Radboud Universiteit Nijmegen

Gauge fields and strain engineering in graphene Mikhail Katsnelson

- Andre Geim, Kostya Novoselov (Manchester)
- Annalisa Fasolino, Jan Los, Kostya Zakharchenko (Nijmegen, Theory of Condensed Matter)
- Jos Giesbers, Uli Zeitler, Jan Kees Maan (Nijmegen, High-Field Magnet Laboratory)
- Paco Guinea, Maria Vozmediano (Madrid)
- Sasha Lichtenstein, Tim Wehling (Hamburg)
- Alyosha Tsvelick (Brookhaven)
- Misha Fogler (San Diego)
- Tony Low (IBM)
- Marco Polini (Pisa)

1. Intrinsic ripples in 2D: Application to graphene

- 2. Dirac fermions in curved space: Pseudomagnetic fields
- 3. Anomalous QHE and pseudo-Landau levels
- 4. Ripples and puddles
- 5. Pseudo-Aharonov-Bohm effect
- 6. Quantum Hall effect without magnetic fields: Stress-induced Haldane insulator

Ripples on graphene

Freely suspended graphene membrane is partially crumpled

J. C. Meyer et al, *Nature 446, 60 (2007)*

2D crystals in 3D space cannot be flat, due to bending instability

Fluctuating membranes

Flat membrane, parallel normals: minimum of energy Deviations: bending energy

Crystalline membrane - phenomenology

Elastic energy

D. R. Nelson, T. Piran & S. Weinberg (Editors), Statistical Mechanics of membranes and Surfaces World Sci., 2004

$$E = \int d^2x \left[\frac{\kappa}{2} \left(\nabla^2 h \right)^2 + \mu \overline{u}_{\alpha\beta}^2 + \frac{\lambda}{2} \overline{u}_{\alpha\alpha}^2 \right]$$

Deformation tensor

$$\overline{u}_{\alpha\beta} = \frac{1}{2} \left(\frac{\partial u_{\alpha}}{\partial x_{\beta}} + \frac{\partial u_{\beta}}{\partial x_{\alpha}} + \frac{\partial h}{\partial x_{\alpha}} \frac{\partial h}{\partial x_{\beta}} \right)$$

Harmonic Approximation

Correlation function of height fluctuations

$$\left\langle \left| h_{\mathbf{q}} \right|^2 \right\rangle = \frac{TN}{\kappa S_0 q^4} \quad \left\langle h^2 \right\rangle = \sum_{\mathbf{q}} \left\langle \left| h_{\mathbf{q}} \right|^2 \right\rangle \propto \frac{T}{\kappa} L^2$$

Correlation function of normals

In-plane components:

$$-\nabla h/\sqrt{1+(\nabla h)^2}$$

$$\left\langle \vec{n}_{\vec{q}}\,\vec{n}_{-\vec{q}}\right\rangle = q^2 \left\langle \left|h_{\vec{q}}\right|^2\right\rangle$$

$$\left\langle \vec{n}_{\vec{q}}\,\vec{n}_{-\vec{q}}\right\rangle = \frac{T}{\kappa q^2} \left\langle \vec{n}_0\,\vec{n}_{\vec{R}}\right\rangle = \sum_{\vec{q}} \left\langle \left|\vec{n}_{\vec{q}}\right|^2\right\rangle \exp\left(i\vec{q}\,\vec{R}\right)$$

Does not tends to constant at large *R*!

Harmonic Approximation

Correlation function of height fluctuations

$$\left\langle \left| h_{\mathbf{q}} \right|^2 \right\rangle = \frac{TN}{\kappa S_0 q^4} \quad \left\langle h^2 \right\rangle = \sum_{\mathbf{q}} \left\langle \left| h_{\mathbf{q}} \right|^2 \right\rangle \propto \frac{T}{\kappa} L^2$$

Correlation function of normals

In-plane components:

$$-\nabla h/\sqrt{1+(\nabla h)^2}$$

$$\left\langle \vec{n}_{\vec{q}}\,\vec{n}_{-\vec{q}}\right\rangle = q^2 \left\langle \left|h_{\vec{q}}\right|^2\right\rangle$$

$$\left\langle \vec{n}_{\vec{q}}\,\vec{n}_{-\vec{q}}\right\rangle = \frac{T}{\kappa q^2} \left\langle \vec{n}_0\,\vec{n}_{\vec{R}}\right\rangle = \sum_{\vec{q}} \left\langle \left|\vec{n}_{\vec{q}}\right|^2\right\rangle \exp\left(i\vec{q}\,\vec{R}\right)$$

Does not tends to constant at large *R*!

Renormalization of bending rigidity

Integration over inplane phonons

$$\frac{\int D\vec{u} \exp\left(-\frac{1}{2}\vec{u}\hat{L}\vec{u} - \vec{f}\vec{u}\right)}{\int D\vec{u} \exp\left(-\frac{1}{2}\vec{u}\hat{L}\vec{u}\right)} = \exp\left(\frac{1}{2}\vec{f}\hat{L}^{-1}\vec{f}\right)$$

Effective free energy

$$\Phi = \frac{1}{2} \sum_{\vec{q}} \kappa q^4 |h_{\vec{q}}|^2 + \frac{Y}{8} \sum_{\vec{q}\vec{k}\vec{k'}} R\left(\vec{k},\vec{k'},\vec{q}\right) \left(h_{\vec{k}}h_{\vec{q}-\vec{k}}\right) \left(h_{\vec{k'}}h_{-\vec{q}-\vec{k'}}\right)$$

$$R\left(\vec{k},\vec{k'},\vec{q}\right) = \frac{\left(\vec{q}\times\vec{k}\right)^2 \left(\vec{q}\times\vec{k'}\right)^2}{q^4} \frac{2D \text{ Young modulus}}{Y = [4\mu(\lambda+\mu)/\lambda+2\mu]}$$

Correction to bending rigidit#Ginzburg criterion"

$$\delta \kappa \equiv \kappa_R(q) - \kappa = \frac{3TY}{16\pi\kappa q^2}$$

$$\delta \kappa = \kappa$$

$$q = q^* = \sqrt{\frac{3TY}{16\pi\kappa^2}}$$

Anharmonic effects

Harmonic approximation: membranes cannot be flat

Anharmonic coupling (bending-stretching) is essential; bending fluctuations grow with the sample size L as L^{ς} , $\varsigma \approx 0.6$

Ripples with various size, broad distribution, power-law correlation functions of normals

Looks like the problem of critical phenomena (strongly interacting long-wavelength fluctuations) but for 2D systems we are always at these conditions, any temperature is the critical temperature

What about Mermin-Wagner theorem? Bragg peaks still form a regular lattice in reciprocal space but they are no more infinitely sharp, due to in-plane and out-of-plane fluctuations

Anharmonic effects II

$$\left\langle |\vec{n}_{\vec{q}}|^2 \right\rangle = \frac{A}{q^2 - \eta q_0 \eta} \quad \left\langle u_{\alpha \vec{q}}^* u_{\beta \vec{q}} \right\rangle \approx \frac{1}{q^{2 + \eta_u}} \quad \left\langle h^2 \right\rangle \propto L^{2\zeta}$$

$$\zeta = 1 - \eta/2, \eta_u = 2 - 2\eta \quad \text{Out-of-plane phonons become harde but in-plane become even softer!}$$

$$\langle [h(\vec{r}) - h(\vec{r}')]^2 \rangle = 2 \sum_{\vec{q}} \langle |h(\vec{q})|^2 \rangle [1 - \cos(\vec{q}(\vec{r} - \vec{r}'))] \sim |\vec{r} - \vec{r}'|^{2\zeta}$$

$$\langle [\vec{u}(\vec{r}) - \vec{u}(\vec{r}')]^2 \rangle = 2 \sum_{\vec{q}} \langle |\vec{u}(\vec{q})|^2 \rangle [1 - \cos(i\vec{q}(\vec{r} - \vec{r}'))] \sim |\vec{r} - \vec{r}'|^{\eta_u}$$

Finite width of the Bragg peaks (but small enough if membrane is stiff in comparison with the temperature)

Self-consistent screening approximation Ladder summation; neglecting vertex corrections (a) \vec{q} $Y R(\vec{k}, \vec{k}', \vec{q})$ $G_0(\vec{q})$ $G(\vec{q})$ $G(q) = \left\langle \left| \vec{h}_{\vec{q}} \right|^2 \right\rangle$ (b) (C) $R\left(\vec{k},\vec{k'},\vec{q}\right) = \frac{\left(\vec{q}\times\vec{k}\right)^2 \left(\vec{q}\times\vec{k'}\right)^2}{4}$ (d) +

Formally justified for h_n , $n \rightarrow \infty$; we have n = 1 but who knows?

Self-consistent screening approx. II

$$G^{-1}(\vec{q}) = G_0^{-1}(\vec{q}) + \Sigma(\vec{q})$$

$$\Sigma(\vec{q}) = 2 \int \frac{d^2 \vec{k}}{(2\pi)^2} Y_{\text{eff}}\left(\vec{k}\right) \left[\frac{\left(\vec{q} \times \vec{k}\right)^2}{k^2}\right]^2 G\left(\vec{k} - \vec{q}\right),$$

The result:
$$Y_{\text{eff}}\left(\vec{k}\right) = \frac{Y}{1 + 3YI\left(\vec{k}\right)}, \qquad \eta = \frac{4}{1 + \sqrt{15}} \approx 0.821$$
$$I\left(\vec{k}\right) = \frac{1}{8} \int \frac{d^2 \vec{p}}{(2\pi)^2} p^2 \left|\vec{k} - \vec{p}\right|^2 G(\vec{p}) G\left(\vec{k} - \vec{p}\right).$$

Computer simulations

(Fasolino, Los & MIK, Nature Mater.6, 858 (2007)

Bond order potential for carbon: LCBOPII (Fasolino & Los 2003): fitting to energy of different molecules and solids, elastic moduli, phase diagram, thermodynamics, etc.

Method: classical Monte-Carlo, crystallites with *N* = 240, 960, 2160, 4860, 8640, 19940, 39880

Temperatures: 300 K , 1000 K, and 3500 K

A snapshot for room temperature

Broad distribution of ripple sizes + some typical length due to intrinsic tendency of carbon to be bonded

Normal-normal correlation function

T=300K

Crossover to anharmonic regime

 $\eta \approx 0.85$ $\zeta = 1 - \eta/2$

In agreement with phenom. (FRG) $\eta \approx 0.85$

Los, MIK, Yazyev, Zakharchenko, Fasolino, PRB 80, 121405(R), (2009)

Coupling of in-plane and out-of-plane modes

$$\Gamma(q) = \langle (u_x)_{\vec{q}}(h^2)_{-\vec{q}} \rangle$$

Intermode anharmonicities

Chemical bonds

RT: tendency to formation of single and double bonds instead of equivalent conjugated bonds

Broadening of the distribution function for the NN distances

Pseudomagnetic fields

Nearest-neighbour approximation: changes of hopping integrals

$$\gamma = \gamma_0 + \left(rac{\partial \gamma}{\partial \overline{u}_{ij}}
ight)_0 \overline{u}_{ij}$$

$$H = v_F \sigma \left(-i\hbar \nabla - \frac{e}{c} \mathcal{A} \right)$$

"Vector potentials"

$$\mathcal{A}_x = \frac{c}{2ev_F} \left(\gamma_2 + \gamma_3 - 2\gamma_1\right),$$

$$\mathcal{A}_y = \frac{\sqrt{3}c}{2ev_F} \left(\gamma_3 - \gamma_2\right),$$

K and *K*' points are shifted in opposite directions; Umklapp processes restore time-reversal symmetry

Psedomagnetic fields II

Within elasticity theory (continuum limit)

$$\mathbf{A} = \frac{\beta}{a} \left(\begin{array}{c} u_{xx} - u_{yy} \\ -2u_{xy} \end{array} \right)$$

$$\beta = -\partial \ln t / \partial \ln a \approx 2$$

Pseudomagnetic field

Shear deformations create vector potential

$$B_{\rm S} = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} = \frac{1}{r} \frac{\partial A_r}{\partial \theta} - \frac{\partial A_\theta}{\partial r} - \frac{A_\theta}{r}$$

Dilatation creates scalar (electrostatic) potential

$$V_1 = g_1(u_{xx} + u_{yy})$$

Anomalous Quantum Hall Effect $E = \Pr_{k} k$ $E_{N} = [2e \Pr_{k}^{2}B(N + \frac{1}{2} + \frac{1}{2})]^{1/2}$

The lowest Landau level is at ZERO energy and shared equally by electrons and holes Half-integer quantum Hall effect and "index theorem"

Atiyah-Singer index theorem: number of chiral modes with zero energy for massless Dirac fermions with gauge fields

Simplest case: 2D, electromagnetic field

$$N_{+} - N_{-} = \phi / \phi_0$$

(magnetic flux in units of the flux quantum)

Consequence: ripples should not broaden zero-energy Landau level

Experiment: activation energy in **QHE**

(A.Giesbers, U.Zeitler, MIK et.al., PRL 2007) Schematic DOS with broadening due to disorder

Experiment: activation energy in **QHE** II

Activation energies for v=2 (red) and v=6 (blue). Dashed lines – theoretical Landau level positions

v=2: follows LL at high field; v=6: never (broadening)

Low fields – level mixing etc.

Midgap states due to ripples

Guinea, MIK & Vozmediano, PR B 77, 075422 (2008)

Periodic pseudomagnetic field due to structure modulation

Midgap states: Ab initio IWehling, Balatsky, Tsvelik, MIK & Lichtenstein, EPL 84,17003 (2008)DFT (GGA), VASP

Midgap states: Ab initio II

The local density of states (LDOS) inside the cells 1 (low eff. field) and 10 (high field region). For the low field region, the LDOS is the same in both sublattices (only sublattice A plotted is here, dashed line), whereas in the high field region the LDOS in sublattice A (solid) and B (dash-dotted) differ significantly.

Midgap states: Ab initio III

Midgap states: Ab initio IV

If for a given profile h(x,y) in-plane relaxation is allowed the midgap states disappear!

After minimization of the elastic energy in u(x,y)

$$\mathcal{B} = \frac{\mathrm{i}(\lambda + \mu)}{\lambda + 2\mu} \frac{\partial^3 - \bar{\partial}^3}{(\partial\bar{\partial})^2} [\partial^2 h \bar{\partial}^2 h - (\partial\bar{\partial}h)^2]$$

Pseudomagnetic field, identically zero at h = h(x), ∂ is the derivative with respect to z = x + iy

Ripples and puddles I

Gibertini, Tomadin, Polini, Fasolino & MIK, PR B 81, 125437 (2010)

Atomic coordinates from atomistic MC simulations for thermal ripples

FIG. 2. (Color online) Average displacements $\overline{u}(r)$ calculated as discussed in Sec. II A. The color scale represents the \hat{z} component of the average displacements, varying from -3.0 Å (blue) to +3.0 Å (red) The arrows, whose length has been multiplied by a factor ten for better visibility, represent the in-plane components of the average displacements.

Ripples and puddles II

Scalar potential

Vector potential

$$V_1 = g_1(u_{xx} + u_{yy})$$

$$V_2 = g_2(u_{xx} - u_{yy} + 2iu_{xy})$$

Distribution of potentials

FIG. 3. (Color online) Left panel: color plot of the scalar potential $V_1(r)$ (in units of meV) calculated using Eq. (2) with $g_1=3$ eV. Central panel: the real part of the potential $V_2(r)$ (in units of meV) calculated using Eq. (3). Right panel: the imaginary part of the potential $V_2(r)$ (in units of meV).

Ripples and puddles III

FIG. 4. (Color online) Top panel: fully self-consistent electronic density profile $\delta n(r)$ (in units of 10^{12} cm⁻²) in a corrugated graphene sheet. The data reported in this figure have been obtained by setting $g_1=3$ eV, $\alpha_{ee}=0.9$ (this value of α_{ee} is the commonly used value for a graphene sheet on a SiO₂ substrate), and an average carrier density $E_c \simeq 0.8 \times 10^{12}$ cm⁻². Bottom panel: same as in the top panel but for $\alpha_{ee}=2.2$ (this value of α_{ee} corresponds to saspended graphene).

FIG. 9. (Color online) One-dimensional plots of the self-consistent density profiles (as functions of x in nm for y=21.1 nm) for different values of doping: $\bar{n}_c \simeq 0.8 \times 10^{12} \text{ cm}^{-2}$ (circles), $\bar{n}_c \simeq 3.96 \times 10^{12} \text{ cm}^{-2}$ (triangles), and $\bar{n}_c \simeq 3.17 \times 10^{13} \text{ cm}^{-2}$ (squares). The data reported in this figure have been obtained by setting $g_1=3$ eV and $\alpha_{ee}=2.2$. The inset shows $\delta n(r)$ (in units of 10^{12} cm^{-2}) at a given point r in space as a function of the average carrier density \bar{n}_c (in units of 10^{12} cm^{-2}).

Ripples and puddles IV

Gibertini, Tomadin, Guinea, MIK & Polini PR B 85, 201405 (2012) Experimental STM data: V.Geringer et al (M.Morgenstern group)

FIG. 3: (Color online) Fully self-consistent induced carrierdensity profile $\delta n(\mathbf{r})$ (in units of 10^{12} cm^{-2}) in the corrugated graphene sheet shown in Fig. 1. The data reported in this figure have been obtained by setting $g_1 = 3 \text{ eV}$, $\alpha_{\text{ee}} = 0.9$, and an average carrier density $\bar{n}_e \approx 2.5 \times 10^{11} \text{ cm}^{-2}$. The thin solid lines are contour plots of the curvature $\nabla_r^2 h(\mathbf{r})$. Note that there is no simple correspondence between topographic out-of-plane corrugations and carrier-density inhomogeneity.

Scattering by ripples MIK & Geim, Phil. Trans. R. Soc. A 366, 195 (2008)

Scattering by random vector and scalar potential:

$$H' = \sum_{\mathbf{pp}'} \Psi_{\mathbf{p}}^{\dagger} V_{\mathbf{pp}'} \Psi_{\mathbf{p}'}$$

$$V_{pp'} = V_{pp'}^{(0)} + A_{pp'}^{(x)}\sigma_x + A_{pp'}^{(y)}\sigma_y$$

$$\frac{1}{\tau} = \frac{4\pi}{\hbar N\left(\varepsilon_F\right)} \sum_{\mathbf{pp}'} \delta\left(\varepsilon_{\mathbf{p}} - \varepsilon_F\right) \delta\left(\varepsilon_{\mathbf{p}'} - \varepsilon_F\right) \left(\cos\theta_{\mathbf{p}} - \cos\theta_{\mathbf{p}'}\right)^2 |W_{\mathbf{pp}'}|^2$$

$$\begin{split} W_{\mathbf{pp'}} &= V_{\mathbf{pp'}}{}^{(0)} \frac{1 + \exp\left[-i\left(\theta_{\mathbf{p}} - \theta_{\mathbf{p'}}\right)\right]}{2} + \\ &+ \frac{1}{2} \left[\left(A_{\mathbf{pp'}}^{(x)} + iA_{\mathbf{pp'}}^{(y)}\right) \exp\left(-i\theta_{\mathbf{p}}\right) + \left(A_{\mathbf{pp'}}^{(x)} - iA_{\mathbf{pp'}}^{(y)}\right) \exp\left(i\theta_{\mathbf{p'}}\right) \right] \end{split}$$

Scattering by ripples II

Estimations:

$$\frac{1}{\tau} \simeq \frac{2\pi N\left(\varepsilon_{F}\right)}{\hbar} \left(\left\langle V_{\mathbf{q}}^{(0)} V_{-\mathbf{q}}^{(0)} \right\rangle + \left\langle \mathbf{A}_{\mathbf{q}} \mathbf{A}_{-\mathbf{q}} \right\rangle \right)_{q \approx k_{F}}$$

$$\langle \boldsymbol{V}_{\boldsymbol{q}} \boldsymbol{V}_{-\boldsymbol{q}} \rangle \approx \left(\frac{\hbar v_{\mathrm{F}}}{a}\right)^{2} \sum_{\boldsymbol{q}_{1} \boldsymbol{q}_{2}} \langle h_{\boldsymbol{q}-\boldsymbol{q}_{1}} h_{\boldsymbol{q}_{1}} h_{-\boldsymbol{q}+\boldsymbol{q}_{2}} h_{-\boldsymbol{q}_{2}} \rangle [(\boldsymbol{q}-\boldsymbol{q}_{1}) \cdot \boldsymbol{q}_{1}] [(\boldsymbol{q}-\boldsymbol{q}_{2}) \cdot \boldsymbol{q}_{2}]$$

$$\rho_r \approx \frac{h}{4e^2} \frac{(k_{\rm B} T/\kappa a)^2}{n} A$$

A depends logarithically on k_F and q^* (Geim & MIK, 2008)

Corresponds to mobility limit about 10⁴ cm²/Vs

Scattering by ripples III

Quantum theory: two-phonon processes At high *T* roughly the same result Strong sensitivity to the strains via frequency of flexural phonons:

$$\omega_{\vec{\mathbf{q}}}^F(\vec{\mathbf{r}}) = |\vec{\mathbf{q}}| \sqrt{\frac{\kappa}{\rho}} |\vec{\mathbf{q}}|^2 + \frac{\lambda}{\rho} u_{ii}(\vec{\mathbf{r}}) + \frac{2\mu}{\rho} u_{ij}(\vec{\mathbf{r}}) \frac{q_i q_j}{|\vec{\mathbf{q}}|^2}$$

Quantitative results and comparison with experiment on freely suspended samples: Castro, Ochoa, MIK, Gorbachev, Elias, Novoselov, Geim & Guinea, PRL 105, 266601 (2010)

Flexural phonons

FIG. 2: (Color online). Left: Contribution to the resistivity from flexural phonons (blue full line) and from in plane phonons (red dashed line). Bight: Besistivity for different amounts of strain. Note that the in plane contribution (broken red line) shows a crossover from a low to a high temperature regime. In both cases, the electronic concentration is $n = 10^{12} \text{ cm}^{-2}$.

1. Mobility at RT cannot be higher than on substrate for the flexural phonons only

2. It can be essentially increased by applying a strain

Exper. data

T-dependence of mobility for two samples

Qualitative agreement between classical and quantum theory @ RT

Gauge fields from mechanics: back to Maxwell

Electromagnetic fields as deformations in ether; gears and wheels

Review: Vozmediano, MIK & Guinea, Phys. Rep. 496, 109 (2010)

Pseudo-Aharonov-Bohm effect

M. Fogler, F. Guinea, MIK, PRL 101, 226804 (2008)

Pressure due to electric field:

$$P = (2\pi e^2 n^2)/\epsilon$$

Pseudo-Aharonov-Bohm effect II

For not too small n

$$h(x) \simeq h_0 \left(1 - \frac{4x^2}{L^2}\right)$$

Assume for simplicity constant vector potential

$$A_x(x) = 0$$
, $A_y(x) = \xi \frac{\beta}{a} \frac{t}{E} = \xi \frac{\beta}{a} \frac{PL^2}{8Eh_0}$

Young modulus of graphene

$$E \approx 22 \, \mathrm{eV/\AA}^2$$

$$\beta = -d\log(\gamma_0)/d\log(a) \approx 2$$

Pseudo-Aharonov-Bohm effect III

$$k(q) = \sqrt{k_F^2 - (k_y - q)^2}$$

Pseudo-Aharonov-Bohm effect IV

FIG. 2 (color online). (a) Deformation of a suspended graphene sheet of length $L = 1 \ \mu m$ vs carrier concentration for three different ΔL (slack): $-2 \ nm$ (stars), 0 nm (dots), and 2 nm (open circles). (b) The corresponding gauge potential. The top curve gives the Fermi wave vector $k_F(n)$.

FIG. 3 (color online). Ballistic conductance for a sheet of width $W = 1 \ \mu m$ over (a) narrow and (b) wide interval of n. ΔL and the symbols are the same as in Fig. 2. The thick curve is for the undeformed sheet. The thin lines represent Eq. (1).

For strong doping

$$h_0 \simeq \left(\frac{3\pi}{64} \frac{e^2}{\epsilon E} n^2 L^4\right)^{1/3}$$

Zero-field OHE by strain engineering F. Guinea, MIK & A. Geim, Nature Phys. 6, 30 (2010) Can we create uniform (or almost uniform) pseudomagnetic field?

If you keep trigonal symmetry, quasi-uniform pseudomagnetic field can be easily created Normal stress applied to three edges size 1.4 μ m, DOS in the center (0.5 μ m)

Experimental confirmation

Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles

N. Levy,^{1,2}*| S. A. Burke,¹*↓ K. L. Meaker,¹ M. Panlasigui,¹ A. Zettl,^{1,2} F. Guinea,³ A. H. Castro Neto,⁴ M. F. Crommie^{1,2}§

Graphene on Pt(111)

30 JULY 2010 VOL 329 SCIENCE

V......W

Fig. 2. (A) Sequence of eight *dVaV* spectra (T = 7.5 K, $V_{max} = 20$ mV) taken in a line across a graphene nanobubble shown in the image in (**B**). Red lines are data with quartic background subtracted; black dotted lines are Lorentzian peak fits (center of peaks indicated by dots, with blue dots indicating w = 0). Vertical dash dot lines follow the energy progression of each peak order. (**C**) Normalized peak energy versus $x_{3}w(n)\sqrt{|w|}$ for peaks observed on five different nanobubbles follow expected scaling behavior from Eq. 1 (dashed line).

STM observation of pseudo-Landau levels

Combination of strain and electric field: Haldane insulator state

T. Low, F. Guinea & MIK, PRB 83, 195436 (2011)

Without inversion center combination of vector and scalar potential leads to gap opening

$$\Delta = -\operatorname{Tr}\left\{\sigma_{z}\frac{2}{v_{F}}\int d^{2}\vec{\mathbf{k}}\frac{\operatorname{Im}\left(V_{-\vec{\mathbf{k}}}\right)\left[(\vec{\mathbf{k}}\vec{\sigma}),(\vec{\mathbf{A}}_{\vec{\mathbf{k}}}\vec{\sigma})\right]}{|\vec{\mathbf{k}}|^{2}}\right\}$$
$$\propto \int d^{2}\vec{\mathbf{k}}\frac{\operatorname{Im}(V_{-\vec{\mathbf{k}}})\left(k_{x}A_{\vec{\mathbf{k}}}^{y}-k_{y}A_{\vec{\mathbf{k}}}^{x}\right)}{|\vec{\mathbf{k}}|^{2}} \tag{1}$$

Wrinkles plus modulated scalar potential at different angles to the wrinkilng direction

Quantum pumping

T. Low, Y. Jiang, MIK & F. Guinea Nano Lett. 12, 850 (2012)

Nanoelectromechanical resonator, periodic change of electric fields and pseudomagnetic fields (deformations) – a very efficient quantum pumping

Periodic electrostatic doping *plus* vertical deformation a(t) created pseudomagnetic vector potential

$$V(t) = V_{dc} + V_{ac} \cos (\omega t)$$

$$\mathcal{E}_{dg}(t) = \varepsilon_d \{1 + \delta \varepsilon_d \sin(\omega t)\}^{1/2}$$

$$\mathcal{U}_{xx}(t) = u_{xx} \{1 + \delta u_{xx} \sin(\omega t + \phi)\}^2 - \frac{\Delta L}{L}$$

$$\varepsilon_{d} = \hbar v_{f} (\pi C_{\rm T} V_{\rm dc}/e)^{1/2}$$
$$\delta \varepsilon_{d} = V_{\rm ac} / V_{\rm dc}$$
$$u_{xx} = 8h_{0}^{2}/3L^{2}$$
$$\delta u_{xx} = a/h_{0}$$

Scattering problem

Results

$$\Psi_{j}(x) = \begin{cases} \begin{pmatrix} 1\\ \eta_{l} \end{pmatrix} e^{ik_{xl}x} + \mathcal{R}_{0} \begin{pmatrix} 1\\ -\eta_{l}^{\dagger} \end{pmatrix} e^{-ik_{xl}x} \\ \alpha_{l} \begin{pmatrix} 1\\ \eta_{g} \end{pmatrix} e^{ik_{xg}x} + \alpha_{g} \begin{pmatrix} 1\\ -\eta_{g}^{\dagger} \end{pmatrix} e^{-ik_{xg}x} \\ \mathcal{T}_{0} \sqrt{\frac{k_{xl}k_{fl}}{k_{xr}k_{fl}}} \begin{pmatrix} 1\\ \eta_{r} \end{pmatrix} e^{ik_{xr}x} \end{cases}$$

Pumping current

$$I_{v} = i \frac{e\omega}{4\pi^{2}} \sum_{k_{y}} \int_{0}^{2\pi/\omega} dt \int_{-\infty}^{\infty} d\varepsilon \frac{\partial f_{0}(\varepsilon)}{\partial \varepsilon} \Omega_{v}(k_{y}, t)$$

 $\Omega_{v} = (\partial \mathcal{T}_{v} / \partial t) \mathcal{T}_{v}^{\dagger} + (\partial \mathcal{R}_{v}) / \partial t) \mathcal{R}_{v}^{\dagger}$ Asymmetric leads (different doping)

Quantum pumping III

Y. Jiang, T. Low, K. Chang, MIK & F. Guinea, PRL 110, 046601 (2013)

Dependent on crystallographic orientation one can pump fully valley-polarized current (symmetric leads: total current in zero)

 Deformations create pseudoelectric and pseudomagnetic fields

• Intrinsic and extrinsic ripples (thermal fluctuations, roughness of substrate) may be responsible for charge inhomogeneities and restrict electron mobility in graphene

• Intentionally created pseudomagnetic fields: strain engineering (mobility gaps, tunable gap opening...)

Quantum Hall effect without magnetic fields, pleudo-Landau levels

• Pumping in graphene NEMS: current standard, valleytronics...