components, and there are four

components of the radial set: a future and a past component
within each component of the characteristic set.
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Rn+1 H"»

ds”

Hn
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In one component ¥ of the characteristic set, the
bicharacteristics go from the past component of the radial set L _
to the future one L ; in the other component ¥ _ they go from
the future component of the radial set L_ to the past one L__.

In this case the interior of the light cone is naturally identified with
hyperbolic space, while the exterior with de Sitter space.
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Reasonable choices of Fredholm problems:

@ Make the Sobolev spaces high regularity at the past radial sets
and low at the future radial sets: this is the forward
propagator.

@ Make the Sobolev spaces low regularity at the past radial sets
and high at the future radial sets: this is the backward
propagator.

@ Make the Sobolev spaces high regularity at the sources L _
and L_, and low regularity at the sinks, or vice versa. These
are the Feynman propagators, and they propagate estimates
for P, in the direction of the Hamilton flow in the first case,
and against the Hamilton flow in the second.

@ Note that the adjoint of these inverses always propagates
estimates in the opposite direction!



Happy Birthday, Steve!
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