Entanglement Polytopes

David Gross

April 2017

Why am I here?

Why am I here?

Disclaimer:

- This speaker has nothing to say on the quantum Hall effect, mathematical or otherwise.

Why am I here?

Disclaimer:

- This speaker has nothing to say on the quantum Hall effect, mathematical or otherwise.

Instead: I will report on...

- ...a program to find applications of non-commutative moment polytopes for quantum information.
- ...extracting global information about a pure state from single-particle measurements alone.
[M. Walter, B. Doran, D. Gross, M. ChristandI, Science '13],
[C. Schilling, D. Gross, M. Christandl, PRL '13].

Outline

- Quantum Marginal Problem
- Entanglement Polytopes
- Generalized Pauli Constraints
- Optionally: Computational Aspects

Quantum Marginal Problems

Marginals in classical probability

In classical probability theory:

- Marginals are distributions of subsets of a number of random variables.
- If these overlap \Rightarrow non-trivial compatibility conditions.

Marginals in classical probability

In classical probability theory:

- Marginals are distributions of subsets of a number of random variables.
- If these overlap \Rightarrow non-trivial compatibility conditions.
- Compatible subsets are convex polytopes (in QM, known as Bell polytopes)
- In general, membership problem is NP-hard.

Marginals in quantum probability

"One of the most important challenges in quantum chemistry"-National Science Foundation ('70s).

Marginals in quantum probability

"One of the most important challenges in quantum chemistry"-National Science Foundation ('70s).

- For subset S_{i} specify state ρ_{i}.
- Q: Are these compatible:

$$
\rho_{i}=\operatorname{tr}_{\backslash s_{i}} \rho
$$

for some global ρ ?
Solves all physical ground-state problems:

$$
\min _{\rho} \operatorname{tr} H \rho=\min _{\rho} \sum_{i, j} \operatorname{tr} h_{i, j} \rho=\min _{\left\{\rho_{i, j}\right\}} \sum_{i, j} \operatorname{tr} h_{i, j} \rho_{i, j} .
$$

Marginals in quantum probability

"One of the most important challenges in quantum chemistry"-National Science Foundation ('70s).

- For subset S_{i} specify state ρ_{i}.
- Q: Are these compatible:

$$
\rho_{i}=\operatorname{tr}_{\backslash s_{i}} \rho
$$

for some global ρ ?
Solves all physical ground-state problems:

$$
\min _{\rho} \operatorname{tr} H \rho=\min _{\rho} \sum_{i, j} \operatorname{tr} h_{i, j} \rho=\min _{\left\{\rho_{i, j}\right\}} \sum_{i, j} \operatorname{tr} h_{i, j} \rho_{i, j} .
$$

Terms live on two systems \Rightarrow simple (if marginal prob is).

Marginals in quantum probability

$$
\min _{\rho} \operatorname{tr} H \rho=\min _{\left\{\rho_{i, j}\right\}} \sum_{i, j} \operatorname{tr} h_{i, j} \rho_{i, j}
$$

- Seemed attractive: circumvents expo. large Hilbert space.

Marginals in quantum probability

$$
\min _{\rho} \operatorname{tr} H \rho=\min _{\left\{\rho_{i, j}\right\}} \sum_{i, j} \operatorname{tr} h_{i, j} \rho_{i, j} .
$$

- Seemed attractive: circumvents expo. large Hilbert space.

But:

- Ground state problem is intrinsically hard: QMA-complete.
- Convex optimization \Rightarrow so is quantum marginal problem. ©

Single-site marginal problem

Specific instance: marginals do not overlap, global state pure

$$
\bigodot_{s_{1}}^{\odot} \bigodot_{s_{2}} \bigodot_{s_{s}} \bigodot_{s_{4}} \pm
$$

Single-site marginal problem

Specific instance: marginals do not overlap, global state pure

$$
\bigodot_{s_{1}} \bigodot_{s_{2}} \bigodot_{s_{s}} \bigodot_{s_{4}} I
$$

- Studied since 1970s in context of quantum chemistry.
- No evidence that it helps ground state problem...
- ... but seems to have rich structure.

Single-site marginal problem

Specific instance: marginals do not overlap, global state pure

- Studied since 1970s in context of quantum chemistry.
- No evidence that it helps ground state problem...
- ... but seems to have rich structure.

Classical version:

- Globally pure \Leftrightarrow no global randomness
\Rightarrow no local randomness.
- ...trivial.

Reduction to eigenvalues

$$
\bigoplus_{\rho_{1}} \wp_{\rho_{2}} \wp_{\rho_{3}}
$$

- Local basis change does not affect compatibility
- \Rightarrow can assume ρ_{i} are diagonal.

Question becomes:
Which set of ordered local eigenvalues $\vec{\lambda}^{(i)}$ can occur?

Reduction to eigenvalues

- Local basis change does not affect compatibility
- \Rightarrow can assume ρ_{i} are diagonal.

Question becomes:
Which set of ordered local eigenvalues $\vec{\lambda}^{(i)}$ can occur?
... progress was scant for three decades ...

- ... until A. Klyachko identified these sets as images of moment maps.
- In particular: Compatible sets are convex polytopes.

Physics warm-up

Physics warm-up: work out solution for two qubits.

Physics warm-up

Physics warm-up: work out solution for two qubits.

- Schmidt-decomposition (entanglement spectra):

$$
|\psi\rangle=\sqrt{\lambda^{(1)}}\left|e_{1}\right\rangle \otimes\left|f_{1}\right\rangle+\sqrt{\lambda^{(2)}}\left|e_{2}\right\rangle \otimes\left|f_{2}\right\rangle
$$

- With

$$
\rho_{1}=\lambda^{(1)}\left|e_{1}\right\rangle\left\langle e_{1}\right|+\lambda^{(2)}\left|e_{2}\right\rangle\left\langle e_{2}\right|, \quad \rho_{2}=\lambda^{(1)}\left|f_{1}\right\rangle\left\langle f_{1}\right|+\lambda^{(2)}\left|f_{2}\right\rangle\left\langle f_{2}\right| .
$$

Physics warm-up

Physics warm-up: work out solution for two qubits.

- Schmidt-decomposition (entanglement spectra):

$$
|\psi\rangle=\sqrt{\lambda^{(1)}}\left|e_{1}\right\rangle \otimes\left|f_{1}\right\rangle+\sqrt{\lambda^{(2)}}\left|e_{2}\right\rangle \otimes\left|f_{2}\right\rangle
$$

- With

$$
\rho_{1}=\lambda^{(1)}\left|e_{1}\right\rangle\left\langle e_{1}\right|+\lambda^{(2)}\left|e_{2}\right\rangle\left\langle e_{2}\right|, \quad \rho_{2}=\lambda^{(1)}\left|f_{1}\right\rangle\left\langle f_{1}\right|+\lambda^{(2)}\left|f_{2}\right\rangle\left\langle f_{2}\right| .
$$

- So eigenvalues must be equal: $\vec{\lambda}_{1}=\vec{\lambda}_{2}$. ("Singular values invariant under transpose").

Physics warm-up

Physics warm-up: work out solution for two qubits.

- Schmidt-decomposition (entanglement spectra):

$$
|\psi\rangle=\sqrt{\lambda^{(1)}}\left|e_{1}\right\rangle \otimes\left|f_{1}\right\rangle+\sqrt{\lambda^{(2)}}\left|e_{2}\right\rangle \otimes\left|f_{2}\right\rangle
$$

- With

$$
\rho_{1}=\lambda^{(1)}\left|e_{1}\right\rangle\left\langle e_{1}\right|+\lambda^{(2)}\left|e_{2}\right\rangle\left\langle e_{2}\right|, \quad \rho_{2}=\lambda^{(1)}\left|f_{1}\right\rangle\left\langle f_{1}\right|+\lambda^{(2)}\left|f_{2}\right\rangle\left\langle f_{2}\right| .
$$

- So eigenvalues must be equal: $\vec{\lambda}_{1}=\vec{\lambda}_{2}$. ("Singular values invariant under transpose").

In terms of largest eigenvalue, get simple polytope:

Moment maps

Methods require detour via group actions on symplectic manifolds.

$$
\begin{aligned}
& H \sigma_{z}(m)=2 \\
& d H_{\sigma_{z}}(m) \\
& \left(d H l_{\sigma_{z}}\right)^{*}
\end{aligned}
$$

Moment maps

Methods require detour via group actions on symplectic manifolds.

$$
\begin{aligned}
& H_{r_{z}}(m)=z \\
& d H_{\sigma_{z}}(m) \\
& \left(d H H_{\sigma_{z}}\right)^{*}
\end{aligned}
$$

- Let M be manifold with symplectic form ω
- Let G be Lie group with algebra \mathfrak{g}

Moment maps

Methods require detour via group actions on symplectic manifolds.

$$
\begin{aligned}
& H_{r_{z}}(m)=z \\
& d H_{\sigma_{z}}(m) \\
& \left(d H \sigma_{\sigma_{z}}\right)^{*}
\end{aligned}
$$

- Let M be manifold with symplectic form ω
- Let G be Lie group with algebra \mathfrak{g} and

$$
\begin{aligned}
\tilde{\mu}: \mathfrak{g} & \rightarrow F(M) \\
g & \mapsto\left(H_{g}: m \mapsto H_{g}(m)\right)
\end{aligned}
$$

be a function that associates with every one-parameter group $e^{t g}$ a Hamiltonian H_{g}.

Moment maps

Methods require detour via group actions on symplectic manifolds.

$$
\begin{aligned}
& H_{r_{z}}(m)=z \\
& d H_{\sigma_{z}}(m) \\
& \left(d H H_{\sigma_{z}}\right)^{*}
\end{aligned}
$$

- Let M be manifold with symplectic form ω
- Let G be Lie group with algebra \mathfrak{g} and

$$
\begin{aligned}
\tilde{\mu}: \mathfrak{g} & \rightarrow F(M) \\
g & \mapsto\left(H_{g}: m \mapsto H_{g}(m)\right)
\end{aligned}
$$

be a function that associates with every one-parameter group $e^{t g}$ a Hamiltonian H_{g}.
This defines a group action of G on M, where the flow generated by $e^{t g}$ is the Hamiltonian flow of H_{g}.

Moment maps

- Rearranging parameters, one gets moment map

$$
\begin{aligned}
\mu: M & \rightarrow\left(\mathfrak{g}^{*} \simeq \mathfrak{g}\right) \\
m & \mapsto\left(g \mapsto H_{g}(m)\right)
\end{aligned}
$$

sending points of the manifold into Lie algebra.

$$
\begin{aligned}
& H_{\sigma_{z}}(\Psi)= \\
& t-|\Psi\rangle< \pm \mid \sigma_{z}
\end{aligned}
$$

Moment maps

- Re-arranging parameters, one gets moment map

$$
\begin{aligned}
\mu: M & \rightarrow\left(\mathfrak{g}^{*} \simeq \mathfrak{g}\right) \\
m & \mapsto\left(g \mapsto H_{g}(m)\right)
\end{aligned}
$$

sending points of the manifold into Lie algebra.

- Usual action of $U\left(\mathbb{C}^{d}\right)$ on $\mathbb{P}\left(\mathbb{C}^{d}\right)$ induced by

$$
\mu(\psi)(g)=\operatorname{tr}|\psi\rangle\langle\psi| g
$$

with symplectic form: $\operatorname{Im}\langle\cdot \mid \cdot\rangle$.

$$
\begin{aligned}
& H_{\sigma_{z}}(\Psi)= \\
& t-|\Psi\rangle \pm \pm \sigma_{z}
\end{aligned}
$$

Moment maps

- Re-arranging parameters, one gets moment map

$$
\begin{aligned}
\mu: M & \rightarrow\left(\mathfrak{g}^{*} \simeq \mathfrak{g}\right) \\
m & \mapsto\left(g \mapsto H_{g}(m)\right)
\end{aligned}
$$

sending points of the manifold into Lie algebra.

- Usual action of $U\left(\mathbb{C}^{d}\right)$ on $\mathbb{P}\left(\mathbb{C}^{d}\right)$ induced by

$$
\mu(\psi)(g)=\operatorname{tr}|\psi\rangle\langle\psi| g
$$

with symplectic form: $\operatorname{Im}\langle\cdot \mid \cdot\rangle$.
$H_{\sigma_{z}}(\Psi)=$

- Specializing to local action $U\left(\mathbb{C}^{d}\right)^{\times n}$ on tensor products $\left(\mathbb{C}^{d}\right)^{\otimes n}$:

$$
\mu(\psi)\left(g_{1} \oplus \cdots \oplus g_{n}\right)=\sum_{i} \operatorname{tr} \rho^{(i)} g_{i}
$$

so that

$$
\mu(\psi) \simeq \rho^{(1)} \oplus \cdots \oplus \rho^{(n)}
$$

Convexity properties of moment map

Central theorem by Kirwan ('84):
Image of moment map in positive Weyl chambre (here: diagonal matrices with ordered eigenvalues) is convex polytope.

Summary: Overview of Quantum Marginal Prob

- Quantum Marginal Prob originates in chemistry.
- Generally computationally intractable.
- Single-site quantum-marginal problem non-trivial, but seems tractable. .
- ... due to unexpected geometric structure.

Entanglement

Entanglement

- Two pure states ψ, ϕ are in same entanglement class if they can be converted into each other with finite probability of success using local operations and classical communication.

Entanglement

- Two pure states ψ, ϕ are in same entanglement class if they can be converted into each other with finite probability of success using local operations and classical communication.
- Often referred to as SLOCC classes. But that sounds too unpleasant.

Entanglement

- Two pure states ψ, ϕ are in same entanglement class if they can be converted into each other with finite probability of success using local operations and classical communication.
- Often referred to as SLOCC classes. But that sounds too unpleasant.
- Formally:

$$
\psi \sim \phi \quad \Leftrightarrow \quad \psi=\left(g_{1} \otimes \cdots \otimes g_{n}\right) \phi
$$

with g_{i} local invertible matrices (filtering operations).

- So we're looking at $\operatorname{SL}\left(\mathbb{C}^{d}\right)^{\times n}$-orbits in $\left(\mathbb{C}^{d}\right)^{n}$.

SLOCC, SLOCC! - Who's There?

- For three qubits $(d=2, n=3)$, equivalence classes known since mid-1800s. Re-discovered in 2000 to great effect:

Three qubits can be entangled in two inequivalent ways
W Dür, G Vidal... - Arxiv preprint quant-ph/0005115, 2000 - arxiv.org
Abstract: Invertible local transformations of a multipartite system are used to define equivalence classes in the set of entangled states. This classification concerns the entanglement properties of a single copy of the state. Accordingly, we say that two states ... Cited by 1683 - Related articles - BL Direct - All 22 versions - Import into BibTeX

Four qubits can be entangled in nine different ways
F Verstraete, J Dehaene, B De Moor... - Physical Review A, 2002 - APS
... to the singlet state by SLOCC operations 3 . In the case of three entangled qubits, it was shown
$2,4,5$ that each state can be converted by SLOCC operations either to the GHZ-state (000 111
)/\&, or to the W -state ($001010100 \mathrm{l} / \mathrm{/}$), leading to two inequivalent ways of entangling ...
Cited by 350 - Related articles - BL Direct - All 12 versions - Import into BibTeX
Control and measurement of three-qubit entangled states
CF Roos, M Riebe, H Häffner, W Hänsel... - Science, 2004 - sciencemag.org
... The ions' electronic qubit states are initialized in the S state by optical pumping. Three qubits can be entangled in only two inequivalent ways, represented by the
Greenberger-Horne-Zeilinger (GHZ) state, , and the W state, (17). ...
Cited by 273 - Related articles - All 13 versions - Import into BibTeX

Examples

Classes:

- Products $\psi=\phi_{1} \otimes \phi_{2} \otimes \phi_{3}$.
- Three classes of bi-separable states: $\psi=\phi_{1} \otimes \phi_{2,3}$.
- The W-class:

$$
|W\rangle=|001\rangle+|010\rangle+|100\rangle .
$$

- The GHZ-class:

$$
|G H Z\rangle=|000\rangle+|111\rangle .
$$

Further examples

4 qubits:

- Classification apparently first obtained in QI community [Verstraete et al. (2002)].
- Nine families of four complex parameters each.

Further examples

4 qubits:

- Classification apparently first obtained in QI community [Verstraete et al. (2002)].
- Nine families of four complex parameters each.

Beyond:

- Number of parameters required to label orbits increases exponentially.
- Only sporadic facts known.

Desiderata

Can we come up with theory that

- is systematic
(any number of particles, local dimensions, symmetry constraints),
- is efficient
(only polynomial number of parameters have to be learned),
- experimentally feasible (parameters easily accessible, robust to noise)?

Desiderata

Can we come up with theory that

- is systematic
(any number of particles, local dimensions, symmetry constraints),
- is efficient
(only polynomial number of parameters have to be learned),
- experimentally feasible (parameters easily accessible, robust to noise)?

Claim:
The single-site quantum marginal problem lives up to these standards.

Entanglement Polytopes

[M. Walter, B. Doran, D. Gross, M. Christandl, Science '13]

Central observation, entanglement polytopes

Set of allowed eigenvalues may depend on entanglement class of global state.

Central observation, entanglement polytopes

Set of allowed eigenvalues may depend on entanglement class of global state.

Thus:

- To every class \mathcal{C}, associated set $\Delta_{\mathcal{C}}$ of local eigenvalues of states in (closure of) \mathcal{C}.

Central observation, entanglement polytopes

Set of allowed eigenvalues may depend on entanglement class of global state.

Thus:

- To every class \mathcal{C}, associated set $\Delta_{\mathcal{C}}$ of local eigenvalues of states in (closure of) \mathcal{C}.
- Turns out: $\Delta_{\mathcal{C}}$ is again polytope: the entanglement polytope associated with \mathcal{C}.

Central observation, entanglement polytopes

Set of allowed eigenvalues may depend on entanglement class of global state.

Thus:

- To every class \mathcal{C}, associated set $\Delta_{\mathcal{C}}$ of local eigenvalues of states in (closure of) \mathcal{C}.
- Turns out: $\Delta_{\mathcal{C}}$ is again polytope: the entanglement polytope associated with \mathcal{C}.
- Clearly: the position of $\vec{\lambda}(\psi)$ w.r.t. the entanglement polytopes contains all local information about global entanglement class.

Examples re-visited: 3 qubit entanglement polytopes

For three qubits, polytopes resolve all 6 entanglement classes:

[Hang et al. (2004), Sawicki et al. (2012), our paper]

Examples re-visited: 3 qubit entanglement polytopes

For three qubits, polytopes resolve all 6 entanglement classes:

[Hang et al. (2004), Sawicki et al. (2012), our paper]

W-class corresponds to "upper pyramid":

$$
\lambda_{\max }^{(1)}+\lambda_{\max }^{(2)}+\lambda_{\max }^{(3)} \geq 2
$$

Any violation of that witnesses GHZ-type entanglement.

Examples re-visited: 4 qubit entanglement polytopes

4 qubits:

- Entanglement classes:

9 families with up to four complex parameters each [Verstraete et al. (2002)].

Examples re-visited: 4 qubit entanglement polytopes

4 qubits:

- Entanglement classes:

9 families with up to four complex parameters each [Verstraete et al. (2002)].

- Entanglement Polytopes:

13 polytopes, 7 of which are genuinely 4-party entangled.

Examples re-visited: 4 qubit entanglement polytopes

4 qubits:

- Entanglement classes: 9 families with up to four complex parameters each [Verstraete et al. (2002)].
- Entanglement Polytopes:

13 polytopes, 7 of which are genuinely 4-party entangled.

Example: 4-qubit W-class

$$
\mathcal{C}_{W} \ni|0001\rangle+|0010\rangle+|0100\rangle+|1000\rangle
$$

again an "upper pyramid":

$$
\lambda_{\max }^{(1)}+\lambda_{\max }^{(2)}+\lambda_{\max }^{(3)}+\lambda_{\max }^{(4)} \geq 3
$$

Example: 4 qubit entanglement polytopes

Tool: Brion's convexity result

In case of SL-orbits \mathcal{C} in projective space, group-theoretical characterization due to Brion ('87):

Tool: Brion's convexity result

In case of SL -orbits \mathcal{C} in projective space, group-theoretical characterization due to Brion ('87):

- Let F_{n} be the homogeneous polynomials on \mathcal{C} of degree n.

Tool: Brion's convexity result

In case of SL -orbits \mathcal{C} in projective space, group-theoretical characterization due to Brion ('87):

- Let F_{n} be the homogeneous polynomials on \mathcal{C} of degree n.
- \mathcal{C} is SL -orbit $\Rightarrow \mathrm{SL}$ acts on F_{n}.
- Let $\left(\mu_{1}, \ldots, \mu_{n}\right)$ be $\left(\operatorname{SL}\left(\mathbb{C}^{d}\right)\right)^{\times n}$ irrep in F_{n} (with μ_{i} Young frames). Note that $\frac{1}{d} \mu_{i}$ are formally probability distributions.

Tool: Brion's convexity result

In case of SL -orbits \mathcal{C} in projective space, group-theoretical characterization due to Brion ('87):

- Let F_{n} be the homogeneous polynomials on \mathcal{C} of degree n.
- \mathcal{C} is $S L$-orbit $\Rightarrow S L$ acts on F_{n}.
- Let $\left(\mu_{1}, \ldots, \mu_{n}\right)$ be $\left(\operatorname{SL}\left(\mathbb{C}^{d}\right)\right)^{\times n}$ irrep in F_{n} (with μ_{i} Young frames). Note that $\frac{1}{d} \mu_{i}$ are formally probability distributions.
Then

$$
\frac{1}{d}\left(\mu_{1}, \ldots, \mu_{n}\right) \in \Delta_{\mathcal{C}}
$$

Tool: Brion's convexity result

In case of SL -orbits \mathcal{C} in projective space, group-theoretical characterization due to Brion ('87):

- Let F_{n} be the homogeneous polynomials on \mathcal{C} of degree n.
- \mathcal{C} is $S L$-orbit $\Rightarrow S L$ acts on F_{n}.
- Let $\left(\mu_{1}, \ldots, \mu_{n}\right)$ be $\left(\operatorname{SL}\left(\mathbb{C}^{d}\right)\right)^{\times n}$ irrep in F_{n} (with μ_{i} Young frames). Note that $\frac{1}{d} \mu_{i}$ are formally probability distributions. Then

$$
\frac{1}{d}\left(\mu_{1}, \ldots, \mu_{n}\right) \in \Delta_{\mathcal{C}}
$$

- Points arising this way are dense in $\Delta_{\mathcal{C}}$.
\Rightarrow Entanglement polytope corresponds to normalized irreps in the homogeneous coordinate ring over \mathcal{C}.

Tool: Brion's convexity result

In case of SL -orbits \mathcal{C} in projective space, group-theoretical characterization due to Brion ('87):

- Let F_{n} be the homogeneous polynomials on \mathcal{C} of degree n.
- \mathcal{C} is $S L$-orbit $\Rightarrow S L$ acts on F_{n}.
- Let $\left(\mu_{1}, \ldots, \mu_{n}\right)$ be $\left(\operatorname{SL}\left(\mathbb{C}^{d}\right)\right)^{\times n}$ irrep in F_{n} (with μ_{i} Young frames). Note that $\frac{1}{d} \mu_{i}$ are formally probability distributions. Then

$$
\frac{1}{d}\left(\mu_{1}, \ldots, \mu_{n}\right) \in \Delta_{\mathcal{C}}
$$

- Points arising this way are dense in $\Delta_{\mathcal{C}}$.
\Rightarrow Entanglement polytope corresponds to normalized irreps in the homogeneous coordinate ring over \mathcal{C}.
- ... we use computer algebra system to reduce out coordinate ring.

Example: Marginal polytope for all bi-partite states

Q: which $(S L \times S L)$-irreps occur in $\operatorname{Sym}^{n}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$?

$$
\begin{aligned}
\operatorname{Sym}^{n}(V \otimes V) & =\left((V \otimes V)^{\otimes n}\right)^{S_{n}} \\
& \simeq\left(V^{\otimes n} \otimes V^{\otimes n}\right)^{S_{n}}
\end{aligned}
$$

Example: Marginal polytope for all bi-partite states

Q: which $(S L \times S L)$-irreps occur in $\operatorname{Sym}^{n}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$?

$$
\begin{aligned}
\operatorname{Sym}^{n}(V \otimes V) & =\left((V \otimes V)^{\otimes n}\right)^{S_{n}} \\
& \simeq\left(V^{\otimes n} \otimes V^{\otimes n}\right)^{S_{n}} \\
& \simeq\left(\left(\bigoplus_{\mu \vdash n}[\mu] \otimes U_{\mu}\right) \otimes\left(\bigoplus_{\mu^{\prime} \vdash n}\left[\mu^{\prime}\right] \otimes U_{\mu^{\prime}}\right)\right)^{S_{n}}
\end{aligned}
$$

Example: Marginal polytope for all bi-partite states

Q: which $(S L \times S L)$-irreps occur in $\operatorname{Sym}^{n}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$?

$$
\begin{aligned}
\operatorname{Sym}^{n}(V \otimes V) & =\left((V \otimes V)^{\otimes n}\right)^{S_{n}} \\
& \simeq\left(V^{\otimes n} \otimes V^{\otimes n}\right)^{S_{n}} \\
& \simeq\left(\left(\bigoplus_{\mu \vdash n}[\mu] \otimes U_{\mu}\right) \otimes\left(\bigoplus_{\mu^{\prime} \vdash n}\left[\mu^{\prime}\right] \otimes U_{\mu^{\prime}}\right)\right)^{S_{n}} \\
& \simeq \bigoplus_{\mu, \mu^{\prime}}\left([\mu] \otimes\left[\mu^{\prime}\right]\right)^{S_{n}} \otimes U_{\mu} \otimes U_{\mu^{\prime}}
\end{aligned}
$$

Example: Marginal polytope for all bi-partite states

Q: which $(S L \times S L)$-irreps occur in $\operatorname{Sym}^{n}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$?

$$
\begin{aligned}
\operatorname{Sym}^{n}(V \otimes V) & =\left((V \otimes V)^{\otimes n}\right)^{S_{n}} \\
& \simeq\left(V^{\otimes n} \otimes V^{\otimes n}\right)^{S_{n}} \\
& \simeq\left(\left(\bigoplus_{\mu \vdash n}[\mu] \otimes U_{\mu}\right) \otimes\left(\bigoplus_{\mu^{\prime} \vdash n}\left[\mu^{\prime}\right] \otimes U_{\mu^{\prime}}\right)\right)^{S_{n}} \\
& \simeq \bigoplus_{\mu, \mu^{\prime}}\left([\mu] \otimes\left[\mu^{\prime}\right]\right)^{S_{n}} \otimes U_{\mu} \otimes U_{\mu^{\prime}} \\
& =\bigoplus_{\mu \vdash n} U_{\mu} \otimes U_{\mu}
\end{aligned}
$$

Example: Marginal polytope for all bi-partite states

Q: which $(\mathrm{SL} \times \mathrm{SL})$-irreps occur in $\operatorname{Sym}^{n}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$?

$$
\begin{aligned}
\operatorname{Sym}^{n}(V \otimes V) & =\left((V \otimes V)^{\otimes n}\right)^{S_{n}} \\
& \simeq\left(V^{\otimes n} \otimes V^{\otimes n}\right)^{S_{n}} \\
& \simeq\left(\left(\bigoplus_{\mu \vdash n}[\mu] \otimes U_{\mu}\right) \otimes\left(\bigoplus_{\mu^{\prime} \vdash n}\left[\mu^{\prime}\right] \otimes U_{\mu^{\prime}}\right)\right)^{S_{n}} \\
& \simeq \bigoplus_{\mu, \mu^{\prime}}\left([\mu] \otimes\left[\mu^{\prime}\right]\right)^{S_{n}} \otimes U_{\mu} \otimes U_{\mu^{\prime}} \\
& =\bigoplus_{\mu \vdash n} U_{\mu} \otimes U_{\mu}
\end{aligned}
$$

Hence, for bi-partite pure state: $\vec{\lambda}^{(1)}=\vec{\lambda}^{(2)}$.

Example: Bosonic qubits

Consider n bosonic qubits:

$$
\psi \in \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)
$$

Example: Bosonic qubits

Consider n bosonic qubits:

$$
\psi \in \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right) .
$$

- Symmetry \Rightarrow all local reductions are equal:

$$
\rho_{i, j}^{(1)}=\langle\psi| a_{i}^{\dagger} a_{j}|\psi\rangle .
$$

- \Rightarrow single number captures all: $\lambda_{\max } \in[0.5,1]$.

Example: Bosonic qubits

Consider n bosonic qubits:

$$
\psi \in \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)
$$

- Symmetry \Rightarrow all local reductions are equal:

$$
\rho_{i, j}^{(1)}=\langle\psi| a_{i}^{\dagger} a_{j}|\psi\rangle .
$$

- \Rightarrow single number captures all: $\lambda_{\max } \in[0.5,1]$.

Analyze polytopes:

- $|0, \ldots, 0\rangle$ in all $\mathcal{C}^{\prime} s \Rightarrow \Delta_{\mathcal{C}}=\left[\gamma_{\mathcal{C}}, 1\right]$.

Example: Bosonic qubits

Consider n bosonic qubits:

$$
\psi \in \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)
$$

- Symmetry \Rightarrow all local reductions are equal:

$$
\rho_{i, j}^{(1)}=\langle\psi| a_{i}^{\dagger} a_{j}|\psi\rangle .
$$

- \Rightarrow single number captures all: $\lambda_{\max } \in[0.5,1]$.

Analyze polytopes:

- $|0, \ldots, 0\rangle$ in all \mathcal{C}^{\prime} s $\Rightarrow \Delta_{\mathcal{C}}=\left[\gamma_{\mathcal{C}}, 1\right]$.
- Turns out: Possible choices are

$$
\gamma_{\mathcal{C}} \in\left\{\frac{1}{2}\right\} \cup\left\{\frac{N-k}{N}: k=0,1, \ldots,\lfloor N / 2\rfloor\right\} \ldots
$$

- ... with innermost point γ the image of W-type states.

Example: No Solipsism

- A vector is genuinely n-partite entangled if it does not factorize w.r.t. any bi-partition:

$$
\psi \neq \psi_{1} \otimes \psi_{2}
$$

Example: No Solipsism

- A vector is genuinely n-partite entangled if it does not factorize w.r.t. any bi-partition:

$$
\psi \neq \psi_{1} \otimes \psi_{2}
$$

Observation: sometimes detectable from local spectra alone.

Example: No Solipsism

- A vector is genuinely n-partite entangled if it does not factorize w.r.t. any bi-partition:

$$
\psi \neq \psi_{1} \otimes \psi_{2}
$$

Observation: sometimes detectable from local spectra alone.
\Leftrightarrow spectra $\left(\vec{\lambda}^{(1)}, \ldots, \vec{\lambda}^{(n)}\right)$ compatible, but no bi-partition is.
Example:

$$
\left(\lambda_{\max }^{(1)}, \ldots, \lambda_{\max }^{(n)}\right)=\left(\frac{1}{2}+\frac{1}{n-1}, 1-\frac{1}{n-1}, \ldots, 1-\frac{1}{n-1}\right) .
$$

Example: No Solipsism

- A vector is genuinely n-partite entangled if it does not factorize w.r.t. any bi-partition:

$$
\psi \neq \psi_{1} \otimes \psi_{2}
$$

Observation: sometimes detectable from local spectra alone.
\Leftrightarrow spectra $\left(\vec{\lambda}^{(1)}, \ldots, \vec{\lambda}^{(n)}\right)$ compatible, but no bi-partition is.
Example:

$$
\left(\lambda_{\max }^{(1)}, \ldots, \lambda_{\max }^{(n)}\right)=\left(\frac{1}{2}+\frac{1}{n-1}, 1-\frac{1}{n-1}, \ldots, 1-\frac{1}{n-1}\right) .
$$

Interpretation:

- no solipsism: love needs a partner! (And entangled qubits need their counter-parts).

Example: Distillation

Entanglement measures from local information:

- (Linear) entropy of entanglement

$$
E(\psi)=1-\frac{1}{N} \sum_{i} \operatorname{tr} \rho_{i}^{2}
$$

simple function of Euclidean distance of eigenvalue point to origin.

- "Closer to origin \Rightarrow more entanglement".

Example: Distillation

Entanglement measures from local information:

- (Linear) entropy of entanglement

$$
E(\psi)=1-\frac{1}{N} \sum_{i} \operatorname{tr} \rho_{i}^{2}
$$

simple function of Euclidean distance of eigenvalue point to origin.

- "Closer to origin \Rightarrow more entanglement".
- \Rightarrow can bound distillable entanglement from local information!

Example: Distillation

Entanglement measures from local information:

- (Linear) entropy of entanglement

$$
E(\psi)=1-\frac{1}{N} \sum_{i} \operatorname{tr} \rho_{i}^{2}
$$

simple function of Euclidean distance of eigenvalue point to origin.

- "Closer to origin \Rightarrow more entanglement".
- \Rightarrow can bound distillable entanglement from local information!
- Can even give distillation procedure without need to know state beyond local densities (generalizing [Verstraete et al. 2002]).

Pure???

- Yeah, but no pure state exists in Nature.

Pure???

- Yeah, but no pure state exists in Nature.
- Results are epsilonifiable: if distance d of spectrum to a polytope Δ exceeds

$$
4 N \sqrt{1-p},
$$

then $\rho \notin \operatorname{conv}(\Delta)$.

- $p=\operatorname{tr} \rho^{2}$ is purity, which an be lower-bounded from local information alone.

Experiments

Recently, two experimental implentations.

[Aguilar, et al., PRX '15]

Summary of Entanglement Polytopes

- Locally accessible info about global entanglement encoded in entanglement polytopes - subpolytopes of the set of admissible local spectra.
- Provides a systematic and efficient way of obtaining information about entanglement classes.

Another facet:

The Pauli principle and a generalization of Hartree-Fock

Generalizing the Pauli Principle [Klyachko]

Consider Fermionic wave function

$$
\psi \in \wedge^{n}\left(\mathbb{C}^{d}\right)
$$

- Eigenvalues of 1-RDM

$$
\rho_{i, j}^{(1)}=\langle\psi| a_{i}^{\dagger} a_{j}|\psi\rangle .
$$

also subject to polytopal constraints.

Generalizing the Pauli Principle [Klyachko]

Consider Fermionic wave function

$$
\psi \in \wedge^{n}\left(\mathbb{C}^{d}\right)
$$

- Eigenvalues of 1-RDM

$$
\rho_{i, j}^{(1)}=\langle\psi| a_{i}^{\dagger} a_{j}|\psi\rangle .
$$

also subject to polytopal constraints.

- Most prominent:

$$
\lambda_{i} \leq 1
$$

also known as Pauli exclusion principle.

- ... but one of many linear constraints.

Generalizing the Pauli Principle [Klyachko]

Consider Fermionic wave function

$$
\psi \in \wedge^{n}\left(\mathbb{C}^{d}\right)
$$

- Eigenvalues of 1-RDM

$$
\rho_{i, j}^{(1)}=\langle\psi| a_{i}^{\dagger} a_{j}|\psi\rangle .
$$

also subject to polytopal constraints.

- Most prominent:

$$
\lambda_{i} \leq 1
$$

also known as Pauli exclusion principle.

- ... but one of many linear constraints.

Questions:

- Are these additional constraints saturated in "typical" physical systems?
- Do they have an effect on e.g. ground state wave functions?

Motivation: Klyachko's "super-selection rules"

Vectors ψ that map to a facet of the polytope are "simple":

- Take the set of weights that lie on the affine hull of the facet,
- then ψ has non-zero coefficients only w.r.t. these weight vectors.

- I.e., such ψ 's have a sparse representation.

Motivation: Klyachko's "super-selection rules"

Vectors ψ that map to a facet of the polytope are "simple":

- Take the set of weights that lie on the affine hull of the facet,
- then ψ has non-zero coefficients only w.r.t. these weight vectors.

- I.e., such ψ 's have a sparse representation.
- Klyachko presented numerical evidence that certain few-electron atoms show "pinned" spectra.

Super-selection rules

Extensive quantum chemistry calculations [Schilling et al.]:

- Klyachko's atomic states aren't actually pinned. . .
- ... but very close to.

Super-selection rules

Extensive quantum chemistry calculations [Schilling et al.]:

- Klyachko's atomic states aren't actually pinned. . .
- ... but very close to.

Analytic results needed [Schilling, Gross, Christandl, PRL '13]:

- Solve model systems of coupled Fermions.
- Obtain eigenvalue trajectory as function of interaction strength.

Super-selection rules

Extensive quantum chemistry calculations [Schilling et al.]:

- Klyachko's atomic states aren't actually pinned. . .
- ... but very close to.

Analytic results needed [Schilling, Gross, Christandl, PRL '13]:

- Solve model systems of coupled Fermions.
- Obtain eigenvalue trajectory as function of interaction strength.
- Distance to boundary stays zero to
 many (but not all) orders

Super-selection rules

Extensive quantum chemistry calculations [Schilling et al.]:

- Klyachko's atomic states aren't actually pinned...
- ... but very close to.

Analytic results needed [Schilling, Gross, Christandl, PRL '13]:

- Solve model systems of coupled Fermions.
- Obtain eigenvalue trajectory as function of interaction strength.
- Distance to boundary stays zero to
 many (but not all) orders

Very recent [Schilling, Benavides, Vrana, '17]:

- Super-selection rules are stable:
- "Quasi-pinned" \Rightarrow "quasi-sparse".
- Physical mechanism responsible for quasi-pinning?
- Generalize theory on structure of quasi-pinned wave functions.

Physics?

To be done:

- Physical mechanism responsible for quasi-pinning?
- Applications?

Some words on computational aspects?

Thank you for your attention!

David Gross

April 2017

