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Quantum Hall effect

Landau levels
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Classical Hall effect

Hall effect : a 2D electron gas in
a perpendicular magnetic field.

⇒ current ⊥ voltage
Rxy ∝ B

Rxx

Rxy
B

Integer Quantum Hall effect (IQHE)

IQHE : von Klitzing (1980)

Quantized Hall conductance

σxy = ν
e2

h

ν is an integer up to O(10−9)
Used in metrology
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A single electron in 2D and in a ⊥ magnetic field B .
Uniform ⊥ magnetic field : gauge choice

H =
1

2m

(
~p − e ~A

)2
, ~A =

B

2

(
−y
x

)

H =
1

2m

(
−i~ ∂

∂x
+

eB

2
y

)2

+
1

2m

(
−i~ ∂

∂y
− eB

2
x

)2

energy scale : cyclotron frequency ωc = |eB|
m ,

length scale : magnetic length lB =
√

~
|eB|

H =
1

2
~ωc

[(
−i lB

∂

∂x
+

y

2lB

)2

+

(
−i lB

∂

∂y
− x

2lB

)2
]

Benoit Estienne (LPTHE) Matrix Product State for FQHS 2017, June 13 5 / 44



Landau levels

In (dimensionless) complex coordinate z = (x + iy)/lB , and setting

a =
√

2
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∂

∂z̄
+

z
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)
, a† = −

√
2
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∂

∂z
− z̄

2

)

Familiar form of the Hamiltonian

H = ~ωc

(
a†a +

1

2

)
[a, a†] = 1

(N + 1)th Landau level :

EN = ~ωc

(
N +

1

2

)
Discrete spectrum, large degeneracy

hwc

hwcN=0

N=1

N=2

Benoit Estienne (LPTHE) Matrix Product State for FQHS 2017, June 13 6 / 44



Lowest Landau Level (N = 0)
Since a =

√
2
(
∂
∂z̄ + z

2

)
, ground states are of the form

Ψ(z , z̄) = f (z) e−zz̄/4

with f (z) is any holomorphic function (∂z̄ f = 0).

⇒ chirality : (x , y)→ z = (x + iy)

Ground states, a.k.a. Lowest Landau level (LLL) states

Ψ(x , y) = f (x + iy) e−(x2+y2)/4l2B

Projection to the LLL : x and y no longer commute [x̂ , ŷ ] = i l2B

∆x ∆y ≥ l2B/2

⇒ each electron occupies an area 2πl2B
magnetic flux through this area = quantum of flux Φ = h/e

LLL degeneracy ∼ number NΦ of flux quanta through the surface
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Landau problem on arbitrary surfaces

Lowest Landau Level on (compact) Riemann surfaces :

The magnetic flux has to be quantized
∫
d2x B = NΦ

h
e , with NΦ integer.

The ground state degeneracy on a surface of genus g is

NΦ + (1− g) (Nφ > 2g − 2)

it depends on the topology (genus).

it does NOT depend on the geometry (metric)
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Back on flat space : magnetic translations

translation invariance : ~x and ~x + ~u are gauge
equivalent

~A =
B

2

(
−y
x

)

Magnetic translations R~u = e iq~u.
~Ae~u.

~∇

Aharonov-Bohm effect :

R~uR~v = e i
qB
~ ~u∧~vR~vR~u

Infinitesimal generators of translations commute with H, but

[Tx ,Ty ] = −i 6= 0

Let us choose momentum along the y direction as a quantum number.
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Cylinder with perimeter L (we identify y ≡ y + L)

Natural gauge choice : ~A = B

(
0
x

)

Ty |Ψk〉 = ky |Ψk〉, ky =
2πn

L

Ψky (x , y) = e iyky e−
(x−ky )2

2 ∝ ezky e−
x2

2 (lB = 1)

Momentum ky and position x are locked :

x ∼ l2Bky

[x̂ , ŷ ] = il2B implies that ~x̂ = l2B p̂y .

localized in x̂ and delocalized in ŷ

the interorbital distance is 2π
L l2B

lB

Density profile of the
LLL orbital Ψky (x , y).
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Projection to the LLL : dimensional reduction
Projection to the LLL : x and y no longer commute [x̂ , ŷ ] = i l2B (link with
non-commutative geometry).

4 dimensional phase space ⇒ 2 dimensional phase space

A basis of LLL states

looks like a one-dimensional chain

But !
Physical short range interactions become long range in this description

(distance of order lB means ∼ L/lB sites).
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The IQHE : bulk insulator

Cartoon picture : no interactions, no disorder

Landau Levels = flat bands

Integer filling with fermions
⇒ Bulk insulator.

How come we have I ∝ V then ? Where is the current flowing ?
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The IQHE : conducting edges
⇒ Conducting edges
each channel contributes
e2/h to the Hall conductance

σxy = ν
e2

h

Chiral (and therefore
protected) massless edges

Topological insulator

This quantization is insensitive to disorder or strong periodic potential :

topological invariant : the Chern number

Disclaimer : this is just a cartoon picture. Does not explain plateaux.
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Fractional filling
the many-body problem

FQHE trial wavefunctions
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Fractional filling : the role of interactions
N fermions in NΦ orbital/states (filling fraction ν = N/Nφ < 1)
(or N bosons at any filling fractions)

without interactions we would expect a metallic bulk !
Experimentally, emergence of exotic and non perturbative physics :

insulating bulk,

metallic chiral edge modes,

excitations with fractional charges,

due to electron-electron interactions

Strongly correlated system, no small
parameter. What can we do ?

Exact diagonalization

Effective field theories (theories of anyons)

Trial wavefunctions
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Trial wave functions

The ν = 1/3 Laughlin state.

filling fraction ν = 1/3 + short range model interaction
⇒ exact ground-state :

Ψ 1
3
(z1, · · · , zN) =

∏
i<j

(zi − zj)
3

The model interaction is the short range part of Coulomb.

Extremely high overlap with Coulomb interaction !
(obtained by exact diagonalization)

First hints of a topological phase :

excitations with fractional charge e/3

topology dependent ground state degeneracy : 3g exact ground states.
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Cartoon picture : thin cylinder limit (L� lB)

Very small cylinder perimeter L : LLL orbitals no longer overlap
1d problem

Laughlin’s Hamiltonian → Haldane’s exclusion statistics
no more than 1 particle in three orbitals

At filling fraction ν = 1/3, we get three possible states

|Ψ1〉 = | · · · 1 0 0 1 0 0 1 0 0 · · · 〉
|Ψ2〉 = | · · · 0 1 0 0 1 0 0 1 0 · · · 〉
|Ψ3〉 = | · · · 0 0 1 0 0 1 0 0 1 · · · 〉

3-fold degenerate ground state on the cylinder (and torus).
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Bulk excitations/defects : anyons

Adiabatic insertion of a flux quantum at position w
creates a hole in the electronic liquid :

Ψw =
∏
i

(w − zi )
∏
i<j

(zi − zj)
3

Cartoon picture : | · · · 1 0 0 1 0 0 0 1 0 0 · · · 〉
Electronic density around a quasihole

(N. Regnault)

fractionalization : the missing electronic charge is e/3
these excitations are called quasi-holes.

under adiabatic exchange of two quasi-holes

⇒ phase e2iπ/3

non trivial braiding !

⇒ quasi-holes = abelian anyons
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Massless edge modes

Ψu = Pu

∏
i<j

(zi − zj)
3

where Pu is any symmetric, homogeneous polynomial.

Cartoon picture : no more than 1 electron in 3 orbitals.

dispersion relation : E ∝ P
chiral and gapless edge

Number of edge states :
I E = 0 : 1 state
I E = 1 : 1 state
I E = 2 : 2 states
I E = 3 : 3 states
I E = 4 : 5 states
I E = 5 : 7 states
I · · ·

(a) E = 0

(b) E = 1

(c) E = 1

(d) E = 2

(e) E = 2

(cartoon picture)

spectrum of massless chiral boson.
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Massless edge modes

Ψu = Pu

∏
i<j

(zi − zj)
3

where Pu is any symmetric, homogeneous polynomial.

Cartoon picture : no more than 1 electron in 3 orbitals.

dispersion relation : E ∝ P
chiral and gapless edge

Number of edge states :
(a) E = 0

(b) E = 1

(c) E = 1

(d) E = 2

(e) E = 2

(cartoon picture)

spectrum of massless chiral boson.
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Bulk excitations

Quasi-hole at position w :

Ψqh =
∏
i

(w − zi )
∏
i<j

(zi − zj)
3

can be created by adiabatic
insertion of a flux quantum

charge e/3 : fractionalization

adiabatic exchange of two
anyons ⇒ phase e2iπ/3

non trivial braiding !

⇒ quasi-holes = abelian anyons

Edge excitations

(a) E = 0

(b) E = 1

(c) E = 1

(d) E = 2

(e) E = 2

(cartoon picture)

A chiral U(1) boson
linear dispersion relation

The degeneracy of each energy
level is given by the sequence
1, 1, 2, 3, 5, 7, · · ·

ν = 1
3 Laughlin state = chiral Z3 topological phase.
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Chiral boson and Laughlin
using the edge theory to describe the bulk
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The free boson a.k.a. U(1) CFT

Massless gaussian field in 1 + 1 dimensions

S =

∫
d2z ∂φ ∂̄φ

The mode decomposition of the chiral free boson is

φ(z) = Φ0 − ia0 log(z) + i
∑
n 6=0

1

n
anz
−n

[an, am] = nδn+m,0, [Φ0, a0] = i

U(1) symmetry : φ(z)→ φ(z) + θ

conserved current :

J(z) = i∂φ(z) =
∑
n

anz
−n−1
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Vertex operators :

VQ(z) =: e iQϕ(z) :

Primary states/ vacua |Q〉 are defined by their U(1) charge Q

a0|Q〉 = Q|Q〉, an|Q〉 = 0 for n > 0

The Hilbert space is simply a Fock space

Descendants are obtained with the lowering operators a†n = a−n, n > 0

∆E = 0 : 1 state : |Q〉
∆E = 1 : 1 state : a−1 |Q〉
∆E = 2 : 2 states : a2

−1 |Q〉, a−2 |Q〉
∆E = 3 : 3 states : a3

−1 |Q〉, a−2a−1|Q〉, a−3 |Q〉
∆E = 4 : 5 states : a4

−1 |Q〉, a−2a
2
−1 |Q〉, a2

−2 |Q〉, a−3a−1 |Q〉, a−4 |Q〉
∆E = 5 : 7 states : · · ·
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The Laughlin state written in terms of a U(1) CFT

Ground state wavefunction

∏
i<j

(zi − zj)
3 = 〈0|Ob.c.V (z1) · · ·V (zN)|0〉, V (z) =: e i

√
3ϕ(z) :

where Ob.c. = e−i
√

3Nϕ0 is just a neutralizing background charge.

Bulk excitations

Wavefunction for p quasiholes

〈Ob.c.Vqh(w1) · · ·Vqh(wp)V (z1) · · ·V (zN)〉

with
Vqh(w) =: e

i√
3
ϕ(w)

:

Edge excitations

Ψu = 〈u|Ob.c.V (z1) · · ·V (zN)|0〉

edge mode = CFT descendant

we recover 1, 1, 2, 3, 5, 7, · · ·
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FQH trial wave-function from CFT

Moore and Read (1990) proposed to write
FQH Trial wavefunctions as CFT correlators

Ψ(z1, · · · , zN) = 〈u|Ob.c.V (z1) · · ·V (zN)|v〉

Operator V (z) =
∑

n z
nVn

Infinite dimensional Hilbert space (graded by
momentum/conformal dimension)

Why is this ansatz sensible ?

correct entanglement behavior (area law and counting)

yields a consistent anyon model (pentagon and hexagon equations)

Laughlin state is of this form
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Trial wavefunctions from CFT

Extrapolating the thermodynamic limit of these trial states is difficult.

Gapped ?

Well-defined quasi-holes ?

Non-Abelian braiding ?

Area law for the entanglement entropy ?

Entanglement spectrum ?

Quantum dimensions ?

etc...

The natural conjecture is that they are described by the anyon model
(TQFT) corresponding to the underlying CFT.
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Matrix Product State (MPS)
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Limitations of exact diagonalizations and trial wf
→ decomposition of a state |Ψ〉 on a convenient occupation basis

|Ψ〉 =
∑
{mi}

c{mi} |m1, ...,mNΦ
〉

What is the amount of memory needed to store the Laughlin state ?

Can’t store more than 21
particles !

Matrix Product State : more compact and computationally friendly
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Matrix Product States

|Ψ〉 =
∑
{mi}

(
〈u|B [mn] · · ·B [m1] |v〉

)
|m1, ...,mn〉

Why is this formalism interesting ?

Many quantities (correlation functions, entanglement spectrum, . . . )
can be computed in the (relatively small) auxiliary space.

Transfer matrix : one can work numerically on an infinitely long
cylinder (non compact surface, infinitely many electrons !)
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The CFT ansatz Ψ(z1, · · · , zN) = 〈u|V (z1) · · ·V (zN)|v〉
is a continuous MPS

Dubail, Read, Rezayi (2012)

Translation invariant MPS

|Ψ〉 =
∑
{mi}

(
〈u|B [mn] · · ·B [m2]B [m1] |v〉

)
|m1 · · ·mn〉

Zaletel, Mong (2012)

the matrices B [m] are operators in the underlying CFT

the auxiliary space is the (infinite dimensional) CFT Hilbert space . . .

. . . which can be truncated while keeping arbitrary large precision
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Where does this MPS come from ?
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Starting from a trial wavefunction given by a CFT correlator

Ψ(z1, · · · , zN) = 〈u|Ob.c.V (z1) · · ·V (zN)|v〉

and expanding V (z) =
∑

n V−nz
n, one finds (up to orbital normalization)

c(m1,··· ,mn) = 〈u| Ob.c.
1√
mn!

Vmn
−n · · ·

1√
m2!

Vm2
−2

1√
m1!

Vm1
−1 |v〉

This is a site/orbital dependent MPS

c(m1,··· ,mn) = 〈u| Ob.c.A
[mn](n) · · ·A[m2](2)A[m1](1) |v〉

with matrices at site/orbital j (including orbital normalization)

A[m](j) =
e( 2π

L
j)

2

√
m!

(V−j)
m
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Translation invariant MPS

A relation of the form A[m](j) = U−1A[m](j − 1)U yields

A[m](j) = U−jA[m](0)U j

and then

A[mn](n) · · ·A[m1](1) = U−n × A[mn](0)U · · ·A[m1](0)U

This is a translation invariant MPS, with matrices

B [m] = A[m](0)U

Benoit Estienne (LPTHE) Matrix Product State for FQHS 2017, June 13 34 / 44



Translation invariant MPS on the cylinder

Site independant MPS

A[m](j) =
e( 2π

L
j)

2

√
m!

(V−j)
m ⇒ B [m] =

1√
m!

(V0)m U

where U is the operator

U = e−
2π
L
H−i
√
νϕ0

where

ϕ0 is the bosonic zero mode (e−i
√
νϕ0 shifts the electric charge by ν)

H is the cylinder Hamiltonian : H = 2π
L L0

V0 is the zero mode of V (z)

auxiliary space = CFT Hilbert space
infinite bond dimension :/
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Truncation of the auxiliary space
The auxiliary space (i.e. the CFT Hilbert space) basis is graded by the
conformal dimension ∆α.

L0 |α〉 = ∆α|α〉

But in the MPS matrices we have a term

B [m] =
1√
m!

(V0)m e−i
√
νϕ0e−( 2π

L )
2
L0

The conformal dimension provides a natural cut-off.
Truncation parameter P : keep only states with ∆α ≤ P.

P = 0 recovers the thin-cylinder limit | · · · 100100100 · · · 〉
The correct 2d physics requires L� ζ (bulk correlation length, O(lB))

For a cylinder perimeter L, we must take P ∼ L2

Bond dimensions χ ∼ eαL · · · of course ! since SA ∼ αL.
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What about the torus ?

CFT ansatz : ground state |Ψ〉a

Ψa(z1, · · · , zN) = Tra
(
e i2πτL0−i

√
νnϕ0V (z1) · · ·V (zN)

)
becomes

|Ψ〉a =
∑
{mi}

Tra
(

(−1)(N−1)
√
νa0B [mn] . . .B [m1]

)
|m1, · · · ,mn〉

where the blue term is only present for fermions (ensures antisymmetry).
The MPS matrices are

B [m] = q
L0
2n e−i

√
ν

2
ϕ0

1√
m!

Vm
0 e−i

√
ν

2
ϕ0q

L0
2n , q = e2iπτ

Again χ grows exponentially with torus thickness.
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Matrix Product States :
a powerful numerical method

plots from collaborations with :
Y-L. Wu, Z. Papic, N. Regnault, B. A. Bernevig
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Infinitely long cylinder, bulk correlation length

〈O(0)O ′(r)〉 ∼ exp(−r/ζ)
The transfer matrix E1 =

∑
m Am ⊗ A∗m

⇒ correlation length ζ−1 ∝ log(λ1/λ2)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.02  0.04  0.06

l B
/ζ

lB/L

a)
Laughlin ν=1/3
Laughlin ν=1/5

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

 0  0.02  0.04  0.06

l B
/ζ

lB/L

b)
MR vac. sector

MR qh sector

Model state Laughlin 1/3 Laughlin 1/5 MR vac. MR qh

ζ/lB 1.381(1) 2.53(7) 2.73(1) 2.69(1)

Benoit Estienne (LPTHE) Matrix Product State for FQHS 2017, June 13 39 / 44



Entanglement entropy (orbital cut)
Area law SA = αL− γ, where the subleading term γ is universal

γ = logD/da
Model state γvac γqh D
MR 1.04 0.69 2

√
2

Z3 RR 1.45 0.97 5
2 sin(π

5 )
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Quasi-hole excitations
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Insert quasi-holes in the MPS

Compute the density profile

Measure the radius of the quasi-hole
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Braiding non-Abelian quasi-holes

Instead of computing the Berry phase,
⇒ check the behavior of conformal block overlaps

〈Ψa|Ψb〉 = Caδa b + O
(
e−|∆η|/ξab

)

0 5 10 15

∆η / `0

0.0

0.4

0.8

1.2

〈a
bc
|a
b′
c〉

/
a.

u
. Moore-Read

||1σ1||2

||1σψ||2
||σ1σ||2= ||σψσ||2
〈σ1σ|σψσ〉

0 5 10 15 20

∆η / `0

Z3 Read-Rezayi

||1σ1σ2||2
||σ1ψ1ε||2 ||σ1σ2ε||2
||1σ1ψ1||2
〈σ1ψ1ε|σ1σ2ε〉

Microscopic, quantitative verification of non-Abelian braiding.
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Conclusion
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Conclusion
FQH trial wavefunctions have been used for more than 20 years :

They are nothing but Matrix Product States in disguise

Numerically powerful

I Bulk correlation length ζ (or equivalently bulk gap)
I precision computation of the topological entanglement entropy γ

(and the quantum dimensions da)
I Non-Abelian quasihole radius and braiding

CFT/MPS provide a strong link between microscopics and 3d TQFT

As conjectured by Moore and Read

Model states ⇒ (non-Abelian) chiral topological phases.

Limitations : at the end of the day these states are model states
with the anyon data as an input. Similar to quantum-double models.

I Are they in the same universality class as the experimental states ?
I DMRG methods might help answer this question.
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