# Fractional quantum Hall effect Conformal Field Theory and Matrix Product States 

Benoit Estienne (LPTHE, Paris)

Mathematical Institute

Köln
(1) Quantum Hall effect and Landau levels
(2) Fractional quantum Hall effect

- Laughlin state
(3) The chiral boson
- and the Laughlin state
- as an ansatz for FQH states

4) Matrix Product States

- a powerful numerical method


## Quantum Hall effect



## Classical Hall effect

Hall effect: a 2D electron gas in a perpendicular magnetic field.

$$
\begin{gathered}
\Rightarrow \text { current } \perp \text { voltage } \\
R_{x y} \propto B
\end{gathered}
$$

## Integer Quantum Hall effect (IQHE)



## IQHE : von Klitzing (1980)

Quantized Hall conductance

$$
\sigma_{x y}=\nu \frac{e^{2}}{h}
$$

$\nu$ is an integer up to $O\left(10^{-9}\right)$
Used in metrology

A single electron in 2D and in a $\perp$ magnetic field $B$.
Uniform $\perp$ magnetic field : gauge choice

$$
H=\frac{1}{2 m}(\vec{p}-e \vec{A})^{2}, \quad \vec{A}=\frac{B}{2}\binom{-y}{x}
$$

$$
H=\frac{1}{2 m}\left(-i \hbar \frac{\partial}{\partial x}+\frac{e B}{2} y\right)^{2}+\frac{1}{2 m}\left(-i \hbar \frac{\partial}{\partial y}-\frac{e B}{2} x\right)^{2}
$$

- energy scale : cyclotron frequency $\omega_{c}=\frac{|e B|}{m}$,
- length scale : magnetic length $I_{B}=\sqrt{\frac{\hbar}{|e B|}}$

$$
H=\frac{1}{2} \hbar \omega_{C}\left[\left(-i I_{B} \frac{\partial}{\partial x}+\frac{y}{2 I_{B}}\right)^{2}+\left(-i I_{B} \frac{\partial}{\partial y}-\frac{x}{2 I_{B}}\right)^{2}\right]
$$

## Landau levels

In (dimensionless) complex coordinate $z=(x+i y) / I_{B}$, and setting

$$
a=\sqrt{2}\left(\frac{\partial}{\partial \bar{z}}+\frac{z}{2}\right), \quad a^{\dagger}=-\sqrt{2}\left(\frac{\partial}{\partial z}-\frac{\bar{z}}{2}\right)
$$

Familiar form of the Hamiltonian

$$
H=\hbar \omega_{c}\left(a^{\dagger} a+\frac{1}{2}\right) \quad\left[a, a^{\dagger}\right]=1
$$

$(N+1)^{\text {th }}$ Landau level :

$$
E_{N}=\hbar \omega_{c}\left(N+\frac{1}{2}\right)
$$



Discrete spectrum, large degeneracy

Lowest Landau Level ( $N=0$ )
Since $a=\sqrt{2}\left(\frac{\partial}{\partial \bar{z}}+\frac{z}{2}\right)$, ground states are of the form

$$
\Psi(z, \bar{z})=f(z) e^{-z \bar{z} / 4}
$$

with $f(z)$ is any holomorphic function $\left(\partial_{\bar{z}} f=0\right)$.

$$
\Rightarrow \text { chirality }:(x, y) \rightarrow z=(x+i y)
$$

Ground states, a.k.a. Lowest Landau level (LLL) states

$$
\Psi(x, y)=f(x+i y) e^{-\left(x^{2}+y^{2}\right) /\left.4\right|_{B} ^{2}}
$$

Projection to the LLL : $x$ and $y$ no longer commute $[\hat{x}, \hat{y}]=i I_{B}^{2}$

$$
\Delta_{x} \Delta_{y} \geq I_{B}^{2} / 2
$$

$\Rightarrow$ each electron occupies an area $\left.2 \pi\right|_{B} ^{2}$ magnetic flux through this area $=$ quantum of flux $\Phi=h / e$

LLL degeneracy $\sim$ number $N_{\Phi}$ of flux quanta through the surface

## Landau problem on arbitrary surfaces

Lowest Landau Level on (compact) Riemann surfaces :


The magnetic flux has to be quantized $\int d^{2} \times B=N_{\Phi} \frac{h}{e}$, with $N_{\Phi}$ integer.
The ground state degeneracy on a surface of genus $g$ is

$$
N_{\Phi}+(1-g) \quad\left(N_{\phi}>2 g-2\right)
$$

- it depends on the topology (genus).
- it does NOT depend on the geometry (metric)


## Back on flat space : magnetic translations

translation invariance : $\vec{x}$ and $\vec{x}+\vec{u}$ are gauge equivalent

$$
\vec{A}=\frac{B}{2}\binom{-y}{x}
$$

Magnetic translations $R_{\vec{u}}=e^{i q \vec{u} \cdot \vec{A}} e^{\vec{u} \cdot \vec{\nabla}}$
Aharonov-Bohm effect :

$$
R_{\vec{u}} R_{\vec{v}}=e^{i \frac{q B}{\hbar} \vec{u} \wedge \vec{v}} R_{\vec{v}} R_{\vec{u}}
$$



Infinitesimal generators of translations commute with $H$, but

$$
\left[T_{x}, T_{y}\right]=-i \neq 0
$$

Let us choose momentum along the y direction as a quantum number.

Cylinder with perimeter $L$ (we identify $y \equiv y+L$ )


Natural gauge choice : $\vec{A}=B\binom{0}{x}$

$$
T_{y}\left|\Psi_{k}\right\rangle=k_{y}\left|\Psi_{k}\right\rangle, \quad k_{y}=\frac{2 \pi n}{L}
$$

$$
\Psi_{k_{y}}(x, y)=e^{i y k_{y}} e^{-\frac{\left(x-k_{y}\right)^{2}}{2}} \propto e^{z k_{y}} e^{-\frac{x^{2}}{2}} \quad\left(I_{B}=1\right)
$$

Momentum $k_{y}$ and position $x$ are locked :

$$
x \sim I_{B}^{2} k_{y}
$$

- $[\hat{x}, \hat{y}]=i l_{B}^{2}$ implies that $\hbar \hat{x}=l_{B}^{2} \hat{p}_{y}$.
- localized in $\hat{x}$ and delocalized in $\hat{y}$
- the interorbital distance is $\left.\frac{2 \pi}{L}\right|_{B} ^{2}$


Density profile of the LLL orbital $\Psi_{k_{y}}(x, y)$.

## Projection to the LLL : dimensional reduction

Projection to the LLL : $x$ and $y$ no longer commute $[\hat{x}, \hat{y}]=\left.i\right|_{B} ^{2}$ (link with non-commutative geometry).

4 dimensional phase space $\Rightarrow 2$ dimensional phase space
A basis of LLL states

looks like a one-dimensional chain


But!
Physical short range interactions become long range in this description (distance of order $I_{B}$ means $\sim L / I_{B}$ sites).

## The IQHE : bulk insulator

Cartoon picture : no interactions, no disorder


How come we have $I \propto V$ then? Where is the current flowing?

## The IQHE : conducting edges

## $\Rightarrow$ Conducting edges


each channel contributes $e^{2} / h$ to the Hall conductance

$$
\sigma_{x y}=\nu \frac{e^{2}}{h}
$$

Chiral (and therefore protected) massless edges

## Topological insulator

This quantization is insensitive to disorder or strong periodic potential :

## topological invariant : the Chern number

Disclaimer : this is just a cartoon picture. Does not explain plateaux.

## Fractional filling the many-body problem



## FQHE trial wavefunctions

## Fractional filling : the role of interactions

$N$ fermions in $N_{\Phi}$ orbital/states (filling fraction $\nu=N / N_{\phi}<1$ ) (or $N$ bosons at any filling fractions)
without interactions we would expect a metallic bulk !
Experimentally, emergence of exotic and non perturbative physics :

- insulating bulk,
- metallic chiral edge modes,
- excitations with fractional charges, due to electron-electron interactions

Strongly correlated system, no small parameter. What can we do ?


- Exact diagonalization
- Effective field theories (theories of anyons)
- Trial wavefunctions


## Trial wave functions

The $\nu=1 / 3$ Laughlin state.
filling fraction $\nu=1 / 3+$ short range model interaction

$$
\Rightarrow \text { exact ground-state : }
$$

$$
\Psi_{\frac{1}{3}}\left(z_{1}, \cdots, z_{N}\right)=\prod_{i<j}\left(z_{i}-z_{j}\right)^{3}
$$

The model interaction is the short range part of Coulomb.

## Extremely high overlap with Coulomb interaction ! (obtained by exact diagonalization)

First hints of a topological phase :

- excitations with fractional charge $e / 3$
- topology dependent ground state degeneracy : $3^{g}$ exact ground states.


## Cartoon picture: thin cylinder limit $\left(L \ll I_{B}\right)$



Very small cylinder perimeter L: LLL orbitals no longer overlap 1d problem

Laughlin's Hamiltonian $\rightarrow$ Haldane's exclusion statistics no more than 1 particle in three orbitals

At filling fraction $\nu=1 / 3$, we get three possible states

$$
\begin{aligned}
\left|\Psi_{1}\right\rangle & =|\cdots 100100100 \cdots\rangle \\
\left|\Psi_{2}\right\rangle & =|\cdots 010010010 \cdots\rangle \\
\left|\Psi_{3}\right\rangle & =|\cdots 001001001 \cdots\rangle
\end{aligned}
$$

3 -fold degenerate ground state on the cylinder (and torus).

## Bulk excitations/defects : anyons

## Adiabatic insertion of a flux quantum at position $w$

 creates a hole in the electronic liquid :$$
\Psi_{w}=\prod_{i}\left(w-z_{i}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)^{3}
$$

Cartoon picture: $|\cdots 1001000100 \cdots\rangle$


Electronic density around a quasihole (N. Regnault)
fractionalization : the missing electronic charge is $e / 3$ these excitations are called quasi-holes.

under adiabatic exchange of two quasi-holes
$\Rightarrow$ phase $e^{2 i \pi / 3}$
non trivial braiding !
$\Rightarrow$ quasi-holes $=$ abelian anyons

## Massless edge modes

$$
\Psi_{u}=P_{u} \prod_{i<j}\left(z_{i}-z_{j}\right)^{3}
$$

where $P_{u}$ is any symmetric, homogeneous polynomial.
Cartoon picture : no more than 1 electron in 3 orbitals.

- dispersion relation : $E \propto P$ chiral and gapless edge
- Number of edge states:
- $E=0: 1$ state
- $E=1: 1$ state
- $E=2: 2$ states
- $E=3: 3$ states
- $E=4: 5$ states
- $E=5: 7$ states


(cartoon picture)

spectrum of massless chiral boson.


## Massless edge modes

$$
\Psi_{u}=P_{u} \prod_{i<j}\left(z_{i}-z_{j}\right)^{3}
$$

where $P_{u}$ is any symmetric, homogeneous polynomial.
Cartoon picture : no more than 1 electron in 3 orbitals.

- dispersion relation : $E \propto P$ chiral and gapless edge
- Number of edge states:


spectrum of massless chiral boson.


## Bulk excitations

Quasi-hole at position w:

$$
\Psi_{q h}=\prod_{i}\left(w-z_{i}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)^{3}
$$

- can be created by adiabatic insertion of a flux quantum
- charge e/3 : fractionalization
- adiabatic exchange of two anyons $\Rightarrow$ phase $e^{2 i \pi / 3}$ non trivial braiding!
$\Rightarrow$ quasi-holes $=$ abelian anyons


## Edge excitations



- A chiral $U(1)$ boson linear dispersion relation
- The degeneracy of each energy level is given by the sequence $1,1,2,3,5,7, \cdots$
$\nu=\frac{1}{3}$ Laughlin state $=$ chiral $\mathbb{Z}_{3}$ topological phase.


## Chiral boson and Laughlin

 using the edge theory to describe the bulkThe free boson a.k.a. U(1) CFT
Massless gaussian field in $1+1$ dimensions

$$
S=\int \mathrm{d}^{2} z \partial \phi \bar{\partial} \phi
$$

The mode decomposition of the chiral free boson is

$$
\phi(z)=\boldsymbol{\Phi}_{\mathbf{0}}-i \mathbf{a}_{\mathbf{0}} \log (z)+i \sum_{n \neq 0} \frac{1}{n} \mathbf{a}_{\mathbf{n}} z^{-n}
$$

$$
\left[\mathbf{a}_{\mathbf{n}}, \mathbf{a}_{\mathbf{m}}\right]=n \delta_{n+m, 0}, \quad\left[\boldsymbol{\Phi}_{0}, \mathbf{a}_{0}\right]=i
$$

$U(1)$ symmetry : $\phi(z) \rightarrow \phi(z)+\theta$
conserved current :

$$
J(z)=i \partial \phi(z)=\sum_{n} a_{n} z^{-n-1}
$$

Vertex operators :

$$
V_{Q}(z)=: e^{i Q \varphi(z)}:
$$

Primary states/ vacua $|Q\rangle$ are defined by their $U(1)$ charge $Q$

$$
a_{0}|Q\rangle=Q|Q\rangle, \quad a_{n}|Q\rangle=0 \text { for } n>0
$$

## The Hilbert space is simply a Fock space

Descendants are obtained with the lowering operators $a_{n}^{\dagger}=a_{-n}, n>0$

- $\Delta E=0: 1$ state $:|Q\rangle$
- $\Delta E=1: 1$ state $: a_{-1}|Q\rangle$
- $\Delta E=2: 2$ states : $a_{-1}^{2}|Q\rangle, a_{-2}|Q\rangle$
- $\Delta E=3: 3$ states $: a_{-1}^{3}|Q\rangle, a_{-2} a_{-1}|Q\rangle, a_{-3}|Q\rangle$
- $\Delta E=4: 5$ states : $a_{-1}^{4}|Q\rangle, a_{-2} a_{-1}^{2}|Q\rangle, a_{-2}^{2}|Q\rangle, a_{-3} a_{-1}|Q\rangle, a_{-4}|Q\rangle$
- $\Delta E=5: 7$ states :

The Laughlin state written in terms of a $U(1)$ CFT

Ground state wavefunction

$$
\prod_{i<j}\left(z_{i}-z_{j}\right)^{3}=\langle 0| \mathcal{O}_{\text {b.c. }} V\left(z_{1}\right) \cdots V\left(z_{N}\right)|0\rangle, \quad V(z)=: e^{i \sqrt{3} \varphi(z)}:
$$

where $\mathcal{O}_{\text {b.c. }}=e^{-i \sqrt{3} N \varphi_{0}}$ is just a neutralizing background charge.

## Bulk excitations

Wavefunction for $p$ quasiholes
$\left\langle\mathcal{O}_{\text {b.c. }} . V_{\mathrm{qh}}\left(w_{1}\right) \cdots V_{\mathrm{qh}}\left(w_{p}\right) V\left(z_{1}\right) \cdots V\left(z_{N}\right)\right\rangle$
with

$$
V_{\mathrm{qh}}(w)=: e^{\frac{i}{\sqrt{3}} \varphi(w)}:
$$

## Edge excitations

$$
\Psi_{u}=\langle u| \mathcal{O}_{\text {b.c. }} V\left(z_{1}\right) \cdots V\left(z_{N}\right)|0\rangle
$$

- edge mode $=$ CFT descendant
- we recover $1,1,2,3,5,7, \ldots$


## FQH trial wave-function from CFT

Moore and Read (1990) proposed to write FQH Trial wavefunctions as CFT correlators

$$
\Psi\left(z_{1}, \cdots, z_{N}\right)=\langle u| \mathcal{O}_{\text {b.c. }} V\left(z_{1}\right) \cdots V\left(z_{N}\right)|v\rangle
$$

- Operator $V(z)=\sum_{n} z^{n} V_{n}$
- Infinite dimensional Hilbert space (graded by momentum/conformal dimension)

Why is this ansatz sensible?

- correct entanglement behavior (area law and counting)
- yields a consistent anyon model (pentagon and hexagon equations)
- Laughlin state is of this form


## Trial wavefunctions from CFT

Extrapolating the thermodynamic limit of these trial states is difficult.

- Gapped?
- Well-defined quasi-holes?
- Non-Abelian braiding?
- Area law for the entanglement entropy?
- Entanglement spectrum?
- Quantum dimensions?
- etc...

The natural conjecture is that they are described by the anyon model (TQFT) corresponding to the underlying CFT.

# Matrix Product State (MPS) 

## Limitations of exact diagonalizations and trial wf

$\rightarrow$ decomposition of a state $|\Psi\rangle$ on a convenient occupation basis

$$
|\Psi\rangle=\sum_{\left\{m_{i}\right\}} c_{\left\{m_{i}\right\}}\left|m_{1}, \ldots, m_{N_{\Phi}}\right\rangle
$$



What is the amount of memory needed to store the Laughlin state?


Can't store more than 21 particles!

Matrix Product State : more compact and computationally friendly

## Matrix Product States



## Why is this formalism interesting?

- Many quantities (correlation functions, entanglement spectrum, ...) can be computed in the (relatively small) auxiliary space.
- Transfer matrix : one can work numerically on an infinitely long cylinder (non compact surface, infinitely many electrons!)


## The CFT ansatz $\Psi\left(z_{1}, \cdots, z_{N}\right)=\langle u| V\left(z_{1}\right) \cdots V\left(z_{N}\right)|v\rangle$ is a continuous MPS

## Translation invariant MPS

$$
|\Psi\rangle=\sum_{\left\{m_{i}\right\}}\left(\langle u| B^{\left[m_{n}\right]} \cdots B^{\left[m_{2}\right]} B^{\left[m_{1}\right]}|v\rangle\right)\left|m_{1} \cdots m_{n}\right\rangle
$$

- the matrices $B^{[m]}$ are operators in the underlying CFT
- the auxiliary space is the (infinite dimensional) CFT Hilbert space ...
- ... which can be truncated while keeping arbitrary large precision


## Where does this MPS come from?

Starting from a trial wavefunction given by a CFT correlator

$$
\Psi\left(z_{1}, \cdots, z_{N}\right)=\langle u| \mathcal{O}_{\text {b.c. }} V\left(z_{1}\right) \cdots V\left(z_{N}\right)|v\rangle
$$

and expanding $V(z)=\sum_{n} V_{-n} z^{n}$, one finds (up to orbital normalization)

$$
c_{\left(m_{1}, \cdots, m_{n}\right)}=\langle u| \mathcal{O}_{\text {b.c. }} \frac{1}{\sqrt{m_{n}!}} V_{-n}^{m_{n}} \cdots \frac{1}{\sqrt{m_{2}!}} V_{-2}^{m_{2}} \frac{1}{\sqrt{m_{1}!}} V_{-1}^{m_{1}}|v\rangle
$$

This is a site/orbital dependent MPS

$$
c_{\left(m_{1}, \cdots, m_{n}\right)}=\langle u| \mathcal{O}_{\text {b.c. } .} A^{\left[m_{n}\right]}(n) \cdots A^{\left[m_{2}\right]}(2) A^{\left[m_{1}\right]}(1)|v\rangle
$$

with matrices at site/orbital $j$ (including orbital normalization)

$$
A^{[m]}(j)=\frac{e^{\left(\frac{2 \pi}{L} j\right)^{2}}}{\sqrt{m!}}\left(V_{-j}\right)^{m}
$$

## Translation invariant MPS

A relation of the form $A^{[m]}(j)=U^{-1} A^{[m]}(j-1) U$ yields

$$
A^{[m]}(j)=U^{-j} A^{[m]}(0) U^{j}
$$

and then

$$
A^{\left[m_{n}\right]}(n) \cdots A^{\left[m_{1}\right]}(1)=U^{-n} \times A^{\left[m_{n}\right]}(0) U \cdots A^{\left[m_{1}\right]}(0) U
$$

This is a translation invariant MPS, with matrices

$$
B^{[m]}=A^{[m]}(0) U
$$

## Translation invariant MPS on the cylinder

## Site independant MPS

$$
A^{[m]}(j)=\frac{e^{\left(\frac{2 \pi}{L}\right)^{2}}}{\sqrt{m!}}\left(V_{-j}\right)^{m} \quad \Rightarrow \quad B^{[m]}=\frac{1}{\sqrt{m!}}\left(V_{0}\right)^{m} U
$$

where $U$ is the operator

$$
U=e^{-\frac{2 \pi}{L} H-i \sqrt{\nu} \varphi_{0}}
$$

where

- $\varphi_{0}$ is the bosonic zero mode ( $e^{-i \sqrt{\nu} \varphi_{0}}$ shifts the electric charge by $\nu$ )
- $H$ is the cylinder Hamiltonian : $H=\frac{2 \pi}{L} L_{0}$
- $V_{0}$ is the zero mode of $V(z)$
auxiliary space $=$ CFT Hilbert space infinite bond dimension :/


## Truncation of the auxiliary space

The auxiliary space (i.e. the CFT Hilbert space) basis is graded by the conformal dimension $\Delta_{\alpha}$.

$$
L_{0}|\alpha\rangle=\Delta_{\alpha}|\alpha\rangle
$$

But in the MPS matrices we have a term

$$
B^{[m]}=\frac{1}{\sqrt{m!}}\left(V_{0}\right)^{m} e^{-i \sqrt{\nu} \varphi_{0}} e^{-\left(\frac{2 \pi}{L}\right)^{2} L_{0}}
$$

The conformal dimension provides a natural cut-off.
Truncation parameter $P$ : keep only states with $\Delta_{\alpha} \leq P$.

- $P=0$ recovers the thin-cylinder limit $|\cdots 100100100 \cdots\rangle$
- The correct 2d physics requires $L \gg \zeta$ (bulk correlation length, $O\left(I_{B}\right)$ )
- For a cylinder perimeter $L$, we must take $P \sim L^{2}$
- Bond dimensions $\chi \sim e^{\alpha L} \quad \cdots$ of course ! since $S_{A} \sim \alpha L$.


## What about the torus?

CFT ansatz : ground state $|\Psi\rangle_{a}$

$$
\Psi_{a}\left(z_{1}, \cdots, z_{N}\right)=\operatorname{Tr}_{a}\left(e^{i 2 \pi \tau L_{0}-i \sqrt{\nu} n \varphi_{0}} V\left(z_{1}\right) \cdots V\left(z_{N}\right)\right)
$$

becomes

$$
|\Psi\rangle_{a}=\sum_{\left\{m_{i}\right\}} \operatorname{Tr}_{a}\left((-1)^{(N-1) \sqrt{\nu} a_{0}} B^{\left[m_{n}\right]} \ldots B^{\left[m_{1}\right]}\right)\left|m_{1}, \cdots, m_{n}\right\rangle
$$

where the blue term is only present for fermions (ensures antisymmetry). The MPS matrices are

$$
B^{[m]}=q^{\frac{L_{0}}{2 n}} e^{-i \frac{\sqrt{\nu}}{2} \varphi_{0}} \frac{1}{\sqrt{m!}} V_{0}^{m} e^{-i \frac{\sqrt{\nu}}{2}} \varphi_{0} q^{\frac{L_{0}}{2 n}}, \quad q=e^{2 i \pi \tau}
$$

Again $\chi$ grows exponentially with torus thickness.

# Matrix Product States : a powerful numerical method 

plots from collaborations with :
Y-L. Wu, Z. Papic, N. Regnault, B. A. Bernevig

## Infinitely long cylinder, bulk correlation length

$\left\langle O(0) O^{\prime}(r)\right\rangle \sim \exp (-r / \zeta)$


The transfer matrix $E_{1}=\sum_{m} A_{m} \otimes A_{m}^{*}$

$\Rightarrow$ correlation length $\zeta^{-1} \propto \log \left(\lambda_{1} / \lambda_{2}\right)$



| Model state | Laughlin $1 / 3$ | Laughlin $1 / 5$ | MR vac. | MR qh |
| :--- | :---: | :---: | :---: | :---: |
| $\zeta / I_{B}$ | $1.381(1)$ | $2.53(7)$ | $2.73(1)$ | $2.69(1)$ |

## Entanglement entropy (orbital cut)

Area law $S_{A}=\alpha L-\gamma$, where the subleading term $\gamma$ is universal

$$
\gamma=\log \mathcal{D} / d_{a}
$$

| Model state | $\gamma_{\text {vac }}$ | $\gamma_{\mathrm{qh}}$ | $\mathcal{D}$ |
| :--- | :---: | :---: | :---: |
| MR | 1.04 | 0.69 | $2 \sqrt{2}$ |
| $\mathbb{Z}_{3} \mathrm{RR}$ | 1.45 | 0.97 | $\frac{5}{2 \sin \left(\frac{\pi}{5}\right)}$ |



## Quasi-hole excitations



- Insert quasi-holes in the MPS
- Compute the density profile
- Measure the radius of the quasi-hole



|  | $\nu$ | $R / \ell_{0}$ |  |
| :---: | :---: | :---: | :---: |
| Laughlin | $\frac{1}{3}$ | $\frac{e}{3}: 2.6$ |  |
| Moore-Read | $\frac{1}{2}$ | $\frac{e}{4}: 2.8$ | $\frac{e}{2}: 2.7$ |
| $\mathbb{Z}_{3}$ Read-Rezayi | $\frac{3}{5}$ | $\frac{e}{5}: 3.0$ | $\frac{3 e}{5}: 2.8$ |

## Braiding non-Abelian quasi-holes



Instead of computing the Berry phase,
$\Rightarrow$ check the behavior of conformal block overlaps

$$
\left\langle\Psi_{a} \mid \Psi_{b}\right\rangle=C_{a} \delta_{a b}+O\left(e^{-|\Delta \eta| / \xi_{a b}}\right)
$$



Microscopic, quantitative verification of non-Abelian braiding.

## Conclusion

## Conclusion

FQH trial wavefunctions have been used for more than 20 years :
They are nothing but Matrix Product States in disguise

## Numerically powerful

- Bulk correlation length $\zeta$ (or equivalently bulk gap)
- precision computation of the topological entanglement entropy $\gamma$ (and the quantum dimensions $d_{a}$ )
- Non-Abelian quasihole radius and braiding


## CFT/MPS provide a strong link between microscopics and 3d TQFT

As conjectured by Moore and Read Model states $\Rightarrow$ (non-Abelian) chiral topological phases.
Limitations : at the end of the day these states are model states with the anyon data as an input. Similar to quantum-double models.

- Are they in the same universality class as the experimental states?
- DMRG methods might help answer this question.

