Energy of determinantal point processes in the torus and the sphere

C. Beltrán (U. Cantabria)
J. Marzo (U. Barcelona)
\& J. Ortega-Cerdà (U. Barcelona)
Cologne, December 2016

Determinantal point process

Definition

A determinantal point process A is a random point process such that the joint intensities have the form:

$$
\rho_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(K\left(x_{i}, x_{j}\right)_{i, j \leq n}\right) .
$$

Determinantal point process

Definition

A determinantal point process A is a random point process such that the joint intensities have the form:

$$
\rho_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(K\left(x_{i}, x_{j}\right)_{i, j \leq n}\right) .
$$

Recall that the joint intensities ρ_{k} satisfy:

$$
\mathbb{E} \sum_{x_{1}, \ldots, x_{k} \in A} f\left(x_{1}, \ldots, x_{k}\right)=\int f\left(x_{i}, \ldots, x_{k}\right) \rho_{k}\left(x_{i}, \ldots, x_{k}\right)
$$

for any f symmetric bounded and of compact support.

General facts

If the point process has n points almost surely then the kernel K defines an integral operator: the orthogonal projection onto a subspace of L^{2} of dimension n.

General facts

If the point process has n points almost surely then the kernel
K defines an integral operator: the orthogonal projection onto a subspace of L^{2} of dimension n.
In general

Theorem (Macchi, Soshnikov)

An hermitic kernel $K(x, y)$ corresponds to a determinantal point process if and only if the integral operator $T: L^{2} \rightarrow L^{2}$ has all eigenvalues $\lambda \in[0,1]$.

General facts

If the point process has n points almost surely then the kernel K defines an integral operator: the orthogonal projection onto a subspace of L^{2} of dimension n.
In general

Theorem (Macchi, Soshnikov)

An hermitic kernel $K(x, y)$ corresponds to a determinantal point process if and only if the integral operator $T: L^{2} \rightarrow L^{2}$ has all eigenvalues $\lambda \in[0,1]$.

Moreover:

Theorem (Shirai, Takahashi)

In a determinantal process, the number of points that fall in a compact set D has the same distribution as a sum of independent Bernoulli($\left.\lambda_{i}^{D}\right)$) random variables where λ_{i}^{D} are the eigenvalues of the operator T restricted to D.

Spherical ensembles

Krishnapur considered the following point process: Let A, B be n by n random matrices with i.i.d. Gaussian entries. Then he proved that the generalized eigenvalues associated to the pair (A, B), i.e. the eigenvalues of $A^{-1} B$ have joint probability density (wrt Lebesgue measure):

$$
C_{n} \prod_{k=1}^{n} \frac{1}{\left(1+\left|z_{k}\right|^{2}\right)^{n+1}} \prod_{i<j}\left|z_{i}-z_{j}\right|^{2}
$$

Spherical ensembles

Krishnapur considered the following point process: Let A, B be n by n random matrices with i.i.d. Gaussian entries. Then he proved that the generalized eigenvalues associated to the pair (A, B), i.e. the eigenvalues of $A^{-1} B$ have joint probability density (wrt Lebesgue measure):

$$
C_{n} \prod_{k=1}^{n} \frac{1}{\left(1+\left|z_{k}\right|^{2}\right)^{n+1}} \prod_{i<j}\left|z_{i}-z_{j}\right|^{2}
$$

If we consider the stereographic projection to the sphere \mathbb{S}^{2}, then the joint density (with respect to the product area measure in the sphere) is

$$
K_{n} \prod_{i<j}\left\|P_{i}-P_{j}\right\|_{\mathbb{R}^{3}}^{2}
$$

Spherical ensemble dimension: 3200

Spherical ensemble 25281 points

The space of functions

Let P_{n} be the space functions defined as

$$
q(z)=\frac{p(z)}{\left(1+|z|^{2}\right)^{(n-1) / 2}},
$$

where p is a polynomial of degree less than n. Clearly $P_{n} \subset L^{2}(\mu)$, where $d \mu(z)=1 /\left(1+|z|^{2}\right)^{2}$. It is a reproducing kernel Hilbert space. Its reproducing kernel is

$$
K_{n}(z, w)=\frac{(1+z \bar{w})^{n-1}}{\left(1+|z|^{2}\right)^{(n-1) / 2}\left(1+|w|^{2}\right)^{(n-1) / 2}}
$$

A determinantal form

We have that the matrix

$$
\left(\begin{array}{ccc}
\overline{q_{1}\left(z_{1}\right)} & \cdots & \overline{q_{n}\left(z_{1}\right)} \\
\vdots & \ddots & \vdots \\
\frac{q_{1}\left(z_{n}\right)}{} & \cdots & \overline{q_{n}\left(z_{n}\right)}
\end{array}\right)\left(\begin{array}{ccc}
q_{1}\left(z_{1}\right) & \cdots & q_{1}\left(z_{n}\right) \\
\vdots & \ddots & \vdots \\
q_{n}\left(z_{1}\right) & \cdots & q_{n}\left(z_{n}\right)
\end{array}\right)=\left(\begin{array}{ccc}
K_{n}\left(z_{1}, z_{1}\right) & \cdots & K_{n}\left(z_{1}, z_{n}\right) \\
\vdots & \ddots & \vdots \\
K_{n}\left(z_{n}, z_{1}\right) & \cdots & K_{n}\left(z_{n}, z_{n}\right)
\end{array}\right)
$$

A determinantal form

We have that the matrix

$$
\left(\begin{array}{ccc}
\overline{q_{1}\left(z_{1}\right)} & \cdots & \overline{q_{n}\left(z_{1}\right)} \\
\vdots & \ddots & \vdots \\
\overline{q_{1}\left(z_{n}\right)} & \cdots & \overline{q_{n}\left(z_{n}\right)}
\end{array}\right)\left(\begin{array}{ccc}
q_{1}\left(z_{1}\right) & \cdots & q_{1}\left(z_{n}\right) \\
\vdots & \ddots & \vdots \\
q_{n}\left(z_{1}\right) & \cdots & q_{n}\left(z_{n}\right)
\end{array}\right)=\left(\begin{array}{ccc}
K_{n}\left(z_{1}, z_{1}\right) & \cdots & K_{n}\left(z_{1}, z_{n}\right) \\
\vdots & \ddots & \vdots \\
K_{n}\left(z_{n}, z_{1}\right) & \cdots & K_{n}\left(z_{n}, z_{n}\right)
\end{array}\right)
$$

Thus

$$
\left|\begin{array}{ccc}
K_{n}\left(z_{1}, z_{1}\right) & \cdots & K_{n}\left(z_{1}, z_{n}\right) \\
\vdots & & \vdots \\
K_{n}\left(z_{n}, z_{1}\right) & \cdots & K_{n}\left(z_{n}, z_{n}\right)
\end{array}\right|=\left|\begin{array}{ccc}
q_{1}\left(z_{1}\right) & \cdots & q_{1}\left(z_{n}\right) \\
\vdots & & \vdots \\
q_{n}\left(z_{1}\right) & \cdots & q_{n}\left(z_{n}\right)
\end{array}\right|^{2}
$$

Therefore the spherical ensemble generates a determinantal point process.

A more general setting

Let (X, ω) be a n-dimensional compact complex manifold endowed with a smooth Hermitian metric ω. Let (L, ϕ) be a holomorphic line bundle with a positive Hermitian metric ϕ. We choose a basis of the global holomorphic sections s_{1}, \ldots, s_{N} of $H^{0}(X, L)$
We fix a probability measure on X, given by the normalized volume form ω^{n}, that we denote by σ.

Definition

Let $\beta>0$. A β-ensemble is an N point random process on X which has joint distribution given by

$$
\frac{1}{Z_{N}}\left|\operatorname{det} s_{i}\left(x_{j}\right)\right|_{\phi}^{\beta} d \sigma\left(x_{1}\right) \otimes \cdots \otimes d \sigma\left(x_{N}\right),
$$

Weak convergence of empirical measure

Given a realization $z_{1}, \ldots, z_{N_{k}}$ of the random point process we denote by $\mu_{k}=\frac{1}{N_{k}} \sum_{i} \delta_{z_{i}}$ to the empirical measure. We take a sequence $\mu_{k}, k=1,2, \ldots$ of independent point process of the β-ensemble associated to $H^{0}\left(X, L^{k}\right)$.

Weak convergence of empirical measure

Given a realization $z_{1}, \ldots, z_{N_{k}}$ of the random point process we denote by $\mu_{k}=\frac{1}{N_{k}} \sum_{i} \delta_{z_{i}}$ to the empirical measure. We take a sequence $\mu_{k}, k=1,2, \ldots$ of independent point process of the β-ensemble associated to $H^{0}\left(X, L^{k}\right)$.

Theorem

With probability one $\mu_{n} \stackrel{*}{\rightharpoonup} \sigma$. More precisely the Kantorovich-Wasserstein distance $K W_{1}\left(\mu_{k}, \sigma\right) \lesssim \frac{\log k}{\sqrt{k}}$ with probability one.

The Kantorovich-Wasserstein distance

Given a compact metric space K we defines the $K W_{1}$ distance between two probability measures μ and ν supported in K as

$$
K W_{1}(\mu, \nu)=\inf _{\rho} \iint_{K \times K} d(x, y) d \rho(x, y),
$$

where ρ is an admissible probability measure, i.e. the marginals of ρ are μ and ν respectively.

The Kantorovich-Wasserstein distance

Given a compact metric space K we defines the $K W_{1}$ distance between two probability measures μ and ν supported in K as

$$
K W_{1}(\mu, \nu)=\inf _{\rho} \iint_{K \times K} d(x, y) d \rho(x, y),
$$

where ρ is an admissible probability measure, i.e. the marginals of ρ are μ and ν respectively. Alternatively:

$$
K W_{1}(\mu, \nu)=\inf _{\rho} \iint_{K \times K} d(x, y) d|\rho|(x, y),
$$

where ρ is an admissible complex measure, i.e. the marginals of ρ are μ and ν respectively

The Lagrange functions

Given any sequence of points $\left(z_{1}, \ldots, z_{N_{k}}\right)$ we define the Lagrange functions:

$$
\left.\ell_{j}(x)=\frac{\left|\begin{array}{ccccc}
s_{1}\left(x_{1}\right) & \cdots & s_{1}(x) & \cdots & s_{1}\left(x_{N_{k}}\right) \\
\vdots & & \vdots & & \vdots \\
s_{N_{k}}\left(x_{1}\right) & \cdots & s_{N_{k}}(x) & \cdots & s_{N_{k}}\left(x_{N_{k}}\right)
\end{array}\right|}{\left\lvert\, \begin{array}{cccc}
s_{1}\left(x_{1}\right) & \cdots & s_{1}\left(x_{j}\right) & \cdots
\end{array} s_{1}\left(x_{N_{k}}\right)\right.} \begin{array}{|cccc}
\vdots & \vdots & \vdots \\
s_{N_{k}}\left(x_{1}\right) & \cdots & s_{N_{k}}\left(x_{j}\right) & \cdots \\
s_{N_{k}}\left(x_{N_{k}}\right)
\end{array} \right\rvert\,
$$

Clearly $\ell_{j} \in H^{0}\left(X, L^{k}\right)$ and $\ell_{j}\left(x_{i}\right)=0$ if $i \neq j$ and $\left|\ell_{j}\left(x_{j}\right)\right|=1$.

Lagrange functions and the density function

If we denote by $\rho_{k}\left(x_{1}, \ldots, x_{N_{k}}\right)=\frac{1}{Z_{N_{k}}}\left|\operatorname{det} s_{i}\left(x_{j}\right)\right|_{\phi}^{\beta}$ then

$$
\left|\ell_{j}(x)\right|_{\phi}^{\beta}=\frac{\rho_{k}\left(x_{1}, \ldots, x, \ldots, x_{N_{k}}\right)}{\rho_{k}\left(x_{1}, \ldots, x_{j}, \ldots, x_{N_{k}}\right)},
$$

and thus $\mathbb{E}\left(\left\|\ell_{j}\right\|_{\beta}\right) \leq 1$

The transport plan

Consider the transport plan

$$
p(z, w)=\frac{1}{n} \sum_{j=1}^{n} \delta_{z_{j}}(w) K_{n}\left(z, z_{j}\right) \ell_{j}(z) d \mu(z)
$$

It has the right marginals $\frac{1}{n} \sum \delta_{z_{j}}$ and μ respectively and thus

$$
K W_{1}\left(\mu_{n}, \mu\right) \leq \iint|z-w| d|p| \leq \frac{1}{n} \sum_{j=1}^{n} \int d\left(z, z_{j}\right)\left|\ell_{j}(z)\right|\left|K_{n}\left(z, z_{j}\right)\right| d \mu(z)
$$

Estimating the K-W distance

$$
\begin{aligned}
& (\mathbb{E} W)^{\beta} \leq \\
& \int_{X^{N_{k}}} \frac{1}{N_{k}} \sum_{j=1}^{N_{k}}\left(\int_{X} d\left(x, x_{j}\right)\left|\ell_{j}(x)\right|\left|K_{k}\left(x, x_{j}\right)\right| d \sigma(x)\right)^{\beta} \rho_{k}\left(x_{1}, \ldots, x_{N_{k}}\right) d \sigma\left(x_{i}\right) \\
& \quad \leq \int_{X^{N_{k}}} \frac{1}{N_{k}} \sum_{j=1}^{N_{k}}\left(\int_{X} d\left(x, x_{j}\right)\left|K_{k}\left(x, x_{j}\right)\right| d \sigma(x)\right)^{\beta / \beta^{\prime}} \times \\
& \times\left(\int_{X}\left|\ell_{j}(x)\right|^{\beta}\left|K_{k}\left(x, x_{j}\right)\right| d\left(x, x_{j}\right) d \sigma(x)\right) \rho_{k}\left(x_{1}, \ldots, x_{N_{k}}\right) d \sigma\left(x_{i}\right) .
\end{aligned}
$$

Off diagonal decay of the reproducing kernel

$$
\sup _{y \in X} \int_{X} d(x, y)\left|K_{k}(x, y)\right| d \sigma(x) \leq \frac{C}{\sqrt{k}}
$$

Then, we obtain:
$(\mathbb{E} W)^{\beta} \leq$
$\left(\frac{C}{\sqrt{k}}\right)^{\beta / \beta^{\prime}} \int_{X^{N_{k}}} \frac{1}{N_{k}} \sum_{j=1}^{N_{k}} \int_{X}\left|\ell_{j}(x)\right|^{\beta}\left|K_{k}\left(x, x_{j}\right)\right| d\left(x, x_{j}\right) \rho_{k}\left(x_{1}, ., x_{j}, ., x_{N_{k}}\right) d \sigma(x)$
$=\left(\frac{C}{\sqrt{k}}\right)^{\beta / \beta^{\prime}} \int_{X^{N_{k}}} \frac{1}{N_{k}} \sum_{j=1}^{N_{k}} \int_{X}\left|K_{k}\left(x, x_{j}\right)\right| d\left(x, x_{j}\right) \rho_{k}\left(x_{1}, ., x, ., x_{N_{k}}\right) d \sigma(x) d \sigma\left(x_{i}\right)$

The final estimate

Finally, integrating first in x_{j} and applying again the offdiagonal estimate we obtain

$$
(\mathbb{E} W)^{\beta} \leq\left(\frac{C}{\sqrt{k}}\right)^{\beta / \beta^{\prime}}\left(\frac{C}{\sqrt{k}}\right)=\mathrm{O}\left(\frac{1}{\sqrt{k}}\right)^{\beta},
$$

The offdiagonal estimate for the kernel follows from the pointwise estimate for the Bergman kernel

$$
\left|K_{k}(x, y)\right| \leq C N_{k} e^{-C \sqrt{k} d(x, y)}
$$

which holds when the line bundle is positive,

A concentration of measure

We want to study now the empirical measure. For determinantal process we have:

Theorem (Pemantle-Peres)

Let Z be a determinantal point process of n points. Let f be a Lipschitz-1 functional on finite counting measures (with respect to the total variation distance). Then

$$
\mathbb{P}(f-\mathbb{E} f \geq a) \leq 3 \exp \left(-\frac{a^{2}}{16(a+2 n)}\right)
$$

A concentration of measure

We want to study now the empirical measure. For determinantal process we have:

Theorem (Pemantle-Peres)

Let Z be a determinantal point process of n points. Let f be a Lipschitz-1 functional on finite counting measures (with respect to the total variation distance). Then

$$
\mathbb{P}(f-\mathbb{E} f \geq a) \leq 3 \exp \left(-\frac{a^{2}}{16(a+2 n)}\right)
$$

The functional $f(\sigma)=n K W_{1}\left(\frac{1}{n} \sigma, \mu\right)$ is Lipshchitz-1.

Almost sure convergence

To finish take $a=10 \sqrt{n \log (n)}$, then

$$
\begin{aligned}
\mathbb{P}\left(K W_{1}\left(\mu_{n}, \mu\right)\right. & \left.>\frac{11 \sqrt{\log (n)}}{\sqrt{n}}\right) \leq \\
& 3 \exp \left(-\frac{100 n \log (n)}{16(10 \sqrt{n \log (n)}+2 n)}\right) \lesssim \frac{1}{n^{2}} .
\end{aligned}
$$

Almost sure convergence

To finish take $a=10 \sqrt{n \log (n)}$, then

$$
\begin{aligned}
\mathbb{P}\left(K W_{1}\left(\mu_{n}, \mu\right)\right. & \left.>\frac{11 \sqrt{\log (n)}}{\sqrt{n}}\right) \leq \\
& 3 \exp \left(-\frac{100 n \log (n)}{16(10 \sqrt{n \log (n)}+2 n)}\right) \lesssim \frac{1}{n^{2}}
\end{aligned}
$$

Now a standard application of the Borel-Cantelli lemma shows that with probability one

$$
K W_{1}\left(\mu_{n}, \mu\right) \leq \frac{10 \sqrt{\log n}}{\sqrt{n}}
$$

The torus

Let $\Lambda=A \mathbb{Z}^{d}$ be a lattice in \mathbb{R}^{d}. Let $\Omega \subset \mathbb{R}^{d}$ be the fundamental domain. One can identify Ω with the flat torus \mathbb{R}^{d} / Λ.

The torus

Let $\Lambda=A \mathbb{Z}^{d}$ be a lattice in \mathbb{R}^{d}. Let $\Omega \subset \mathbb{R}^{d}$ be the fundamental domain. One can identify Ω with the flat torus \mathbb{R}^{d} / Λ.
The dual lattice

$$
\Lambda^{*}=\left\{x \in \mathbb{R}^{d}: \forall \lambda \in \Lambda\langle x, \lambda\rangle \in \mathbb{Z}\right\}
$$

is given by the matrix $\left(A^{t}\right)^{-1}$.
We denote by $|\Lambda|=|\operatorname{det} A|$, the co-volume of Λ and $d \mu$ is the normalized measure in Ω

The periodic potential

For $s>d$, the Epstein Hurwitz zeta function for the lattice Λ defined by

$$
\zeta_{\Lambda}(s ; x)=\sum_{v \in \Lambda} \frac{1}{|x+v|^{s}}, \quad x \in \mathbb{R}^{d}
$$

is the Λ-periodic potential generated by the Riesz s-energy $|x|^{-s}$.

The periodic potential

For $s>d$, the Epstein Hurwitz zeta function for the lattice Λ defined by

$$
\zeta_{\Lambda}(s ; x)=\sum_{v \in \Lambda} \frac{1}{|x+v|^{s}}, \quad x \in \mathbb{R}^{d}
$$

is the Λ-periodic potential generated by the Riesz s-energy $|x|^{-s}$.

$$
F_{s, \Lambda}(x)=\zeta_{\wedge}(s ; x)+\frac{2 \pi^{d / 2}|\Lambda|^{-1}}{\Gamma\left(\frac{s}{2}\right)(d-s)}, \quad s>d
$$

The periodic potential

For $s>d$, the Epstein Hurwitz zeta function for the lattice Λ defined by

$$
\zeta_{\Lambda}(s ; x)=\sum_{v \in \Lambda} \frac{1}{|x+v|^{s}}, \quad x \in \mathbb{R}^{d}
$$

is the Λ-periodic potential generated by the Riesz s-energy $|x|^{-s}$.

$$
F_{s, \Lambda}(x)=\zeta_{\wedge}(s ; x)+\frac{2 \pi^{d / 2}|\Lambda|^{-1}}{\Gamma\left(\frac{s}{2}\right)(d-s)}, \quad s>d
$$

$$
\sum_{v \in \Lambda} \int_{1}^{+\infty} e^{-|x+v|^{2} t} \frac{t^{\frac{s}{2}-1}}{\Gamma\left(\frac{s}{2}\right)} d t+\frac{1}{|\Lambda|} \sum_{w \in \Lambda^{*} \backslash\{0\}} e^{2 \pi i\langle x, w\rangle} \int_{0}^{1} \frac{\pi^{d / 2}}{t^{d / 2}} e^{-\frac{\pi^{2}|w|^{2}}{t}} \frac{t^{\frac{s}{2}-1}}{\Gamma\left(\frac{s}{2}\right)} d t
$$

The energy in the torus

For $\omega \in \Omega^{N}$ define, for $0<s<d$, the periodic Riesz s-energy of $\omega=\left(x_{1}, \ldots, x_{N}\right)$ by

$$
E_{s, \Lambda}(\omega)=\sum_{k \neq j} F_{s, \Lambda}\left(x_{k}-x_{j}\right),
$$

and the minimal periodic Riesz s-energy by

$$
\mathcal{E}_{s, \Lambda}(N)=\inf _{\omega \in\left(\mathbb{R}^{d}\right)^{N}} E_{s, \Lambda}\left(\omega_{N}\right)
$$

This was considered by Hardin, Saff and Simanek who computed the leading terms.

Known results in the torus

Hardin, Saff, Simanek and Su proved that for $0<s<d$ there exists a constant $C_{s, d}$ independent of Λ such that for $N \rightarrow \infty$

$$
\mathcal{E}_{s, \Lambda}(N)=\frac{2 \pi^{d / 2}|\Lambda|^{-1}}{\Gamma\left(\frac{s}{2}\right)(d-s)} N^{2}+C_{s, d}|\Lambda|^{-s / d} N^{1+\frac{s}{d}}+o\left(N^{1+\frac{s}{d}}\right)
$$

It is also shown that for $0<s<d$

$$
C_{s, d} \leq \inf _{\Lambda} \zeta_{\Lambda}(s),
$$

where Λ runs on the lattices with $|\Lambda|=1$.

Known results in the torus

Hardin, Saff, Simanek and Su proved that for $0<s<d$ there exists a constant $C_{s, d}$ independent of Λ such that for $N \rightarrow \infty$

$$
\mathcal{E}_{s, \Lambda}(N)=\frac{2 \pi^{d / 2}|\Lambda|^{-1}}{\Gamma\left(\frac{s}{2}\right)(d-s)} N^{2}+C_{s, d}|\Lambda|^{-s / d} N^{1+\frac{s}{d}}+o\left(N^{1+\frac{s}{d}}\right)
$$

It is also shown that for $0<s<d$

$$
C_{s, d} \leq \inf _{\Lambda} \zeta_{\Lambda}(s)
$$

where Λ runs on the lattices with $|\Lambda|=1$. The Epstein zeta function $\zeta_{\Lambda}(s)$ defined by

$$
\zeta_{\wedge}(s)=\sum_{v \in \Lambda \backslash\{0\}} \frac{1}{|v|^{s}}, \quad s>d
$$

can be extended analytically to $\mathbb{C} \backslash\{d\}$.

Some estimates

Sarnak and Strömbergsson observed that

$$
\int \zeta_{\Lambda}(s) d \lambda_{d}(\Lambda)=0
$$

thus $C_{s, d}<0$.

Some estimates

Sarnak and Strömbergsson observed that

$$
\int \zeta_{\Lambda}(s) d \lambda_{d}(\Lambda)=0
$$

thus $C_{s, d}<0$.
But all explicitly known lattices in large dimensions are such that the corresponding Epstein zeta function have a zero in $0<s<d$.

Some estimates

Sarnak and Strömbergsson observed that

$$
\int \zeta_{\Lambda}(s) d \lambda_{d}(\Lambda)=0
$$

thus $C_{s, d}<0$.
But all explicitly known lattices in large dimensions are such that the corresponding Epstein zeta function have a zero in $0<s<d$.
The value of $C_{s, d}$ it is known only for $d=1$ and
$C_{s, 1}=\zeta_{\mathcal{Z}}(s)=2 \zeta(s)$. For $d=2$ it is known that $\inf _{\Lambda} \zeta_{\Lambda}(s)$ is attained for the triangular lattice.

Determinantal processes and projection kernels

To define the processes we will consider only projection kernels.

Definition

We say that K is a projection kernel if it is a Hermitian projection kernel, i.e. the integral operator in $L^{2}(\mu)$ with kernel K is selfadjoint and has eigenvalues 1 and 0 .

A projection kernel $K(x, y)$ defines a determinantal process with N points a.s. if the trace for the corresponding integral operator equals N, i.e. if

$$
\int_{\Omega} K(x, x) d \mu(x)=N
$$

Translation invariant kernels

For $w \in \Lambda^{*}$, the Laplace-Beltrami eigenfunctions
$f_{w}(u)=e^{2 \pi i\langle u, w\rangle}$ of eigenvalue $-4 \pi^{2}\langle w, w\rangle$ i.e. satisfying

$$
\Delta f_{w}+4 \pi^{2}\langle w, w\rangle f_{w}=0
$$

are ortonormal in $L^{2}(\Omega)$, with respect to the normalized lebesgue measure μ,

$$
\int_{\Omega} f_{w}(u) \overline{f_{w^{\prime}}(u)} d \mu(u)=\delta_{w, w^{\prime}}
$$

for $w, w^{\prime} \in \Lambda^{*}$.

Translation invariant kernels

For $w \in \Lambda^{*}$, the Laplace-Beltrami eigenfunctions
$f_{w}(u)=e^{2 \pi i\langle u, w\rangle}$ of eigenvalue $-4 \pi^{2}\langle w, w\rangle$ i.e. satisfying

$$
\Delta f_{w}+4 \pi^{2}\langle w, w\rangle f_{w}=0
$$

are ortonormal in $L^{2}(\Omega)$, with respect to the normalized lebesgue measure μ,

$$
\int_{\Omega} f_{w}(u) \overline{f_{w^{\prime}}(u)} d \mu(u)=\delta_{w, w^{\prime}}
$$

for $w, w^{\prime} \in \Lambda^{*}$.
We consider functions $\kappa=\left(\kappa_{N}\right)_{N \geq 0}$ where each
$\kappa_{N}: \Lambda^{*} \longrightarrow\{0,1\}$ has compact support define the kernels

$$
K_{N}(u, v)=\sum_{w \in \Lambda^{*}} \kappa_{N}(w) e^{2 \pi i\langle u-v, w\rangle}
$$

Expected Energies

The expected periodic Riesz s-energy of T_{N} points is

$$
\mathbb{E}\left(E_{s, \Lambda}(x)\right)=\int_{\Omega^{2}}\left(T_{N}^{2}-\left|K_{N}(u, v)\right|^{2}\right) F_{s, \Lambda}(u-v) d \mu(u) d \mu(v)
$$

Expected Energies

The expected periodic Riesz s-energy of T_{N} points is

$$
\mathbb{E}\left(E_{s, \Lambda}(x)\right)=\int_{\Omega^{2}}\left(T_{N}^{2}-\left|K_{N}(u, v)\right|^{2}\right) F_{s, \Lambda}(u-v) d \mu(u) d \mu(v)
$$

Theorem

Let $x=\left(x_{1}, \ldots, x_{T_{N}}\right)$ be drawn from the determinantal process Then, for $0<s<d$, the expected energy is
$\frac{2 \pi^{d / 2}}{\Gamma\left(\frac{s}{2}\right)(d-s)|\Lambda|^{-1}}\left(T_{N}^{2}-T_{N}\right)-\frac{\pi^{s-\frac{d}{2}} \Gamma\left(\frac{d-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)|\Lambda|} \sum_{\substack{w, w^{\prime} \in \Lambda^{*} \\ w \neq w^{\prime}}} \frac{\kappa_{N}(w) \kappa_{N}\left(w^{\prime}\right)}{\left|w-w^{\prime}\right|^{d-s}}$.

Frequencies in an open set

Definition

Let $\mathcal{D} \subset \mathbb{R}^{d}$ be open, bounded with $|\partial D|=0$. Take

$$
k_{N}(w)= \begin{cases}1 & \text { if } w \in \Lambda^{*} \cap N^{1 / d} \mathcal{D} \\ 0 & \text { otherwise }\end{cases}
$$

Frequencies in an open set

Definition

Let $\mathcal{D} \subset \mathbb{R}^{d}$ be open, bounded with $|\partial D|=0$. Take

$$
k_{N}(w)= \begin{cases}1 & \text { if } w \in \Lambda^{*} \cap N^{1 / d} \mathcal{D} \\ 0 & \text { otherwise }\end{cases}
$$

Proposition

Let $|\Lambda \| \mathcal{D}|=1$. Then $\mathbb{E}_{x \in\left(\mathbb{R}^{d}\right)^{N_{*}}}\left(E_{s, \Lambda}(x)\right)$ is

$$
\begin{gathered}
\frac{2 \pi^{d / 2}|\Lambda|^{-1}}{\Gamma\left(\frac{s}{2}\right)(d-s)} N_{*}^{2}-\frac{\pi^{s-\frac{d}{2}} \Gamma\left(\frac{d-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)|\Lambda|} I_{\mu^{*}}^{\mathcal{D}} N_{*}^{1+s / d}+o\left(N_{*}^{1+s / d}\right), \\
I_{\mu^{*}}^{\mathcal{D}}=\int_{\mathcal{D} \times \mathcal{D}} \frac{1}{|x-y|^{d-s}} d \mu^{*}(x) d \mu^{*}(y),
\end{gathered}
$$

Ω^{*} is a fundamental domain for Λ^{*} and $\mu^{*}\left(\Omega^{*}\right)=1$.

Final optimization

A natural question is now, given a fixed lattice Λ, to find the optimal $\mathcal{D} \subset \mathbb{R}^{d}$.

Theorem (Riesz inequality)

Given f, g, H nonnegative functions in \mathbb{R}^{d} with $h(x)=H(|x|)$ symmetrically decreasing. Then
$\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f(x) g(y) H(|x-y|) d x d y \leq \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \tilde{f}(x) \widetilde{g}(y) H(|x-y|) d x d y$,
where \tilde{f}, \tilde{g} are the symmetric decreasing rearrangements of f and g.

Upper bounds for the minimal Energy

Proposition

If we take

$$
\mathcal{D}=\mathbb{B}_{d}\left(0, r_{d}\right), \text { with } r_{d}=\left(\frac{d}{\omega_{d-1}|\operatorname{det} A|}\right)^{1 / d}
$$

Then

$$
\begin{gathered}
\frac{\pi^{s-\frac{d}{2}} \Gamma\left(\frac{d-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)|\Lambda|^{1-\frac{s}{d}}} I_{\mu^{*}}^{\mathcal{D}}= \\
\Gamma\left(\frac{d-s}{2}\right) \Gamma(d+1) \Gamma\left(\frac{s+1}{2}\right) \\
2^{d+1} \Gamma\left(\frac{d}{2}+1\right) \Gamma\left(\frac{s}{2}+1\right) \Gamma\left(\frac{d+s}{2}+1\right) \Gamma\left(\frac{d+1}{2}\right)
\end{gathered} .
$$

$d=1$

In the one-dimensional case $C_{s, 1}=2 \zeta(s)$ and our bound is

$$
-\frac{\pi^{s-1 / 2} \Gamma\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)} \frac{2}{s(s+1)}
$$

Riesz Potentials in the sphere

Given a Riesz potential:

$$
K_{\alpha}(x, y)= \begin{cases}|x-y|^{-\alpha} & \text { if } \alpha>0 \\ \log |x-y|^{-1} & \text { if } \alpha=0\end{cases}
$$

and given n points \mathcal{P}_{n} at the sphere, we want to minimize the energy

$$
E_{\alpha}=\sum_{x, y \in \mathcal{P}_{n}, x \neq y} K_{\alpha}(x, y)
$$

among all collections of points $\mathcal{P}_{n} \subset \mathbb{S}^{d}$. When $\alpha=d-2$ we have the Newtonian potential that corresponds to the Thomson problem. When $\alpha \rightarrow \infty$, we recover Tammes problem.

"Well distributed" points on the sphere

$$
\mathbb{S}^{d}=\left\{x=\left(x_{1}, \ldots, x_{d+1}\right) \in \mathbb{R}^{d+1}: x_{1}^{2}+\cdots+x_{d+1}^{2}=1\right\}
$$

"Well distributed" points on the sphere

: R. Womersley web http://web.maths.unsw.edu.au/ rsw/Sphere/ 529 Fekete points

It is known that (Alexander, Stolarsky, Wagner, Kuijlaars, Saff, Brauchart) for $d \geq 2$ and $0<s<d$ there exist constants $C, c>0$ such that

$$
-c n^{1+s / d} \leq \mathcal{E}(s, n)-V_{s}\left(\mathbb{S}^{d}\right) n^{2} \leq-C n^{1+s / d}
$$

for $n \geq 2$.

It is known that (Alexander, Stolarsky, Wagner, Kuijlaars, Saff, Brauchart) for $d \geq 2$ and $0<s<d$ there exist constants $C, c>0$ such that

$$
-c n^{1+s / d} \leq \mathcal{E}(s, n)-V_{s}\left(\mathbb{S}^{d}\right) n^{2} \leq-C n^{1+s / d}
$$

for $n \geq 2$.
Conjecture (BHS) : there is a constant $A_{s, d}$ such that

$$
\mathcal{E}(s, n)=V_{s}\left(\mathbb{S}^{d}\right) n^{2}+\frac{A_{s, d}}{\omega_{d}^{s / d}} n^{1+s / d}+o\left(n^{1+s / d}\right)
$$

Furthermore, when $d=2,4,8,24$

$$
\begin{equation*}
A_{s, d}=\left|\Lambda_{d}\right|^{s / d} \zeta_{\Lambda_{d}}(s) \tag{1}
\end{equation*}
$$

where $\left|\Lambda_{d}\right|$ stands for the co-volume and $\zeta_{\Lambda_{d}}(s)$ for the Epstein zeta function of the lattice Λ_{d}. Here Λ_{d} denotes the hexagonal lattice for $d=2$, the root lattices D_{4} for $d=4$ and E_{8} for $d=8$ and the Leech lattice for $d=24$.

It is known that (Alexander, Stolarsky, Wagner, Kuijlaars, Saff, Brauchart) for $d \geq 2$ and $0<s<d$ there exist constants $C, c>0$ such that

$$
-c n^{1+s / d} \leq \mathcal{E}(s, n)-V_{s}\left(\mathbb{S}^{d}\right) n^{2} \leq-C n^{1+s / d}
$$

for $n \geq 2$.
Conjecture (BHS) : there is a constant $A_{s, d}$ such that

$$
\mathcal{E}(s, n)=V_{s}\left(\mathbb{S}^{d}\right) n^{2}+\frac{A_{s, d}}{\omega_{d}^{s / d}} n^{1+s / d}+o\left(n^{1+s / d}\right)
$$

Furthermore, when $d=2,4,8,24$

$$
\begin{equation*}
A_{s, d}=\left|\Lambda_{d}\right|^{s / d} \zeta_{\Lambda_{d}}(s) \tag{1}
\end{equation*}
$$

where $\left|\Lambda_{d}\right|$ stands for the co-volume and $\zeta_{\Lambda_{d}}(s)$ for the Epstein zeta function of the lattice Λ_{d}. Here Λ_{d} denotes the hexagonal lattice for $d=2$, the root lattices D_{4} for $d=4$ and E_{8} for $d=8$ and the Leech lattice for $d=24$.
Recall that in the logarithmic case the constant exist.

The harmonic ensemble in \mathbb{S}^{d}

Let Π_{L} of spherical harmonics of degree at most L in \mathbb{S}^{d}.
By Christoffel-Darboux formula the reproducing kernel of Π_{L}

$$
K_{L}(x, y)=\frac{\pi_{L}}{\binom{L+\frac{d}{2}}{L}} P_{L}^{(1+\lambda, \lambda)}(\langle x, y\rangle), \quad x, y \in \mathbb{S}^{d}
$$

where $\lambda=\frac{d-2}{2}$ and the Jacobi polynomials are $P_{L}^{(1+\lambda, \lambda)}(1)=\binom{L+\frac{d}{2}}{L}$.
By definition

$$
P(x)=\left\langle P, K_{L}(\cdot, x)\right\rangle=\int_{\mathbb{S}^{d}} K_{L}(x, y) P(y) d \mu(y), \text { for } P \in \Pi_{L}
$$

Π_{L} is the space of polynomials in \mathbb{R}^{d+1} restricted to \mathbb{S}^{d},

$$
\operatorname{dim} \Pi_{L}=\pi_{L}=\frac{2}{\Gamma(d+1)} L^{d}+o\left(L^{d}\right)
$$

and $K_{L}(x, x)=\pi_{L}$ for every $x \in \mathbb{S}^{d}$.

The harmonic ensemble in \mathbb{S}^{d}

The harmonic ensemble is the determinantal point process in \mathbb{S}^{d} with π_{L} points a.s. induced by the kernel

$$
K_{L}(x, y)=\frac{\pi_{L}}{\binom{L+\frac{d}{2}}{L}} P_{L}^{(1+\lambda, \lambda)}(\langle x, y\rangle)
$$

The harmonic ensemble in \mathbb{S}^{d}

The harmonic ensemble is the determinantal point process in \mathbb{S}^{d} with π_{L} points a.s. induced by the kernel

$$
K_{L}(x, y)=\frac{\pi_{L}}{\binom{L+\frac{d}{2}}{L}} P_{L}^{(1+\lambda, \lambda)}(\langle x, y\rangle)
$$

We study different aspects of this process:

The harmonic ensemble in \mathbb{S}^{d}

The harmonic ensemble is the determinantal point process in \mathbb{S}^{d} with π_{L} points a.s. induced by the kernel

$$
K_{L}(x, y)=\frac{\pi_{L}}{\binom{L+\frac{d}{2}}{L}} P_{L}^{(1+\lambda, \lambda)}(\langle x, y\rangle)
$$

We study different aspects of this process:

- Expected Riesz energies
- Linear statistics and spherical cap discrepancy
- Separation distance
- Energy optimality among isotropic processes

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ where $n=\pi_{L}$ be drawn from the harmonic ensemble. Then, for $0<s<d$,

$$
\mathbb{E}_{x \in\left(\mathbb{S}^{d}\right)^{n}}\left(E_{s}(x)\right)=V_{s}\left(\mathbb{S}^{d}\right) n^{2}-C_{s, d} n^{1+s / d}+o\left(n^{1+s / d}\right)
$$

for some explicit constant $C_{s, d}>0$.
The general case (and the limiting cases) are more difficult: we improve the constants or match the order ($\mathrm{s}=\mathrm{d}$).

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ where $n=\pi_{L}$ be drawn from the harmonic ensemble. Then, for $0<s<d$,

$$
\mathbb{E}_{x \in\left(\mathbb{S}^{d}\right)^{n}}\left(E_{s}(x)\right)=V_{s}\left(\mathbb{S}^{d}\right) n^{2}-C_{s, d} n^{1+s / d}+o\left(n^{1+s / d}\right)
$$

for some explicit constant $C_{s, d}>0$.
The general case (and the limiting cases) are more difficult: we improve the constants or match the order ($\mathrm{s}=\mathrm{d}$).
For $d=2$ the BHS conjecture is

$$
\mathcal{E}(s, n)=V_{s}\left(\mathbb{S}^{2}\right) n^{2}+\frac{(\sqrt{3} / 2)^{s / 2} \zeta_{\Lambda_{2}}(s)}{(4 \pi)^{s / 2}} n^{1+s / 2}+o\left(n^{1+s / 2}\right)
$$

where $\zeta_{\Lambda_{2}}(s)$ is the zeta function of the hexagonal lattice (Dirichlet L-series).

$d=2$

: Graphic of $-\frac{(\sqrt{3} / 2)^{s / 2} \zeta_{\Lambda_{2}}(s)}{(4 \pi)^{s / 2}}$ in black, $2^{-s} \Gamma\left(1-\frac{s}{2}\right)$ (spherical) in red, the constant $C_{s, 2}$ (harmonic) in green and $1 /(2 \sqrt{2 \pi})^{s}$ in blue.

Optimality

Can we find the best determinantal process? i.e. the kernel such that the expected energy is minimal?

Some assumptions:

Optimality

Can we find the best determinantal process? i.e. the kernel such that the expected energy is minimal?

Some assumptions:

- Invariant by rotations i.e.

$$
d(x, y)=d(z, t) \Longrightarrow K(x, y)=K(z, t), \quad x, y, z, t \in \mathbb{S}^{d}
$$

and then $K(\langle x, y\rangle)$ for some $K:[-1,1] \mapsto \mathbb{C}$.

Optimality

Can we find the best determinantal process? i.e. the kernel such that the expected energy is minimal?

Some assumptions:

- Invariant by rotations i.e.

$$
d(x, y)=d(z, t) \Longrightarrow K(x, y)=K(z, t), \quad x, y, z, t \in \mathbb{S}^{d}
$$

and then $K(\langle x, y\rangle)$ for some $K:[-1,1] \mapsto \mathbb{C}$.

- We need that for any $x_{1}, \ldots, x_{k} \in \mathbb{S}^{d}$ the matrix

$$
\left(K\left(\left\langle x_{i}, x_{j}\right\rangle\right)\right)_{1 \leq i, j \leq k},
$$

is nonnegative definite.

Optimality

Can we find the best determinantal process? i.e. the kernel such that the expected energy is minimal?

Some assumptions:

- Invariant by rotations i.e.

$$
d(x, y)=d(z, t) \Longrightarrow K(x, y)=K(z, t), \quad x, y, z, t \in \mathbb{S}^{d}
$$

and then $K(\langle x, y\rangle)$ for some $K:[-1,1] \mapsto \mathbb{C}$.

- We need that for any $x_{1}, \ldots, x_{k} \in \mathbb{S}^{d}$ the matrix

$$
\left(K\left(\left\langle x_{i}, x_{j}\right\rangle\right)\right)_{1 \leq i, j \leq k},
$$

is nonnegative definite.

- If we want n points a.s. in \mathbb{S}^{d} then all the eigenvalues must be 1 (projection kernel).

Schoenberg theorem

We must have

$$
K(x, y)=K(\langle x, y\rangle), \quad K(t)=\sum_{k=0}^{\infty} a_{k} C_{k}^{d / 2-1 / 2}(t)
$$

where $C_{k}^{d / 2-1 / 2}$ is a Gegenbauer polynomial and the
$a_{k} \in\left[0, \frac{2 k+d-1}{d-1}\right]$ satisfy:

$$
\operatorname{trace}(K)=K(1)=\sum_{k=0}^{\infty} a_{k}\binom{d+k-2}{k}<\infty
$$

Schoenberg theorem

We must have

$$
K(x, y)=K(\langle x, y\rangle), \quad K(t)=\sum_{k=0}^{\infty} a_{k} C_{k}^{d / 2-1 / 2}(t)
$$

where $C_{k}^{d / 2-1 / 2}$ is a Gegenbauer polynomial and the $a_{k} \in\left[0, \frac{2 k+d-1}{d-1}\right]$ satisfy:

$$
\operatorname{trace}(K)=K(1)=\sum_{k=0}^{\infty} a_{k}\binom{d+k-2}{k}<\infty
$$

To have a projection kernel with with n points we take

$$
a_{k} \in\left\{0, \frac{2 k+d-1}{d-1}\right\} \text { with } \sum_{k=0}^{\infty} a_{k}\binom{d+k-2}{k}=n .(*)
$$

Theorem

Let K_{a} and K_{b} be two kernels with coefficients $a=\left(a_{0}, a_{1}, \ldots\right)$ and $b=\left(b_{0}, b_{1}, \ldots\right)$ satisfying conditions $(*)$. Let \mathbb{E}_{a} and \mathbb{E}_{b} denote respectively the expected value of

$$
E_{2}(x)=\sum_{i \neq j} \frac{1}{\left\|x_{i}-x_{j}\right\|^{2}}
$$

when $x=\left(x_{1}, \ldots, x_{n}\right)$ is given by the determinantal point process associated to K_{a} and K_{b}. Assume that for every $i, j \in \mathbb{N}$ we have:

$$
\begin{equation*}
\text { if } i<j, a_{i}=0 \text { and } a_{j}>0 \text { then } b_{i}=0 \tag{2}
\end{equation*}
$$

Then, $\mathbb{E}_{a} \leq \mathbb{E}_{b}$, with strict inequality unless $a=b$. In particular, the harmonic kernel is optimal since (2) is trivially satisfied in that case.

Discrepancy

There are other ways of quantifying the "equidistribution" of the point process: A measure of the uniformity of the distribution of a set $x=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{S}^{d}$ of n points is the spherical cap discrepancy. We denote as $d(x, y)=\arccos \langle x, y\rangle$ the geodesic distance in \mathbb{S}^{d}. A spherical cap is a ball with respect to the geodesic distance.
The spherical cap discrepancy of the set x is

$$
\mathbb{D}(x)=\sup _{A}\left|\frac{1}{n} \sum_{i=1}^{n} \chi_{A}\left(x_{i}\right)-\mu(A)\right|,
$$

where A runs on the spherical caps of \mathbb{S}^{d}. Lubotzky, Philips and Sarnak found (a deterministic) construction with discrepancy smaller than $\frac{(\log n)^{2 / 3}}{n^{1 / 3}}$. This was improved by T. Wolff to $\frac{c}{n^{1 / 3}}$ and by Beck to $n^{-\frac{1}{2}\left(1+\frac{1}{d}\right)} \log n$

Theorem

Let $A=A_{L}$ be a spherical cap of radius $\theta_{L} \in[0, \pi)$ with

$$
\lim _{L \rightarrow \infty} \theta_{L} \in[0, \pi)
$$

and $L \theta_{L} \rightarrow \infty$ when $L \rightarrow \infty$. Let $\phi=\chi_{A}$. Then

$$
\operatorname{Var}(\mathcal{X}(\phi)) \lesssim L^{d-1} \log L+O\left(L^{d-1}\right)
$$

where the constant is $\lim _{L \rightarrow \infty} \theta_{L}^{d-1} \frac{4}{2^{d} \pi \Gamma\left(\frac{d}{2}\right)^{2}}$.
Corollary
For every $M>0$ the spherical cap discrepancy of a set of $n=\pi_{L}$ points $x=\left(x_{1}, \ldots, x_{n}\right)$ drawn from the harmonic ensemble satisfies

$$
\mathbb{D}(x)=O\left(L^{-\frac{d+1}{2}} \log L\right)=O\left(n^{-\frac{1}{2}\left(1+\frac{1}{d}\right)} \log n\right)
$$

