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Ripples on graphene

Freely suspended 
graphene membrane 
is partially crumpled 

J. C. Meyer et al, 
Nature 446, 60 (2007) 

2D crystals in 3D space 
cannot be flat, due to 
bending instability



Fluctuating membranes

Flat membrane, parallel normals: minimum of energy 
Deviations: bending energy



Crystalline membrane - phenomenology

Elastic energy

Deformation tensor

D. R. Nelson, T. Piran & S. Weinberg (Editors),  
Statistical Mechanics of membranes and Surfaces 

World Sci., 2004



Harmonic Approximation
Correlation function of height fluctuations

Correlation function of normals

In-plane components:

Does not tends 
to constant at 

large R!
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Renormalization of bending rigidity
Integration over in- 

plane phonons
Effective free energy

2D Young modulus

Correction to bending rigidity“Ginzburg criterion”



Anharmonic effects 
Harmonic approximation: membranes cannot be flat 

Anharmonic coupling (bending-stretching) is essential; bending 
fluctuations grow with the sample size L as Lς, ς ≈ 0.6 

Ripples with various size, broad distribution, power-law 
correlation functions of normals

Looks like the problem of critical phenomena (strongly interacting 
long-wavelength fluctuations) but for 2D systems we are always 
at these conditions, any temperature is the critical temperature

What about Mermin-Wagner theorem? Bragg peaks still form a 
regular lattice in reciprocal space but they are no more infinitely 

sharp, due to in-plane and out-of-plane fluctuations 



Anharmonic effects II

Out-of-plane phonons become harder 
but in-plane become even softer!

Finite width of the Bragg peaks (but small enough if 
membrane is stiff in comparison with the temperature)



Self-consistent screening approximation
Le Doussal & Radzihovsky, PRL 1992

Ladder summation; neglecting vertex corrections

Formally justified for hn, n →∞; we have n = 1 but who knows?



Self-consistent screening approx. II

The result:



Computer simulations  

Bond order potential for carbon: LCBOPII 
(Fasolino & Los 2003): fitting to energy of  
different molecules and solids, elastic 
moduli, phase diagram, thermodynamics, etc. 

Method: classical Monte-Carlo, crystallites with 
N = 240, 960, 2160, 4860, 8640, 19940, 39880 

Temperatures: 300 K , 1000 K, and 3500 K   

(Fasolino, Los & MIK, Nature Mater.6, 858 (2007)



 A snapshot for room temperature

Broad distribution of ripple sizes + some typical 
length due to intrinsic tendency of carbon to be 

bonded



Normal-normal correlation function  

η ≈ 0.85 
ζ= 1- η/2 

In agreement 
with phenom.  
(FRG) η ≈ 0.85 

Los, MIK, Yazyev, 
Zakharchenko, 
Fasolino, PRB 80, 
121405(R), (2009)Crossover to anharmonic regime

T=300K



Coupling of in-plane and out-of-plane modes

Intermode anharmonicities



Chemical bonds
RT: tendency 

to formation of 
single and double 
bonds instead of 

equivalent 
conjugated bonds 

Broadening of the distribution 
function for the NN distances



Pseudomagnetic fields
Nearest-neighbour approximation: changes of 
hopping integrals  

“Vector potentials”
K and K’ points are shifted 
in opposite directions; 
Umklapp processes restore 
time-reversal symmetry



Psedomagnetic fields II
Within elasticity theory (continuum limit)

Pseudomagnetic 
field

Shear deformations 
create vector potential

Dilatation creates scalar 
(electrostatic) potential



E =0N =0

N =2
N =1

N =4
N =3

EN =[2e�c∗2B(N + ½ ± ½)]1/2
E =�c∗k

E =0

pseudospin

The lowest Landau level is at ZERO energy 
and shared equally by electrons and holes

�ωC

Anomalous Quantum Hall Effect



Half-integer quantum Hall effect and “index theorem”

0/φφ=− −+ NN

Atiyah-Singer index theorem: number of chiral 
modes with zero energy for massless Dirac  

fermions with gauge fields

Simplest case: 2D, electromagnetic field 

(magnetic flux in units of the flux quantum)

Consequence: ripples should not broaden 
zero-energy Landau level



Experiment: activation energy in QHE

(A.Giesbers, U.Zeitler, MIK et.al., PRL 2007)

Schematic DOS with broadening due to 
disorder



Experiment: activation energy in QHE II

Activation energies for ν=2 
(red) and ν=6 (blue). Dashed 
lines – theoretical Landau 
level positions 

ν=2: follows LL at high field; 
ν=6: never (broadening) 

Low fields – level mixing etc.



Midgap states due to ripples 
Guinea, MIK & Vozmediano, PR B 77, 075422 (2008)

Periodic pseudomagnetic field due to structure 
modulation





Zero-energy LL 
is not broaden, 
in contrast with 
the others 



Midgap states: Ab initio I
Wehling, Balatsky, Tsvelik, MIK & Lichtenstein, EPL 84, 
17003 (2008) DFT (GGA), VASP 



Midgap states: Ab initio II
Midgap states only 
for one sublattice!!! 

(Clear prediction for 
STM experiments)



Midgap states: Ab initio III



Midgap states: Ab initio IV
If for a given profile h(x,y) in-plane relaxation is 
allowed the midgap states disappear! 

After minimization of the elastic energy in u(x,y) 

Pseudomagnetic field, identically zero at h = h(x), 
∂ is the derivative with respect to z = x + iy 



Ripples and puddles I
Gibertini, Tomadin, Polini, Fasolino & MIK, PR B 81, 125437 (2010)

Atomic coordinates from atomistic MC simulations for thermal 
ripples



Ripples and puddles II
Scalar potential Vector potential

Distribution of potentials



Ripples and puddles III



Ripples and puddles IV
Graphene on SiO2

Gibertini, Tomadin, Guinea, MIK & Polini PR B 85, 201405 (2012) 
Experimental STM data: V.Geringer et al (M.Morgenstern group)



Scattering by ripples

Scattering by random vector and scalar potential:

MIK & Geim, Phil. Trans. R. Soc. A 366, 195 (2008) 



Scattering by ripples II

Estimations:

Λ depends logarithically on kF 
and q* (Geim & MIK, 2008) 

Corresponds to mobility limit about 104 cm2/Vs



Scattering by ripples III
Quantum theory: two-phonon processes 

At high T roughly the same result 
Strong sensitivity to the strains 

via frequency of flexural phonons:

Quantitative results and comparison with experiment on freely 
suspended samples: 

Castro, Ochoa, MIK, Gorbachev, Elias, Novoselov, Geim & 
Guinea, PRL 105, 266601 (2010)



Flexural phonons

Exper. data

1. Mobility at RT cannot be 
higher than on substrate for 
the flexural phonons only 

2. It can be essentially  
increased by applying  

a strain 
Qualitative agreement between 

classical and quantum theory @ RT

T-dependence 
of mobility for 
two samples



Gauge fields from mechanics: back to 
Maxwell

Review: Vozmediano, MIK & Guinea, Phys. Rep. 496, 109 (2010)

Electromagnetic fields as deformations 
in ether; gears and wheels



M. Fogler, F. Guinea, MIK, PRL  101, 226804 (2008)

Pseudo-Aharonov-Bohm effect 

Pressure due to electric field:



Pseudo-Aharonov-Bohm effect II  

For not too small n

Assume for simplicity constant vector potential

Young modulus of 
graphene



Pseudo-Aharonov-Bohm effect III  

Shift of the Dirac 
points:

Transmission:



Pseudo-Aharonov-Bohm effect IV  

For strong doping



Zero-field QHE by strain engineering
F. Guinea, MIK & A. Geim, Nature Phys. 6, 30 (2010)

Can we create uniform (or almost uniform) pseudomagnetic field? 

If you keep trigonal symmetry, 
quasi-uniform pseudomagnetic field 

can be easily created

Normal stress applied to three edges 
size 1.4 µm, DOS in the center (0.5 µm) 



Experimental confirmation

Graphene on Pt(111)
STM observation of pseudo-Landau 

levels



Combination of strain and electric field: 
Haldane insulator state

T. Low, F. Guinea & MIK, PRB 83, 195436 (2011)
Without inversion center 

combination of vector and 
scalar potential leads to gap 

opening

Wrinkles plus  
modulated scalar  

potential at different 
angles to the wrinkilng 

direction



Quantum pumping
T. Low, Y. Jiang, MIK & F. Guinea Nano Lett. 12, 850 (2012)

Nanoelectromechanical resonator, 
periodic change of electric fields  
and pseudomagnetic fields  
(deformations) – a very efficient 
quantum pumping

Periodic electrostatic doping plus vertical deformation       created 
pseudomagnetic vector potential



Quantum pumping II
Scattering problem

Pumping current

Results

Asymmetric leads (different doping)



Quantum pumping III
Y. Jiang, T. Low, K. Chang, MIK & F. Guinea, PRL 110, 046601 (2013)

Dependent on crystallographic orientation one can pump 
fully valley-polarized current (symmetric leads: total current in zero) 

Step to real valleytronics



Conclusions
● Deformations create pseudoelectric and pseudomagnetic 
fields 

● Intrinsic and extrinsic ripples (thermal fluctuations, roughness 
of substrate) may be responsible for charge inhomogeneities and 
restrict electron mobility in graphene 

● Intentionally created pseudomagnetic fields: strain engineering 
(mobility gaps, tunable gap opening...) 

● Quantum Hall effect without magnetic fields, pleudo-Landau 
levels 

● Pumping in graphene NEMS: current standard, valleytronics... 


