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1. Intrinsic ripples in 2D: Application to graphene

2. Dirac fermions in curved space: Pseudomagnetic
fields

3. Anomalous QHE and pseudo-Landau levels
4. Ripples and puddles
5. Pseudo-Aharonov-Bohm effect

6. Quantum Hall effect without magnetic fields:
Stress-induced Haldane insulator
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Flat membrane, parallel normals: minimum of energy
Deviations: bending energy




Elastic energy
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Correlation function of height fluctuations
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Correlation function of height fluctuations
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Harmonic approximation: membranes cannot be flat

Anharmonic coupling (bending-stretching) is essential; bending
fluctuations grow with the sample size L as LS, ¢ = 0.6

Ripples with various size, broad distribution, power-law
correlation functions of normals

Looks like the problem of critical phenomena (strongly interacting
long-wavelength fluctuations) but for 2D systems we are always
at these conditions, any temperature is the critical temperature

What about Mermin-Wagner theorem? Bragg peaks still form a
regular lattice in reciprocal space but they are no more infinitely
sharp, due to in-plane and out-of-plane fluctuations



Out-of-plane phonons become harder
but in-plane become even softer!
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Finite width of the Bragg peaks (but small enough if
membrane is stiff in comparison with the temperature)



Ladder summation; neglecting vertex corrections

Formally justified for h_, n —<; we have n = 1 but who knows?
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(Fasolino, Los & MIK, Nature Mater.6, 858 (2007)

Bond order potential for carbon: LCBOPII
(Fasolino & Los 2003): fitting to energy of
different molecules and solids, elastic

moduli, phase diagram, thermodynamics, etc.

Method: classical Monte-Carlo, crystallites with
N =240, 960, 2160, 4860, 8640, 19940, 39880

Temperatures: 300 K, 1000 K, and 3500 K



Broad distribution of ripple sizes + some typical
length due to intrinsic tendency of carbon to be
bonded



T=300K

N=37888

N=19504 I’) ~ 0 85

N=12096

(= 1-n/2

In agreement
with phenom.
(FRG) n = 0.85

Crossover to anharmonic regime
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Intermode anharmonicities




RT: tendency
to formation of
single and double
bonds instead of
equivalent
conjugated bonds

Broadening of the distribution
function for the NN distances



Nearest-neighbour approximation: changes of
hopping integrals

H = vpo (—mv — iA)
C

K and K’ points are shifted
INn opposite directions;
Umklapp processes restore
time-reversal symmetry




Within elasticity theory (continuum limit)

f=—0dInt/dlna ~ 2

Pseudomagnetic
field

Shear deformations
create vector potential

Dilatation creates scalar
(electrostatic) potential

Vi=gi(uy +uy,)
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The lowest Landau level is at ZERO energy
and shared equally by electrons and holes



Atiyah-Singer index theorem: number of chiral
modes with zero energy for massless Dirac
fermions with gauge fields

Consequence: ripples should not broaden
zero-energy Landau level



Schematic DOS with broadening due to
disorder




Activation energies for v=2
(red) and v=6 (blue). Dashed

_ lines — theoretical Landau
e e level positions

v=2: follows LL at high field;
v=6: never (broadening)

Low fields — level mixing eftc.




Periodic pseudomagnetic field due to structure
modulation
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2: (Color online). Low energy states induced by a ripple

~as shown in I'ig.[1]. The average hopping is t; — 3eV. The
width of the ripple is 1200a = 168nm. The modulations of
the hoppings are: Top left, 6t /t = 0, top right, ot/ = 0.02,
bottom left. 4t/t = 0.04, bottom right, dt/1 = 0.02. and a
periodic electrostatic potential of amplitude 0.02eV.




Zero-energy LL
Is.not.broaden,
In contrast with

H TRVl (e others

o \ 40

['1G. 3: (Color online). As in IMig. 2|, with a magnetic field
B = 10"1. Top: K valley. Bottom: K’ valley.




DFT (GGA), VASP
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Midgap states only
for one sublattice!!!

(Clear prediction for
STM experiments)

—-3-25-2-15-1-05 0 05 1 L5
E (eV)

The local density of states (LDOS) in-
side the cells 1 (low eff. field) and 10 (high field region). For
the low field region. the LDOS is the same in both sublattices
(only sublattice A plotted is here, dashed line), whereas in
thie high [ield region the LDOS in sublatlice A (solid) and B
(dash-dotted) ditfer sienilicantlv.
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If for a given profile h(x,y) in-plane relaxation is
allowed the midgap states disappear!

After minimization of the elastic energy in u(x,y)

i\ + ) 85 — 83

b= ————[0%hO°h — (O0h)?]

A2 (00)2

Pseudomagnetic field, identically zero at h = h(x),
d is the derivative with respectto z = x + iy



Atomic coordinates from atomistic
ripples

MC simulations for thermal

FIG. 2. (Cclor onlire) Average displacements e(r) calculated as
discussed in Sec. II A, The color scale represents the £ component
of ke average disnlacemzms. varving from =30 A (bluz) ©m
+30 A (rec) Ihe arrows, whose length has heen multiplerd by a
factor ten far better visibility, represent the in-plane components cf

the average displaccments,



Scalar potential Vector potential
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Distribution of potentials

(b) \ r (am)

FIG. 3. (Color online) Left panel: color plot of the scalar potential V(r) (in units of meV) calculated using Eq. (2) with g,=3 eV.
Central panel: the real part of the potential Vy(r) (in units of meV) calculated using Eq. (3). Right panel: the imaginary part of the potential
Vi(r) (in units of meV).
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FIG. 9. (Color online) One-chmensional plols  of  the
self-consistent  density  profiles (as  functions of x in nm

lor  ¥=21.1 nm) for (dillerent  values ol doping:

n.=~ (L8 X 102 em™ (circles), n,=~3.96 X 104 em™ (Lriangles),
and 7.==3,17> 10" ¢m * (squarcs). The data reported in this fie-
ure have been obtained by selting gy=3 ¢V and a,=2.2. The insct
shows an(r) [1n units of 10'* em™) at

function of the average carricr density

a given point r in space as a
- - - - 1 Iy
i (in units of 10'¢ cm ),

.



Graphene on SiO:2

¢l )

FIG. 3: (Colur online) Fully sell-consistent induced carrier-
density profile dn(r) (in units of 10 em ™) in the corrugated
graphene sheet shown in I'ig. 1. The data reported in this
Cgure have bean obtained by secting g- = 3 eV, e = 0.9,
and un average carrier depsivy . 2 2 5% 10" e # The thin
solid lines are contour plots of the curvature Vih(r). Note
that there 1s no ssmple correspordence berween topographice

—0.3 —0.15 9 0.15 0.3 %1012

oub-ol=plane corragations and carrier-tensily inhormozencity.



Scattering by random vector and scalar potential:
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Corresponds to mobility limit about 104 cm?/Vs



Quantum theory: two-phonon processes
At high T roughly the same result
Strong sensitivity to the strains
via frequency of flexural phonons:

Quantitative results and comparison with experiment on freely
suspended samples:



Exper. data
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Electromagnetic fields as deformations
In ether; gears and wheels

Review: Vozmediano, MIK & Guinea, Phys. Rep. 496, 109 (2010)



graphene layer

Pressure due to electric field:

'8 — Voo b 0




Young modulus of
graphene

B = —dlog(y,)/d log(a) = 2



Shift of the Dirac
points:
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FIG. 2 (color online). (a) Deformation of a saspended gra-

ohene sheet of length L. = 1 pm vs camier concentration for
three different AL (sleck): —2 nm (stars), O nm (dots), and 2 nm
(open circles). (b) The corresponding gauge potential. The top
curve gives the Fermi wave vectar Cp(n).
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FIG. 3 (¢olor onlinel. Ballistic conductanze for a sheet of
width V¥ — | pwm over (a) narow and (b) wide interval of u.
AL and the symbols are the same as in Fig. 2. The thick curve is
for the underormad sheet. The thin lires represent Eq. (1).
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Can we create uniform (or almost uniform) pseudomagnetic field?

If you keep trigonal symmetry, Normal stress applied to three edges
quasi-uniform pseudomagnetic field  size 1.4 um, DOS in the center (0.5 um)
can be easily created



Strain-Induced Pseudo—Magnetic
Fields Greater Than 300 Tesla in
Graphene Nanobubbles

M. Levy,'”*] 5. A. Burke, "} K. L. Meaker,” M. Panlasigui,” A. Zett,'” £, Guinea,’
k. H. Castrc Neto,* M. F. Crommie’}

30 JULY 2010 VOL 329 SCIENCE
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STM observation of pseudo-Landau
Graphene on Pt(111) levels



Without inversion center
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Nanoelectromechanical resonator,
periodic change of electric fields
and pseudomagnetic fields
(deformations) — a very efficient
gquantum pumping

Periodic electrostatic doping plus vertical deformation created
pseudomagnetic vector potential
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Scattering problem Results
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Y. Jiang, T. Low, K. Chang, MIK & F. Guinea, PRL 110, 046601 (2013)

Dependent on crystallographic orientation one can pump
fully valley-polarized current (symmetric leads: total current in zero)
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e Deformations create pseudoelectric and pseudomagnetic
HEOS

e Intrinsic and extrinsic ripples (thermal fluctuations, roughness
of substrate) may be responsible for charge inhomogeneities and
restrict electron mobility in graphene

e Intentionally created pseudomagnetic fields: strain engineering
(mobility gaps, tunable gap opening...)

e Quantum Hall effect without magnetic fields, pleudo-Landau
levels

e Pumping in graphene NEMS: current standard, valleytronics...



