Random perturbations of nonselfadjoint operators, and the Gaussian Analytic Function

Stéphane Nonnenmacher + Martin Vogel (Orsay)

Seminar Mathematical aspects of the Quantum Hall Effect Köln, 29 November 2016

Outline

- nonselfadjoint operators: spectral instability, pseudospectrum, quasimodes
- semiclassical nonselfadjoint (pseudo)differential: pseudospectrum vs. classical spectrum
- perturbation by a small random (Gaussian) operator: probabilistic Weyl's law
- can spectral correlations reveal more details of the symbol?
- simplest model in 1D: spectral correlations (k-point functions) lead to the Gaussian Analytic Function point process. Sketch of proof: effective Hamiltonian (Grushin method)
- more general models \leadsto less elementary processes, still involving the GAF.

Pseudospectrum of nonselfadjoint operators

$P: \mathcal{H} \rightarrow \mathcal{H}$ selfadjoint: $\left\|(P-z)^{-1}\right\|=\operatorname{dist}(z, \operatorname{Spec}(P))^{-1}$
P not selfadjoint: $\left\|(P-z)^{-1}\right\|$ may be very large far from $\operatorname{Spec}(P)$: pseudospectral effect.
$\leadsto \operatorname{Spec}_{\epsilon}(P) \stackrel{\text { def }}{=}\left\{z \in \mathbb{C},\left\|(P-z)^{-1}\right\| \geq \epsilon^{-1}\right\} \epsilon$-pseudospectrum.
\Longleftrightarrow instability of $\operatorname{Spec}(P)$ w.r.t. perturbations \Longleftrightarrow quasimodes:

$$
\begin{aligned}
z \in \operatorname{Spec}_{\epsilon}(P) & \Longleftrightarrow \exists B \in \mathcal{L}(\mathcal{H}),\|B\| \leq 1, \quad z \in \operatorname{Spec}(P+\epsilon B) \\
& \Longleftrightarrow \exists e_{z} \in \mathcal{H},\left\|(P-z) e_{z}\right\| \leq \epsilon\left\|e_{z}\right\| .
\end{aligned}
$$

Ex: semiclassical (pseudo)differential operator $P_{h}=\mathrm{Op}_{h}(p)$, with $p(x, \xi)$ complex-valued. [Dencker-Sjöstrand-Zworski'04]

$$
\begin{aligned}
& \text { Red: spectrum of } P_{h}=-i h \partial_{x}+e^{2 i \pi x} \text { on } \\
& L^{2}\left(S^{1}\right), h=10^{-3}: \operatorname{Spec} P_{h}=2 \pi h \mathbb{Z} .
\end{aligned}
$$

Blue: spectrum of $P_{h}^{\delta}=P_{h}+\delta Q$, with $\|Q\| \approx 1, \delta=10^{-9}$.
(the spectra are truncated horizontally)

A simple model nonselfadjoint operator

Model [Hager'06]: $P_{h}=-i h \partial_{x}+g(x)$ on $L^{2}\left(S^{1}\right)$, with $g \in C^{\infty}\left(S^{1}, \mathbb{C}\right)$. Classical "symbol" $p(x, \xi)=\xi+g(x)$ on $T^{*} S^{1}$. Elliptic \Longrightarrow purely discrete spectrum.

Where is the h^{N}-pseudospectrum of P_{h} ?
Define the classical spectrum $\Sigma \stackrel{\text { def }}{=} \overline{p\left(T^{*} S^{1}\right)}=\mathbb{R}+i[\min \operatorname{Im} g, \max \operatorname{Im} g]$.

- $z \in \mathbb{C} \backslash \Sigma$ fixed $\Longrightarrow\left\|\left(P_{h}-z\right)^{-1}\right\| \leq C$ uniform when $h \in\left(0, h_{0}\right]$ Hence, if we perturb P_{h} by a perturbation δQ of size $\delta \sim h^{N}$, then $\operatorname{Spec}\left(P_{h}+\delta Q\right) \subset \Sigma+o(1)$.

For this model $\operatorname{Spec} P_{h}=2 \pi h \mathbb{Z}+\bar{g}$ lies on a line.

Main observation: for a generic perturbation $\delta Q, \operatorname{Spec}\left(P_{h}+\delta Q\right)$ fills the whole of Σ.

The same phenomenon occurs for more general operators.

Ex: 1D Schrödinger operator
$P_{h}=-h^{2} \partial_{x}^{2}+g(x)$ on S^{1} (or \mathbb{R}), with a complex-valued potential $g(x)$.

Localized Quasimodes

To identify the h^{N}-pseudospectrum of $P_{h}=\mathrm{Op}_{h}(p)$, we construct h^{N}-quasimodes.
Assumption on $p(x, \xi)$: for any $z \in \Omega \Subset \stackrel{\circ}{\Sigma}$, the "energy shell" $p^{-1}(z)=\left\{\rho=(x, \xi) \in T^{*} S^{1}, p(x, \xi)=z\right\}$ consists in a finite set of points $\rho^{j}=\rho^{j}(z) \in T^{*} S^{1}$, satisfying $\{\operatorname{Re} p, \operatorname{Im} p\}\left(\rho^{j}\right) \neq 0$.
Call $\rho=\rho_{+}$if $\{\operatorname{Re} p, \operatorname{Im} p\}(\rho)<0\left(\right.$ resp. $\rho=\rho_{-}$if $\left.\{\operatorname{Re} p, \operatorname{Im} p\}(\rho)>0\right)$.
Then:

- for each $\rho_{+}(z)$, one can construct a h^{∞}-quasimode $e_{+}(z ; h)$ of $\left(P_{h}-z\right)$ (that is, $\left\|\left(P_{h}-z\right) e_{+}(z ; h)\right\|=\mathcal{O}\left(h^{\infty}\right)$), which is microlocalized on $\rho_{+}(z)$.
- for each $\rho_{-}(z)$, one can construct a h^{∞}-quasimode $e_{-}(z ; h)$ of $\left(P_{h}-z\right)^{*}$, microlocalized on $\rho_{-}(z)$.

Localized quasimodes: a "linear normal form"

What do the quasimodes $e_{+}(z, h)$ look like?

- If we linearize $p(\rho)$ near ρ_{+}, we are lead (after a symplectic transformation) to a function of the type $a(x, \xi)=\xi-i x$: this is the classical symbol of the annihilation operator $A_{h}=-i h \partial_{x}-i x$.

The symbol $a(x, \xi)=\xi-i x$ has classical spectrum $\Sigma=\mathbb{C}$.
For each $z=\Xi-i X \in \mathbb{C}$, the "energy shell" $a^{-1}(z)=\left\{\rho_{+}(z)=(X, \Xi)\right\}$, and satisfies $\{\operatorname{Re} a, \operatorname{Im} a\}\left(\rho_{+}\right)=-1$.
\Longrightarrow one can construct quasimodes $e_{+}(z ; h)$ of $\left(A_{h}-z\right)$ for all $z \in \mathbb{C}$.
Actually, for all $z=\Xi-i X \in \mathbb{C},\left(A_{h}-z\right)$ admits an eigenstate, the coherent state at $(X, \Xi), \eta(x ; z, h)=(\pi h)^{-1 / 4} e^{-(x-X)^{2} / 2 h+i x \Xi / h}$.

- For a general $p(x, \xi)$ and $\rho_{+} \in p^{-1}(z)$, the quasimode $e_{+}(z, h)$ is approximately a squeezed coherent state centered at the point ρ_{+}; its shape depends on the linearization $d p\left(\rho_{+}\right)$.

Gaussian random perturbations: probabilitic Weyl's law

- These quasimodes show that for any $z \in \Omega$, for $h<h_{0}$, there exists an operator $Q,\|Q\| \sim 1$, such that $z \in \operatorname{Spec}\left(P_{h}+\delta Q\right)$, where $\delta=h^{N}$.

What does the spectrum of $P_{h}+\delta Q$ look like globally, for a typical perturbation δQ ?

- To construct a typical perturbation Q, consider an orthonormal system $\left(\varphi_{k}\right)$ microlocally filling a nbhd of $p^{-1}(\Omega)$.
Ex: take $\left(\varphi_{k}(x)=e^{2 i \pi k x}\right)_{|k| \leq C / h}$
(φ_{k} is localized on $\{(x, \xi=k h)\}$).

Then define the Gaussian random operator

$$
Q=\sum_{k, k^{\prime}} \alpha_{k k^{\prime}} \varphi_{k} \otimes \varphi_{k^{\prime}}^{*}, \quad \text { with the } \alpha_{k k^{\prime}} \text { i.i.d. } \mathcal{N}_{\mathbb{C}}(0,1) \text { variables. }
$$

Q belongs to the Ginibre ensemble. With high probability $\|Q\|_{H S} \leq \tilde{C} / h$.

- We then consider the randomly perturbed operator $P_{h}^{\delta}=P_{h}+\delta Q$, with a perturbation strength $\delta=h^{N}(N \gg 1)$.

Gaussian random perturbations: probabilitic Weyl's law

Theorem (Hager'06, Hager-Sjöstrand'07)
With probability $\geq 1-h^{M}$, the spectrum of $P_{h}^{\delta}=P_{h}+\delta Q$ satisfies a Weyl's law: for any smooth domain $\Gamma \subset \Omega$,

$$
\#\left(\operatorname{Spec}\left(P_{h}^{\delta}\right) \cap \Gamma\right)=\frac{\operatorname{Vol}\left(p^{-1}(\Gamma)\right)}{2 \pi h}+o\left(h^{-1}\right), \quad \text { when } h \searrow 0 .
$$

In particular, w.h.p. the spectrum fills up Ω.

This probabilistic Weyl's law can be expressed in terms of the average spectral density: $D_{h}(z)=(2 \pi h)^{-1} D(z)+o\left(h^{-} 1\right)$, with the "classical" density $D(z) d z=p^{*}(d x \wedge d \xi)$.

Probabilitic Weyl's law: various settings

$$
\#\left(\operatorname{Spec}\left(P_{h}^{\delta}\right) \cap \Gamma\right)=\frac{\operatorname{Vol}\left(p^{-1}(\Gamma)\right)}{2 \pi h}+o\left(h^{-1}\right)
$$

This probabilistic Weyl's law has been proved in more and more settings:

- [Hager'06]: $P_{h}=-i h \partial_{x}+g(x)$ on S^{1}, such that $g^{-1}(z)=\left\{\rho_{+}, \rho_{-}\right\}$for any $z \in \stackrel{\circ}{\Sigma}$. Perturbation = Gaussian random operator Q.
- [Hager-Sjöstrand'08]: $P_{h}=\mathrm{Op}_{h}(p)$ on \mathbb{R}^{n}.
- [HAGER'06B]: $P=\mathrm{Op}_{h}(p)$ on \mathbb{R}^{1}, with symmetry $p(x, \xi)=p(x,-\xi)$ (+some assumptions).
Multiplicative perturbation: random potential $V(x)=\sum_{k \leq C / h} \alpha_{k} \varphi_{k}(x)$, with α_{k} i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1)$.
Ex: $P_{h}=-h^{2} \partial_{x}^{2}+g(x)+\delta V(x), g(x)$ complex-valued.
- [Sjöstrand'08,...]: Same on \mathbb{R}^{n} or M compact Riemannian mfold.
- [Bordeaux-Montrieux'10]: Pa (nonsemiclassical) differential operator.

Gaussian random perturbations: experiments

Spectrum (inside some Γ) for various operators on S^{1}, perturbed by δQ :
$P_{1}=-i h \partial_{x}+e^{2 i \pi x}, P_{2}=-h^{2} \partial_{x}^{2}+e^{2 i \pi x}, P_{3}=-h^{2} \partial_{x}^{2}+e^{6 i \pi x}$

Gaussian random perturbations: experiments

Operator $P_{3}=-h^{2} \partial_{x}^{2}+e^{6 i \pi x}$ on S^{1}, two types of perturbations: random operator δQ (left) vs. random potential δV (right).

Do you see any difference?

Q vs. V perturbation: spectral correlations

Answer. There are differences in the correlations between the eigenvalues.
Q : the eigenvalues seem to "repel" each other on the scale of the mean level spacing, while for V they can present "clusters".

Spectral correlations: k-point functions

The spectrum of P_{h}^{δ} defines a random point process on \mathbb{C}, represented by the (locally finite) random measure on \mathbb{C}

$$
z_{h}^{\delta}=\sum_{z_{i} \in \operatorname{Spec} P_{h}^{\delta}} \delta_{z_{i}}
$$

1-point density $=$ average spectral density $D_{h}(z)$

$$
\forall \varphi \in C_{c}^{\infty}(\mathbb{C}), \quad \int_{\mathbb{C}} \varphi(z) D_{h}(z) d z=\mathbb{E}\left[Z_{h}^{\delta}(\varphi)\right]
$$

For any $k \geq 1$, the k-point density of this process is defined (outside the diagonal $\Delta=\left\{z_{i}=z_{j}\right.$ for some $\left.i \neq j\right\}$) as:

$$
\begin{aligned}
& \forall \varphi \in C_{c}^{\infty}\left(\mathbb{C}^{k} \backslash \Delta\right), \quad \int_{\mathbb{C}^{k}} \varphi(\vec{z}) D_{h}^{k}(\vec{z}) d \vec{z}=\mathbb{E}\left[\sum _ { z _ { 1 } , \ldots z _ { k } \in \operatorname { S p e c } } \varphi \left(P_{h}^{\delta}\right.\right. \\
&=\mathbb{E}\left[\left(z_{h}^{\delta}, \ldots, z_{k}\right)\right] \\
&)^{\otimes k}(\varphi)\right] .
\end{aligned}
$$

k-point correlation function: normalize the k-point density by the local average densities:

$$
\forall\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{C}^{k} \backslash \Delta, \quad K_{h}^{k}\left(z_{1}, \ldots, z_{k}\right) \stackrel{\text { def }}{=} \frac{D_{h}^{k}\left(z_{1}, \ldots, z_{k}\right)}{D_{h}\left(z_{1}\right) \cdots D_{h}\left(z_{k}\right)}
$$

2-point function for Hager's model

Given P_{h} and random perturbation Q, V, can we compute the k-point correlations of Spec P_{h}^{δ} ?
\oplus [VogeL'14] computed $K_{h}^{2}\left(z_{1}, z_{2}\right)$ for the operator $P_{h}^{\delta}=-i h \partial_{x}+g(x)+\delta Q$, in the case where $p^{-1}(z)=\left\{\rho_{+}(z), \rho_{-}(z)\right\}$ for each $z \in \Omega$.

His formula suggests to rescale to the local mean spacing between nearby eigenvalues, namely $D_{h}(z)^{-1 / 2} \approx \ell_{z} h^{1 / 2}, \ell_{z}=(2 \pi / D(z))^{1 / 2}$.

Theorem (Vogel'14)
Assume $p^{-1}(z)=\left\{\rho_{+}(z), \rho_{-}(z)\right\}$ for all $z \in \Omega$.
For any $z_{0} \in \Omega$ and any $u_{1} \neq u_{2} \in \mathbb{C}$, we have a scaling limit

$$
K_{h}^{2}\left(z_{0}+u_{1} \ell_{z_{0}} h^{1 / 2}, z_{0}+u_{2} \ell_{z_{0}} h^{1 / 2}\right) \xrightarrow{h \rightarrow 0} \tilde{K}^{2}\left(u_{1}, u_{2}\right),
$$

with

$$
\tilde{K}^{2}\left(u_{1}, u_{2}\right)=\kappa\left(\frac{\pi}{2}\left|u_{1}-u_{2}\right|^{2}\right), \quad \kappa(t)=\frac{\left(\sinh ^{2} t+t^{2}\right) \cosh t-2 t \sinh t}{\sinh ^{3} t} .
$$

- the limit is uniform for $\left(u_{1}, u_{2}\right) \in K \Subset \mathbb{C} \times \mathbb{C} \backslash \Delta$
- the scaling limit is universal (dep. of g and z_{0} only through $D\left(z_{0}\right)$).
- quadratic repulsion at short rescaled distance: $\kappa(t)=t+\mathcal{O}\left(t^{2}\right), t \rightarrow 0$.
- decorrelation at large rescaled distance: $\kappa(t)=1+\mathcal{O}\left(t^{2} e^{-2 t}\right), t \rightarrow \infty$.

$\tilde{K}^{2}\left(u_{1}, u_{2}\right)$ and the Gaussian Analytic Function

Red line: $r \mapsto \kappa\left(r^{2}\right)$, where
$\tilde{K}^{2}\left(u_{1}, u_{2}\right)=k\left(\frac{\pi}{2}\left|u_{1}-u_{2}\right|^{2}\right)$.
Blue circles: numerical data for $P_{1}+\delta Q$, using 200 realizations of Q.
$\ominus \tilde{K}^{2}$ differs from the case of the Ginibre ensemble (= spectrum Q alone): $\tilde{K}_{\text {Gin }}^{2}\left(u_{1}, u_{2}\right)=1-e^{-\pi\left|u_{1}-u_{2}\right|^{2}}$.
$\oplus \tilde{K}^{2}$ is the 2-point function for the zeros of the Gaussian Analytic Function:

$$
G(u)=\sum_{n \geq 0} \beta_{j} \frac{\pi^{j / 2} u^{j}}{\sqrt{j!}}
$$

$$
u \in \mathbb{C}, \quad \beta_{j} \text { i.i.d. random variables } \mathcal{N}_{\mathbb{C}}(0,1)
$$

[Hannay'96]

- The zero set of $G(u)$ will be denoted by \tilde{z}_{G}, it is a well-studied random point process on \mathbb{C} [NAZARov-Sodin'10]

GAF: k-point densities from the covariance function
\tilde{z}_{G} the zero process of the GAF $G(u)=\sum_{n \geq 0} \beta_{j} \frac{\pi^{j / 2} u^{j}}{\sqrt{j!}}$.
To compute the k-point density $D_{G}^{k}(\vec{u})$ of this process, the essential ingredient is the covariance function

$$
C(u, \bar{v}) \stackrel{\text { def }}{=} \mathbb{E}[G(u) \overline{G(v)}]=\exp (\pi u \bar{v})
$$

Indeed, the identity between distributions
$\tilde{z}_{G}(u) \stackrel{\text { def }}{=} \sum_{u_{i}: G\left(u_{i}\right)=0} \delta\left(u-z_{i}\right)=\left|G^{\prime}(u)\right|^{2} \delta(G(u))$,
leads to the Kac-Rice-Hammersley formula:

$$
D_{G}^{k}(\vec{u})=\mathbb{E} \tilde{z}_{G}\left(u_{1}\right) \cdots \mathcal{z}_{G}\left(u_{k}\right)=\mathbb{E}\left|G^{\prime}\left(u_{1}\right)\right|^{2} \delta\left(G\left(u_{1}\right)\right) \cdots\left|G^{\prime}\left(u_{k}\right)\right|^{2} \delta\left(G\left(u_{k}\right)\right) .
$$

The RHS only depends on the joint distribution of the Gaussian vector $\left\{G\left(u_{1}\right), \cdots, G\left(u_{k}\right), G^{\prime}\left(u_{1}\right), \cdots, G^{\prime}\left(u_{k}\right)\right\}$, encoded in the
$2 k \times 2 k$ covariance matrix

$$
\left(\begin{array}{ccc}
\mathbb{E} G\left(u_{i}\right) \overline{G\left(u_{j}\right)} & \mathbb{E} G^{\prime}\left(u_{i}\right) \overline{G\left(u_{j}\right)} \\
\mathbb{E} G\left(u_{i}\right) \overline{G^{\prime}\left(u_{j}\right)} & \mathbb{E} G^{\prime}\left(u_{i}\right) \overline{G^{\prime}\left(u_{j}\right)}
\end{array}\right)=\left(\begin{array}{cc}
C\left(u_{i}, \bar{u}_{j}\right) & \partial_{u_{i}} C\left(u_{i}, \bar{u}_{j}\right) \\
\partial_{\bar{u}_{j}} C\left(u_{i}, \bar{u}_{j}\right) & \partial_{u_{i}} \partial_{\bar{u}_{j}} C\left(u_{i}, \bar{u}_{j}\right)
\end{array}\right) .
$$

The rescaled spectrum has the statistics of the GAF

Vogel's result for the spectrum of $P_{h}^{\delta}=-i h \partial_{x}+g(x)+\delta Q$ extends to all k-point functions.
Theorem (N -Vogel'16)
Assume $p^{-1}(z)=\left\{\rho_{+}(z), \rho_{-}(z)\right\}$ for each $z \in \Omega$. Take $\delta=h^{N}, N>5 / 2$.
For any $k \geq 2$, the k-point correlation function for the eigenvalues of $P_{h}+\delta Q$ satisfy, near any $z_{0} \in \stackrel{\circ}{\Sigma}$, the scaling limit

$$
\forall \vec{u} \in \mathbb{C}^{k} \backslash \Delta, \quad K_{h}^{k}\left(z_{0}+\vec{u} \ell_{z_{0}} h^{1 / 2}\right) \xrightarrow{h \rightarrow 0} \tilde{K}^{k}(\vec{u}),
$$

where $\tilde{K}^{k}(\vec{u})$ is the k-point function of the GAF.
In other words, the rescaled spectral measure centered at z_{0},

$$
\tilde{z}_{h, z_{0}}^{\delta}=\sum_{z_{i} \in \operatorname{Spec}} \delta_{P_{h}^{\delta}} \delta_{u_{i}=\frac{z_{i}-z_{0}}{\ell_{z_{0}} h^{1 / 2}}},
$$

converges in distribution to the point process \tilde{z}_{G} when $h \searrow 0$.

History: the GAF as a "holomorphic random wave"

The GAF has been used as a model for:

- eigenfunctions (in Bargmann representation) of 1D quantized chaotic maps [Leboeuf-Voros'91, Bogomolny-Bohigas-Leboeuf'96, Hannay'96, Prosen'96, N -Voros'98]: $\mathcal{B}_{j}(z)=\left\langle\tilde{\eta}(z), \psi_{j}\right\rangle$, with $\tilde{\eta}(z)$ holom. coh. st.

Left: random Bargmann function on \mathbb{T}^{2} (Husimi).

Right: Bargmann eigenfunction of a chaotic quantum map on \mathbb{T}^{2}.

- [Bleher-Schiffman-Zelditch'00]: M compact Kähler mfold, L positive line bundle: study random holomorphic sections $s(z)$ on $L^{\otimes N}$, in the limit $N \rightarrow \infty\left(N \sim h^{-1}\right)$.
Covariance $\mathbb{E} s(z) \overline{s(w)}=\Pi_{N}(z, w)$ Bergman kernel, rescale by $N^{-1 / 2}$ \leadsto universal scaling limit $C(u, \bar{v})$ [Tian, Catlin, Zelditch'98,...] $\operatorname{dim}_{\mathbb{C}} M=1$: at each $z_{0} \in M$, the rescaled zero process $\tilde{z}_{s, z_{0}}{ }^{N} \rightarrow \infty \tilde{z}_{G}$.
- In the present work, the GAF mimicks an effective spectral determinant.

How to study z_{h}^{δ} ? Use an effective Hamiltonian

Heuristics: the spectrum of P_{h}^{δ} near z is governed by the action of P_{h}^{δ}, resp. $P_{h}^{\delta *}$ in the \sqrt{h}-neighbourhood of $\rho_{ \pm}(z) \leadsto$ involves the quasimodes $e_{ \pm}(z)$.

- Idea: construct a Grushin problem: extend $\left(P_{h}-z\right)$ by "filling" its approximate kernel and cokernel \leadsto invertible operator
$\mathcal{P}(z) \stackrel{\text { def }}{=}\left(\begin{array}{cc}P_{h}-z & R_{-}(z) \\ R_{+}(z) & 0\end{array}\right): \mathcal{H} \oplus \mathbb{C} \rightarrow \mathcal{H} \oplus \mathbb{C}$.
Auxiliary operators $R_{+}(z) u=\left\langle e_{+}(z), u\right\rangle, R_{-}(z) u_{-}=u_{-} e_{-}(z)$.
Call $\mathcal{P}(z)^{-1}=\left(\begin{array}{cc}E(z) & E_{+}(z) \\ E_{-}(z) & E_{-+}(z)\end{array}\right)$.
- Schur's complement formula $\Longrightarrow z \in \operatorname{Spec}\left(P_{h}\right) \Longleftrightarrow E_{-+}(z)=0$.
$E_{-+}(z)$ is an effective Hamiltonian for P_{h}.
- $e_{ \pm}(z)$ are h^{∞}-quasimodes $\Longrightarrow E_{-+}(z)=\mathcal{O}\left(h^{\infty}\right), \forall z \in \Omega$.
- use same Grushin extension for $P_{h}^{\delta} \leadsto$ randomly perturbed eff. Hamil.
$E_{-+}^{\delta}(z)=E_{-+}(z)+\delta F(z)+\mathcal{O}\left(\delta^{2} h^{-1 / 2}\right)$, with $\quad F(z)=-\left\langle Q e_{+}(z), e_{-}(z)\right\rangle$.
\oplus w.h.proba., Q couples $e_{+}(z)$ to $e_{-}(z)$, so that $F(z) \asymp 1$.
$\Longrightarrow E_{-+}^{\delta}(z) \approx \delta F(z)$ a Gaussian random function of z.

Computing the covariance of $F(z)$

$$
F(z)=-\left\langle Q e_{+}(z), e_{-}(z)\right\rangle \text { can couple } e_{+}
$$ to e_{-}, because the phase space spanned by Q contains ρ_{+}, ρ_{-}.

We need to study the zeros of the function $\left\langle Q e_{+}(z), e_{-}(z)\right\rangle+$ small \leadsto compute its covariance:
$\mathbb{E}\left\langle Q e_{+}(z), e_{-}(z)\right\rangle \overline{\left\langle Q e_{+}(w), e_{-}(w)\right\rangle}=\left\langle e_{+}(z), e_{+}(w)\right\rangle\left\langle e_{-}(w), e_{-}(z)\right\rangle+\mathcal{O}\left(h^{\infty}\right)$
The quasimode $e_{+}(z)$ is microlocalized in a \sqrt{h}-nbhd of $\rho_{+}(z)$.
For $|z-w|>h^{1 / 2-\epsilon},\left\langle e_{+}(z), e_{+}(w)\right\rangle=\mathcal{O}\left(h^{\infty}\right)$. If $z, w=z_{0}+\mathcal{O}(\sqrt{h})$,

$$
\left\langle e_{+}\left(z_{0}+\sqrt{h} u\right), e_{+}\left(z_{0}+\sqrt{h} v\right)\right\rangle=\exp \left(\sigma_{+} u \bar{v}+\phi_{+}(u)+\overline{\phi_{+}(v)}+\mathcal{O}(\sqrt{h})\right)
$$

Similar for $\left\langle e_{-}(\bullet), e_{-}(\bullet)\right\rangle \Longrightarrow$ up to a change of gauge, we get $e^{\left(\sigma_{+}+\sigma_{-}\right) u \bar{v}}$. One shows that $\sigma_{+}+\sigma_{-}=D\left(z_{0}\right) / 2$, so rescaling u, v by $\ell_{z_{0}}$ we obtain the covariance $e^{\pi u \bar{v}}=C(u, \bar{v})$ in the limit $h \rightarrow 0$.

1D operators with J quasimodes

Let us now assume that for any $z \in \Omega$, the "energy shell" $p^{-1}(z)=\left\{\rho_{+}^{1}(z), \ldots, \rho_{+}^{J}(z), \rho_{-}^{1}(z), \ldots, \rho_{-}^{J}(z)\right\}$. Ex: $p(x, \xi)=\xi+e^{2 i J \pi x}$. $\left(P_{h}-z\right)$ and $\left(P_{h}-z\right)^{*}$ have J quasimodes $e_{ \pm}^{j}(z)$ microlocalized on $\rho_{ \pm}^{j}(z)$.
The effective Hamiltonian $E_{-+}^{\delta}(z)$ is now a $J \times J$ matrix, and $z \in \operatorname{Spec}\left(P_{h}^{\delta}\right) \Longleftrightarrow \operatorname{det} E_{-+}^{\delta}(z)=0$.

We get $E^{\delta}(z)^{i j}=-\delta\left\langle Q e_{+}^{i}(z), e_{-}^{j}(z)\right\rangle+$ small W.h.p., $E_{-+}^{\delta}(z)$ is dominated by the $J \times J$ matrix $F(z)$ of entries $F_{i j}(z)=\left\langle Q e_{+}^{i}(z), e_{-}^{j}(z)\right\rangle$.

- each $F_{i j}(z)$ is a GAF with rescaled (and re-gauged) covariance $\exp \left(\left(\sigma_{+i}+\sigma_{-j}\right) u \bar{v}\right)$.
- the $F_{i j}(z)$ are independent of e.o. when $h \rightarrow 0$.

Theorem (N-Vogel'16)

After rescaling by $h^{1 / 2}$ near $z_{0}, \tilde{z}_{h, z_{0}}^{\delta}$ converges to the zero process of the random holomorphic function $G^{J}(u)=\operatorname{det}\left(G_{i j}(u)\right)$, where $\left(G_{i j}(u)\right)$ is a matrix of $J \times J$ independent GAFs with variances $e^{\left(\sigma_{+i}+\sigma_{-j}\right) u \bar{v}}$.
Qu: can we compute the k-correlations of the zeros of $G^{J}(u)$?

Operators with J quasimodes

Blue circles: numerics for the rescaled 2-point function for operators $P_{J}=-h^{2} \partial_{x}^{2}+e^{2 i \pi J / 2 x}, J=2,6,10$. In the spectral region we consider, $\left(P_{J}-z\right)$ admits J quasimodes.
Red: for comparison, the function $\tilde{K}^{2}(u, v)$ as a function of $|u-v|$.

Conjecture

For any $J \geq 1$, the zeros of $G^{J}(u)$ repel each other quadratically. (weak form of universality).

Operators with J quasimodes - multiplicative perturbation

Replace the perturbation δQ by the multiplicative perturbation $\delta V(x)$, with $V(x)=\sum_{|k|<C / h} \alpha_{k} \varphi_{k}(x)$.
The effective Hamiltonian is the $J \times J$ matrix with entries $E_{-+}^{\delta}(z)^{i j}=-\delta\left\langle V e_{+}^{i}(z), e_{-}^{j}(z)\right\rangle+$ small.

The coupling of V is local:

$\left\langle V e_{+}(z), e_{-}(z)\right\rangle=\int V e_{+} \overline{e_{-}} d x$. Hence V can couple $e_{+}(z)$ with $e_{-}(z)$ only provided $x_{+}=x_{-}$.
\Longrightarrow consider symmetric symbols $p(x,-\xi)=p(x, \xi)$:
then each $\rho_{+}^{i}=\left(x_{+}^{i}, \xi_{+}^{i}\right)$ is associated with $\rho_{-}^{i}=\left(x_{+}^{i},-\xi_{+}^{i}\right)$.
Quasimodes are related by $e_{-}^{i}(z)=\overline{e_{+}^{i}(z)}$.
The Gaussian function $F_{i i}(z)=\int V e_{+}^{i}(z)^{2} d x$ has covariance $\mathbb{E}\left[F_{i i}(z) \overline{F_{i i}(w)}\right]=\left\langle e_{+}^{i}(z)^{2}, e_{+}^{i}(w)^{2}\right\rangle$.
After $h^{1 / 2}$-rescaling, this covariance $\approx e^{2 \sigma_{i} u \bar{v}}$.
The matrix $F_{i j}(z)$ is then approximately diagonal, so that $\operatorname{det} E_{-+}^{\delta}(z)=(-\delta)^{J} \prod_{j=1}^{J} F_{i i}(z)+$ small.
Theorem (N -Vogel'16)
Around z_{0}, the $h^{1 / 2}$-rescaled spectrum of P_{h}^{δ} converges to the superposition of J independent GAF processes, with respective variances $e^{2 \sigma_{i} u \bar{u}}$.

Operators with J quasimodes -multiplicative perturbation

Blue circles: numerics of the rescaled 2-point correlation function for operators $P_{J}=-h^{2} \partial_{x}^{2}+e^{2 i \pi J / 2 x}, J=2,4,6$, and perturbation δV.

Observe the absence of quadratic repulsion at the origin, due to the presence of J independent processes, allowing clusters of $\leq J$ eigenvalues.

TO DO: Compute explicitly the k-point densities by superposing the J independent processes.

Conclusion

Small perturbations of nonselfadjoint 1D (pseudo)differential operators lead to interesting spectral phenomena

- ubiquity of Weyl's law
- ubiquity of the Gaussian Analytic Function, and partial universality
- if the law of the perturbation parameters $\alpha_{i j}$ is not Gaussian but sufficiently regular, we expect the same result (CLT)
- spectral correlations are sensitive to the structure (cardinal) of $p^{-1}(z)$, symmetry $\xi \rightarrow-\xi$ of the symbol, and type of random perturbation \Longrightarrow probabilistic spectral information on $p(x, \xi)$.
- can we compute the k-point functions for the zeros of $\operatorname{det}\left(G_{i j}(u)\right)$?
- nonselfadjoint operators in dimension $n>1$: energy shell is a codimension 2 submanifold \Longrightarrow quasimodes form a subspace of dimension $\sim h^{-n+1} \Longrightarrow E_{-+}^{\delta}(z)$ is a large random matrix. What can be said about spectral correlations?

