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Why am I here?

Disclaimer:

I This speaker has nothing to say on the quantum Hall effect,
mathematical or otherwise.

Instead: I will report on. . .

I . . . a program to find applications of non-commutative
moment polytopes for quantum information.

I . . . extracting global information about a pure state from
single-particle measurements alone.
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[C. Schilling, D. Gross, M. Christandl, PRL ’13].



Why am I here?

Disclaimer:

I This speaker has nothing to say on the quantum Hall effect,
mathematical or otherwise.

Instead: I will report on. . .

I . . . a program to find applications of non-commutative
moment polytopes for quantum information.

I . . . extracting global information about a pure state from
single-particle measurements alone.

[M. Walter, B. Doran, D. Gross, M. Christandl, Science ’13],

[C. Schilling, D. Gross, M. Christandl, PRL ’13].



Why am I here?

Disclaimer:

I This speaker has nothing to say on the quantum Hall effect,
mathematical or otherwise.

Instead: I will report on. . .

I . . . a program to find applications of non-commutative
moment polytopes for quantum information.

I . . . extracting global information about a pure state from
single-particle measurements alone.

[M. Walter, B. Doran, D. Gross, M. Christandl, Science ’13],

[C. Schilling, D. Gross, M. Christandl, PRL ’13].



Outline

I Quantum Marginal Problem

I Entanglement Polytopes

I Generalized Pauli Constraints

I Optionally: Computational Aspects



Quantum Marginal Problems



Marginals in classical probability

In classical probability theory:

I Marginals are distributions of subsets of a number of random
variables.

I If these overlap ⇒ non-trivial compatibility conditions.

I Compatible subsets are convex polytopes
(in QM, known as Bell polytopes)

I In general, membership problem is NP-hard.
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Marginals in quantum probability

“One of the most important challenges in quantum
chemistry”—National Science Foundation (’70s).

I For subset Si specify state ρi .

I Q: Are these compatible:

ρi = tr\Si ρ

for some global ρ?

Solves all physical ground-state problems:

min
ρ

trHρ = min
ρ

∑
i ,j

trhi ,j ρ = min
{ρi,j}

∑
i ,j

trhi ,j ρi ,j .

Terms live on two systems ⇒ simple (if marginal prob is).
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ρ

trHρ = min
{ρi,j}

∑
i ,j
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I Seemed attractive: circumvents expo. large Hilbert space.

But:

I Ground state problem is intrinsically hard: QMA-complete.

I Convex optimization ⇒ so is quantum marginal problem. /
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Single-site marginal problem

Specific instance: marginals do not overlap, global state pure

I Studied since 1970s in context of quantum chemistry.

I No evidence that it helps ground state problem. . .

I . . . but seems to have rich structure.

Classical version:
I Globally pure
⇔ no global randomness
⇒ no local randomness.

I . . . trivial.
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Reduction to eigenvalues

I Local basis change does not affect compatibility
I ⇒ can assume ρi are diagonal.

Question becomes:

Which set of ordered local eigenvalues ~λ(i) can occur?

. . . progress was scant for three decades . . .

I . . . until A. Klyachko identified
these sets as images of moment
maps.

I In particular: Compatible sets are
convex polytopes.
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Physics warm-up
Physics warm-up: work out solution for two qubits.

I Schmidt-decomposition (entanglement spectra):

|ψ〉 =
√
λ(1)|e1〉 ⊗ |f1〉+

√
λ(2)|e2〉 ⊗ |f2〉

I With

ρ1 = λ(1)|e1〉〈e1|+λ(2)|e2〉〈e2|, ρ2 = λ(1)|f1〉〈f1|+λ(2)|f2〉〈f2|.

I So eigenvalues must be equal: ~λ1 = ~λ2.
(“Singular values invariant under transpose”).

In terms of largest eigenvalue, get
simple polytope:
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Moment maps
Methods require detour via group actions on symplectic manifolds.

I Let M be manifold with symplectic form ω
I Let G be Lie group with algebra g and

µ̃ : g → F (M)

g 7→
(
Hg : m 7→ Hg (m)

)
be a function that associates with every one-parameter group
et g a Hamiltonian Hg .

This defines a group action of G on M, where the flow generated
by et g is the Hamiltonian flow of Hg .
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Moment maps
I Re-arranging parameters, one gets moment map

µ : M → (g∗ ' g)

m 7→
(
g 7→ Hg (m)

)
sending points of the manifold into Lie algebra.

I Usual action of U(Cd) on P(Cd) induced by

µ(ψ)(g) = tr |ψ〉〈ψ|g

with symplectic form: Im〈 · | · 〉.
I Specializing to local action U(Cd)×n on tensor

products
(
Cd
)⊗n

:

µ(ψ)(g1 ⊕ · · · ⊕ gn) =
∑
i

tr ρ(i)gi

so that
µ(ψ) ' ρ(1) ⊕ · · · ⊕ ρ(n).
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Convexity properties of moment map

Central theorem by Kirwan (’84):

Image of moment map in positive Weyl chambre (here: diag-
onal matrices with ordered eigenvalues) is convex polytope.



Summary: Overview of Quantum Marginal Prob

I Quantum Marginal Prob originates in chemistry.

I Generally computationally intractable.

I Single-site quantum-marginal problem non-trivial, but seems
tractable. . .

I . . . due to unexpected geometric structure.



Entanglement



Entanglement

I Two pure states ψ, φ are in same entanglement class if they
can be converted into each other with finite probability of
success using local operations and classical communication.

I Often referred to as SLOCC classes. But that sounds too
unpleasant.

I Formally:

ψ ∼ φ ⇔ ψ = (g1 ⊗ · · · ⊗ gn)φ

with gi local invertible matrices (filtering operations).

I So we’re looking at SL(Cd)×n-orbits in
(
Cd
)n

.
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SLOCC, SLOCC! – Who’s There?

I For three qubits (d = 2, n = 3), equivalence classes known
since mid-1800s. Re-discovered in 2000 to great effect:



Examples

Classes:

I Products ψ = φ1 ⊗ φ2 ⊗ φ3.

I Three classes of bi-separable states: ψ = φ1 ⊗ φ2,3.

I The W-class:

|W 〉 = |001〉+ |010〉+ |100〉.

I The GHZ-class:

|GHZ 〉 = |000〉+ |111〉.



Further examples

4 qubits:

I Classification apparently first obtained in QI community
[Verstraete et al. (2002)].

I Nine families of four complex parameters each.

Beyond:

I Number of parameters required to label orbits increases
exponentially.

I Only sporadic facts known.
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Desiderata

Can we come up with theory that

I is systematic
(any number of particles, local dimensions, symmetry
constraints),

I is efficient
(only polynomial number of parameters have to be learned),

I experimentally feasible
(parameters easily accessible, robust to noise)?

Claim:
The single-site quantum marginal problem lives up to these
standards.
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Central observation, entanglement polytopes

Set of allowed eigenvalues may depend on entanglement class
of global state.

Thus:

I To every class C, associated set ∆C of local eigenvalues of
states in (closure of) C.

I Turns out: ∆C is again polytope: the entanglement polytope
associated with C.

I Clearly: the position of ~λ(ψ) w.r.t. the entanglement
polytopes contains all local information about global
entanglement class.
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Examples re-visited: 3 qubit entanglement polytopes

For three qubits, polytopes resolve all 6 entanglement classes:

[Hang et al. (2004), Sawicki et al. (2012), our paper]

W-class corresponds to “upper
pyramid”:

λ
(1)
max + λ

(2)
max + λ

(3)
max ≥ 2.

Any violation of that witnesses
GHZ-type entanglement.



Examples re-visited: 3 qubit entanglement polytopes

For three qubits, polytopes resolve all 6 entanglement classes:

[Hang et al. (2004), Sawicki et al. (2012), our paper]

W-class corresponds to “upper
pyramid”:

λ
(1)
max + λ

(2)
max + λ

(3)
max ≥ 2.

Any violation of that witnesses
GHZ-type entanglement.



Examples re-visited: 4 qubit entanglement polytopes

4 qubits:

I Entanglement classes:
9 families with up to four complex parameters each
[Verstraete et al. (2002)].

I Entanglement Polytopes:
13 polytopes, 7 of which are genuinely 4-party entangled.

Example: 4-qubit W-class

CW 3 |0001〉+ |0010〉+ |0100〉+ |1000〉

again an “upper pyramid”:
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Example: 4 qubit entanglement polytopes



Tool: Brion’s convexity result

In case of SL-orbits C in projective space, group-theoretical
characterization due to Brion (’87):

I Let Fn be the homogeneous polynomials on C of degree n.

I C is SL-orbit ⇒ SL acts on Fn.

I Let (µ1, . . . , µn) be
(

SL(Cd)
)×n

irrep in Fn (with µi Young
frames). Note that 1

dµi are formally probability distributions.
Then

1

d
(µ1, . . . , µn) ∈ ∆C .

I Points arising this way are dense in ∆C .

⇒ Entanglement polytope corresponds to normalized irreps
in the homogeneous coordinate ring over C.

I . . . we use computer algebra system to reduce out coordinate
ring.
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Example: Marginal polytope for all bi-partite states

Q: which (SL×SL)-irreps occur in Symn(Cd ⊗Cd)?

Symn(V ⊗ V ) =
(

(V ⊗ V )⊗n
)Sn

'
(
V⊗n ⊗ V⊗n

)Sn

'
((⊕

µ`n
[µ]⊗ Uµ

)
⊗
(⊕
µ′`n

[µ′]⊗ Uµ′
))Sn

'
⊕
µ,µ′

(
[µ]⊗ [µ′]

)Sn ⊗ Uµ ⊗ Uµ′

=
⊕
µ`n

Uµ ⊗ Uµ

Hence, for bi-partite pure state: ~λ(1) = ~λ(2).
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Example: Bosonic qubits

Consider n bosonic qubits:

ψ ∈ Symn
(
C

2
)
.

I Symmetry ⇒ all local reductions are equal:

ρ
(1)
i ,j = 〈ψ|a†i aj |ψ〉.

I ⇒ single number captures all: λmax ∈ [0.5, 1].

Analyze polytopes:

I |0, . . . , 0〉 in all C’s ⇒ ∆C = [γC , 1].

I Turns out: Possible choices are

γC ∈
{

1

2

}
∪
{
N − k

N
: k = 0, 1, . . . , bN/2c

}
. . .

I . . . with innermost point γ the image of W -type states.
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Example: No Solipsism

I A vector is genuinely n-partite entangled if it does not
factorize w.r.t. any bi-partition:

ψ 6= ψ1 ⊗ ψ2.

Observation: sometimes detectable from local spectra alone.

⇔ spectra (~λ(1), . . . , ~λ(n)) compatible, but no bi-partition is.

Example:

(λ
(1)
max, . . . , λ

(n)
max) =

(
1

2
+

1

n − 1
, 1− 1

n − 1
, . . . , 1− 1

n − 1

)
.

Interpretation:

I no solipsism: love needs a partner!
(And entangled qubits need their counter-parts).
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Example: Distillation

Entanglement measures from local information:

I (Linear) entropy of entanglement

E (ψ) = 1− 1

N

∑
i

trρ2i

simple function of Euclidean distance of
eigenvalue point to origin.

I “Closer to origin ⇒ more entanglement”.

I ⇒ can bound distillable entanglement from local information!

I Can even give distillation procedure without need to know
state beyond local densities
(generalizing [Verstraete et al. 2002]).
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Pure???

I Yeah, but no pure state exists in Nature.

I Results are epsilonifiable: if distance d of spectrum to a
polytope ∆ exceeds

4N
√

1− p,

then ρ 6∈ conv(∆).

I p = tr ρ2 is purity, which an be lower-bounded from local
information alone.
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Experiments

Recently, two experimental implentations.

[Aguilar, et al., PRX ’15]



Summary of Entanglement Polytopes

I Locally accessible info about global entanglement encoded in
entanglement polytopes – subpolytopes of the set of
admissible local spectra.

I Provides a systematic and efficient way of obtaining
information about entanglement classes.



Another facet:

The Pauli principle and a generalization of
Hartree-Fock



Generalizing the Pauli Principle [Klyachko]
Consider Fermionic wave function

ψ ∈ ∧n
(
C

d
)
.

I Eigenvalues of 1-RDM

ρ
(1)
i ,j = 〈ψ|a†i aj |ψ〉.

also subject to polytopal constraints.

I Most prominent:
λi ≤ 1

also known as Pauli exclusion principle.

I . . . but one of many linear constraints.

Questions:
I Are these additional constraints saturated in “typical”

physical systems?

I Do they have an effect on e.g. ground state wave
functions?
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Motivation: Klyachko’s “super-selection rules”

Vectors ψ that map to a facet of the
polytope are “simple”:

I Take the set of weights that lie
on the affine hull of the facet,

I then ψ has non-zero coefficients
only w.r.t. these weight vectors.

I I.e., such ψ’s have a sparse
representation.

v(a)

v(b)

v(c)

v(d)

I Klyachko presented numerical evidence that certain
few-electron atoms show “pinned” spectra.
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Super-selection rules
Extensive quantum chemistry calculations [Schilling et al.]:

I Klyachko’s atomic states aren’t actually pinned. . .
I . . . but very close to.

Analytic results needed [Schilling, Gross, Christandl, PRL ’13]:
I Solve model systems of coupled

Fermions.

I Obtain eigenvalue trajectory as
function of interaction strength.

I Distance to boundary stays zero to
many (but not all) orders

v(a)

v(b)

v(c)

v(d)

Very recent [Schilling, Benavides, Vrana, ’17]:
I Super-selection rules are stable:
I “Quasi-pinned” ⇒ “quasi-sparse”.

I Physical mechanism responsible for quasi-pinning?
I Generalize theory on structure of quasi-pinned wave functions.
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Physics?

v(a)

v(b)

v(c)

v(d)

To be done:

I Physical mechanism responsible for quasi-pinning?

I Applications?



Some words on computational aspects?



Thank you for your attention!

David Gross

April 2017


