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Résumé

Dans ce mémoire, nous présentons quelques-unes de nos contributions dans le cadre de la quan-
tification de Berezin-Toeplitz, qui correspond à la limite semi-classique de la quantification des
espaces de phases compacts, et de l’étude des systèmes semi-toriques, qui sont des systèmes
intégrables en dimension quatre avec une symétrie S1 sous-jacente.

Ce manuscrit est divisé en cinq chapitres, incluant un premier chapitre introductif. Le deux-
ième chapitre expose des résultats purement semi-classiques: une estimation de la fidélité d’états
lagrangiens mixtes, l’étude de la distribution des zéros de certaines sections holomorphes, et
une description du propagateur quantique d’un opérateur de Berezin-Toeplitz avec des appli-
cations aux formules de traces. Le troisième chapitre constitue une préparation aux chapitres
suivants en présentant les prérequis sur les systèmes semi-toriques. Dans le quatrième chapitre,
nous décrivons nos résultats concernant la construction d’exemples explicites de systèmes semi-
toriques avec certains invariants symplectiques donnés. Enfin, dans le cinquième chapitre, nous
présentons un résultat spectral inverse pour les systèmes semi-toriques quantiques, qui combine
l’analyse semi-classique et la géométrie des systèmes semi-toriques.
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Summary

In this thesis, we present some of our contributions in the setting of Berezin-Toeplitz quantization,
corresponding to the semiclassical limit of the quantization of compact phase spaces, and of the
study of semitoric systems, which are four-dimensional integrable systems with an underlying
S1-symmetry.

This manuscript is divided into five chapters, including a first introductory chapter. The
second chapter describes purely semiclassical results: an estimate for the fidelity of mixed La-
grangian states, the study of the distribution of zeros of certain holomorphic sections, and a
description of the quantum propagator associated with a Berezin-Toeplitz operator, with ap-
plications to trace formulas. The third chapter constitutes a preparation to the next ones by
reviewing the prerequisites about semitoric systems. In the fourth chapter, we describe our
results regarding the construction of explicit examples of semitoric systems with certain pre-
scribed symplectic invariants. Finally, in the fifth chapter we present an inverse spectral result
for semitoric systems, combining semiclassical analysis and the geometry of semitoric systems.
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Chapter 1

Introduction

In this chapter, we start by reviewing the context underlying our works and some general mo-
tivations for them. Afterwards, we list the papers that will be discussed in the memoir and
briefly describe our other works. Then we introduce some notation and detail the structure of
the manuscript. We conclude with a few disclaimers regarding the text.

1.1 Context and motivations

The works that we describe in this memoir deal with two main topics: Berezin-Toeplitz quanti-
zation and semitoric systems.

The framework of Berezin-Toeplitz quantization is the semiclassical limit of the geometric
quantization procedure due to Kostant [Kos70] and Souriau [Sou66]. The relevant quantum ob-
servables in this setting are Berezin-Toeplitz operators [Ber75, BdMG81, BMS94, Gui95, BPU98,
Zel98b, Cha03a, MM08a]. In our work we are essentially interested in the quantization of a com-
pact Kähler manifold; a typical example is given by quantum spins where the classical phase
space is a two-sphere, see Example 2.1.1. Recently, Berezin-Toeplitz quantization has proved
useful in several fields of mathematics and mathematical physics such as the study of magnetic
Laplacians and of the quantum Hall effect [Kle16, KMMW17, CE20, Cha21b, Cha20, Kor22],
Kähler and algebraic geometry [Don01, MM07, BMZ11, GW11, RZ12, Fin12, Ber18, Anc21,
Ioo22, DZ22, IP23], symplectic topology [Pol12, Pol14, CP18, CP22] and topological quantum
field theory [AB11, CM15a, CM15b, MP15, Det18]. This list is in fact far from exhaustive.

Semitoric systems, introduced in [VuN07], also lie at the crossroad of several interesting
research areas. A semitoric system is a type of Liouville integrable system on a four-dimensional
symplectic manifold for which one component of the momentum map generates an effective
Hamiltonian S1-action. As such, semitoric systems constitute a natural first generalization of
four-dimensional toric systems. Another point of view is that they are integrable systems lifting
Hamiltonian S1-spaces (see [Kar99] and Section 3.5) with the mildest singularities, except for
toric systems (which, in fact, constitute a special class of semitoric systems). Semitoric systems
also form a particular class of the almost toric fibrations [Sym03] which have recently been playing
an important part in symplectic topology, see for instance [Via14, Via16, ES18, CV22]. Finally,
semitoric systems constitute natural examples of systems displaying a non-trivial monodromy
[Zou92, Mat96, Zun97] preventing the existence of global action variables [Dui80], and which
induces quantum monodromy [CD88, SZ99a] in their quantum counterparts.

In this manuscript we will also mix these two topics by discussing an inverse spectral problem
for quantum semitoric systems. Such inverse problems have been popularized by Kac in his
celebrated paper [Kac66] and have been broadly studied since. The most popular one is the
inverse spectral question for the Riemannian Laplacian, see the survey [DH13]. In this setting the
effect of the presence of an S1-symmetry has been investigated in [Zel98a, DMSD16] for example.
Here we are interested in an inverse problem for general semiclassical (~-pseudodifferential or
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Berezin-Toeplitz) operators, in the spirit of [VuN11, CPVuN13, PPVuN14] for instance. For
semitoric systems, the inverse question that we will discuss was first advertized in [PVN11] and
partial results were obtained in [PVN14, LFPVN16, LFPVN19].

1.2 Works presented in the manuscript

In this memoir, we have chosen to discuss the articles that were completed (or are being pre-
pared) after we started our current position in Strasbourg. These are the works listed below (in
chronological order of completion), which will be described in detail later.

• [LF18a] Yohann Le Floch. Bounds for fidelity of semiclassical Lagrangian states in Kähler
quantization. J. Math. Phys., 59(8):082103, 35, 2018;

• [LFP22] Yohann Le Floch and Joseph Palmer. Semitoric families. To appear in Mem.
Amer. Math. Soc., https://arxiv.org/abs/1810.06915, 2022;

• [CLF20] Laurent Charles and Yohann Le Floch. Quantum propagation for Berezin-Toeplitz
operators. Preprint, https://arxiv.org/abs/2009.05279v2, 43 pages, 2020;

• [LFVuN21] Yohann Le Floch and San Vũ Ngo.c. The inverse spectral problem for quantum
semitoric systems. Preprint, https://arxiv.org/abs/2104.06704, 105 pages, 2021;

• [ALF22] Michele Ancona and Yohann Le Floch. Berezin-Toeplitz operators, Kodaira maps,
and random sections. Preprint, https://arxiv.org/abs/2206.15112, 32 pages, 2022;

• [LFP23] Yohann Le Floch and Joseph Palmer. Families of four-dimensional integrable
systems with S1-symmetries. Preprint, https://arxiv.org/abs/2307.10670, 145 pages,
2023;

• [CLF23b] Laurent Charles and Yohann Le Floch. Pairings of Lagrangian states on compact
Kähler manifolds. In preparation, 2023+;

• [CLF23a] Laurent Charles and Yohann Le Floch. The Gutzwiller trace formula for Berezin-
Toeplitz operators on compact Kähler manifolds. In preparation, 2023+.

Let us briefly describe our other works. The papers

• [LF14a] Yohann Le Floch. Singular Bohr-Sommerfeld conditions for 1D Toeplitz operators:
elliptic case. Comm. Partial Differential Equations, 39(2):213–243, 2014;

• [LF14b] Yohann Le Floch. Singular Bohr-Sommerfeld conditions for 1D Toeplitz operators:
hyperbolic case. Anal. PDE, 7(7):1595–1637, 2014

formed the core of our PhD thesis and dealt with the semiclassical description of the spectrum
of a Berezin-Toeplitz operator with Morse principal symbol on a surface, near non-degenerate
singular values of this symbol. In

• [LFP16] Yohann Le Floch and Álvaro Pelayo. Euler–MacLaurin formulas via differential
operators. Adv. in Appl. Math., 73:99–124, 2016

with Álvaro Pelayo, we studied some Euler-Maclaurin formulas on polytopes. In the article (and
erratum)

• [LFPVN16] Yohann Le Floch, Álvaro Pelayo, and San Vũ Ngo.c. Inverse spectral theory
for semiclassical Jaynes–Cummings systems. Mathematische Annalen, 364(3):1393–1413,
2016;
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• [LFPVN19] Yohann Le Floch, Álvaro Pelayo, and San Vũ Ngo.c. Correction to: “Inverse
spectral theory for semiclassical Jaynes-Cummings systems”. Math. Ann., 375(1-2):917–
920, 2019

with Álvaro Pelayo and San Vũ Ngo.c, we obtained a partial inverse spectral result for semitoric
systems. In

• [LFP19a] Yohann Le Floch and Álvaro Pelayo. Spectral asymptotics of semiclassical unitary
operators. Journal of Mathematical Analysis and Applications, 473(2):1174–1202, 2019

with Álvaro Pelayo, we investigated the semiclassical joint spectrum of commuting unitary op-
erators for some axiomatic quantization. In

• [LFP19b] Yohann Le Floch and Álvaro Pelayo. Symplectic geometry and spectral properties
of classical and quantum coupled angular momenta. J. Nonlinear Sci., 29(2):655–708, 2019

with Álvaro Pelayo, we studied the coupled angular momenta system (see Example 3.3.4) from the
point of view of semitoric systems, in particular we computed some of its symplectic invariants.
Finally, the book

• [LF18b] Yohann Le Floch. A brief introduction to Berezin-Toeplitz operators on compact
Kähler manifolds. CRM Short Courses. Springer, Cham, 2018

constitutes an introduction to Berezin-Toeplitz quantization.

1.3 Symplectic preliminaries and notation

In this section we recall a few definitions from symplectic geometry that will be useful throughout
the text. This essentially serves as a way to define our conventions and notation, in particular
our sign choices.

Hamiltonian flows. Let (M,ω) be a connected symplectic manifold, and let f ∈ C∞(M,R).
We define the Hamiltonian vector field of f as the unique vector field Xf on M satisfying
df + ω(Xf , ·) = 0. The Poisson bracket of two smooth functions f, g ∈ C∞(M,R) is the smooth
function {f, g} = LXf g = ω(Xf , Xg) where L is the Lie derivative. If Xf is complete, the
Hamiltonian flow of f is the one-parameter family of symplectomorphisms (φt,f )t∈R defined as

∀m ∈M

{
d
dtφt,f (m) = Xf (φt,f (m)),

φ0,f (m) = m.

We will sometimes also consider time-dependent functions f ∈ C∞(R×M,R), in which case by
setting ft = f(t, ·) the Hamiltonian vector field Xft and the Hamiltonian flow φt,ft are defined
in the same way. When the function f is clear from the context, we will simply write φt for its
Hamiltonian flow.

Hamiltonian actions. Let G be a Lie group, let g be its Lie algebra and let exp : g → G
be the exponential map. Recall that the adjoint action of G on g is the left action given by
(g, ξ) ∈ G × g 7→ Adg(ξ) = d

dt

∣∣
t=0

g exp(tξ)g−1. This induces a left action of G on the dual g∗,
called the coadjoint action, defined by (g, α) ∈ G× g∗ 7→ Ad∗g−1(α). Here for g ∈ G, Ad∗g is the
dual of Adg, which means that for every α ∈ g∗ and every ξ ∈ g, 〈Ad∗g(α), ξ〉 = 〈α,Adg(ξ)〉 with
〈·, ·〉 the duality bracket between g and g∗.

Now, let (M,ω) be a connected symplectic manifold as above, and assume that G acts on
M ; we will write φg(m) = g ·m ∈ M for the action of an element g ∈ G on a point m ∈ M .
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The action is called symplectic if for every g ∈ G, φg : M → M is a symplectomorphism, i.e a
diffeomorphism such that φ∗gω = ω. For ξ ∈ g, let ξM be the vector field defined as

∀m ∈M ξM (m) =
d

dt

∣∣∣∣
t=0

φexp(tξ)(m).

The action is said to be Hamiltonian if there exists a map µ : M → g∗ such that

• for every ξ ∈ g, dµξ + ιξMω = 0 where ι is the interior product and µξ : M → R is defined
as

∀m ∈M µξ(m) = 〈µ(m), ξ〉;

• µ is equivariant with respect to the coadjoint action, i.e.

∀g ∈ G, ∀m ∈M, µ(φg(m)) = Ad∗g−1(µ(m)).

Such a map is called a momentum map for the action of G on M .
For instance, the Hamiltonian flow φt of f ∈ C∞(M,R) gives a Hamiltonian action of R on

M as t ·m = φt(m), and f is a momentum map for this action. Here we have identified the Lie
algebra of R with R, and more generally we will do the same for Rn. In fact we will also often
work with Tn-actions, and in this case we will use the standard identification of (tn)∗ with Rn.

1.4 Structure of the manuscript

The rest of this manuscript is divided into four chapters. Chapter 2 deals with Berezin-Toeplitz
quantization, Chapters 3 and 4 cover semitoric systems, and Chapter 5 contains results mixing
both semitoric systems and quantization in a crucial way.

More precisely, in Chapter 2, we briefly review the semiclassical limit of geometric quantiza-
tion in the Kähler setting, in particular the Berezin-Toeplitz operators. Then we describe the
contents of [LF18a], which deals with the estimation, in the semiclassical limit, of the fidelity of
two mixed states associated with Lagrangian submanifolds with densities in a compact Kähler
manifold. We also review the results from [ALF22], obtained with Michele Ancona, about the
distribution of zeros of certain holomorphic sections of a large power of some complex line bundle
over a Kähler manifold; these sections are obtained by applying a fixed Berezin-Toeplitz operator
to random holomorphic sections. Finally, we discuss the works [CLF20, CLF23b, CLF23a], joint
with Laurent Charles, in which we investigated the asymptotic behavior of the quantum prop-
agator associated with a Berezin-Toeplitz operator on a compact Kähler manifold, with some
applications to trace formulas.

In Chapter 3, we lay the ground for the subsequent chapters by introducing the objects
and concepts that will be used throughout the rest of the text. In particular, we review toric
systems, define semitoric systems, describe their symplectic classification and the corresponding
invariants, and discuss their relationship with Hamiltonian S1-spaces. This chapter can probably
be skipped by experts, as it is mainly aimed at introducing consistent notation and terminology
and setting the stage for the questions studied in the subsequent chapters, but we nevertheless
hope that it constitutes a pedestrian introduction to the topic of semitoric systems for the reader
who is not acquainted to it. There are of course more detailed references on this subject, see for
instance the lecture notes [SVuN18] or the recent review [AH19]. Additionally, the more general
topic of almost toric fibrations is covered in the nice recent lecture notes [Eva23].

In Chapter 4, we describe the contents of the two papers [LFP22, LFP23], joint with Joseph
Palmer. The main goal of these papers is to obtain a recipe to construct a semitoric system
with given number of focus-focus singularities, semitoric polygon, and height invariant, three
invariants that are bundled in the so-called marked semitoric polygon of the system. We explain
how we managed to come up with semitoric systems (either fully explicitly or by applying certain

10



sequences of blowups and blowdowns to fully explicit systems) for all the marked semitoric
polygons which are minimal with respect to some natural blowup operations, by considering
certain one-parameter families of integrable systems bifurcating between systems that are either
of toric type or semitoric with one or two focus-focus singularities.

In Chapter 5, we introduce the inverse spectral problem for semitoric systems that we con-
sidered in [LFVuN21] with San Vũ Ngo.c, and describe the steps in its resolution. Concretely, we
define semiclassical integrable systems quantizing semitoric systems, and we explain how from
the joint spectrum of such a system, one can recover, in a constructive way, all the symplectic
invariants of the underlying semitoric system, and hence this system up to isomorphism.

We conclude each of the Chapters 2, 4 and 5 by giving some perspectives for future works.
Our aim is not to describe an exhaustive and precise list of future projects but rather to give an
idea of some natural questions that arise from our works. We believe that some of the questions
evoked there could constitute good projects for prospective students.

1.5 Disclaimers

Before going any further, we must warn the reader about a few aspects of this manuscript.
But first, which reader are we talking about? After all, the primary goal of this memoir is

to allow its author to be granted his Habilitation à Diriger des Recherches, and to this end the
most important readers are the referees who generously accepted to delve into it. They may
in fact be disconcerted by the length of this text, which is partly explained by the fact that
we also (perhaps naively) envisioned another type of reader, namely students (or colleagues)
wanting to learn the topics discussed here. We tried to satisfy both audiences by implementing
different depths in each chapter: informal discussions, ideas of proofs, more technical details, but
also explicit examples, sometimes with detailed computations and numerical illustrations. We
sincerely hope that we did not completely fail, and that the outcome remains digestible for all
readers.

This choice to produce a document which may be useful to students also explains why we
chose to write it in English instead of French, so that it is accessible to a broader audience. We
hope that this did not have too big of an impact on the quality of the writing.

The other warnings concern two particular parts of the text. First, in Sections 2.4.2 and 2.4.3
we describe two articles which are still in preparation; we still chose to discuss their contents
because they both are at a quite advanced stage and the results that they contain are interesting
applications of the article [CLF20]. However, the consequence is that in these sections, we do
not cite precise statements in the corresponding manuscripts, and we give less details about the
ideas of the proofs. Second, at the time that we finish writing this memoir, the paper [LFVuN21],
discussed in Chapter 5, is still undergoing the refereeing process at a journal, after a round of
revision which led to some changes in the numbering of the various statements, figures, etc. Here
all the numbers that we give refer to the latest arXiv version [LFVuN21], which corresponds to
the pre-revision stage of the paper.
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Chapter 2

Some results in Berezin-Toeplitz
quantization

In this chapter, we start by briefly reviewing, in Section 2.1, the procedure of geometric quanti-
zation in the Kähler case, in the semiclassical setting, and describe the corresponding Berezin-
Toeplitz operators. We then summarize the contents of the works [LF18a], [ALF22], [CLF20]
and of the upcoming [CLF23b] and [CLF23a], which are inscribed in this context.

In [LF18a], described in Section 2.2, we study how the fidelity of two mixed states constructed
from Lagrangian submanifolds of a quantizable compact Kähler manifold reflects, in the semi-
classical limit, geometric properties of the intersection of these submanifolds. In [ALF22], which
is the object of Section 2.3, we study the distribution of zeros of a section of a large power of a
certain complex line bundle over a compact Kähler manifold, obtained by applying a Berezin-
Toeplitz operator to a random holomorphic section. In Section 2.4 we describe the paper [CLF20],
which deals with the asymptotic behavior of the quantum propagator associated with a Berezin-
Toeplitz operator, and the upcoming [CLF23b] and [CLF23a], which propose some applications
of the results of [CLF20] to trace formulas. Finally, in Section 2.5, we propose some ideas for
future works in these directions.

2.1 The semiclassical limit of geometric quantization

Geometric quantization, introduced independently by Kostant [Kos70] and Souriau [Sou66], is a
procedure that aims to construct a quantum state space and quantum observables from classical
mechanics on a compact phase space. Our framework is the semiclassical limit of geometric
quantization, in which case the quantum observables are Berezin-Toeplitz operators.

Berezin-Toeplitz operators were introduced by Berezin [Ber75], their microlocal analysis was
initiated by Boutet de Monvel and Guillemin [BdMG81], and they now form a well-established
subject thanks to the work of many authors, see for instance [BMS94, Gui95, BPU98, Zel98b,
Cha03a, MM08a]. Our goal here is not to describe the technical aspects of this theory but rather
to introduce notation and give an idea of the objects, allowing to understand the motivations
and contents of our works; actually, for more details and references we refer the reader to our
book [LF18b].

Throughout this text we will always work in the Kähler case. Concretely, let (M,ω, j)
be a compact, connected, Kähler manifold, and let n = dimCM ; recall that M is a complex
manifold and that ω is a symplectic form on M which is compatible with the complex structure
j. In particular M is endowed with a Riemannian metric g = ω(·, j·). Assume moreover that
there exists a Hermitian, holomorphic line bundle (L, h) → M whose Chern connection ∇ has
curvature curv(∇) = −iω, called a prequantum line bundle. It is standard that the existence of
a prequantum line bundle amounts to the fact that the cohomology class

[
ω
2π

]
is integral; when

this condition is satisfied, we say that M is quantizable.
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It is sometimes convenient to introduce an auxiliary Hermitian, holomorphic line bundle
(L′, h′) → M . In particular, several statements become simpler when using (L′, h′) = (δ, hδ) a
half-form bundle, i.e. a square root of the canonical bundle K = Ωn,0(M)→M , when it exists;
this corresponds to the metaplectic correction of geometric quantization. Note that K carries a
natural Hermitian metric hK given by

∀m ∈M ∀α, β ∈ Km hK(α, β) = in
2 α ∧ β̄

µ

with µ = ω∧n

n! the Liouville volume form on M . Any half-form bundle δ → M inherits a
holomorphic structure and a Hermitian metric hδ from hK ; the latter is the unique metric
satisfying

∀m ∈M ∀s ∈ δm (hδ)m(s, s) =
√

(hK)m(s⊗2, s⊗2).

The Chern connection ∇δ associated with this Hermitian metric is such that

∀s, t ∈ C∞(M, δ) ∇K(s⊗ t) = (∇δs)⊗ t+ s⊗ (∇δt)

with ∇K the Chern connection of K.
The semiclassical parameter is an integer k ≥ 1, and the quantum spaces are the spaces

Hk = H0(M,L⊗k ⊗ L′)

of holomorphic sections of L⊗k ⊗L′ →M . The inner product 〈·, ·〉k on the space Hk is given by

∀ψ, φ ∈ Hk 〈ψ, φ〉k =

∫
M
hk(ψ, φ)µ (2.1)

where hk is the Hermitian form induced by h and h′ on L⊗k ⊗ L′. For every k ≥ 1, Hk is
finite-dimensional, and in the semiclassical limit k → +∞ its dimension satisfies

dimHk =

(
k

2π

)n ∫
M

(ω + k−1β)∧n +O(kn−2) (2.2)

where β = icurv(∇′) − i
2curv(∇K) and ∇′ is the Chern connection of (L′, h′), see for instance

[Cha06, Section 1.2]. In particular when (L′, h′) = (δ, hδ), this formula simplifies since β = 0.
Let L2(M,L⊗k ⊗ L′) be the completion of the space of smooth sections of L⊗k ⊗ L′ → M

with respect to 〈·, ·〉k, and let Πk : L2(M,L⊗k ⊗ L′)→ Hk be the orthogonal projection on Hk.
The Berezin-Toeplitz operator associated with f ∈ C∞(M) is (the sequence of) operator(s)

Tk(f) : Hk → Hk, ψ 7→ Πk(fψ).

More generally, Berezin-Toeplitz operators are operators of the form

Tk = Πkf(·, k) +Rk : H0(M,L⊗k)→ H0(M,L⊗k)

where (f(·, k))k∈N is a sequence of elements of C∞(M) with an asymptotic expansion of the form

f(·, k) = f0 + k−1f1 + k−2f2 + . . .

in the C∞ topology, and the operator norm of Rk is a O(k−∞), i.e. a O(k−N ) for every N ∈ N.
The first term f0 in the asymptotic expansion of f(·, k) is called the principal symbol of Tk. The
function f1 + 1

2∆f0, where ∆ is the holomorphic Laplacian associated with the Kähler structure,
is the subprincipal symbol of Tk. In Section 2.4, we will also consider time-dependent Berezin-
Toeplitz operators, obtained by choosing sequences (f(·, ·, k))k∈N of elements of C∞(R×M).
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Any Berezin-Toeplitz operator Tk is an integral operator whose Schwartz kernel, for which
we use the notation Tk(·, ·), is an element of

H0(M ×M, (L⊗k ⊗ L′)� (L̄⊗k ⊗ L̄′)) ' H0(M,L⊗k ⊗ L′)⊗H0(M, L̄⊗k ⊗ L̄′)

(see the discussion after Example 2.1.1 regarding the isomorphism), where � is the external
tensor product, M is M endowed with −ω (and −j) and (L̄, h̄) is the conjugate of (L, h) (and
similarly for (L′, h′)). Concretely,

∀ψ ∈ Hk ∀x ∈M (Tkψ)(x) =

∫
M
Tk(x, y) · ψ(y) µ(y)

where the dot stands for contraction with respect to hk:

∀m ∈M ∀u, v ∈ L⊗km ⊗ L′m v̄ · u = (hk)m(u, v).

Equivalently, one can see Tk(x, y) as a map from L⊗ky ⊗ L′y to L⊗kx ⊗ L′x, sending v ∈ L⊗ky ⊗ L′y
to T (x, y) · v. In particular, the study of the asymptotic properties of the Schwartz kernel of Πk,
called the Bergman kernel, is a crucial aspect of the theory of Berezin-Toeplitz operators, and
has been carried out by many authors. In this semiclassical context, for the Kähler case, Catlin
[Cat99] and Zelditch [Zel98b], using a result of [BdMG81] on the Szegö projector associated with
a strictly pseudoconvex domain, proved independently the existence of an asymptotic expansion
of Πk(x, x) in integral powers of k−1 and computed the first term in this expansion. Then Lu
[Lu00] studied this asymptotic expansion, and in particular computed explicitly its next three
terms. Charles [Cha03a] generalized the result of [Zel98b], still using [BdMG81], to obtain a
general asymptotic expansion for Πk including the off-diagonal behavior. In this manuscript we
will mostly refer to this expansion to first order, namely

Πk(x, y) =

(
k

2π

)n
Sk(x, y)

(
a0(x, y) +O(k−1)

)
(2.3)

where S ∈ C∞(M ×M,L� L̄) satisfies S(x, x) = 1 (identifying Lx⊗ L̄x with C by means of the
Hermitian metric h on L) and |S(x, y)| < 1 whenever x 6= y, a0 ∈ C∞(M ×M,L′ � L̄′) is such
that a0(x, x) = 1 and the remainder O(k−1) is uniform in (x, y) ∈ M2. A direct approach for
the derivation of the full asymptotic expansion of Πk was later given in [BBS08]. Moreover, in
the analytic setting one can obtain exponentially small remainders in this asymptotic expansion,
see [RSN20, DHS20, Del21, Cha21a].

These results have been extended to the symplectic, not necessarily Kähler, case by many
authors, see [BU00, SZ02, DLM04, MZ08, MM08b, Kor18, KMM19, ILMM20] for instance.

Let us now describe a very simple but enlightening example which will follow us throughout
the text. Indeed, this example appears in several of the works that we describe in this manuscript
and serves as a good illustration of the various phenomena that we bring to light. This is also
why we describe it in detail in order to obtain a consistent notation.

Example 2.1.1 (Spin components). The unit sphere S2 ⊂ R3 with coordinates (x, y, z), endowed
with −1

2ωS2 where ωS2 is its usual symplectic form given by

∀u ∈ S2 ∀v, w ∈ TuS2 (ωS2)u(v, w) = 〈u, v ∧ w〉R3

(equivalently, in cylindrical coordinates, ωS2 = dθ ∧ dz), can be quantized as follows. Let πN
be the stereographic projection from the north pole of S2 to its equatorial plane; πN realizes a
diffeomorphism between S2 and the complex projective line CP1. The latter is endowed with the
Fubini-Study symplectic form ωFS, normalized in such a way that the volume of CP1 equals 2π.
A straightforward computation shows that π∗NωFS = −1

2ωS2 , hence the problem amounts to the
quantization of (CP1, ωFS).

14



Recall that the hyperplane bundle L = O(1)→ CP1 is the dual of the tautological line bundle

O(−1) =
{

([u], v) ∈ CP1 × C2 | v ∈ Cu
}
→ CP1, ([u], v) 7→ [u],

which is endowed with the natural holomorphic and Hermitian structures. These in turn induce
holomorphic and Hermitian structures on L→ CP1, and one readily checks that the correspond-
ing Chern connection has curvature −iωFS, so that L → CP1 is a prequantum line bundle.
Recall also that the canonical bundle of CP1 identifies with O(−2), and hence the tautological
line bundle O(−1) is a half-form bundle.

So the quantum spaces quantizing (CP1, ωFS), taking into account the metaplectic correction,
are

Hk = H0(CP1,O(k)⊗O(−1)) = H0(CP1,O(k − 1)), k ≥ 1.

It is standard that there is a canonical isomorphism between Hk and the space Chom
k−1 [w1, w2] of

homogeneous polynomials of degree k− 1 in two complex variables, obtained by considering the
duality pairing of the value of a section at [u] ∈ CP1 with u⊗k−1 ∈ O(−k + 1)[u]; through this
isomorphism, Chom

k−1 [w1, w2] inherits an inner product from the inner product 〈·, ·〉k on Hk (see
Equation (2.1)), and an orthonormal basis for this inner product is

e`,k =

√
k
(
k−1
`

)
2π

w`1w
k−1−`
2 , 0 ≤ ` ≤ k − 1. (2.4)

It is convenient to work in a chart of CP1, say U2 = {[w1 : w2] | w2 6= 0} with holomorphic
coordinate w = w1

w2
, and the corresponding trivialization of L via the local section s dual to the

local section
τ : U2 → U2 × C2, w 7→ ([w : 1], (w, 1)) (2.5)

ofO(−1), which has pointwise norm |τ(w)| =
√

1 + |w|2. Note also that in this local holomorphic
coordinate w, the Fubini-Study form reads

ωFS =
idw ∧ dw̄

(1 + |w|2)2
. (2.6)

This yields an identification of Hk with the space Ck−1[w] of polynomials of degree at most k−1
in one complex variable, in which the inner product reads

〈P,Q〉k =

∫
C

P (w)Q(w)

(1 + |w|2)k+1
|dw ∧ dw̄|.

In this identification the Bergman kernel is computed to be

Πk(v, w) =
k

2π
(1 + vw̄)k−1s⊗k−1(v)⊗ s⊗k−1(w). (2.7)

Observe that this is indeed consistent with Equation (2.3).
In this setting, and with a slight abuse of notation (writing Tk(f) instead of Tk(f ◦ π−1

N ) for
f ∈ C∞(S2)), the operators Tk(x), Tk(y) and Tk(z) are given by

Tk(x) =
1

k + 1

(
(1− w2)

d

dw
+ (k − 1)w

)
and

Tk(y) =
i

k + 1

(
(1 + w2)

d

dw
− (k − 1)w

)
, Tk(z) =

1

k + 1

(
2w

d

dw
− (k − 1)Id

)
.
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In the rest of the text, we will often work with the operators

X̂k = Tk

(
x− 1

2k
∆x

)
=
k + 1

k
Tk(x), Ŷk =

k + 1

k
Tk(y), Ẑk =

k + 1

k
Tk(z),

whose subprincipal symbols vanish (indeed ∆x = −2x and similarly for y and z). The action of
each of these operators in the above orthonormal basis is given by

X̂ke`,k = 1
k

(√
`(k − `) e`−1,k +

√
(`+ 1)(k − `− 1) e`+1,k

)
,

Ŷke`,k = i
k

(√
`(k − `) e`−1,k −

√
(`+ 1)(k − `− 1) e`+1,k

)
,

Ẑke`,k =
(

2`+1−k
k

)
e`,k,

(2.8)

for 0 ≤ ` ≤ k − 1, using the convention ep,k = 0 if p /∈ {0, . . . , k − 1}. For more details, see
for instance Examples 4.4.5 and 5.2.4 in [LF18b]. Note that if we do not need to work with the
metaplectic correction, it suffices to change k to k+1; this remark will be useful when discussing
the examples illustrating the papers in which we did not use this correction, namely [LF18a]
(in Section 2.2, in particular Example 2.2.5) and [ALF22] (in Section 2.3, in particular Example
2.3.2).

In Chapter 5 we will work intensively with an example (Example 5.1.2) whose underlying
phase space if S2 × S2. The previous example will suffice to describe its properties because the
quantum spaces associated with a product is the tensor product of the two quantum spaces:
if (L1, h1) → (M1, ω1, j1) and (L2, h2) → (M2, ω2, j2) are two prequantum line bundles over
compact Kähler manifolds, then (L1 � L2, h1 � h2) is a prequantum line bundle over M1 ×M2

and
H0(M1 ×M2, L

⊗k
1 � L

⊗k
2 ) ' H0(M1, L

⊗k
1 )⊗H0(M2, L

⊗k
2 ).

We briefly review another example with a non-compact classical phase space, but which will
nonetheless be useful in Chapter 5.

Example 2.1.2 (Bargmann spaces). Let (M,ω) = (C, ω0) where ω0 = idz ∧ dz̄, and let α =
i
2(zdz̄ − z̄dz). Let L0 = C×C→ C be the trivial bundle equipped with its standard Hermitian
structure, with the connection ∇ = d − iα, and with the unique holomorphic structure making
∇ its Chern connection. The Hilbert spaces Bk = H0(C, L⊗k0 ) ∩ L2(C, L⊗k0 ) coincide with the
Bargmann spaces

Bk =

{
fψk | f : C→ C holomorphic,

∫
C
|f(z)|2e−k|z|2 |dz ∧ dz̄| < +∞

}

where ψ(z) = e−
|z|2
2 for z ∈ C. The Bargmann transform Bk : f ∈ L2(R) 7→ Bkf , where

∀z ∈ C (Bkf)(z) = 2
1
4

(
k

2π

) 3
4
(∫

R
e−

k
2 (z2+x2−2

√
2zx)f(x)dx

)
ψk(z),

is a unitary operator from L2(R) to Bk. See [Bar61] for more details.

2.2 Lagrangian states and fidelity

In [LF18a], we introduced some quantum states associated with submanifolds with densities in
quantizable compact Kähler manifolds, and tried to recover some geometric information on pairs
of such submanifolds from the study of a quantity associated with the corresponding pair of states,
and coming from quantum information, called fidelity. Obtaining precise asymptotics for this
fidelity turned out to be too complicated and instead we estimated a lower and an upper bound
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for it, called the sub-fidelity and super-fidelity, in the case of a pair of Lagrangian submanifolds;
the asymptotics of these two bounds involved some interesting geometric quantities describing
the intersection of these submanifolds.

More precisely, as above, let (M,ω) be a compact Kähler manifold equipped with a prequan-
tum line bundle (L, h)→M ; given a submanifold Σ ⊂M , we want to construct a quantum state
(or rather, a sequence of states) in Hk = H0(M,L⊗k) that quantizes it in some sense. There
are two standard examples of such a construction: when Σ = {m} is a point, the state being
the coherent state at m (see below), and when Σ is a Bohr-Sommerfeld Lagrangian submanifold,
i.e. a Lagrangian submanifold with trivial holonomy with respect to the connection ∇k induced
by ∇ on L⊗k (see [BPU95] and [Cha03b]), which is useful, for instance, to obtain quasimodes
for Berezin-Toeplitz operators. In both cases, the state is a pure state [ψk] ∈ P(Hk), and its
microsupport MS(ψk) is contained in Σ. Recall that for a pure state, the microsupport MS(ψk)
is defined as follows: m /∈ MS(ψk) if and only if there exists a neighborhood Ω of m such that for
every N ≥ 0, |ψk| = O(k−N ) uniformly on Ω (here | · | stands for the pointwise norm associated
with the Hermitian metric hk on L⊗k). The states that we constructed in [LF18a] are mixed
quantum states, obtained as a probabilistic mixture of an infinite number of coherent states.

Recall that a mixed quantum state (or rather the density operator of a mixed state) on a
Hilbert space H is a positive semi-definite Hermitian operator ρ : H → H with Tr(ρ) = 1. A
pure state [ψ] ∈ P(H) is a particular type of mixed state with density operator ρ[ψ] = 〈·,ψ〉

‖ψ‖2ψ the
orthogonal projection on Span(ψ). A typical example of mixed state is the probabilistic mixture
of pure states

ρ = p1ρ[ψ1] + . . .+ pNρ[ψN ], p1, . . . , pN ≥ 0, p1 + . . .+ pN = 1,

meaning that this state is in the state [ψj ] with probability pj , for j ∈ {1, . . . , N}. To measure
how far from being pure a state ρ is, one can compute its purity Tr(ρ2), which equals one if and
only if ρ is a pure state.

One can measure the closeness of two mixed quantum states ρ and η by computing their
fidelity [Uhl76, Joz94]

F (ρ, η) = ‖√ρ√η‖2Tr = Tr

(√√
ρ η
√
ρ

)2

∈ [0, 1].

Observe that when ρ = ρ[ψ] and η = ρ[φ] are pure, then

F (ρ, η) = Tr(ρη) =
|〈ψ, φ〉|2

‖φ‖2‖ψ‖2
.

For any two mixed states ρ, η, F (ρ, η) = 1 if and only if ρ = η, and F (ρ, η) = 0 if and only if ρ(H)
and η(H) are orthogonal. This fidelity can be complicated to compute, and in [MPH+09] the
authors obtained the bounds E(ρ, η) ≤ F (ρ, η) ≤ G(ρ, η) for every ρ, η, where the sub-fidelity E
and the super-fidelity G, which can be measured experimentally, keep some of the good properties
of the fidelity and are defined as

E(ρ, η) = Tr(ρη) +
√

2
√

Tr(ρη)2 − Tr((ρη)2) (2.9)

and
G(ρ, η) = Tr(ρη) +

√
(1− Tr(ρ2))(1− Tr(η2)). (2.10)

These two quantities only involves products of ρ and η and not their square roots, and they
are thus more tractable than the fidelity itself. Note that the fidelity and super-fidelity coincide
when at least one of the states is pure.
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Let Σ ⊂ M be a closed, connected smooth submanifold of M of dimension d ≥ 1 equipped
with a smooth positive density σ such that

∫
Σ σ = 1. For k large enough, the state that we

associate with (Σ, σ) is

ρk(Σ, σ) =

∫
Σ
Pmk σ(m)

where Pmk is the coherent projector at the point m, defined as follows (after [Cha03a, Section
5]). Let U ⊂ L be the set of elements u of L such that h(u, u) = 1 and let π : U → M be the
natural projection; for k ≥ 1 and u ∈ U , consider the holomorphic section

ξuk : p 7→ Πk(p, π(u)) · uk

of L⊗k →M . Because of the asymptotic properties of the Bergman kernel Πk recalled in Section
2.1 (see in particular Equation (2.3)), there exists k0 ≥ 1 such that for every k ≥ k0 and every
u ∈ U , ξuk 6= 0. Therefore for k ≥ k0 and u ∈ U the state [ξuk ] is well-defined, and one readily
checks that it only depends on the point m = π(u); [ξuk ] is the coherent state at m, and the
coherent projector at m is the orthogonal projector Pmk = ρ[ξuk ].

Note that states of this type on the non-compact manifold M = Cn have been studied in
[PEU20].

One readily checks that ρk(Σ, σ) is indeed a state, and a first result is the computation of its
purity.

Proposition 2.2.1 ([LF18a, Proposition 3.3]). Let µΣ be the Riemannian volume on Σ corre-
sponding to the Riemannian metric induced by the Kähler metric g on Σ. The purity of ρk(Σ, σ)
satisfies

Tr
(
ρk(Σ, σ)2

)
=

(
2π

k

) d
2
(∫

Σ
fσ +O(k−1)

)
=

(
2π

k

) d
2
(∫

Σ
f2µΣ +O(k−1)

)
where f is the function such that σ = fµΣ.

In particular, as k goes to infinity, the state ρk(Σ, σ) will become further and further away
from pure, since this purity will go to zero.

Moreover, it is rather simple to show that the state ρk(Σ, σ) concentrates on Σ, by computing
its microsupport. For a mixed state ρk : Hk → Hk, the following definition of the microsupport
MS(ρk), coinciding with the above one when the state is pure, is given in [CP18, Section 4]: m /∈
MS(ρk) if and only if there exists f ∈ C∞(M) such that f(m) 6= 0 and ‖Tk(f)ρk‖op = O(k−∞)
where ‖ · ‖op is the operator norm.

Proposition 2.2.2 ([LF18a, Corollary 3.6]). The microsupport of the state ρk(Σ, σ) coincides
with Σ.

As explained earlier, given two submanifolds with densities (Σ1, σ1) and (Σ2, σ2), we would
like to compute the fidelity F (ρk(Σ1, σ1), ρk(Σ2, σ2)) of the corresponding states. Of course, if
(Σ1, σ1) = (Σ2, σ2) then ρk(Σ1, σ1) = ρk(Σ2, σ2) and this fidelity equals one. Another extreme
case is when Σ1 and Σ2 are disjoint.

Proposition 2.2.3 ([LF18a, Proposition 3.8]). Assume that Σ1 ∩ Σ2 = ∅. Then there holds
F (ρk(Σ1, σ1), ρk(Σ2, σ2)) = O(k−∞).

In intermediate cases, we do not expect this fidelity to be easily computable. So in [LF18a]
we chose to compute the sub-fidelity and super-fidelity of the states ρk,1 = ρk(Σ1, σ1) and
ρk,2 = ρk(Σ2, σ2)) in a situation that makes the computations tractable. More precisely, assume
that Σ1 = Γ1 and Σ2 = Γ2 are Lagrangian submanifolds of M intersecting transversally at a
finite number of points m1, . . . ,ms. Our results involve geometric quantities called the principal
angles at each intersection point.
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Let V be a real vector space equipped with an inner product (·|·), and let W and Z be two
subspaces of V such that α = dimW ≥ β = dimZ ≥ 1. The principal angles 0 ≤ θ1 ≤ . . . ≤
θβ ≤ π

2 between W and Z are defined recursively by the formula

∀` ∈ {1, . . . , β} cos(θ`) = (u`|v`) := max
u,v∈V`

(u|v)

where V1 = {(u, v) ∈W × Z | ‖u‖ = 1 = ‖v‖} and for ` ∈ {2, . . . , β},

V` = {(u, v) ∈ V1 | ∀p ∈ {1, . . . , `− 1}, (u|up) = 0 = (v|vp)} .

Observe that θ1 = 0 if and only if W ∩ Z 6= {0}.
Back to our problem, for every r ∈ {1, . . . , s}, let 0 < θ1(mr) ≤ θ2(mr) ≤ . . . ≤ θn(mr) ≤ π

2
be the principal angles between the subspaces TmrΓ1 and TmrΓ2 of TmrM , computed using
the inner product gmr , where we recall that g = ω(·, j·) is the Kähler metric. Moreover, as in
Proposition 2.2.1, for ` ∈ {1, 2} let µΓ` be the Riemannian volume coming from the Riemannian
metric induced by g on Γ`, and let f` be the function such that σ` = f`µΓ` . Moreover, for
r ∈ {1, . . . , s} we define the number

(σ1, σ2)mr = f1(mr)f2(mr) > 0. (2.11)

Theorem 2.2.4 ([LF18a, Theorems 4.2 and 4.9]). The super-fidelity of ρk,1 and ρk,2 satisfies:

G(ρk,1, ρk,2) = 1− 1

2

(
2π

k

)n
2
(∫

Γ1

f1σ1 +

∫
Γ2

f2σ2

)
+O(k−min(n,n2 +1)).

The sub-fidelity of ρk,1 and ρk,2 satisfies:

E(ρk,1, ρk,2) =

(
2π

k

)n
C((Γ1, σ1), (Γ2, σ2)) +O(k−(n+1)),

where C((Γ1, σ1), (Γ2, σ2)) = C1 +
√

2(C2 + C3) with

C1 =
s∑
r=1

(σ1, σ2)mr∏n
`=1 sin(θ`(mr))

, C2 =
s∑
r=1

s∑
q=1
q 6=r

(σ1, σ2)mr(σ1, σ2)mq∏n
`=1 sin(θ`(mr)) sin(θ`(mq))

and

C3 =

s∑
r=1

(σ1, σ2)2
mr∏n

`=1 sin(θ`(mr))

(
n∏
`=1

1

sin(θ`(mr))
−

n∏
`=1

1√
1 + sin2(θ`(mr))

)
.

This shows that for this choice of submanifolds, the sub-fidelity is a O(k−n) while the super-
fidelity is a O(1). This leaves a large possible range of behaviors for the fidelity itself; however,
recall that the states that we consider are far from being pure so we do not expect the super-
fidelity to give a good bound. To get a better intuition on this issue, it is interesting to study
an example.

Example 2.2.5. We work in the setting of Example 2.1.1, but without metaplectic correction,
which means that (M,ω) = (S2,−1

2ωS2), and the Hilbert spaces that we consider are Hk =
H0(CP1,O(k)) (no metaplectic correction). The Lagrangian submanifolds that we consider are
the two great circles Γ1 = {z = 0} and its image Γα2 by the rotation Rα of angle α ∈ (0, π2 ] about
the y-axis, namely

Γα2 =

{(x, y, z) ∈ S
2 | z = x tanα} if α 6= π

2 ,

{(x, y, z) ∈ S2 | x = 0} if α = π
2 .
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For the densities, we choose σ1 = |dθ|
2π where (θ, ϕ) are the usual spherical coordinates, and σα2

the density induced on Γα2 by σ1 through Rα.
The matrix of ρk,1 = ρk(Γ1, σ1) in the orthonormal basis (e`,k+1)0≤`≤k from Equation (2.4)

can be easily computed using the explicit formula (2.7) for the Bergman kernel, and reads

ρk,1 =
1

2k
diag

((
k

0

)
,

(
k

1

)
, . . . ,

(
k

k

))
;

in other words, ρk,1 is a probabilistic mixture of the pure states (e`,k+1)0≤`≤k according to a
binomial distribution B(k, 1

2). Note that

Tr(ρ2
k,1) =

1

4k

k∑
`=0

(
k

`

)2

=
1

4k

(
2k

k

)
∼k→+∞

1√
kπ

;

this agrees with Proposition 2.2.1 which gives

Tr(ρ2
k,1) ∼k→+∞

√
2π

k

∫ 2π

0

dθ

2π
√

2
=

1√
kπ

since µΓ1 = |dθ|√
2
so σ1 = 1

π
√

2
µΓ1 .

Computing the matrix elements of ραk,2 = ρk(Γ
α
2 , σ

α
2 ) in the orthonormal basis (e`,k+1)0≤`≤k

is more involved but can be done as follows, by exploiting the natural actions of SU(2) on CP1

and Hk. Let

τ2 =
1

2

(
0 −1
1 0

)
∈ su(2)

and let Uk(α) : Hk → Hk be the unitary operator corresponding to the action of exp(ατ2) ∈
SU(2):

∀ψ ∈ Hk Uk(α)ψ = exp(ατ2) · ψ

Then (see [LF18a, Lemma 5.3]) ραk,2 = Uk(α)ρk,1Uk(α)∗. One can check that Uk(α) is the
exponential of the operator Ak whose action in (e`,k+1)0≤`≤k reads

Ake`,k+1 =
α

2

√
(`+ 1)(k − `) e`+1,k+1 −

α

2

√
`(k − `+ 1) e`−1,k+1

for every ` ∈ {0, . . . , k}. Using these results, one can compute numerically the fidelity, sub-fidelity
and super-fidelity of ρk,1 and ραk,2.

Moreover, one can compute explicitly the quantities involved in the estimates of Theorem
2.2.4. Since, as we will see below, the estimate for the super-fidelity is a direct consequence of
Proposition 2.2.1, that we have checked for ρk,1 above and holds for ραk,2 as well because

Tr(ραk,2)2 = Tr((Uk(α)ρk,1Uk(α)∗)2) = Tr(ρk,1),

we will focus on the sub-fidelity. Note that Γ1 and Γα2 intersect transversally at the two points
m1 = (0,−1, 0) and m2 = (0, 1, 0), and for each of these points there is one principal angle
θ1(m1) = θ1(m2) = α. Moreover, since σ1 = 1

π
√

2
µΓ1 , by construction σα2 = 1

π
√

2
µΓα2

and so

(σ1, σ2)m1 = (σ1, σ2)m2 =
1

2π2
.

Consequently, the constants in Theorem 2.2.4 read

C1 =
1

π2 sinα
, C2 =

1

2π4 sin2 α
, C3 =

1

2π4 sinα

(
1

sinα
− 1√

1 + sin2 α

)
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the right-hand side of Equation (2.12).
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Figure 2.1: Sub-fidelity E(ρk,1, ρ
α
k,2) and kE(ρk,1, ρ

α
k,2), as functions of k, for 1 ≤ k ≤ 50 and

α = π
4 .

and we obtain after some simplifications:

E
(
ρk,1, ρ

α
k,2

)
=

2

kπ sinα

(
1 +

√
2− sinα√

1 + sin2 α

)
+O(k−2). (2.12)

We compare this theoretical estimate with the numerically computed sub-fidelity in Figure
2.1 for α = π

4 and various values of k, and in Figure 2.2 for k = 500 and various values of α.
Note that the remainder in Equation (2.12) may depend on α so if k is fixed, it does not make
sense to consider arbitrarily small values of α.

For this family of examples, one can in fact estimate more precisely the fidelity, at the cost
of rather involved technicalities. The statement itself reflects the technical aspect of this work.

Theorem 2.2.6 ([LF18a, Theorem 5.9]). Let α ∈ (0, π2 ] and let ρk,1 and ραk,2 be as in Example
2.2.5. The fidelity of ρk,1 and ραk,2 satisfies

F (ρk,1, ρ
α
k,2) ≤ 16k3δ−1

π sin2 α
+O(k

25δ
12
−1)

for every δ ∈ (0, 1
2 ].

This means that morally, this fidelity is of order O(k−1), and comparing this with Equation
(2.12) shows that the sub-fidelity gives the correct order for the fidelity in this case. This is also
confirmed numerically in Figure 2.3, where we compare the fidelity and sub-fidelity of ρk,1 and
ραk,2 when α = π

3 . It is tempting to conjecture that this remains true in our general setting of
two Lagrangian submanifolds intersecting transversally in (M2n, ω), meaning that the fidelity
will be a O(k−n), but we have not explored this path and the difficulty to obtain Theorem 2.2.6
in this simple example where symmetries help does not lead to optimism.

Let us now give some ideas of the proofs of the different results. The proof of Proposition
2.2.2 relies on a characterization of the microsupport in terms of semiclassical measures obtained
in [CP18, Proposition 4.4]. Then, except for Theorem 2.2.6 that we will discuss later, the
crucial point is always to apply a version of the stationary phase lemma after having reduced
the problem to the computation of an oscillatory integral by exploiting the asymptotic behavior
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circles represent the fidelity.
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of the Bergman kernel Πk (see Section 2.1). Here we will use the formulation from [Cha03a]
given in Equation (2.3). Actually we will need more properties, which we will describe later,
of the section S from this equation. In order to outline the proofs and compare their relative
difficulties, we will need to further enter into technical details.

For Proposition 2.2.1, preliminary computations lead to

Tr
(
ρk(Σ, σ)2

)
=

∫
Σ

∫
Σ

|Πk(x, y)|2

|Πk(x, x)| |Πk(y, y)|
σ(x)σ(y).

Because of the off-diagonal behavior of Πk, we obtain Tr
(
ρk(Σ, σ)2

)
up to O(k−∞) by computing

this integral on a neighborhood of the diagonal in Σ× Σ. Writing the section S from Equation
(2.3) locally near this diagonal as S = e−ϕ, this can in turn be computed by applying the
stationary phase lemma where the phase ϕ has a submanifold of critical points (the diagonal in
Σ × Σ). Computing carefully the transverse Hessian of this phase, using properties of S from
[Cha03a], gives the result.

To prove Proposition 2.2.2 regarding the microsupport of ρk(Σ, σ), we estimate the operator
norm ‖Tk(χ)ρk(Σ, σ)‖op for some appropriate cutoff functions χ on M . Since dimHk = O(kn)
(see Equation (2.2)), it suffices, actually, to estimate the trace Tr(Tk(χ)ρk(Σ, σ)). This can be
done see by means of the asymptotic expansion of the Schwartz kernel of Tk given in [Cha03a]
as a consequence of the asymptotic expansion of Πk; see [LF18a, Lemma 3.5] for more details.

To prove Proposition 2.2.3, we first derive the inequality

F (ρk(Σ1, σ1), ρk(Σ2, σ2)) ≤ dim(Hk) Tr(ρk(Σ1, σ1)ρk(Σ2, σ2))

and see that it suffices to estimate the trace on the right-hand side since dim(Hk) = O(kn) (see
Equation (2.2)). Then, similarly as above, we obtain

Tr(ρk,1ρk,2) =

∫
Σ1

∫
Σ2

|Πk(x, y)|2

|Πk(x, x)||Πk(y, y)|
σ1(x)σ2(y)

and, because of Equation (2.3) again, the integrand is a O(k−∞) uniformly on Σ1×Σ2 since the
latter does not intersect the diagonal of M ×M .

We now come to the proof of Theorem 2.2.4. We see from Equations (2.9) and (2.10) that for
both the sub-fidelity and super-fidelity of ρk,1 and ρk,2, we need to estimate the term Tr(ρk,1ρk,2).
This is the content of [LF18a, Theorem 4.4], which states that

Tr(ρk,1ρk,2) =

(
2π

k

)n( s∑
r=1

(σ1, σ2)mr∏n
`=1 sin(θ`(mr))

)
+O(k−(n+1)), (2.13)

where we recall that 0 < θ1(mr) ≤ . . . ≤ θn(mr) ≤ π
2 are the principal angles between TmrΓ1

and TmrΓ2, and that (σ1, σ2)mr is defined in Equation (2.11). From this and Proposition 2.2.1
we readily obtain the part of Theorem 2.2.4 regarding the super-fidelity, and the leading term in
this trace estimate gives the terms C1 and C2 in the result about the sub-fidelity.

To derive Equation (2.13), we once again write

Tr(ρk,1ρk,2) =

∫
Γ1

∫
Γ2

|Πk(x, y)|2

|Πk(x, x)||Πk(y, y)|
σ1(x)σ2(y),

and conclude as above that the only non-negligible contributions come from neighborhoods of
the intersection points m1, . . . ,ms. Each of these contributions is computed from a stationary
phase lemma applied to a phase with a single critical point, again by writing locally near the
corresponding intersection point the section S from Equation (2.3) as S = e−ϕ. The explicit
computation of the Hessian determinant at the critical point is not completely trivial and involves
a nice equality between the product of the sines of the principal angles between two n-dimensional
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subspaces W and Z of a 2n-dimensional vector space and a determinant involving a Gram-like
matrix containing the scalar products of elements of orthonormal bases of W and Z (see [LF18a,
Lemma 2.2]).

To conclude, we need to estimate the more involved term Tr((ρk,1ρk,2)2). The idea is the
same as before, but this time we have the rather intimidating equality

Tr
(
(ρk,1ρk,2)2

)
=

∫
Γ1

∫
Γ2

∫
Γ1

∫
Γ2

Tr(P x1k P x2k P y1k P y2k ) σ1(x1)σ2(x2)σ1(y1)σ2(y2)

and the term Tr(P x1k P x2k P y1k P y2k ) can again be written by means of the Bergman kernel, but not
only using its pointwise norm. Concretely, the contribution away from the intersection points
m1, . . . ,ms is negligible, and near each of these points we write the section S from Equation
(2.3) as S(x, y) = eiψ(x,y)t(x)⊗ t̄(y) where t is a local section of L with pointwise norm equal to
one. Then we need to integrate

eikΨ(x1,x2,y1,y2)a0(y1, y2)a0(x2, y1)a0(x1, x2)a0(y2, x1)

where the phase Ψ is given by

Ψ(x1, x2, y1, y2) = ψ(y1, y2) + ψ(x2, y1) + ψ(x1, x2) + ψ(y2, x1).

The computation of the Hessian of Ψ is delicate and relies on an explicit expression for the
Hessian of ψ, obtained in [Cha06], in terms of the Kähler data. After using another equality
involving the sines of the principal angles and the symplectic form (see [LF18a, Lemma 2.3]), we
get

Tr((ρk,1ρk,2)2) =

(
2π

k

)2n
(

s∑
r=1

(σ1, σ2)2
mr∏n

`=1 sin(θ`(mr))
√

1 + sin2(θ`(mr))

)
+O(k−(2n+1))

and by combining this estimate with Equation (2.13) we obtain the term C3 in Theorem 2.2.4.
An important remark is that, while the assumption that Γ1 and Γ2 are Lagrangian is crucial

in this computation of Tr((ρk,1ρk,2)2), it does not play any part in the derivation of Equation
(2.13) regarding Tr(ρk,1ρk,2). We suspect that this equation still holds for two submanifolds of
respective dimensions d and 2n−d (with 1 ≤ d ≤ n) intersecting transversally at a finite number
of points, up to adapting the notation: in this case only d principal angles θ1 ≤ . . . ≤ θd are
well-defined, and we should set θd+1 = . . . = θn = π

2 .
Another remark is that one can see on these proofs why the computation of the sub-fidelity

and super-fidelity is tractable. The density operators of our states are integral operators, and
these quantities involves their products (and powers); but the Schwartz kernel of a product can
be explicitly computed from the Schwartz kernels of the original operators, and this constitutes
the preliminary computations in the above proofs. However, there is no such general formula for
the Schwartz kernel of a square root, and this is why estimating the fidelity itself is a difficult
problem.

This is also why we needed to resort to different techniques to prove Theorem 2.2.6. The first
step is to compare the states ρk,1 and ραk,2 to Berezin-Toeplitz operators with Gaussian symbols.
More precisely, we show that for every c ≥ 2 and every k ≥ 1

ρk,1 ≤
1√
k + 1

Tk(f
c
k), ραk,2 ≤

1√
k + 1

Tk(f
c
k ◦R−α)

where f ck : S2 → R+ is defined as f ck(x, y, z) =

√
2(2c+1)

π exp
(
−c(k + 1)z2

)
and we recall that

R−α is the rotation of angle −α about the y-axis. Using the monotonicity of the fidelity, this
gives (see [LF18a, Proposition 5.7]), setting gck = f ck ◦R−α,

F (ρk,1, ρ
α
k,2) ≤ 1

k + 1
F (Tk(f

c
k), Tk(g

c
k)),

24



and it suffices to estimate the fidelity on the right-hand side. What have we gained? The point
is that for Berezin-Toeplitz operators in reasonable symbol classes, symbolic calculus allows to
approximate

√
Tk(f) by Tk(

√
f). Unfortunately, f ck is precisely a bad symbol, since it is of the

form f ck = f(
√
c(k + 1)·), with f(x, y, z) =

√
2(2c+1)

π exp
(
−z2

)
, and k

1
2 is the critical scale at

which symbolic calculus fails.
This can be circumvented by considering instead, for 0 < δ < 1

2 , the functions f c,δk =

f(
√
c(k + 1)

1
2
−δ·) and gc,δk = f c,δk ◦R−α, which belong in good symbol classes. Then

F (Tk(f
c
k), Tk(g

c
k)) ≤ F (Tk(f

c,δ
k ), Tk(g

c,δ
k )) =

∥∥∥∥∥
√
Tk

(
f c,δk

)√
Tk

(
gc,δk

)∥∥∥∥∥
2

Tr

.

Then we use symbolic calculus to approximate
√
Tk

(
f c,δk

)√
Tk

(
gc,δk

)
by Tk

(√
f c,δk gc,δk

)
, whose

trace norm can be easily estimated using a very explicit stationary phase computation carried out
in [LF18a, Appendix B]. The tricky and very technical part is to carefully control the remainders
appearing in these approximations. For this we need to discriminate between the interactions
near and away from the intersection points of Γ1 and Γα2 , and this analysis involves another
parameter r controlling the size of cutoffs near these points. The final step in the proof of
Theorem 2.2.6 is to optimize the parameters c, δ and r appearing in these remainders.

2.3 Random holomorphic sections and Berezin-Toeplitz opera-
tors

We will now describe the results obtained with Michele Ancona in [ALF22] regarding the expected
zero locus of a holomorphic section obtained as the image of a random holomorphic section under
the action of a Berezin-Toeplitz operator.

Trying to understand the distribution of the (real or complex) zeros of random polynomials
of large degree is a classical and well-established topic, dating back to the 1930s [BP31, LO38]
at least, and popularized by the seminal article by Kac [Kac43]. Here we are interested in the
complex zeros of holomorphic sections of high powers of a complex line bundle, chosen at random
according to a suitable Gaussian distribution, using a framework that has been introduced and
investigated by Shiffman and Zelditch (see [SZ99b]) and has been intensively studied since (see
for instance [BCHM18] for a recent survey on these topics).

Of course the particular case of random homogenous polynomials in two complex variables
falls into the study of random holomorphic sections, since such polynomials naturally arise as the
holomorphic sections of a suitable line bundle over CP1, see Example 2.1.1. But in fact this case
was already studied by Bogomolny, Bohigas and Leboeuf without using the language of sections
in [BBL96], where the authors proved that the zeros of such a random homogeneous polynomial
are uniformly distributed. In order to explain this result, and its generalization by Shiffman and
Zelditch in [SZ99b], we now introduce some notation and describe the problem more precisely.

Let (M,ω, j) be a compact Kähler manifold of complex dimension n, and let (L, h) → M
be a prequantum line bundle over M . As before, for k ≥ 1, let Hk = H0(M,L⊗k) be the
space of holomorphic sections of L⊗k → M , equipped with the inner product 〈·, ·〉k defined in
Equation (2.1) (here we do not consider any auxiliary line bundle L′). Let Nk = dimHk and let
(e`,k)1≤`≤Nk be any orthonormal basis of Hk. Then we pick a holomorphic section at random by
considering:

sk =

Nk∑
`=1

α`,ke`,k (2.14)

where the coefficients α`,k are independent and identically distributed complex random variables
with distribution NC(0, 1). Equivalently, the probability distribution of the random section sk
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is the measure µk on Hk defined as

dµk(s) =
1

πNk
e−‖s‖

2
kds

with ds the Lebesgue measure induced on Hk by the inner product 〈·, ·〉k.
The result of [BBL96] is the following: choose a random homogeneous polynomial Pk = sk

of degree k using this procedure with (M,ω) = (CP1, ωFS) and L → M the hyperplane bundle,
see Examples 2.1.1 and 2.3.2. Then for any measurable set U ⊂ CP1,

E [#(ZPk ∩ U)] =
k

2π
ωFS(U)

where ZPk is the set of zeros of Pk. Note that in this case the zeros are uniformly distributed for
every k ≥ 1; this is an effect of the U(2)-symmetry present in this example, but in what follows,
we will state asymptotic results as k → +∞.

In order to state higher-dimensional results, we need to use the language of currents, the form-
valued analogues of distributions. Recall in particular that a current of degree p on a smooth
manifold N of dimension d is an element of the topological dual D′p(N) of the space Dd−p(N) of
smooth compactly supported (d−p)-forms on N (we define similarly, if N is a complex manifold,
currents of bidegree (p, q)), and that a sequence (η`)`≥0 of currents of degree p converges to a
current η of degree p if and only if for every compactly supported (d− p)-form ϕ, the sequence
(〈η`, ϕ〉)`≥0 converges to 〈η, ϕ〉. Two typical examples are the current associated with a locally
integrable differential form η ∈ Ωp(N), defined by

∀ϕ ∈ Dn−p(N) 〈η, ϕ〉 =

∫
N
η ∧ ϕ

and the integration current ηV associated with a smooth submanifold V of codimension p of N ,
defined by

∀ϕ ∈ Dn−p(N) 〈ηV , ϕ〉 =

∫
V
ϕ.

In fact, even when V is only an analytic subset of N , one can define a current of integration by
integrating along the regular part of V , see [Lel57].

In particular, back to our setting, both the Kähler form ω and the zero locus Zs = {s = 0} of
any holomorphic section s ∈ Hk define currents of bidegree (1, 1) on M . The expectation of the
current-valued random variable given by the integration current associated with the zero locus
Zsk of the random holomorphic section sk is itself a (1, 1)-current defined as

∀ϕ ∈ Ωn−1,n−1(M) 〈E [Zsk ] , ϕ〉 = E [〈Zsk , ϕ〉] =

∫
s∈Hk

〈Zsk , ϕ〉dµk(s).

We can now state one of the results of [SZ99b], with a slightly different normalization due
to our different convention regarding the prequantum line bundle: recall that we assume that
curv(∇) = −iω, while in [SZ99b] it is assumed that curv(∇) = −2iπω. It is useful to keep this
difference in mind when comparing results.

Theorem 2.3.1 ([SZ99b, Theorem 1.1]). Let sk be a random holomorphic section as above and
let E [Zsk ] be its expected zero locus. Then 1

kE [Zsk ] converges to ω
2π in the sense of currents when

k → +∞.

In fact their proof gives the more precise:

∀ϕ ∈ Ωn−1,n−1(M) 〈E [Zsk ] , ϕ〉 =
k

2π
〈ω, ϕ〉+

i

2π
〈∂∂̄ log Πk, ϕ〉. (2.15)
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Here we slightly abuse notation and still write Πk for the restriction of the Bergman kernel to
the diagonal of M ×M . But for any ϕ ∈ Ωn−1,n−1(M), by Stokes’ formula,

〈∂∂̄ log Πk, ϕ〉 =

∫
M
∂∂̄ log Πk ∧ ϕ =

∫
M

log Πk ∂∂̄ϕ = O(k−1) sup
M
|ψ|

where ∂∂̄ϕ = ψω∧n, since Πk = 1 +O(k−1) uniformly on M (see Equation (2.3)). Therefore

〈E [Zsk ] , ϕ〉 =
k

2π
〈ω, ϕ〉+O(k−1) sup

M
|ψ|. (2.16)

We will compare this to our own results below.
Theorem 2.3.1 follows from results on the Kodaira map

Φk : M → CPNk−1, m ∈M 7→ [e1,k(m) : · · · : eNk,k(m)],

which is an embedding for k large enough by the Kodaira embedding theorem. It is standard
that the pullback Φ∗kωFS of the Fubini-Study form ωFS on CPNk−1 does not depend on the choice
of the orthonormal basis (e`,k)1≤`≤Nk and lies in the cohomology class k[ω]. In fact,

Φ∗kωFS = kω + i∂∂̄ log Πk. (2.17)

Tian’s asymptotic isometry theorem then shows that

∀p ≥ 0

∥∥∥∥1

k
Φ∗kωFS − ω

∥∥∥∥
Cp

= O(k−1). (2.18)

Consequently, 1
kΦ∗kωFS converges to ω in the C∞ topology when k → +∞. This result is due

to Tian [Tia90] for the C2 convergence and Zelditch [Zel98b] for the general C∞ convergence;
additionally Bouche [Bou90] showed the uniform convergence of the metric induced by Φk on L
in the case of a positive L whose curvature does not necessarily equal −iω, and Borthwick and
Uribe [BU00] study the symplectic, not necessarily Kähler, case. Moreover, one can check by
using the Poincaré-Lelong formula (see for instance [GH78, p. 388]) that

E [Zsk ] =
1

2π
Φ∗kωFS (2.19)

as currents. Combining Equations (2.18) and (2.19) gives Theorem 2.3.1, and combining Equa-
tions (2.17) and (2.19) yields Equation (2.15).

In [ALF22], we were interested in answering the following question: what happens to the
zero locus of a random holomorphic section when we apply a Berezin-Toeplitz operator to this
section? In particular, what kind of information about the operator can be recovered from a
close inspection of this zero locus? More precisely, let Tk : Hk → Hk be a Berezin-Toeplitz
operator with principal symbol f ∈ C∞(M,R), and let sk be a random holomorphic section as
above. From the data of the sequence of the zero loci of Tksk, what can one recover about f?
This interrogation was the motivation for the results explained below, and can be seen as part of
the popular family of inverse questions discussed in Section 1.1. Unlike in Chapter 5 where we
recover classical data from a quantum spectrum, here the idea is to try to retrieve information
on the classical observable f underlying the quantum observable Tk by testing Tk against a large
number of quantum states obtained as random combinations of pure states.

A first intuition can be obtained as follows. Since the operator Tk is analogous to the operator
of multiplication by f , one can naively expect Tksk to behave “like fsk”; this, of course, does
not make sense since the section fsk will not be holomorphic unless f is constant, but let us
nevertheless look at this section. Its zero locus is the union of the zero locus of the original
section sk and of the zero locus of f . So one is tempted to conjecture that the zero locus of f
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Figure 2.4: Zeros of sk (in red) and of Tksk (in blue) for one sample of the random polynomial
sk from Example 2.3.2 when k = 500, in the window [−2, 2]2 ⊂ C. Here we work in the image of
S2 \ {(0, 0, 1)} by the stereographic projection πN . The solid black line is the unit circle, image
by πN of the zero set of f . Recall also from Equation (2.6) that the Fubini-Study form puts
more weight on points with small modulus.

will play a part in the story, and more precisely that Tksk will have “more zeros” near f−1(0)
than elsewhere.

As we will now explain, this naive intuition is correct to some extent, in the setting that we
work with in [ALF22]. Namely, we assume that 0 is a regular value of f . A natural reflex is to
look at a simple example of this situation.

Example 2.3.2 (Height function on S2.). We work in the setting of Example 2.1.1, but without
metaplectic correction; thus we consider the Hilbert spacesHk = H0(CP1,O(k)) ' Chom

k [w1, w2],
k ≥ 1, with dimension Nk = k + 1, and random homogeneous polynomials sk of the form (2.14)
with (e`,k+1)0≤`≤k the orthonormal basis given in Equation (2.4) (after replacing k by k + 1).
Let Tk = Tk+1(z), with principal symbol f = z; in Figure 2.4 we display the zeros of sk and of
Tksk, computed numerically, for one sample of sk.

It can be visualized on this example that on the one hand, there seems to be a slightly bigger
concentration of the zeros of Tksk near f−1(0), but on the other hand, the zeros of Tksk appear
to be uniformly distributed, as are the zeros of sk. Hence we expect the effect of Tk to be subtle
and would like to quantify it. This is the object of the next two statements, Theorems 2.3.3 and
2.3.4.

Theorem 2.3.3 ([ALF22, Theorem 1.9]). Let f ∈ C∞(M,R) be a smooth function such that 0
is a regular value of f , and let Tk be a Berezin-Toeplitz operator with principal symbol f . Then
1
kE [ZTksk ] converges to ω

2π in the sense of currents when k → +∞. Moreover,

E [ZTksk ]− k

2π
ω −→
k→+∞

i

2π
∂∂̄ log f2

in the sense of currents.

A simple computation shows that under the assumptions of the theorem, the function log f2

is locally integrable, so that the current ∂∂̄ log f2 is well-defined. The first part of the statement
shows that the zeros of Tksk tend to become equidistributed in the semiclassical limit, as is
the case for the zeros of sk. Naturally, when Tk = Πk, then f = 1 and Tksk = sk, and from
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the second part of the statement we recover the fact that the difference E [Zsk ] − k
2πω goes to

zero when k → +∞, as can be deduced from Equation (2.16). But as soon as f−1(0) 6= ∅, the
situation radically changes because this difference is morally a O(1) instead of a O(k−1).

In order to get a finer comprehension of the role of f−1(0) in the distribution of zeros of Tksk,
we studied what happens at the quantum mechanical scale k−

1
2 . Before stating the result, we

need to introduce more notation. The Kähler structure induces a Hermitian metric on T ∗M ⊗C
that we denote by | · |ω. Moreover, for m ∈M and r > 0, we denote by B(m, r) the geodesic ball
(with respect to the Kähler metric) of radius r around m.

Theorem 2.3.4 ([ALF22, Theorem 1.10]). Let f ∈ C∞(M,R) be a smooth function such that
0 is a regular value of f , and let Tk be a Berezin-Toeplitz operator with principal symbol f . Let
m ∈M , and let ϕ ∈ Ωn−1,n−1(M). For every R > 0,∫

B
(
m, R√

k

)
(
E[ZTksk ]− kω

2π

)
∧ ϕ =

k
−n+1 Fϕ(m)

π|df(m)|2ω
Cn(R) +O(k−n+ 1

2 ) if m ∈ f−1(0),

k−n
R2nLϕ(m)Vol(BR2n (0,1))

2π +O(k−n−
1
2 ) if m /∈ f−1(0).

Here, Cn(R) is an explicit constant and Fϕ and Lϕ are the functions defined as

i ∂f ∧ ∂̄f ∧ ϕ = Fϕ
ω∧n

n!
, i ∂∂̄ log f2 ∧ ϕ = Lϕ

ω∧n

n!
.

This result allows to quantify the influence of the zero set f−1(0): the zero locus of Tksk
tends to concentrate a little more on f−1(0), as can be seen from comparing the orders k−n+1

and k−n in the cases f(m) = 0 and f(m) 6= 0.
The constant Cn(R) in Theorem 2.3.4 is given by

Cn(R) =
2nπn(n− 1)!

(2n− 2)!

(
n−1∑
`=0

(
n− 3

2

`

)
2`R2` − (1 + 2R2)n−

3
2

)
(2.20)

with
(
α
`

)
= α(α−1)...(α−`+1)

`! for α ∈ R, ` ∈ N>0 and
(
α
0

)
= 1.

We can check the numerical validity of Theorem 2.3.4 on the following example.

Example 2.3.5. We keep working in the setting of Example 2.3.2; the principal symbol f of
Tk is the height function on S2. Taking ϕ = 1 in the statement of Theorem 2.3.4 allows us
to compare the number of zeros of Tksk in the geodesic ball B(m, R√

k
) with the volume of this

ball, which can be computed explicitly. More precisely, for this choice of ϕ, the quantity from
Theorem 2.3.4 equals

E(m,R, k) = E
[
#

(
ZTksk ∩B

(
m,

R√
k

))]
− k

(
1− 1

1 + tan2( R√
k
)

)
.

We numerically approximate the quantity on the left-hand side by the sample mean

E(m,R, k,N) =
1

N

N∑
j=1

#

(
Z
Tks

(j)
k

∩B
(
m,

R√
k

))
− k

(
1− 1

1 + tan2( R√
k
)

)
, (2.21)

which, for a fixed k, converges to the quantity E(m,R, k) when N → +∞ by the law of large
numbers. Here s(1)

k , . . . , s
(N)
k ∈ H0(CP1,O(k)) are N independent random holomorphic sections,

and we locate the zeros of Tks
(j)
k numerically, after computing this section from the explicit

expression for Tk given in Example 2.1.1. By computing explicitly the quantities F1, L1, |df |ω
and C1(R), we see that Theorem 2.3.4 yields

E(m,R, k) =

1− 1√
1+2R2

+O(k−
1
2 ) if m ∈ f−1(0),

−2k−1R2(1+|z|4)
(|z|2−1)2

+O(k−
3
2 ) if m /∈ f−1(0),
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Figure 2.5: The blue diamonds are the numerical values of E(m,R, k,N) (see Equation (2.21))
for m = (1, 0, 0), k = 400, N = 1000 and various values of R, in the setting of Example 2.3.5.
The solid red line is the graph of R 7→ 1− 1√

1+2R2
.

where z = πN (m). We compare this quantity with E(m,R, k,N) in Figures 2.5 (for the case
m ∈ f−1(0)) and 2.6 (for the case m /∈ f−1(0)).

We can also view Theorem 2.3.4 as a positive answer to our original question: we can indeed
recover the zero set of f from the knowledge of E[ZTksk ], by looking at its action at the quantum
mechanical scale k−

1
2 . This is illustrated in the next example.

Example 2.3.6. We keep working on S2 as in Examples 2.3.2 and 2.3.5, but this time we
consider the operator Tk = Tk(x)Tk(y) − λId with λ ∈ (0, 1

2), where Tk(x) and Tk(y) are as in
Example 2.1.1. Tk is a Berezin-Toeplitz operator with principal symbol fλ = xy − λ. Using the
formulas from Example 2.1.1, one readily checks that for every ` ∈ {0, . . . , k},

Tke`,k+1 =
−i

(k + 2)2
(µ`,`−2,k+1e`−2,k+1 − µ`+2,`,k+1e`+2,k+1)− λe`,k+1

where (e`,k+1)0≤`≤k is the orthonormal basis from Equation (2.4),

µp,q,k+1 =
√
p(p− 1)(k − q)(k − q − 1) if p, q ∈ {2, . . . , k − 2}

and µp,q,k+1 = 0 otherwise. So again, we can compute explicitly Tksk for a random holomor-
phic section sk and locate its zeros numerically. Hence we numerically evaluate the quantity
E(m,R, k,N) from Equation (2.21) for various m ∈ S2, and display its absolute value in Figure
2.7. Thanks to the different order of magnitudes in Theorem 2.3.4 according to whether m be-
longs to f−1

λ (0) or not, we can observe the quantum footprints of this zero set in this figure. Of
course, we can vary λ and recover all the regular level sets of the function f = xy in this way.

Similarly to the results from [SZ99b] explained above, Theorems 2.3.3 and 2.3.4 follow from
properties of a “twisted” Kodaira map

ΦTk : M 99K CPNk−1, m 7→ [(Tke1,k)(m) : · · · : (TkeNk,k)(m)],

which is only well-defined outside
⋂
s∈H0(M,L⊗k){Tks = 0}. A first result (Theorem 1.1 in

[ALF22]) shows that when 0 is a regular value of the principal symbol f of Tk, then for k
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Figure 2.6: The blue diamonds are the numerical values of E(m,R, k,N) (see Equation (2.21))
for m = (0, 0, 1), k = 100, N = 100000 and various values of R, in the setting of Example 2.3.5.
The solid red line is the graph of R 7→ −2k−1R2(1+|z|4)

(|z|2−1)2
= −2k−1R2 for these values of k and

z = πN (m) = 0.

Figure 2.7: Reconstruction of the set f−1
λ (0) for fλ = xy − λ on S2 as in Example 2.3.6, with

λ = 1
3 , after stereographic projection. On the left we display the values of |E(m,R, k,N)| (see

Equation (2.21)) for R = 1√
2
, k = 100, N = 1000, and z = πN (m) taken on a 200 × 200 grid

discretizing the square {|<(z)|, |=(z)| ≤ 2}. On the right we show the level set f−1
λ (0) for λ = 1

3 .
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large enough
⋂
s∈H0(M,L⊗k){Tks = 0} = ∅, so that ΦTk is defined everywhere onM . We can then

study the pullback form Φ∗TkωFS, and obtain the following convergence result.

Theorem 2.3.7 ([ALF22, Theorem 1.2]). Assume that 0 is a regular value of the principal symbol
f ∈ C∞(M,R) of Tk. Then 1

kΦ∗TkωFS converges to ω in the sense of currents when k → +∞.

We also have access to the error term in this convergence.

Theorem 2.3.8 ([ALF22, Theorem 1.3]). Assume that 0 is a regular value of the principal
symbol f ∈ C∞(M,R) of Tk. Then

Φ∗TkωFS − kω −→
k→+∞

i∂∂̄ log f2

in the sense of currents.

This hints at the fact that as long as f−1(0) 6= ∅, we cannot expect more than the convergence
in the sense of currents in Theorem 2.3.7, which is confirmed by the next statement. This is a
striking difference with the case of f = 1 studied in [SZ99b] and recalled above, for which the
convergence was in the C∞ topology.

Theorem 2.3.9 ([ALF22, Theorem 1.4]). Assume that 0 is a regular value of the principal
symbol f ∈ C∞(M,R) of Tk. Then 1

kΦ∗TkωFS converges to ω locally uniformly on M \ f−1(0)

for the C∞ topology. However, 1
kΦ∗TkωFS does not converge to ω in the C0 topology (and even

pointwise) on f−1(0). More precisely,

(
1

k
Φ∗TkωFS

)
m

− ωm −→
k→+∞

0 if f(m) 6= 0,

4i(∂f∧∂̄f)m
|df(m)|2ω

if f(m) = 0.

We also have results about this pullback form at scale k−
1
2 .

Theorem 2.3.10 ([ALF22, Theorems 1.5 and 1.7]). Assume that 0 is a regular value of the
principal symbol f ∈ C∞(M,R) of Tk. Let ϕ be a smooth (n− 1, n− 1)-form on M . Then

∫
B(m, R√

k
)

(
Φ∗TkωFS − kω

)
∧ ϕ =

k
−n+1 2Fϕ(m)

|df(m)|2ω
Cn(R) +O(k−n+ 1

2 ) if m ∈ f−1(0),

k−nR2nLϕ(m)Vol(BR2n(0, 1)) +O(k−n−
1
2 ) if m /∈ f−1(0).

Here we have used the same notation as in Theorem 2.3.4, in particular the functions Fϕ and
Lϕ and the constant Cn(R) are the same as in this theorem.

An application of the Poincaré-Lelong formula gives the following generalization of Equation
(2.19):

E [ZTksk ] =
1

2π
Φ∗TkωFS.

This allows us to derive Theorem 2.3.3 from Theorems 2.3.7 and 2.3.8, and Theorem 2.3.4 from
Theorem 2.3.10.

To prove Theorems 2.3.7, 2.3.8, 2.3.9 and 2.3.10, we use the following generalization of
Equation (2.17):

Φ∗TkωFS = kω + i∂∂̄ logBk, (2.22)

where Bk is the restriction to the diagonal ofM×M of the Schwartz kernel of the Berezin-Toeplitz
operator T ∗kTk. Then we need to expand Bk up to the subprincipal term:

∀m ∈M Bk(m,m) =

(
k

2π

)n (
f(m)2 + k−1b1(m) +O(k−2)

)
(2.23)
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where the remainder O(k−2) is uniform on M and

b1 = 2f<(g) + 2f∆f +
r

2
f2 +

1

2
|df |2ω.

Here g ∈ C∞(M) is the contravariant subprincipal symbol of Tk, meaning that Tk = Πk(f +
k−1g)+O(k−2). Comparing Equations (2.22) and (2.23) morally gives Theorems 2.3.7 and 2.3.8;
to obtain a rigorous proof, we need to be careful and are helped by the fact that when f(m) = 0,
b1(m) = 1

2 |df(m)|2ω, which is positive by assumption. So f2 + k−1b1 > ck−1 for some constant
c > 0 everywhere on M . This allows us to obtain that for every ϕ ∈ Ωn−1,n−1(M),∣∣∣∣∫

M
∂∂̄ logBk ∧ ϕ

∣∣∣∣ = ‖∂∂̄ϕ‖∞O(log k).

In particular Equation (2.22) gives the convergence in Theorem 2.3.9 in the case f(m) 6= 0. To
obtain the result for the case f(m) = 0 in Theorem 2.3.9, we effectively compute ∂∂̄ logBk and
finally obtain that if f(m) = 0, then(

∂∂̄ logBk
)
m

=
4k(∂f ∧ ∂̄f)m
|df(m)|2ω

+O(1).

Finally, still in view of Equation (2.22), to prove Theorem 2.3.10 we need to estimate the quantity∫
B(m, R√

k
)
i∂∂̄ logBk ∧ ϕ

where ϕ is a (n − 1, n − 1)-form. We will outline the proof of this theorem, and for the sake of
simplicity we will not talk about the remainders, which, in [ALF22], are carefully estimated in
each of the steps below. A preliminary work on remainders leaves us with the task of estimating∫

B(m, R√
k

)
i∂∂̄ log(f2 + k−1b1) ∧ ϕ. (2.24)

When m /∈ f−1(0), the leading order in this quantity is
∫
B(m, R√

k
) ∂∂̄ log f2 ∧ ϕ, and the result

follows from a Taylor expansion of the function Lϕ around m. The case m ∈ f−1(0) is more
involved. First, computing ∂∂̄ log(f2 + k−1b1) and checking carefully the remainders yields that
the leading term in (2.24) reads

4i

∫
B(m, R√

k
)

k−1|df |2ω − 2f2

(2f2 + k−1|df |2ω)2
∂f ∧ ∂̄f ∧ ϕ.

By working in normal coordinates at m, using Hadamard’s lemma and performing a well-chosen
change of variables, this can in turn be approximated by the quantity

4k−n+1Fϕ(m)

|df(m)|2ω

∫
BR2n (0,R)

1− 2t21
(1 + 2t21)2

dt1 . . . dt2n.

The constant Cn(R) from Equation (2.20) appears in the explicit computation of the integral
involved in this quantity. This computation follows from suitable changes of variables which lead
to expressing the integral in terms of hypergeometric functions, and then from using some of the
identities relating these functions. The emergence of these hypergeometric functions gave the
problem an arithmetic flavor that surprised us.

To conclude, note that Drewitz, Liu and Marinescu [DLM23] studied random holomorphic
sections in a non-compact setting and in particular proved similar results as the above ones. In
particular, they derived estimates similar to those of Theorem 2.3.10 in the case that f ≥ 0 and
∆f(m) 6= 0 whenever f(m) = 0. So they allow for one additional order of vanishing of f , which
requires to look for the next term in the expansion of Bk from Equation (2.23). However in our
results f can change sign.
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2.4 Quantum propagation and trace formulas

We end this chapter by describing the contents of the manuscript [CLF20] and of the two papers
in preparation [CLF23b, CLF23a], all joint with Laurent Charles. These manuscripts deal with a
description, in the semiclassical limit, of the quantum propagator generated by a Berezin-Toeplitz
operator [CLF20], and the applications of this description to obtain trace formulas for Berezin-
Toeplitz operators: in [CLF23b], we obtain an asymptotic formula for the trace of the quantum
propagator at a fixed time, and in [CLF23a], we derive the famous Gutzwiller trace formula. We
focus on the precise description of the geometric quantities, especially the topological indices,
involved in these formulas.

Concretely, let Tk,t be a time-dependent Berezin-Toeplitz operator on Hk = H0(M,L⊗k⊗L′)
as in Section 2.1, with principal symbol Ht and with subprincipal symbol Hsub

t . Here we recall
that (L, h) is a Hermitian holomorphic line bundle whose Chern connection ∇ has curvature −iω,
and that (L′, h′) is an auxiliary Hermitian holomorphic line bundle. The quantum propagator
of Tk,t is the smooth path (Uk,t)t∈R of endomorphisms of Hk obtained as the unique solution of
the Schrödinger equation 

d
dtUk,t = −ikTk,tUk,t,

Uk,0 = Id.
(2.25)

In particular, if Tk,t = Tk does not depend on the time t, then Uk,t = exp(−iktTk). If Tk,t is
self-adjoint, then Uk,t is unitary.

Now we assume thatHt is real-valued. The quantum propagator Uk,t is the quantum analogue
of the Hamiltonian flow φt of Ht, and is expected to reflect the properties of this flow in the
semiclassical limit. In [CLF20] we precised this by describing the Schwartz kernel of Uk,t (that
we still call Uk,t) as a quantum state in H0(M ×M, (L⊗k ⊗ L′)� (L̄⊗k ⊗ L̄′)) supported on the
Lagrangian submanifold

Γφt = {(φt(x), x) | x ∈M} ⊂M ×M (2.26)

given by the graph of φt. In fact the precise result is that Uk,t is a Lagrangian state associated
with this graph, see the discussion following Theorem 2.4.1. In [CLF23b] we obtain an asymptotic
formula for the pairing of two such Lagrangian states under an assumption of clean intersection of
the underlying Lagrangian submanifolds, see Theorem 2.4.5; applying this formula to Uk,t and the
Bergman kernel Πk yields asymptotic estimates for the trace of the time-one propagator Tr(Uk,1)
under some natural assumptions on the time-one flow φ1. In [CLF23a] we use the asymptotic
description of Uk,t from [CLF20] and an adaptation of the pairing formula from [CLF23b] to
obtain the Gutzwiller trace formula: an asymptotic expansion of the trace Tr(f(k(E − Tk,t)))
where Tk,t is a Berezin-Toeplitz operator with time-independent principal symbol H, E is a reg-
ular value of H and f is a smooth function with smooth compactly supported Fourier transform.
This formula relates the distribution of the eigenvalues of Tk,t in a window of size O(k−1) around
E to the properties of the Hamiltonian flow of H in the level H−1(E).

2.4.1 Quantum propagators and smoothed spectral projectors

In order to describe the results of [CLF20] in more detail, we need to introduce some notation
related to lifts of the Hamiltonian flow φt to L and to the canonical bundle K →M .

First, for x ∈ M , let T Lt (x) : Lx → Lφt(x) be the parallel transport associated with ∇ on L
along the path s ∈ [0, t] 7→ φs(x) (and define T L′t (x) similarly). We define the prequantum lift
φLt of φ to L as

∀x ∈M φLt (x) = e−i
∫ t
0 Hr(φr(x))drT Lt (x) : Lx → Lφt(x).
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In particular, if γ = (φt(x))t∈[0,T ] is a contractible periodic orbit of the flow, then φLT (x) is the
operator of multiplication by eiA(x,T ) where A is the usual action functional:

A(x, T ) =

∫
D2

u∗ω −
∫ T

0
Hr(φr(x))dr (2.27)

for any smooth u : D2 →M with u(∂D2) = γ.
Second, the Hamiltonian flow can be lifted to the canonical bundle in two ways. On the

one hand, for x ∈ M we can consider the parallel transport T Kt (x) in K along the trajectory
s ∈ [0, t] 7→ φs(x), with respect to the Chern connection ∇K of K. On the other hand, we can
consider the linear map Dt(x) : Kx → Kφt(x) defined by

∀(α, v) ∈ Kx × ΛnTxM Dt(x)(α)((Txφt)∗v) = α(v). (2.28)

Or equivalently

∀(α, v) ∈ Kx × Λn,0TxM Dt(x)(α)((det(Txφt)
1,0)v) = α(v)

where (Txφt)
1,0 : T 1,0

x M → T 1,0
φt(x)M is the first block in the matrix decomposition of

Txφt ⊗ IdC : TxM ⊗ C = T 1,0
x M ⊕ T 0,1

x M → Tφt(x)M ⊗ C = T 1,0
φt(x)M ⊕ T

0,1
φt(x)M.

Here T 1,0M (respectively T 0,1M) is the holomorphic (respectively anti-holomorphic) tangent
bundle of M . Let ρt(x) ∈ C be the complex number such that Dt(x) = ρt(x)T Kt (x).

Theorem 2.4.1. Let Uk,t be the quantum propagator of a time-dependent Berezin-Toeplitz op-
erator Tk,t with real-valued principal symbol Ht. If x, y ∈M and t ∈ R are such that y 6= φt(x),
then Uk,t(y, x) = O(k−∞). Moreover, for any t ∈ R and x ∈M ,

Uk,t(φt(x), x) =
( k

2π

)n
ρt(x)

1
2 e−i

∫ t
0 H

sub
r (φr(x)) dr

[
φLt (x)

]⊗k
⊗T L′t (x) +O(kn−1) (2.29)

where ρ
1
2
t is the continuous square root of the function ρt which is equal to 1 at t = 0.

In this statement we view Uk,t(y, x) as a map from L⊗kx ⊗L′x to L⊗ky ⊗L′y, see Section 2.1. In
fact, we proved that Uk,t(φt(x), x) has a complete asymptotic expansion in integral powers of k−1,
and we also gave a uniform description of Uk,t(x, y) with respect to (x, y, t) on compact regions,
see [CLF20, Theorem 4.2]. More precisely, we showed that the Schwartz kernel Uk,t (multiplied
by
(

2π
k

)n
2 ) is a Lagrangian state family in the sense of [CLF20, Section 2.1], generalizing the

definition of Lagrangian state from [Cha03b].
If Γ is a closed Lagrangian submanifold of M and s ∈ C∞(Γ, L) is a flat unitary section, a

Lagrangian state associated with (Γ, s) and with principal symbol σ ∈ C∞(Γ, L′) is a sequence
Ψk ∈ Hk of the form

Ψk(x) =

(
k

2π

)n
4

F⊗k(x)⊗ a(x, k) +O(k−∞)

where

• F ∈ C∞(M,L) is such that ∂̄F vanishes to infinite order along Γ;

• F|Γ = s and |F (x)| < 1 for x /∈ Γ;

• a(·, k) is a sequence of elements of C∞(M,L′) with an asymptotic expansion a(·, k) =∑
`≥0 k

−`a` for the C∞ topology, where the sections a` are such that ∂̄a` vanishes to
infinite order along Γ, and a0|Γ = σ;
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• |Ψk| = O(kN ) uniformly on M for some integer N .

For instance, it is proved in [Cha03a] that the Bergman kernel Πk (multiplied by
(

2π
k

)n
2 ) is

a Lagrangian state in H0(M × M, (L⊗k ⊗ L′) � (L̄⊗k ⊗ L̄′)) associated with the diagonal in
M × M equipped with s = 1 and with principal symbol σ = 1, see Equation (2.3) and the
discussion surrounding it. The normalization

(
k

2π

)n
4 is here so that the norm of a Lagrangian

state is a O(1), see [Cha03b, Proposition 2.6]. Roughly, a Lagrangian state family is a smooth
one-parameter family of Lagrangian states associated with a smooth one-parameter family of
Lagrangian submanifolds.

Assume that M has a half-form bundle δ (see Section 2.1) and let L1 be the holomorphic
line bundle such that L′ = L1 ⊗ δ. First, in this case we can define Dt(x)

1
2 : δx → δφt(x)

as the continuous square root of Dt(x) equal to the identity at t = 0. Second, L1 inherits a
Hermitian metric from the metrics of L′ and δ, and as above we consider the parallel transport
T L1
t (x) : (L1)x → (L1)φt(x) with respect to the corresponding Chern connection. Then Equation

(2.29) becomes

Uk,t(φt(x), x) =
( k

2π

)n
e−i

∫ t
0 H

sub
r (φr(x)) dr

[
φLt (x)

]⊗k
⊗T L1

t (x)⊗
[
Dt(x)

] 1
2 +O(kn−1) (2.30)

Note that in fact, to obtain this result we only need to define the half-form bundle δ over the
trajectory s ∈ [0, t] 7→ φs(x), which is always possible.

Example 2.4.2. We use once again our favorite example of (M,ω) = (S2,−1
2ωS2) described in

Example 2.1.1. We consider the quantum propagator Uk,t associated with the Berezin-Toeplitz
operator Ẑk on Hk, see Equation (2.8). The Schwartz kernel of Uk,t can be computed thanks to
the general formula

Uk,t(w, v) =

k−1∑
`=0

(Uk,te`,k)(w)⊗ e`,k(v)

where we use the local coordinates on the chart U2 introduced in Example 2.1.1, and with
(e`,k)0≤`≤k−1 the orthonormal basis from Equation (2.4), which in this trivialization reads

e`,k(w) =

√
k
(
k−1
`

)
2π

w` s⊗k(z), 0 ≤ ` ≤ k − 1,

where s is the local section of L dual to the section τ defined in Equation (2.5). Since Ẑk acts
diagonally in this basis, with eigenvalues 2`+1−k

k , 0 ≤ ` ≤ k − 1, we obtain that

Uk,t(w, v) =
k−1∑
`=0

e−it(2`+1−k)e`,k(w)⊗ e`,k(v),

which can be rearranged as

Uk,t(w, v) =
k

2π
ei(k−1)t

k−1∑
`=0

(
k − 1

`

)
(e−2itwv̄)`s⊗k−1(w)⊗ s⊗k−1(v)

and finally yields

Uk,t(w, v) =
k

2π
ei(k−1)t

(
1 + e−2itwv̄

)k−1
s⊗k−1(w)⊗ s⊗k−1(v).

In particular,

|Uk,t(w, v)| = k

2π

∣∣∣∣∣ 1 + e−2itwv̄√
(1 + |w|2)(1 + |v|2)

∣∣∣∣∣
k−1
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is a O(k−∞) whenever w 6= e2itv = φt(v) (recall the 1
2 in the symplectic form). Furthermore,

Uk(φt(v), v) =
k

2π
ei(k−1)t

(
1 + |v|2

)k−1
s⊗k−1(φt(v))⊗ s⊗k−1(v). (2.31)

Since there exists a global half-form bundle δ = O(−1), we will compare this with Equation
(2.30). Recall that the principal symbol of Tk is H = z = |w|2−1

1+|w|2 and that its subprincipal
symbol vanishes. In particular Equation (2.30) yields

Uk(φt(v), v) ∼k→+∞
k

2π
(φLt (v))⊗k ⊗Dt(v)

1
2 (2.32)

with

φLt (v)s(v) = e−i
∫ t
0 H(φr(v))drT Lt (v)s(v) = e−itH(v)+i

∫ t
0 αφr(v)(XH(φr(v)))drs(φt(v))

where XH is the Hamiltonian vector field of H and α is any primitive of ωFS on U2, for instance
α = iwdw̄

1+|w|2 . A straightforward computation yields∫ t

0
αφr(v)(XH(φr(v))) dr =

2t|v|2

1 + |v|2

so φLt (v)s(v) = eits(φt(v)). Moreover, the flow φt preserves the complex structure so

Dt(v)
1
2 τ(v) = detC(Tvφt)

− 1
2 τ(φt(v)) = e−itτ(φt(v))

(recall that here the square root is chosen to be continuous in t and equal to 1 at t = 0).
Consequently, Equation (2.32) gives

Uk(φt(v), v)(s⊗k(v)⊗ τ(v)) ∼k→+∞
k

2π
ei(k−1)ts⊗k(φt(v))⊗ τ(φt(v)) = ei(k−1)ts⊗k−1(φt(v))

and this agrees with Equation (2.31) which gives

Uk(φt(v), v)(s⊗k(v)⊗ τ(v)) =
k

2π
ei(k−1)t h1(s(v), τ(v))︸ ︷︷ ︸

=1

s⊗k−1(φt(v))

since h(s(v), s(v)) = (1 + |v|2)−1.

This example is perhaps too simple since the Hamiltonian flow of H preserves the complex
structure. In [CLF20, Appendix A], we verify the validity of our results numerically on another
example on the torus T2, in which the Hamiltonian flow of the principal symbol of Tk does not
preserve the complex structure.

In [CLF20] we also obtained an asymptotic description of the Schwartz kernel of the smoothed
spectral projector f(k(E − Tk)), where Tk is a time-independent self-adjoint Berezin-Toeplitz
operator with principal symbol H and subprincipal symbol Hsub, f is a smooth function with a
smooth compactly supported Fourier transform and E ∈ R is a regular value of H.

We introduce another lift D′t of the Hamiltonian flow φt of H to the canonical bundle as
follows. Let E be a regular value of H and let x ∈ H−1(E). Then Txφt(XH(x)) = XH(φt(x)) so
Txφt descends to a symplectic map

TxH
−1(E)/Span(XH(x))

Txφt−→ Tφt(x)H
−1(E)/Span(XH(φt(x))).

Moreover, if Fx = Span(XH(x), jxXH(x)) (where we recall that j is the complex structure on
M), then its symplectic orthogonal Gx = F⊥x is a complement of Span(XH(x)) in TxH

−1(E)
so it is isomorphic to TxH

−1(E)/Span(XH(x)). Moreover, since Fx and Gx are symplectic
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subspaces preserved by jx, the canonical line Kx decomposes as the product of their canonical
lines: Kx ' K(Fx)⊗K(Gx). We set

D′t(x) = Ax ⊗Bx : Kx ' K(Fx)⊗K(Gx)→ Kφt(x) ' K(Fφt(x))⊗K(Gφt(x))

where Ax and Bx are two maps that we define now. First, let λ ∈ K(Fx) and κ ∈ K(Fφt(x)) be
such that λ(XH(x)) = 1 = κ(XH(φt(x))), and let

Ax : K(Fx)→ K(Fφt(x)), λ 7→ 2

|XH(x)|2
κ

where | · | is the pointwise norm associated with the Kähler metric. Second, let ψ be the linear
symplectomorphism given by

ψ : Gx ' TxH−1(E)/Span(XH(x))
Txφt−→ Tφt(x)H

−1(E)/Span(XH(φt(x))) ' Gφt(x)

and define Bx : K(Gx)→ K(Gφt(x)) by the property that

∀(α, v) ∈ K(Gx)× ΛnGx Bx(α)(ψ∗v) = α(v)

similarly as in Equation (2.28).
Finally, let ρ′t(x) be the complex number such that D′t(x) = ρ′t(x)T Kt (x). Note that by

definition, ρ′0(x) = 2
|XH(x)|2 . Note also that in the particular case where Txφt sends jxXH(x) to

jφt(x)XH(φt(x)), then D′t(x) = 2
|XH(x)|2Dt(x) so ρ′t(x) = 2

|XH(x)|2 ρt(x).
Consider also the Lagrangian immersion

ιE : R×H−1(E)→M ×M, (t, x) 7→ (φt(x), x).

Note that it is indeed only an immersion in general because of periodic trajectories of the Hamil-
tonian flow.

Theorem 2.4.3 ([CLF20, Theorem 1.2]). Let Tk be a time-independent Berezin-Toeplitz operator
with principal symbol H and subprincipal symbol Hsub, let E be a regular value of H and let f be
a smooth function with smooth compactly supported Fourier transform. For any x, y ∈ H−1(E),

f(k(E−Tk))(y, x) =
( k

2π

)n
k−

1
2

∑
t∈supp(f̂)
φt(x)=y

f̂(t) ρ′t(x)
1
2 e−i

∫ t
0 H

sub(φr(x)) dr T Lt (x)⊗k⊗T L′t (x)+O(kn−
3
2 )

where ρ′t(x)
1
2 is the continuous square root of ρ′t(x) equal to

√
2

|XH(x)| at t = 0. Furthermore, for any

(y, x) ∈M ×M not belonging to ιE(supp(f̂)×H−1(E)), we have f(k(E−Tk))(y, x) = O(k−∞).

Here our convention for the Fourier transform is

∀t ∈ R f̂(t) =
1√
2π

∫
R
e−itEf(E) dE.

In fact this statement slightly differs from [CLF20, Theorem 1.2] because in the latter there was
a factor

√
2π that should not have appeared. And as before, the real statement (see [CLF20,

Theorem 6.3]) is that
(

2π
k

)n
2 k−

1
2 f(k(E − Tk)) is a Lagrangian state; in fact, the Lagrangian it

is associated with is the image of ιE , so it is only an immersed Lagrangian state; but this is too
technical for the present discussion, see [CLF20, Section 5.2] for details.

As for Theorem 2.4.1 above, the statement of Theorem 2.4.3 simplifies in the presence of a
half-form bundle δ → M . As in the discussion following Theorem 2.4.1, by writing L′ = L1 ⊗ δ
we obtain in this case that

f(k(E−Tk))(y, x) =
( k

2π

)n
k−

1
2

∑
t∈suppf̂
φt(x)=y

f̂(t) e−i
∫ t
0 H

sub(φr(x)) dr T Lt (x)⊗k⊗T L1
t (x)⊗D′t(x)

1
2 +O(kn−

3
2 )

(2.33)
where D′t(x)

1
2 : δx → δφt(x) is continuous and equal to

√
2|Xx|−1Idδx at t = 0.
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Example 2.4.4. In this example, we will illustrate at the same time the statement of Theorem
2.4.3 and its proof. We work in the exact same context as in Example 2.4.2, and with the same
notation. Let E be a regular value of H, and let Sk = f(k(E − Tk)). Let v, w ∈ H−1(E); then

Sk(w, v) =
k

2π

(
k−1∑
`=0

f(kE − (2`+ 1− k))

(
k − 1

`

)
(wv̄)`

)
s⊗k−1(w)⊗ s⊗k−1(v).

By writing f as the inverse Fourier transform of f̂ , this gives

Sk(w, v) =
k

(2π)
3
2

(∫
R
eiu(k(1+E)−1))f̂(u)

(
k−1∑
`=0

(
k − 1

`

)
(e−2iuwv̄)`

)
du

)
s⊗k−1(w)⊗ s⊗k−1(v),

which yields

Sk(w, v) =
k

(2π)
3
2

(∫
R
eiu(k(1+E)−1))f̂(u)(1 + e−2iuwv̄)k−1du

)
s⊗k−1(w)⊗ s⊗k−1(v).

We see as in Example 2.4.2 that the contributions coming from times t such that w 6= e2itv =
φu(v) are O(k−∞), so it suffices to integrate on neighborhoods of the points t ∈ supp(f̂) for
which w = e2itv. In a sufficiently small neighborhood U of such a point t, the contribution to
Sk(w, v) is Iks⊗k−1(w)⊗ s⊗k−1(v) where

Ik =
k

(2π)
3
2

∫
U
eikϕ(u)f̂(u)

e−iu

1 + e−2iuwv̄
du with ϕ(u) = 1 + E + log(1 + e−2iuwv̄).

The only critical point of the phase function ϕ is t, and ϕ′′(t) = 4|v|2
(1+|v|2)2

> 0. Therefore the
stationary phase lemma [Hör83, Theorem 7.7.5] gives

Ik =

√
k

2π
eik(1+E)t (1 + |v2|)k

2|v|
e−itf̂(t) +O(k−

1
2 )

so finally

Sk(w, v) =

√
k

2π

∑
t∈suppf̂
φt(v)=w

eik(1+E)t (1 + |v2|)k

2|v|
e−itf̂(t)s⊗k−1(w)⊗ s⊗k−1(v) +O(k−

1
2 ). (2.34)

We are working with a half-form bundle, so we will compare this with the estimate (2.33).
In Example 2.4.2, we already computed

T Lt (v)s(v) = e
2it|v|2

1+|v|2 s(φt(v)) = eit(1+E)s(φt(v)).

For the second equality, we have used that v ∈ H−1(E) so |v|2 = 1+E
1−E . Since in this example the

tangent map to the flow and j commute, the discussion before Theorem 2.4.3 yields

D′t(v)
1
2 τ(v) =

√
2

|XH(v)|
Dt(v)

1
2 τ(v) =

1 + |v|2

2|v|
e−itτ(φt(v)).

Here we have used the computation of Dt(v)
1
2 in Example 2.4.2. Therefore, Equation (2.33)

yields

Sk(w, v)(s⊗k(v)⊗ τ(v)) =

√
k

2π

∑
t∈suppf̂
φt(v)=w

f̂(t)eikt(1+E) 1 + |v|2

2|v|
e−its⊗k−1(v) +O(k−

1
2 )

which is the same as what Equation (2.34) gives since h(s, s) = (1 + |v|2)−1.
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Let us give a few words about the proofs. To prove Theorem 2.4.1 (and its more general
formulation in [CLF20, Theorem 4.2]), we first showed in [CLF20, Theorem 2.4] that the solution
of the Schrödinger equation

−ik−1∂tΨk + Tk,tΨk = 0

with initial data a Lagrangian state associated with the Lagrangian submanifold Γ0 is a La-
grangian state family associated with the image of Γ0 under the Hamiltonian flow φt, and the
delicate and technical part is then to compute the principal symbol of this Lagrangian state
family [CLF20, Theorem 2.5]. These results come from a careful application of the stationary
phase lemma, with a close inspection of the coefficients of the expansion that it yields. Then
the idea is simply to view Equation (2.25) in this context, by interpreting the product Tk,tUk,t
as the action of the Berezin-Toeplitz operator Tk,t ⊗ Id on Uk,t, and recalling that Uk,0 = Πk is
a Lagrangian state (up to a multiplicative factor).

Then Theorem 2.4.3 results from the fact that

f(k(E − Tk)) = k−
1
2F−1

k (f̂(t)Uk,t)(E)

where Fk is the semiclassical Fourier transform:

Fk(f)(t) =
( k

2π

) 1
2

∫
R
e−iktEf(E) dE, F−1

k (g)(E) =
( k

2π

) 1
2

∫
R
eiktEg(t) dt.

Indeed, we proved in [CLF20, Theorem 5.4] that if Ψk is a Lagrangian state family, then
F−1
k (Ψk)(E) is a Lagrangian state, and it suffices to apply this to f̂(t)Uk,t which is, thanks

to [CLF20, Theorem 4.2] and up to a multiplicative factor, a Lagrangian state family. Again, we
skip the details about the computation of the principal symbol of this Lagrangian state.

The study of the quantum propagator and the smoothed spectral projectors of a Berezin-
Toeplitz operators is not new [BPU98, ZZ18, Ioo20]. One of the main novelties of our results is
the explicit, precise, and simple computation of the invariants ρt(x) and ρ′t(x) from Theorems
2.4.1 and 2.4.3, which did not seem to exist in the literature, even in the recent [ZZ18, Ioo20].
Moreover our direct approach of seeing the quantum propagator as a Lagrangian state evolved
under Schrödinger’s equation leads to relatively simple computations. Further explanations are
given in [CLF20, Section 1.4].

2.4.2 Traces of quantum propagators

In [CLF23b], Theorem 2.4.1 allows us to estimate the trace Tr(Uk,1) of the time-one quantum
propagator, in the semiclassical limit, thanks to a pairing formula for Lagrangian states that we
describe now. Let Ψk, Ψ′k be two Lagrangian states associated with (Γ, s) and (Γ′, s′) respectively
and with respective principal symbols σ ∈ C∞(Γ, L′) and σ′ ∈ C∞(Γ′, L′) (see the discussion after
Theorem 2.4.1). Assume that the Lagrangian submanifolds Γ and Γ′ of M intersect cleanly in
the sense that

• Γ ∩ Γ′ is a finite (disjoint) union of connected submanifolds C1, . . . , Cm of M ;

• for every ` ∈ {1, . . . ,m} and every x ∈ C`, TxC` = TxΓ ∩ TxΓ′.

Note in particular that if Γ and Γ′ intersect transversally at a finite number of points, they
intersect cleanly.

Theorem 2.4.5 ([CLF23b]). There exist natural densities δC` on each C` such that

〈Ψk,Ψ
′
k〉k =

m∑
`=1

(
2π

k

)n−d`
2
∫
C`
h(s, s′)kh′(σ, σ′) δC` +O

(
k
d`−n

2
−1
)

where d` = dim C`. Recall that h and h′ are the Hermitian metrics on L and L′, respectively.
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This result extends [Cha10, Theorem 6.1] in which the two Lagrangians intersect transversally.
We will not describe the densities δC1 , . . . , δCm in all generality here, but more details will appear
in [CLF23b].

The above results, in particular Theorem 2.4.1, can be combined with Theorem 2.4.5 to
estimate the trace Tr(Uk,1) of the time-one propagator of a time-dependent Berezin-Toeplitz
operator Tk,t. Indeed, we may write Tr(Uk,1) = 〈Uk,1,Πk〉k where 〈·, ·〉k is the inner product on
H0(M ×M, (L⊗k ⊗ L′) � (L̄⊗k ⊗ L̄′)), and recall that

(
2π
k

)n
2 Uk,1 is a Lagrangian state in this

Hilbert space associated with the Lagrangian submanifold Γφ1 of M ×M defined in Equation
(2.26), and that

(
2π
k

)n
2 Πk is also a Lagrangian state, see the discussion after Theorem 2.4.1.

One of the quantities involved in the estimate that we obtain is the action functional A from
Equation (2.27), but the other ones are more delicate to define.

First, if g is a linear symplectomorphism on a symplectic vector space V , there is a natural
way to define a density δg on N = ker(g − Id), such that if N = {0}, then δg = | det(g − Id)|−

1
2

and if N = V , then δg is the Liouville density; more details will be given in [CLF23b], and these
densities are similar to the ones discussed in [DG75, Section 4]. In particular, if the graph of φ1

and the diagonal of M ×M intersect cleanly, the fixed point set Mφ1 of φ1 is a finite union of
connected submanifolds and if C is one of these components, then for every x ∈ C,

TxC = {X ∈ TxM | (Txφ1)(X) = X} = ker(Txφ1 − Id).

Consequently, C can be endowed with the density δφ1,C which coincides at x ∈ C with the density
δTxφ1 on TxC.

Second, let x ∈M be a fixed point of φ1 and let γ : [0, 1]→M, t 7→ φt(x) be the corresponding
closed trajectory of φt. Let s be any frame of γ∗L such that s(0) = s(1), and let f be the function
such that ∇s = −if(t)dt⊗ s. The holonomy

h(L, x) =

∫ 1

0
f(r) dr (2.35)

of γ in L is well-defined modulo 2πZ. The holonomy h(L′, x) of γ in L′ is defined similarly. We
also define the action

A(L, x) = h(L, x)−
∫ 1

0
Hr(φr(x)) dr,

which coincides with the action A(x, 1) from Equation (2.27) if the orbit is contractible.
Third, let a(t) : Tγ(t)M → R2n be a trivialization of γ∗TM by symplectomorphisms, so that

gt = a(t)(Tγ(0)φt)a(0)−1, t ∈ [0, 1]

is a path of linear symplectomorphisms of R2n. Let µRS(graph(gt),D) be the Robbin-Salamon
index associated with this path relative and to the diagonal D of M ×M , as defined in [RS93].
This depends on the choice of the trivialization a, but we will now make some particular choices
and add a correction term to obtain a well-defined invariant I(x). Let (α`, β`)1≤`≤n be an
orthosymplectic frame of γ∗TM , meaning that

∀`,m ∈ {1, . . . , n} β` = jα`, ω(α`, αm) = ω(β`, βm) = 0, ω(α`, βm) = δ`,m,

and such that for every ` ∈ {1, . . . , n}, α`(1) = α`(0) and β`(1) = β`(0). Let s be the frame of
γ∗K such that s(α1 ∧ . . . ∧ αn) = 1 and write ∇Ks = −ifK dt⊗ s for some function fK , where
we recall that ∇K is the Chern connection of the canonical line bundle K →M . If we compute
µRS(graph(gt),D) using the trivialization a of γ∗TM corresponding to the orthosymplectic frame
(α`, β`)1≤`≤n, then the quantity

I(x) = 1
2

∫ 1

0
fK(t) dt+ π

2µRS(graph(gt),D)
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does not depend on this choice of orthosymplectic frame.
We bundle these ingredients into the quantity

θ(x) = −
∫ 1

0
Hsub
r (φr(x)) dr + h(L′, x)− I(x).

If M has a half-form bundle δ, by setting L′ = δ these quantities become simpler. Indeed, in
this case h(L′, x)−I(x) = −π

2m wherem is a half-integer, well-defined modulo 4, which coincides
with µRS(graph(gt),D) modulo 4 if we define gt as above by using any trivialization associated
with an orthosymplectic frame (α`, β`)1≤`≤n such that the corresponding frame s of γ∗K has a
square root t ∈ C∞([0, 1], δ) with t(0) = t(1). And in fact, as before, we do not need a global
half-form bundle, as it suffices to introduce one over the trajectory γ.

Theorem 2.4.6 ([CLF23b]). Assume that the graph of φ1 and the diagonal of M ×M intersect
cleanly. Then

Tr(Uk,1) =
∑

C component of Mφ1

( k
2π

)dim C
2
eikA(C)

∫
C
eiθδφ1,C +O(k

dim C
2
−1)

where A(C) is the value of A(L, x) for any x ∈ C.

This theorem has a simpler statement when φ1 is non-degenerate, which means that for
each fixed point x ∈ Mφ1 , 1 is not an eigenvalue of Txφ1 (in which case the clean intersection
assumption is automatically satisfied).

Theorem 2.4.7. Assume that φ1 is non-degenerate. Then

Tr(Uk,1) =
∑

x∈Mφ1

eikA(x)+iθ(x)

|det(Txφ1 − Id)|
1
2

+O(k−1).

Example 2.4.8. Let α /∈ πZ. We work in the setting of Example 2.4.2 and consider Uk,1 =

e−ikαẐk , the time-one propagator of the operator αẐk with Ẑk is as in Equation (2.8), which has
principal symbol H = αz on (S2,−1

2ωS2) and vanishing subprincipal symbol. On the one hand,
the eigenvalues of Ẑk are 2`+1−k

k , 0 ≤ ` ≤ k − 1, so

Tr(Uk,1) =

k−1∑
`=0

e−i(2`+1−k)α = ei(k−1)α 1− e−2ikα

1− e−2iα
=

sin(kα)

sinα
.

On the other hand, the time-one Hamiltonian flow φ1 of H is non-degenerate, and has two fixed
points S = (0, 0,−1) and N = (0, 0, 1). One readily computes

A(S) = −1, A(N) = 1, θ(S) = −π
2
− π

⌊α
π

⌋
, θ(N) =

π

2
− π

⌊α
π

⌋
.

Moreover,

δφ1,S = |det(TSφ1 − Id)|−
1
2 =

∣∣∣∣det

(
cosα− 1 − sinα

sinα cosα− 1

)∣∣∣∣− 1
2

= |2(1− cosα)|−
1
2 =

1

2| sinα|

and similarly δφ1,N = 1
2| sinα| . Consequently, Theorem 2.4.7 yields

Tr(Uk,1) =
ie−iπb

α
π c(e−ikα − eikα)

2| sinα|
+O(k−1) =

e−iπb
α
π c sin(kα)

| sinα|
+O(k−1),

which is consistent with the above exact formula since e−iπb
α
π c equals the sign of sinα.
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Example 2.4.9. One readily generalizes this example to one in which the time-one flow φ1 is
degenerate although its graph intersects cleanly the diagonal. In order to do so, we consider
the function H = αz1, with α /∈ πZ, on (S2 × S2, ω ⊕ ω) with ω = −1

2ωS2 and coordinates
(x1, y1, z1, x2, y2, z2). The operator αẐk ⊗ Id acting on Hk ⊗ Hk, where Ẑk and Hk are as in
Example 2.1.1, is a Berezin-Toeplitz operator with principal symbolH and vanishing subprincipal
symbol. Its eigenvalues are (2`+1−k)α

k , 0 ≤ ` ≤ k − 1, each with multiplicity k, so

Tr(Uk,1) = k

k−1∑
`=0

e−i(2`+1−k)α = k
sin(kα)

sinα
.

The fixed point set Mφ1 of the time-one flow φ1 of H is the disjoint union of two spheres
Σ± = {(0, 0,±1)} × S2. One readily computes

A(Σ−) = −α, A(Σ+) = α, θ(Σ−) = −π
2
− π

⌊α
π

⌋
, θ(Σ+) =

π

2
− π

⌊α
π

⌋
.

Moreover, δφ1,Σ− = |ω| = δφ1,Σ+ . Thus, Theorem 2.4.6 yields

Tr(Uk,1) =
ik

2π

(
eikαe−iπb

α
π cVol(Σ+)− e−ikαe−iπb

α
π cVol(Σ−)

)
+O(1) = k

e−iπb
α
π c sin(kα)

| sinα|
+O(1)

which is consistent with the above result.

In fact, in these two examples the function 1
2H is the momentum map for an effective Hamil-

tonian S1-action, and the quantities involved in Theorem 2.4.6 can be computed in this general
setting in terms of the weights (see Section 3.5) and volume of the components of the fixed point
set of the action.

The key part of the proof of Theorem 2.4.6 is the computation of the geometric quantities
appearing in its statement, and in particular the index contained in θ. The idea is to compare
the densities δC` from Theorem 2.4.5 obtained on the components of the intersections Γ0∩Γ′ and
Γ1 ∩Γ′ where Γ0 and Γ′ are two Lagrangian submanifolds and Γ1 = φ1(Γ0), and in particular to
control precisely how their phases differ.

The main novelty that was seemingly missing in the literature is the precise computation of
the Robbin-Salamon indices appearing in Theorems 2.4.6 and 2.4.7. For instance, in [Ioo20] a
similar formula for the trace of the time-one propagator of a time-independent Berezin-Toeplitz
operator was provided, but these indices did not seem to appear explicitly.

2.4.3 The Gutzwiller trace formula

Another application of the results from [CLF20] is the computation of the quantities involved in
the Gutzwiller trace formula, performed in [CLF23a]. This formula is a popular topic in quantum
mechanics, both in the physics [BB70, BB71, BB72, Gut71] and mathematics [CdV73, Cha74]
literature, and describes the asymptotic distribution of the eigenvalues in a window of size of
order the semiclassical parameter around a given energy.

Concretely, let Tk,t be a Berezin-Toeplitz operator with time-independent principal symbol
H, let E be a regular value of H and let f be a smooth function with smooth compactly
supported Fourier transform. The Gutzwiller trace formula is an asymptotic estimate of the
trace Tr(f(k(E − Tk))), and stating our result requires to introduce some invariants which are
similar to the ones defined in Section 2.4.2.

First, we work under the following clean intersection condition: we assume that

{(t,−H(x), φt(x), x) | t ∈ supp(f̂), x ∈M} and {(t,−E, x, x) | t ∈ supp(f̂), x ∈M}
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intersect cleanly. Under this assumption, the set

NE =
{

(t, x) | t ∈ supp(f̂), x ∈ H−1(E) with φt(x) = x
}

(2.36)

is a finite union of smooth connected submanifolds N1, . . . ,Np and for every ` ∈ {1, . . . , p} and
every (t, x) ∈ N`,

T(t,x)N` = {(s, Y ) ∈ R⊕ TxM | ωx(Xx, Y ) = 0, Txφt(Y ) + sXx = Y } .

Second, let g be a linear symplectomorphism of a symplectic vector space (V, ωV ) and let
ξ ∈ ker(g − Id) \ {0}. Then there is a natural density δg,ξ on

N = {(s, Y ) ∈ R⊕ V | ω(ξ, Y ) = 0, g(Y ) + sξ = Y }.

Indeed, one can relate N to N ′ = ker(G− Id) with

G : R2 ⊕ V → R2 ⊕ V, (s, τ, Y ) 7→ (s, τ + ω(ξ, Y ), g(Y ) + sξ)

and define δg,ξ by means on the density δG on N ′ described in Section 2.4.2. In particular, each
component N` of NE can be equipped with the density δ` which coincides with δTxφt,XH(x) on
T(t,x)N`.

Third, let (t, x) ∈ R × H−1(E) be such that φt(x) = x (note that t = 0 is allowed, and
the quantities below will still be defined with a slight abuse of notation). Define the holonomy
h(L, t, x) of the trajectory γ : r ∈ [0, t] 7→ φr(x) as in Equation (2.35): for any frame s of γ∗L
such that s(0) = s(t),

h(L, t, x) =

∫ t

0
f(r) dr, ∇s = −if(r)dr ⊗ s.

Under the above clean intersection condition, the holonomy map (t, x) 7→ h(L, t, x) is constant
on each component N`. Define similarly the holonomy h(L′, t, x) of the trajectory γ in L′. Now,
consider the linear maps η0 : R⊕TxM → R2⊕TxM⊕TxM and ξ̃r : R⊕TxM → R2⊕TxM⊕TxM ,
r ∈ [0, t], defined as

η0(s, Y ) = (s, 0, Y, Y ), ξ̃r(s, Y ) = (s, ωx(XH(x), Y ), Txφr(Y ) + sXH(φr(x)), Y ).

We define the Robbin-Salamon index

ν(t, x) := µRS((Im ξ̃r)r∈[0,t], Im η0)

by viewing Im ξ̃r and Im η0 as subspaces of a fixed symplectic vector space as follows. Choose
an orthosymplectic frame (α`, β`)1≤`≤n of γ∗TM such that α`(t) = α`(0) and β`(t) = β`(0) for
every ` ∈ {1, . . . , n}, and use this frame to identify Tφr(x)M with TxM for every r ∈ [0, t]. Then
Im ξ̃r can be viewed as a Lagrangian subspace of R2⊕TxM ⊕TxM for every r ∈ [0, t]. Moreover,
let sK be the frame of γ∗K such that sK(α1 ∧ . . . ∧ αn) = 1, and write ∇sK = −ifKdt⊗ sK for
some function fK . Then

J(t, x) =
1

2

∫ t

0
fK(r) dr +

π

2
ν(t, x)

does not depend on the choice of the orthosymplectic frame. Finally, define

Θ(t, x) = h(L′, t, x)− J(t, x)−
∫ t

0
Hsub
r (φr(x)) dr.

As in Section 2.4.2, these quantities simplify in the presence of a half-form bundle δ → M .
If L′ = δ, then h(L′, t, x) − J(t, x) = −π

2m where m is a half-integer, well-defined modulo 4,
which coincides with µRS((Im ξ̃r)r∈[0,t], Im η0) modulo 4 if the orthosymplectic frame (α`, β`)1≤`≤n
chosen to define this index is such that the corresponding frame s of γ∗K has a square root
τ ∈ C∞([0, t], δ) with τ(0) = τ(t).
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Theorem 2.4.10 ([CLF23a]). Under the above clean intersection assumption,

Tr(f(k(E − Tk))) =
1√
2π

p∑
`=1

(
k

2π

) d`−1

2

eikh(L,N`)
∫
N`
f̂(t)eiΘ(t,x)δ`(t, x) +O(k

d`−1

2
−1)

where d` = dimN` and h(L,N`) = h(L, t, x) for any (t, x) ∈ N`.

In fact the more precise result is that the contribution of each component N` has a complete
asymptotic expansion.

It is interesting to state the version of Theorem 2.4.10 obtained in the particular case of
isolated periodic orbits, meaning that the components of NE are either N0 = {0} ×H−1(E) or
N` = {T`} × γ`, 1 ≤ ` ≤ p, where γ` is a periodic orbit of the Hamiltonian flow with period T`.
In this case, the quantities in the statement of Theorem 2.4.10 can be simplified as follows.

First, recall that since E is a regular value of H, the Liouville volume form µ = ω∧n

n! induces
a volume form νE (hence a density, that we still write νE) on the hypersurface H−1(E). Namely,
if α is any differential form such that µ = α ∧ dH near H−1(E), then νE is the pullback of α to
H−1(E). It is standard that νE does not depend on the choice of α, and that if Y is a vector field
such that ω(XH , Y ) = 1 near H−1(E), then one can choose α = ιY µM where ι is the interior
product.

Second, for ` ∈ {1, . . . , p} and for x ∈ γ`, let Sx be the generalized eigenspace of TxφT`
associated with the eigenvalue 1, and let S⊥x be its symplectic orthogonal. Then the quantity
D(γ`) = det(TxφT` − Id)|S⊥x does not depend on the choice of x ∈ γ`.

Theorem 2.4.11 ([CLF23a]). For every ` ∈ {1, . . . , p}, let T ]` be the positive primitive period of
γ`. Then

Tr(f(k(E − Tk))) =
1√
2π

(
k

2π

)n−1

f̂(0)

∫
H−1(E)

νE +O(kn−2)

+

p∑
`=1

1√
2π

f̂(T`)e
ikh(L,γ`)

|D(γ`)|
1
2

∫ T ]`

0
eiΘ(T`,φt(x)) dt+O(k−1).

The first term in this estimate is the so-called Weyl term giving the volume of the energy
level H−1(E).

As above, the main novelty of our results is the explicit computation of the Robbin-Salamon
indices appearing in Theorems 2.4.10 and 2.4.11, which was not directly accessible in the existing
literature [BPU98, Pao18, Ioo20]. We will discuss this point in more detail in [CLF23a].

Example 2.4.12. We consider the Hamiltonian H = z2
1 + z2 on (M = S2 × S2, ω ⊕ ω) with

ω = −1
2ωS2 and coordinates (x1, y1, z1, x2, y2, z2). So we use once again the setting and notation

of Example 2.1.1. The operator

Tk = Tk

(
z2

1 −
1

2k
∆z2

1

)
⊗ Id + Id⊗ Ẑk =

k + 3

k
Tk(z

2
1)− 1

k
Id⊗ Id + Id⊗ Ẑk

acting on Hk ⊗ Hk is a Berezin-Toeplitz operator with principal symbol H and vanishing sub-
principal symbol. A straightforward computation shows that in the identification of Hk with
Ck−1[w],

Tk(z
2
1) =

1

(k + 1)(k + 2)

(
4w2 d2

dw2
− 4(k − 2)w

d

dw
+ (k2 − k + 2)Id

)
.

This leads to the fact that the eigenvalues of Tk are

λ`,m(k) =
(k + 3)(k − 2`− 1)2

k(k + 1)(k + 2)
+

1

k(k + 2)
+
k − 2m− 1

k
, 0 ≤ `,m ≤ k − 1.
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Of course, we have that

Tr(f(k(E − Tk))) =
k−1∑
`=0

k−1∑
m=0

f(k(E − λ`,m(k))). (2.37)

Below we will choose a suitable f̂ and evaluate numerically the trace Tr(f(k(E − Tk))) thanks
to this formula, by computing each quantity f(k(E − λ`,m(k))) thanks to numerical integration
routines.

In order to justify our choice of f̂ and to compare the numerical outcomes with the estimate
of Theorem 2.4.10, we need to understand the Hamiltonian flow of H. In cylindrical coordinates,
the Hamiltonian vector field reads XH = 4z1∂θ1 + 2∂θ2 , hence φt is the rotation with angle 4z1t
about the vertical axis in the first sphere and with angle 2t about the vertical axis in the second
sphere. Hence, only the elements of πZ can be periods of this flow; we will select the period
T = π only. In order to do so, we consider the bump function

f̂(t) = χ

(
t− π
c

)
, χ(s) =

{
e

1− 1
1−s2 if − 1 < x < 1,

0 otherwise

with 0 < c < π, so that f̂(π) = 1 and supp(f̂) does not contain any other integer multiple of π,
and obtain the numerical values of its inverse Fourier transform f at the points k(E − λ`,m(k))
by computing the integral in

f(ξ) = c

√
2

π
eiπξ

∫ 1

0
cos(csξ)χ(s) ds

thanks to the quad numerical integration routine from Python.
Now, we choose the regular value E of H such that −1 < E < −3

4 ; then the points m =
(x1, y1, z1, x2, y2, z2) ∈ H−1(E) with period π are the elements of the surface ΣE = {z1 = 0, z2 =
E}. Indeed, necessarily 2z1 = q is an integer, but since

−1 ≤ z2 = E − z2
1 = E − q2

4
< −(3 + q2)

4
,

the only possibility is q = 0. Consequently, with our choice of f , the set NE from Equation
(2.36) is NE = {π} × ΣE .

Let m ∈ ΣE ; then XH(m) = 2∂θ2 , so XH(m)⊥ = Span(∂θ1 , ∂θ2 , ∂z1). Since moreover Tmφπ
leaves ∂θ1 , ∂θ2 and ∂z2 invariant and sends ∂z1 to ∂z1 + 4π∂θ1 , one readily checks that the space

A =
{

(s, Y ) ∈ R⊕ TmM | Y ∈ XH(m)⊥, Tmφπ(Y ) + sXH(m) = Y
}

satisfies
A = {0} × Span(∂θ1 , ∂θ2) = T(π,m)NE ,

so the clean intersection condition from Theorem 2.4.10 is satisfied.
The density δE on NE in this theorem can be computed to be

δE =
dθ1dθ2

4
√

2π
.

Moreover, the holonomy h(L, π,m) reads

h(L, π,m) =

∫ π

0
αφt(m) (XH(φt(m))) dt,
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Figure 2.8: The blue dots represent the real part of Tr(f(k(E − Tk)) from Example 2.4.12,
computed using Formula (2.37), for E = −0.9 and different values of k (and c = 1 in the above
choice of f). The solid red line is the graph of the real part of κ 7→

(
κ
2π

) 1
2 π

2 e
i(κπ(1+E)− 5π

4
), which

gives the equivalent obtained in (2.38) for integral values κ = k.

where
α =

1

2

(
(1 + z1)dθ1 +

dz1√
1− z1

+ (1 + z2)dθ2 +
dz2√
1− z2

)
.

This gives h(L, π,m) = π(1 + E). The computation of the Robbin-Salamon index ν(π,m) is
straightforward but tedious (details will appear in an appendix of [CLF23a]); the final result is
that ν(π,m) = 5

2 . Hence, finally, Theorem 2.4.10 yields (recall from Example 2.1.1 that we are
working with the global half-form bundle L′ = δ = O(−1))

Tr(f(k(E − Tk))) =

(
k

2π

) 1
2 π

2
ei(kπ(1+E)− 5π

4
) +O(k−

1
2 ). (2.38)

We compare this asymptotic estimate with the numerical evaluation of Formula (2.37) in
Figures 2.8 and 2.9.

The idea of the proof of Theorem 2.4.11 is quite similar to the idea of the proof of Theorem
2.4.6, with a few subtleties. First, we apply a Bargmann transform (see Example 2.1.2) to
interpret the Schwartz kernel Uk,t as a Lagrangian section of the quantization of C ×M ×M .
Then we compute the trace Tr(f(k(E − Tk))) thanks to a pairing formula similar to Theorem
2.4.5 and adapted to this non-compact setting.

2.5 Perspectives

We conclude this chapter by giving a few ideas about future research directions building on the
results that we just described.

Recall that in the paper [LF18a] discussed in Section 2.2, we only obtained, in the general
case, estimates for the sub-fidelity and super-fidelity of two states supported on Lagrangian
submanifolds intersecting transversally. Obtaining asymptotic estimates for the fidelity itself,
even in this Lagrangian setting, seems too complicated; it was already quite difficult in the

47



20 40 60 80 100 120 140
k

8

6

4

2

0

2

4

6

8

Figure 2.9: The blue dots represent the imaginary part of Tr(f(k(E−Tk)) from Example 2.4.12,
computed using Formula (2.37), for E = −0.9 and different values of k (and c = 1 in the above
choice of f). The solid red line is the graph of the imaginary part of κ 7→

(
κ
2π

) 1
2 π

2 e
i(κπ(1+E)− 5π

4
),

which gives the equivalent obtained in (2.38) for integral values κ = k.

simple case of two great circles on S2, but maybe our proofs could be simplified. But perhaps
this complicated analysis could be carried on for the case of two curves on a surface; one caveat
is that we heavily used the symmetries in the case of S2. Another direction would be to estimate
the sub-fidelity and super-fidelity, which are more tractable, for states supported on more general
submanifolds, and possibly under weaker assumptions about the intersections.

The possible extensions of the results from [ALF22] discussed in Section 2.3 are numerous,
as suggests the substantial literature on zeros of random holomorphic sections. For instance, one
could try to obtain variance estimates, similar to the ones in [SZ99b], for the current associated
with the zero locus ZTksk of the section Tksk with sk a random holomorphic section and Tk a
Berezin-Toeplitz operator with principal symbol f for which 0 is a regular value. In another
direction, it would be interesting to allow, as in [DLM23] but without restriction on the sign
of f , 0 to be a singular value of f , say non-degenerate, and to study the expectation of ZTksk ;
in particular, the case of a hyperbolic singular value on a surface already seems intriguing and
solving it could perhaps allow one to recover all the level sets of f from the application of Tk on
a large number of random holomorphic sections in the case of a Morse function f on a surface.
This would already become more technical than the results in [ALF22] because it would require
to work with the term of order k−2 in the asymptotic expansion of Bk from Equation (2.23).
Another possible extension would be to study the common zero set of T (1)

k sk, . . . , T
(d)
k sk, where

sk is a random holomorphic section and each T (`)
k is a Berezin-Toeplitz operator with principal

symbol f`, under appropriate assumptions on f1, . . . , fd.
Finally, let (M,ω, J) be a Hamiltonian S1-space, see Section 3.5: (M,ω) is a compact sym-

plectic manifold and J is the momentum map for an effective Hamiltonian S1-action. Let Ĵk be
a Berezin-Toeplitz operator with principal symbol J . We believe that we can use the results of
[CLF20] and [CLF23b] discussed in Section 2.4 to describe the cluster structure of the spectrum
of Ĵk and to count the number of eigenvalues in each spectral cluster, as was done for the ho-
mogeneous pseudodifferential case in [DG75] and [CdV79], respectively. This could constitute a
first step in the investigation of the inverse spectral question for Hamiltonian S1-spaces alluded
to in Section 5.5.
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Chapter 3

Generalities on semitoric systems

Our goal in this chapter is to introduce the main characters of the rest of the manuscript, namely
semitoric systems, and to describe some of their properties. In order to do so, we first quickly
review integrable and toric systems in Section 3.1. We then recall, in Section 3.2, some useful facts
about the singularities of integrable systems in dimension four. In Section 3.3, we define semitoric
systems and give some important examples of such systems. We then describe, in Section 3.4,
the invariants involved in the symplectic classification of semitoric systems. Finally, in Section
3.5 we define Hamiltonian S1-spaces and review their relationship with semitoric systems. Some
definitions are quite technical by essence, so we tried to outline the ideas regularly so that the
reader who is only interested in the spirit of these definitions can skip the most involved parts.

3.1 Toric systems

Four-dimensional toric systems are the simplest examples of semitoric systems, and exhibit re-
markable properties. Here we define toric systems from the integrable systems perspective in
any even dimension, and later on we will specialize to dimension four.

An integrable system is the data of a connected symplectic manifold (M2n, ω) together with
smooth functions f1, . . . , fn ∈ C∞(M,R) such that

1. the functions f1, . . . , fn pairwise Poisson commute: for all i, j ∈ {1, . . . , n}, {fi, fj} = 0;

2. the Hamiltonian vector fields Xf1 , . . . , Xfn (or equivalently df1, . . . ,dfn) are almost every-
where linearly independent.

Now we assume that M is compact. Because of the first condition, the Hamiltonian flows of
f1, . . . , fn pairwise commute, so we obtain a group action of Rn on M by composing these flows,
namely:

∀(t1, . . . , tn) ∈ Rn, ∀m ∈M, (t1, . . . , tn) ·m = (φt1,f1 ◦ . . . ◦ φtn,fn) (m). (3.1)

By definition, this group action is Hamiltonian (see Section 1.3), and its momentum map is
F = (f1, . . . , fn) : M → Rn.

If all these Hamiltonian flows share the same period, this Rn-action induces a torus action.

Definition 3.1.1. The integrable system (M,ω, F = (f1, . . . , fn)) with M compact is toric if

1. the flows of f1, . . . , fn are all 2π-periodic;

2. the Tn-action induced by the composition of these flows is effective.

A celebrated theorem by Atiyah [Ati82] and Guillemin-Sternberg [GS82] states that the image
F (M) ⊂ Rn of the momentum map of a toric integrable system (M2n, ω, F ) is a convex polytope,
obtained as the convex hull of the images of the fixed points of the torus action. Later Delzant
[Del88] proved that F (M) satisfies the additional properties:
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(0, 0)

(0, 1)

(1, 0)

(a) A Delzant triangle.

(−1,−1)

(−1, 1)

(1,−1)

(1, 1)

(b) A Delzant square.

Figure 3.1: The two Delzant polygons from Example 3.1.2.

1. there are n edges meeting at each vertex (simplicity);

2. the edges emanating from a vertex p are of the form p + tuj , t ≥ 0, for some uj ∈ Zn
(rationality);

3. for each vertex, the above u1, . . . , un can be chosen to form a Z-basis of Zn (smoothness);

a convex polytope satisfying these properties is now commonly called a Delzant polytope. He
also proved that two isomorphic (i.e. equivariantly symplectomorphic) compact toric systems
share the same polytope, and that the set of classes of toric systems up to isomorphism is in
bijection with the set of Delzant polytopes, through the map [(M,ω, F )] 7→ F (M). Furthermore,
he described explicitly an inverse for this map: starting from a given Delzant polytope, one can
construct a toric system producing this polytope by symplectic reduction of Cd with its standard
symplectic form with respect to some Hamiltonian torus action. We insist on the fact that the
dimension d and the momentum map for this torus action are obtained completely explicitly
from the polygon, see [Del88, Section 3] or [CdS03, Section 2.5].

In the rest of the manuscript we will focus on four-dimensional systems. In this case we will
talk about Delzant polygons (instead of polytopes) for toric systems, and the first item in their
definition above will be automatically satisfied.

Example 3.1.2. We investigate the two famous Delzant polygons shown in Figure 3.1.

1. For the triangle from Figure 3.1a, Delzant’s algorithm yields the toric system (M,ω, F )
where (M,ω) is obtained as the symplectic reduction of C3 by the S1-action generated
by N = 1

2(|z1|2 + |z2|2 + |z3|2) at level N = 1 and F =
(

1
2 |z1|2, 1

2 |z2|2
)
. The symplectic

manifold (M,ω) identifies with (CP2, ωFS) where ωFS is the Fubini-Study form, normalized
so that the volume of CP2 equals 2π2.

2. For the square from Figure 3.1b, Delzant’s algorithm gives the toric system (M,ω, F )
where (M,ω) is obtained as the symplectic reduction of C4 by the T2-action generated
by N = 1

2(|z1|2 + |z2|2, |z3|2 + |z4|2) at level N = (2, 2). The symplectic manifold (M,ω)
identifies with (S2 × S2, ωS2 ⊕ ωS2) where ωS2 is the standard symplectic form on S2.

Here we have only discussed compact toric systems for the sake of clarity, but one can
also consider non-compact toric systems. In this context, and under the assumption that the
momentum map is proper, the convexity result described above has been extended in [LMTW98].

3.2 Singularities of four-dimensional integrable systems

In order to define semitoric systems, we first need to discuss singularities of integrable systems.
Now and for the rest of the text, (M,ω) is a connected, four-dimensional symplectic manifold.
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A regular point of the integrable system (M,ω, F = (f1, f2)) is a point m ∈M where Xf1(m)
and Xf2(m) are linearly independent; c ∈ F (M) is a regular value if every point in the fiber
F−1(c) is regular. Let c ∈ R2 be a regular value of the momentum map F , and assume that the
fiber F−1(c) is compact and connected; the celebrated action-angle theorem (see [Min47] and
[Dui80]) states that there exist a symplectomorphism φ from a neighborhood of F−1(c) in M to
a neighborhood of the zero section in T ∗T2 and a local diffeomorphism G0 : (R2, 0) → (R2, c)
such that

F ◦ φ−1 = G0(I1, I2),

where T ∗T2 is endowed with the coordinates (θ1, θ2, I1, I2) ∈ (R/2πZ)2 ×R2 and the symplectic
form dI1 ∧ dθ1 + dI2 ∧ dθ2. The coordinates (I1, I2) are commonly called action coordinates or
action variables and form a local toric momentum map. We call G−1

0 an action diffeomorphism;
in what follows, in particular in Chapter 5, we will often consider oriented action diffeomorphisms
and variables, meaning that det(dG0(0)) > 0. These are not unique: any two pairs of action
variables (I1, I2) and (L1, L2) near F−1(c) are related by(

L1

L2

)
= A

(
I1

I2

)
+ κ

for some A ∈ GL(2,Z) (or A ∈ SL(2,Z) if both pairs are oriented action variables) and κ ∈ R2.
In general (and automatically if M is compact), the momentum map will possess some

singularities, which may prevent one from obtaining global action variables. A point m ∈ M
(respectively a value c ∈ F (M)) is called a singular point (respectively a singular value) if it
is not regular. The rank of the singular point m is the rank of the family (Xf1(m), Xf2(m)),
and it is also equal to the dimension of the orbit passing through m for the R2-action defined in
Equation (3.1). One can define a good notion of non-degenerate singular point, and in order to
do so it is convenient to distinguish between rank one and rank zero points.

Non-degenerate rank zero singular points. Let m ∈ M be a rank zero singular point of
the momentum map F .

Definition 3.2.1 ([BF04, Definition 1.23]). The rank zero point m is non-degenerate if the
Hessians d2f1(m), d2f2(m) span a Cartan subalgebra of the Lie algebra (Qm, {·, ·}m) of quadratic
forms on TmM , with Lie bracket the Poisson bracket.

The classification of the Cartan subalgebras of Qm (see for instance [BF04, Theorem 1.3])
yields a classification of non-degenerate rank zero points in different types, which are usually
called Williamson types. One can understand this classification through the properties of the
eigenvalues of a matrix belonging to sp(4,R), which can be identified with Qm in the following
way. Let B be any basis of TmM and let Ωm be the matrix of ωm in B. Moreover, if q ∈ Qm, let
Bq be its matrix in B. Then we get a Lie algebra isomorphism

Qm → sp(4,R), q 7→ Ω−1
m Bq.

Using this identification (and slightly abusing notation by writing q instead of Bq), for any
ν, µ ∈ R, the characteristic polynomial of the matrix Aν,µ = Ω−1

m

(
νd2f1(m) + µd2f2(m)

)
is of

the form X 7→ χν,µ(X2) with χν,µ a quadratic polynomial (see for instance [BF04, Proposition
1.2]) that we call the reduced characteristic polynomial of Aν,µ.

Definition 3.2.2 ([BF04, Section 1.8.2]). The rank zero point m is non-degenerate if and only
if there exists (ν, µ) ∈ R2 such that the reduced characteristic polynomial χν,µ has two distinct
nonzero roots λ1, λ2 ∈ C. In this case, m is

• an elliptic-elliptic point if λ1 < 0 and λ2 < 0;
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• a hyperbolic-elliptic point if λ1 > 0 and λ2 < 0 or λ1 < 0 and λ2 > 0;

• a hyperbolic-hyperbolic point if λ1 > 0 and λ2 > 0;

• a focus-focus point if =(λ1) 6= 0 (and hence =(λ2) 6= 0).

If m is non-degenerate, the set D of (ν, µ) ∈ R2 such that χν,µ has two distinct nonzero roots
λ1(ν, µ), λ2(ν, µ) is open and dense, and for any (ν, µ), (ν ′, µ′) ∈ D, the roots λ1(ν, µ), λ2(ν, µ) and
λ1(ν ′, µ′), λ2(ν ′, µ′) share the same properties in the above list. So these types are well-defined.

Non-degenerate rank one singular points. Now, let m ∈M be a rank one singular point
of F , so that there exist ν, µ ∈ R such that νdf1(m) +µdf2(m) = 0. The orbit through m of the
R2-action (3.1) is one-dimensional; let L ⊂ TmM be the tangent line to this orbit at m, and let
L⊥ be the symplectic orthogonal of L. Note that L ⊂ L⊥, that ωm descends to a symplectic form
on the quotient L⊥/L and that L ⊂ ker

(
d2(νf1 + µf2)(m)

)
, so that d2(νf1 + µf2)(m) descends

to the quotient L⊥/L.

Definition 3.2.3 ([BF04, Definition 1.21], see also [HP18, Section 2.1.3]). The rank one singular
point m is non-degenerate if d2(νf1 + µf2)(m) is an isomorphism of L⊥/L.

Again, there are different types of non-degenerate rank one singular points according to the
eigenvalues of this isomorphism. Fix a basis of L⊥/L, and let Ω̃m be the matrix of the quotient
symplectic form in this basis. Consider the matrix Aν,µ = Ω̃−1

m d2(νf1 +µf2)(m) (where we abuse
notation by writing d2(νf1 + µf2)(m) for the matrix of the induced endomorphism of L⊥/L).
The eigenvalues of Aν,µ are of the form ±λ for some λ ∈ C, see for instance [BF04, Proposition
1.2].

Definition 3.2.4 (See [BF04, Section 1.8] and [LFP22, Definition 2.5]). The rank one singular
point m is non-degenerate if detAν,µ 6= 0, and m is

• an elliptic-regular point if the eigenvalues of Aν,µ are of the form ±iα for some α ∈ R \ {0}
(or equivalently if detAν,µ > 0);

• a hyperbolic-regular point if the eigenvalues of Aν,µ are of the form ±α for some α ∈ R\{0}
(or equivalently if detAν,µ < 0).

In the literature, one also often encounters the terms elliptic-transverse and hyperbolic-
transverse.

Near each non-degenerate singular point of an integrable system, there exists a convenient
symplectic normal form, named Eliasson’s normal form. This normal form is valid in any di-
mension, but here we only state it for four-dimensional systems since we only need this. To
the best of our knowledge, the literature only contains a complete proof for the analytic case, in
[Vey78] (see also [Rüs64] for the case n = 2). For the smooth case, there exist complete proofs for
fully elliptic singularities in any dimension (see [DM91, Eli90]), for the general case in dimension
two (see [CdVV79]), and for the focus-focus case in dimension four (see [VuNW13, Cha13]). In
[CdVVuN03] the authors gave a normal form near an elliptic-regular fiber in dimension four, and
in [MZ04] the authors studied normal forms in the presence of an additional group action.

Theorem 3.2.5 ([Eli84]). Let m ∈M be a non-degenerate singular point of the integrable system
(M,ω, F = (f1, f2)). Then there exist local symplectic coordinates (x, ξ) = (x1, x2, ξ1, ξ2) on an
open neighborhood U ⊂ M of m and a map Q = (q1, q2) : U → R2 whose components are taken
from the following list:

• qj(x, ξ) = 1
2(x2

j + ξ2
j ) (elliptic);

• qj(x, ξ) = xjξj (hyperbolic);
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Figure 3.2: A focus-focus fiber containing three focus-focus points.

• qj(x, ξ) = ξ (regular);

• q1(x, ξ) = x1ξ2 − x2ξ1, q2(x, ξ) = x1ξ1 + x2ξ2 (focus-focus)

such that m corresponds to (x, ξ) = (0, 0) and {qj , f`} = 0 for every j, ` ∈ {1, 2}. Moreover, if
none of the components qj is hyperbolic, then there exists a local diffeomorphism g : (R2, 0) →
(R2, F (m)) such that for every (x, ξ) ∈ U , F (x, ξ) = (g ◦Q)(x, ξ).

In this statement, the symplectic form on R4 is dξ1 ∧ dx1 + dξ2 ∧ dx2.

3.3 Semitoric systems

The definition of semitoric systems that we give now was introduced in [PVuN09, Definition 2.1].
The original definition, [VuN07, Definition 3.1], was slightly more general.

Definition 3.3.1. A semitoric system is an integrable system (M,ω, F = (J,H)) on a four-
dimensional symplectic manifold (M,ω) such that

1. J is the momentum map for an effective Hamiltonian S1-action;

2. J is proper;

3. the singular points of F = (J,H) are all non-degenerate, with no hyperbolic component.

As a consequence of this definition, the singularities of a semitoric system are either of elliptic
type (elliptic-regular or elliptic-elliptic), or focus-focus. Therefore, the new type of singularities,
compared to toric systems, are focus-focus points; the corresponding singular fibers are tori that
are pinched at one or several points, which are precisely the focus-focus points, see Figure 3.2
(note that the fact that the fibers of a semitoric system are connected is proved in [VuN07,
Theorem 3.4]). Note that by [VuN07, Corollary 5.10], the total number of focus-focus points of
a semitoric system is finite.

A four-dimensional toric integrable system is of course a particular case of semitoric system,
with no focus-focus singularity; the fixed points of the T2-action, whose images by the momentum
map are the vertices of the Delzant polygon, are the elliptic-elliptic points of the system, while
the elliptic-regular points are sent to the interior of the edges of this polygon. In fact, by
[VuN07, Corollary 3.5], a semitoric system (M,ω, F = (J,H)) has no focus-focus singularity if
and only if it is of toric type: there exists a diffeomorphism g defined on a neighborhood of
F (M) and with values in R2 such that g ◦F is the momentum map of a toric integrable system.
This toric momentum map is obtained by extending action variables to the whole image F (M);
using the normal form from Theorem 3.2.5 near elliptic-elliptic points and the normal form from
[MZ04] near elliptic-regular fibers, one readily checks that there is no obstruction in doing so.

In Chapter 4, we will focus on the case where (M,ω) is compact, in which case the second
item in Definition 3.3.1 is automatically satisfied. In Chapter 5, we will allow for non-compact
manifolds, but we will need to assume that our systems are simple, as defined now.
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Figure 3.3: Image of the momentum map Ft = (J,Ht) of the spin-oscillator system from Example
3.3.3, with J,Ht defined in Equation (3.2), for various values of t ∈ R.

Definition 3.3.2. A semitoric system (M,ω, F = (J,H)) is simple if each fiber of J contains
at most one focus-focus point.

Note that there are two ways to not be simple. The first one is when there are at least two
focus-focus points in the same fiber of J , but not of F (meaning that this fiber of J contains
several tori pinched at one point each), and the second one is when there are at least two focus-
focus points in the same fiber of F (which is then a torus with two or more pinches, as is the
case in Figure 3.2). As discussed at the beginning of Chapter 5, in principle the results described
in that chapter should extend without any difficulty to the former case; however, in the latter
case it is possible that the joint spectrum does not contain enough information to recover all the
symplectic invariants.

Below we give two historical examples of semitoric systems coming from physics.

Example 3.3.3 (Spin-oscillator). Endow R2 with coordinates (u, v) and its standard symplectic
form ωR2 = du ∧ dv, and S2 with coordinates (x, y, z) and its usual symplectic form ωS2 , as in
Example 2.1.1. On (M,ω) = (S2 × R2, ωS2 ⊕ ωR2), we consider, for t ∈ R,

J =
1

2
(u2 + v2) + z, Ht = (1− 2t)

(
1

2
(u2 + v2)− z

)
+ t(ux+ vy). (3.2)

For every t ∈ R\{1
3 , 1}, the system (M,ω, Ft = (J,Ht)) is a semitoric system, with no focus-focus

singularity for t ∈ (−∞, 1
3) ∪ (1,+∞), and with one focus-focus singular point m = (0, 0, 0, 0, 1)

for t ∈ (1
3 , 1) (see [VuN07, Proposition 6.1]). The S1-action generated by J corresponds to

rotating at the same time about the origin in R2 and about the vertical axis in S2. The image
of the momentum map Ft is displayed in Figure 3.3. This system was studied from the semitoric
point of view in [PVN12] and [ADH19].

The quantum version of this system is known as the Jaynes-Cummings model [JC64] and
plays an important part in quantum optics, see for instance [LFVuN21, Section 1] for an extended
discussion and references. The classical spin-oscillator system and some of its generalizations,
also including focus-focus singularities in dimension four or higher, were studied in [BCD09,
BD12, BD15].

Example 3.3.4 (Coupled angular momenta). Let R1, R2 > 0. On (M,ω) = (S2×S2,−(R1ωS2⊕
R2ωS2)) with coordinates (x1, y1, z1, x2, y2, z2), we consider, for t ∈ [0, 1],

J = R1z1 +R2z2, Ht = (1− t)z1 + t(x1x2 + y1y2 + z1z2). (3.3)
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Figure 3.4: Image of the momentum map Ft = (J,Ht) of the coupled angular momenta system
from Example 3.3.4, with J,Ht defined in Equation (3.3), for R1 = 1, R2 = 2 and various values of
t ∈ [0, 1]. Note that in this case Equation (3.4) gives t− = 2

5+2
√

2
≈ 0.26 and t+ = 2

5−2
√

2
≈ 0.92.

Let 0 < t− < t+ ≤ 1 be defined as

t± =
R

1 + 2R∓ 2
√
R

with R =
R2

R1
. (3.4)

If R1 6= R2, then t+ < 1 and (M,ω, Ft = (J,Ht)) is of toric type when t ∈ [0, t−) ∪ (t+, 1], and
semitoric with one focus-focus point m = (0, 0, 1, 0, 0,−1) when t ∈ (t−, t+). When R1 = R2,
then t+ = 1 and the statements for t ∈ [0, t−) and t ∈ (t−, t+) still hold, but when t = t+ = 1
the system cannot be semitoric because the point m and the fixed point (0, 0,−1, 0, 0, 1) lie in
the same fiber of F (and we know from [VuN07, Theorem 1] that the fibers of the momentum
map of a semitoric system are connected). In any case, when t = t− or t = t+, the point m
is degenerate. The image of the momentum map Ft is displayed in Figure 3.4. This system
was originally introduced in [SZ99a] were the authors exhibited the non-trivial monodromy of
its quantum counterpart (described in Example 5.1.2), and studied through the semitoric lens in
[LFP19b]. For R1 6= R2, this is an example of semitoric family, see Example 4.3.3.

The system from Example 3.3.4 was generalized in [HP18]: the authors produced a two-
parameter family (S2×S2,−(R1ωS2⊕R2ωS2), Fs1,s2 = (J,Hs1,s2)), s1, s2 ∈ [0, 1], which is either
(when R1 6= R2) of toric type, or semitoric with one focus-focus point, or semitoric with two
focus-focus points, according to the values of the parameters s1, s2.

The systems from Examples 3.3.3 and 3.3.4 were also recently generalized to the b-symplectic
setting in [BHMM23].

3.4 Symplectic invariants of semitoric systems

In [PVuN09, PVuN11], Pelayo and Vũ Ngo.c completely classified simple semitoric systems up to
isomorphism, in terms of symplectic invariants that we will describe now. This classification has
later been generalized to non-simple semitoric systems by Palmer, Pelayo and Tang in [PPT19];
in this case the semi-local invariants near the focus-focus fibers (Taylor series) are more involved
(see [PT19]), but we will not need them in the rest of the manuscript. The so-called twisting
index invariant is also a bit more delicate to define in the non-simple case, but we will not need
them in this case either. In fact the only invariants that we will need in the non-simple case, in
Chapter 4, are the number of focus-focus points, polygon, and height invariants, that are bundled
into the so-called marked semitoric polygon, see Section 3.4.1 below. Therefore we will essentially
describe the invariants in the simple case, except when describing this marked semitoric polygon;
note that the first construction of this invariant in [VuN07] contained the non-simple case.
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We use the following notion of semitoric isomorphism. Two semitoric systems (M,ω, F =
(J,H)) and (M ′, ω′, F ′ = (J ′, H ′)) are said to be isomorphic if and only if there exist a sym-
plectomorphism φ : M → M ′ and a smooth function f ∈ C∞(R2,R) with ∂yf > 0 such that
F ′ ◦ φ = g ◦ F where for every (x, y) ∈ R2, g(x, y) = (x, f(x, y)). In particular, such an isomor-
phism respects the generator of the S1-action (J ′ ◦ φ = J).

Roughly speaking, the classification of simple semitoric systems up to isomorphism is given
in terms of five invariants:

1. the number Nf (which is finite) of focus-focus points of the system;

2. a rational convex polygon ∆ ⊂ R2 obtained as the image of a “generalized toric momentum
map” µ : M → R2;

3. for each focus-focus point m:

(a) the height of µ(m) in ∆, obtained as some symplectic volume;

(b) a formal series in two variables, encoding the dynamics near the singularity;

(c) an integer describing how some natural local toric momentum map compares with µ.

However this rough description is a bit simplistic because, in practice, these invariants are all
related. So we will now give a more precise definition of those. For the sake of simplicity we
will assume that the systems that we consider have at least one focus-focus point; if there is no
such singularity, only the polygonal invariant remains, and its definition can easily be adapted
from what follows by using the convention that any finite set indexed by {1, . . . , s} is empty
when s = 0. Alternatively, the construction of the polygonal invariant of a system of toric
type is explicitly discussed in [SVuN18, Section 5.2.2]; we also give a brief description of this
construction after Example 3.4.5.

3.4.1 Marked semitoric polygons

From now on and until further notice, the semitoric systems that we consider are allowed to
be non-simple. The idea behind the construction of the polygon ∆ is to try to obtain global
actions variables over the set Breg ⊂ F (M) of regular values (which is not simply connected
because of the focus-focus values); this is prevented by the non-trivial monodromy above loops
circling focus-focus values, exhibited in [Zou92, Mat96, Zun97]. This monodromy is always given
by the matrix T k, where T is as in Equation (3.5) below and |k| is the number of focus-focus
points with image in the interior of the chosen loop. If the system is simple, by introducing
vertical cuts emanating from the focus-focus values in Breg to obtain a simply connected set
B̃reg, so that global action variables can be constructed over B̃reg, and by taking into account
this monodromy to glue back at the cuts, one manages to construct the aforementioned map
µ, such that ∆ = µ(M) is a convex polygon. In the non-simple case the picture is a bit more
involved, but the idea is similar, except that in this context the cuts will be associated with
focus-focus points.

This construction depends on two choices: the choice of some initial action variables of the
form (J,K) near some c0 ∈ Breg, and the choice of the direction (upwards or downwards) of
each cut. Therefore the actual invariant is an equivalence class of such polygons, that we will
define now. Actually, it is convenient to bundle this invariant together with the number of
focus-focus points and height invariant, thus obtaining the so-called marked semitoric polygon
of (M,ω, (J,H)).

Marked semitoric polygons. We start by defining the possible (classes of) polygons that
we will obtain in this way. When constructing these polygons from semitoric systems, it will
be necessary to keep track of the cut directions, so we will need to define some rather involved

56



notation. But first of all, when M is not compact (a situation that we will encounter in Chapter
5), one must be careful with the meaning of the word “polygon”.

Definition 3.4.1. A polygon is a closed subset ∆ of R2 whose boundary ∂∆ is a continuous
piecewise linear curve such that for any K ⊂ R2 compact, ∂∆ ∩ K is differentiable except at
finitely many points that are called vertices of ∆. Each linear piece of ∂∆ is called an edge of
∆. A polygon is called

• convex if it is the convex hull of isolated points in R2;

• rational if the slope of every edge is a rational number.

Of course, a compact convex polygon with a finite number of vertices is a polygon in the
usual sense.

Let ∆ ⊂ R2 be a convex, rational polygon, and let

T =

(
1 0
1 1

)
∈ SL(2,Z). (3.5)

Let q be a vertex of ∆. Since ∆ is rational, the edges emanating from q are directed by integral
vectors (vectors with integer coefficients), and we can choose normal vectors to these edges that
are also integral. Let v1, v2 ∈ Z2 be the primitive inwards pointing normal vectors to these edges

(recall that a vector
(
a
b

)
∈ Z2 is primitive if and only if a and b are relatively prime), ordered

in such a way that det(v1, v2) > 0.

Definition 3.4.2. Let k be a positive integer; we say that q satisfies:

1. the Delzant condition if det(v1, v2) = 1;

2. the k-hidden Delzant condition if det(v1, (T
∗)kv2) = 1;

3. the k-fake condition if v1 = (T ∗)kv2 (which, in this context, amounts to det(v1, (T
∗)kv2) =

0).

In the literature one can also encounter an equivalent definition involving vectors directing
the edges instead of normal vectors, but it is more natural for us to use the normal vectors;
this was important in particular in [LFP23] where we intensively used the relationship between
semitoric systems and their helices, see Section 4.2.3.

Let π1, π2 : R2 → R be the canonical projections to the first and second factor, respectively.
For c, c′ ∈ R2, write c ≤lex c

′ if and only if c is smaller than c′ for the lexicographic order. Let
s ∈ Z≥0, let ~c = (c1, . . . , cs) ∈ (R2)s and let ~ε = (ε1, . . . , εs) ∈ {−1, 1}s. Assume that all the
points c1, . . . , cs belong to the interior of ∆ and that c1 ≤lex . . . ≤lex cs. Then (∆,~c,~ε) is called
a marked weighted polygon. For marked weighted polygons constructed from semitoric systems,
s = Nf will be the number of focus-focus points of the system, the marked points c1, . . . , cNf
will be the images of the focus-focus points m1, . . . ,mNf in the polygon, and ε1, . . . , εNf will give
the direction of the cut at each focus-focus point (upwards if εj = 1, downwards if εj = −1).

Let T be the subgroup of GL(2,Z)nR2 consisting of applications leaving the vertical direction
invariant; in other words, an element of T is the composition of a linear transformation of the
form T ` for some ` ∈ Z and of the translation by a vertical vector. Then T acts on the set
of marked weighted polygons in the following way. For τ ∈ T and (∆,~c,~ε) a marked weighted
polygon, define

τ · (∆,~c,~ε) = (τ(∆), τ(~c),~ε) (3.6)

where τ(~c) = (τ(c1), . . . , τ(cs)).
When constructing the marked semitoric polygon of a semitoric system, the action of T will

correspond to the freedom in the choice of initial action variables of the form (J,K) alluded to
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above. To account for the freedom in the choice of cut direction (up or down) at each point cj ,
we need to introduce another group action which is a bit more complicated to define.

For λ ∈ R, endow the vertical line π−1
1 (λ) with an origin O, and define the piecewise affine

transformation tλ : R2 → R2 as the identity on π−1
1 ((−∞, λ]} and as T , relative to O, on

π−1
1 ([λ,+∞)). Explicitly,

∀(x, y) ∈ R2 tλ(x, y) =

{
(x, y) if x ≤ λ,
(x, y + x− λ) if x ≥ λ.

(3.7)

Clearly tλ does not depend on the choice of the origin O. Additionally, for ~u = (u1, . . . , us) ∈
{−1, 0, 1}s and ~λ = (λ1, . . . , λs) ∈ Rs, let t

~u,~λ
= tu1λ1 ◦ . . . ◦ t

us
λs

(one readily checks that for any
λ, λ′ ∈ R, tλ and tλ′ commute, so the order of the compositions in the definition of t

~u,~λ
does not

matter).
Moreover, endow Gs = {−1, 1}s with a group structure by means of the composition law ∗

defined as
(ε1, . . . , εs) ∗ (ε′1, . . . , ε

′
s) = (ε1ε

′
1, . . . , εsε

′
s).

The action of Gs that we will define now does not necessarily preserve the convexity of polygons
(but will preserve convexity when restricted to the class of polygons actually constructed from
a semitoric system, which will satisfy the assumptions in Lemma 3.4.3). So we forget convexity
for a moment and consider the set

P = {(P,~c,~ε) | P is a polygon ,~c ∈ (R2)s,~ε ∈ {−1, 1}s}

and define an action of Gs on P as

~ε′ · (P,~c,~ε) =
(
t
~u,~λ

(P ), t
~u,~λ

(~c), ~ε′ ∗ ~ε
)
, (3.8)

for ~ε′ ∈ Gs and (P,~c,~ε) ∈ P, with t
~u,~λ

(~c) =
(
t
~u,~λ

(c1), . . . , t
~u,~λ

(cs)
)
and

~u =

(
ε1 − ε1ε′1

2
, . . . ,

εs − εsε′s
2

)
, ~λ = (π1(c1), . . . , π1(cs)). (3.9)

In practice, the action of Gs consists in changing some cut directions, which also has an effect on
the polygon: for instance if we change an upwards cut εj = 1 to a downwards cut ε′jεj = −1 at
the marked point cj , we apply the transformation T from Equation (3.5) to the part of P lying
to the right of the vertical line passing through cj .

The fact that the action of Gs defined above does not necessarily preserve the convexity of
∆ can be seen from the very simple example given in [PVuN11, Section 2.2] and displayed in
Figure 3.5a, but can also be visualized in the more subtle example of Figure 3.5b. A marked
weighted polygon (∆,~c,~ε) is said to be admissible if all the polygons in its Gs-orbit are convex.
The Gs-action given in Equation (3.8) yields an action of the set of admissible marked weighted
polygons, which commutes with the T -action defined in Equation (3.6). Therefore, one obtains
a (Gs × T )-action on the set of admissible marked weighted polygons.

For the polygons constructed from semitoric systems, this loss of convexity will not be a
problem since the image of each cut starting at a focus-focus value will eventually hit a vertex of
the polygon with some good properties, which will ensure admissibility. This is what motivates
the following definitions.

If (∆,~c,~ε) is a marked weighted polygon, consider the half-line

Lj(∆,~c,~ε) = {(x, y) ∈ R2 | x = π1(cj), εjy ≥ εjπ2(cj)},
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×

×

(a) P is a square and c1 is its
center.

×

×

(b) P is a trapezoid with slope
1
2 and c1 lies under its internal
vertex.

Figure 3.5: In each figure, the top picture displays an element (P, c1, 1) ∈ P, and the bottom
picture shows its image under the action of ε′1 = −1 ∈ G1, see Equation (3.8). In both examples,
one can observe that this action breaks convexity.

starting at the point cj and directed upwards if εj = 1 and downwards if εj = −1; we call this
half-line a cut, and it will be represented as dashed lines in the pictures, such as Figure 3.5.
Consider also the union

L(∆,~c,~ε) =
s⋃
j=1

Lj(∆,~c,~ε)

of all these cuts. The next result extends [PVuN09, Lemma 4.2] to the non-simple case, and is
stated in [LFP23, Definition 2.10].

Lemma 3.4.3. Let (∆,~c,~ε) be a marked weighted polygon satisfying the following assumptions:

1. each point q ∈ ∂∆ ∩ L(∆,~c,~ε) is a vertex of ∆ which satisfies either the k-fake or k-hidden
Delzant condition (see Definition 3.4.2), where

k = #
{
j ∈ {1, . . . , s}

∣∣∣ q ∈ Lj(∆,~c,~ε)} ,
in which case q is known as a k-fake or k-hidden corner (or vertex), respectively;

2. all other vertices satisfy the Delzant condition, and are called Delzant corners (or vertices).

Then it is admissible.

The (Gs×T )-orbit of a marked weighted polygon (∆,~c,~ε) satisfying the conditions in Lemma
3.4.3, denoted by [(∆,~c,~ε)], is called a marked semitoric polygon.

It will also be useful at times, especially in Chapter 4, to talk about unmarked semitoric
polygons, which will only contain the information of the respective horizontal positions of the
cuts and their directions, or in other words, only the horizontal coordinate π1(cj) of each marked
point cj and the value of εj . This corresponds to forgetting the height invariants of the focus-
focus points and keeping only the J-value of these points and for each of them, the associated cut
direction. Equivalently, one can define an unmarked weighted polygon as the data of (∆, ~λ,~ε)
with ~λ = (λ1, . . . , λs) ∈ Rs and define an unmarked semitoric polygon as the (Gs × T )-orbit of
an unmarked weighted polygon satisfying the conditions in Lemma 3.4.3 obtained by using λj
instead of π1(cj) in the definition of Lj(∆,~c,~ε).
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The marked semitoric polygon of a semitoric system. Let (M,ω, F = (J,H)) be a
semitoric system, and let Nf be its number of focus-focus points; as before, we assume that
Nf > 0 for the sake of simplicity and refer the reader to [SVuN18, Section 5.2.2] and the
discussion following Example 3.4.5 for the case Nf = 0. Let cj = (xj , yj), 1 ≤ j ≤ Nf be the
corresponding focus-focus values, ordered lexicographically; since we are not requiring the system
to be simple, note that these values are not necessarily distinct.

Let ~ε ∈ {−1, 1}Nf and, for every j ∈ {1, . . . , Nf}, let `
εj
j be the vertical half-line starting

from (xj , yj) and going downwards if εj = −1 and upwards if εj = 1; consider the union

`~ε =

Nf⋃
j=1

`
εj
j

of all these half-lines. This is a collection of cuts, upwards or downwards, each associated with
a given focus-focus point.

As above, let Breg ⊂ F (M) be the set of regular values of F ; this set carries an integral affine
structure, that is a structure of smooth manifold with transition maps of the form v 7→ Av + b
with A ∈ GL(2,Z) and b ∈ R2. In the case of Breg, the charts are given by action diffeomorphisms
(see Section 3.2). Moreover, R2 is endowed with its standard integral affine structure.

The following result originally appeared in [VuN07], but in the statement we essentially adopt
the notation and convention from [PPT19]. In [VuN07], there is a one-to-one correspondence
between cuts and focus-focus values and each point lying on one or several cuts is given a
multiplicity according to the number of focus-focus points in the corresponding fibers, while
in [PPT19], there is one cut associated with each focus-focus point. Both choices come with
advantages and drawbacks: the choice made in [VuN07] is better suited to the interpretation in
terms of cuts in the set of regular values that we will describe below, while the option taken
in [PPT19] directly includes the number of focus-focus points in the polygon and makes more
sense when thinking about a system (M,ω, Ft) depending on a parameter t and bifurcating from
simple to non-simple, for instance when two focus-focus points are on the same J-fiber but not
on the same Ft-fiber for t 6= 0, while they lie on the same F0-fiber. Indeed, in this example for
t 6= 0 there would be two marked points and cuts with both conventions, so it is natural to keep
these when t = 0.

Theorem 3.4.4 ([VuN07, Theorem 3.8]). There exists a homeomorphism g~ε : F (M) → R2 of
the form

g~ε(x, y) =
(
x, g

(2)
~ε (x, y)

)
,

∂g
(2)
~ε

∂y
> 0

such that

1. the restriction g̃~ε of g~ε to F (M) \ `~ε is a diffeomorphism into its image;

2. g̃~ε sends the integral affine structure of Breg to the standard integral affine structure of R2;

3. g̃~ε extends to a smooth multi-valued map from Breg to R2 and for any j ∈ {1, . . . , Nf}

∀c ∈ `εjj \ {c1, . . . , cNf } lim
(x,y)→c
x<xj

dg̃~ε(x, y) = T k(c) lim
(x,y)→c
x>xj

dg̃~ε(x, y)

where k(c) is defined as
k(c) =

∑
p∈{1,...,Nf}

c∈`εpp

εp; (3.10)

4. the image g~ε(F (M)) is a rational convex polygon.
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Moreover, such a g~ε is unique up to the left composition by an element of T .

The set `εjj \ {c1, . . . , cNf } in this statement is a finite union of intervals, and the function
c 7→ k(c) is constant on each of these intervals. This constant is called the wall-crossing index of
the interval in [PPT19], see Definition 2.9 and Figure 1 in that paper.

The map µ~ε = g~ε ◦ F , with g~ε as in Theorem 3.4.4, is called a generalized toric momentum
map or cartographic homeomorphism. The triple(

∆~ε,~c = (g~ε(x1, y1), . . . , g~ε(xNf , yNf )),~ε
)
, (3.11)

where ∆~ε = g~ε(F (M)) = µ~ε(M), is a marked weighted polygon satisfying the assumptions of
Lemma 3.4.3. So one can define the marked semitoric polygon ∆(M,ω,F ) of (M,ω, F ) as the
(GNf × T )-orbit of the marked weighted polygon (3.11).

The idea behind the construction of such a generalized toric momentum map goes as follows.
Since it is more visual in the simple case, we may assume for a moment that our semitoric
system is simple. Let c ∈ Breg be a regular value of F , and choose a pair of action variables
of the form (J, L) near c. They cannot be extended over the whole of Breg because of the non-
trivial monodromy induced by the focus-focus points discussed earlier. Nevertheless, the action
variables (J, L) can be extended over the simply connected set Breg \ `~ε. By using the normal
forms from Theorem 3.2.5 and from [MZ04] to deal with the singularities of elliptic type, they can
in fact be extended over F (M) \ `~ε. Taking into account the monodromy to glue back along the
cuts allows one to obtain the generalized toric momentum map µ~ε; this gluing rule corresponds
to the third item in Theorem 3.4.4. Of course µ~ε depends on the choice of the signs ~ε encoding
the cut directions, and changing ~ε to ~ε′∗~ε amounts to acting by ~ε′ ∈ GNf on the marked weighted
polygon (µ~ε(M),~c,~ε) as in Equation (3.8). Moreover, µ~ε also depends on the initial choice of
action variables (J, L), and any other choice (J, L′) is the image of (J, L) by a transformation
τ ∈ T , and the resulting marked weighted polygon is obtained as the image of (µ~ε(M),~c,~ε) under
the action of τ as in Equation (3.6).

Example 3.4.5. Let (M,ω, (J,Ht)) be the coupled angular momenta system as in Example
3.3.4. Some representatives of the marked semitoric polygon of this system for t ∈ (t−, t+) are
displayed in Figure 3.6.

In the absence of focus-focus singularities (Nf = 0), the system is of toric type and its
marked semitoric polygon is simply obtained by extending any initial set of action variables of
the form (J, L) over the whole of F (M). Of course there is no cut anymore, so only the action
of T , corresponding to the initial choice of action variables, remains. We will use the notation
[(∆, ∅, ∅)] for this marked (or unmarked) semitoric polygon. If the system is toric, then there is
a preferred representative, since H is also an action variable: the Delzant polygon of the system.

Note that the fact that two marked semitoric polygons which differ by a horizontal translation
correspond to non-isomorphic semitoric systems comes from the fact that isomorphisms must
respect the first component of the momentum map. But in practice, by starting from a system
(M,ω, J) and adding a constant to J , we obtain a new system whose marked semitoric polygon
is the image of the original one by a horizontal translation. This will actually be important in
Chapter 4.

The height invariant. The marked semitoric polygon of a semitoric system is a convenient
object combining the polygon with first coordinates of its cuts, number of focus-focus points and
height invariants. Indeed, the latter can be computed from this marked semitoric polygon as
follows. Let (∆,~c,~ε) be a representative of the marked semitoric polygon of (M,ω, F = (J,H)),
and for j ∈ {1, . . . , Nf}, let

hj = bj −min{b | (aj , b) ∈ ∆} > 0
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×

(−(R1 +R2), 0)

(R1 −R2, 2R1)

(R2 −R1, 0)

(R1 +R2, 2R1)

×

(−(R1 +R2), 0)

(R1 +R2, 2(R1 +R2))

(R2 −R1, 2(R2 −R1))

(R1 −R2, 0)

×

(−(R1 +R2), 0) (R1 −R2, 0)

(R2 −R1,−2R2) (R1 +R2,−2R2)

×

(−(R1 +R2), 0) (R1 +R2, 0)

(R2 −R1,−2R1)(R1 −R2,−2R1)

Figure 3.6: A few representatives of the marked semitoric polygon for the coupled angular
momenta system of Example 3.3.4. The polygons in the bottom row are obtained from those in
the top row by applying the global transformation T−1 ∈ T with T as in Equation (3.5). The
polygons in the rightmost column are obtained from those in the leftmost column by changing
the cut direction from upwards (ε1 = 1) to downwards (ε1 = −1), see Equation (3.8).
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be the height of the marked point cj = (aj , bj) in the polygon ∆. The value of hj does not
depend on the choice of representative (∆,~c,~ε). Indeed, let (∆̃, ~̃c, ~̃ε) be another representative of
the marked semitoric polygon, and let

ψ =

(
~ε′,

(
T `,

(
0
t

)))
∈ GNf × T

be such that (∆̃, ~̃c, ~̃ε) = ψ · (∆,~c,~ε). Moreover, let b− = min{b | (aj , b) ∈ ∆}. Then

c̃j =

aj , `aj + bj + t+

j−1∑
p=1

up(aj − ap)

 , min{b | (aj , b) ∈ ∆̃} = `aj + b−+ t+

j−1∑
p=1

up(aj − ap)

and so
b̃j −min{b | (aj , b) ∈ ∆̃} = bj − b− = hj .

This common value hj is the height invariant associated with cj .
In fact, the height invariant hj of the focus-focus point (xj , yj) can also be computed without

referring to a generalized toric momentum map. Indeed, let (M red
xj , ω

red
xj ) be the symplectic

reduction of M by the S1-action generated by J at level J = xj . Then 2πhj is the symplectic
area, with respect to ωred

xj , of {[m] ∈M red
xj | H(m) < yj}. There is another interpretation of this

height invariant, which is depicted at the end of Section 3.4.2.

Example 3.4.6. The height invariant of the unique focus-focus point in the coupled angular mo-
menta system (M,ω, (J,Ht)), t ∈ (t−, t+), of Example 3.3.4 was computed in [ADH20, Theorem
5.1], and equals

h = 2 min(R1, R2) +

R1

(√
C(t, R)− 2Rt arctanπ

2

(√
C(t,R)

R−t

)
− 2t arctanπ

2

( √
C(t,R)

(1−2t)R+t

))
πt

(3.12)
with R = R2

R1
and

C(t, R) = 2Rt− t2 −R2(1− 2t)2 = (1 + 4R2)(t− t−)(t+ − t). (3.13)

Here arctanπ
2
is the (discontinuous) determination of the arctangent yielding angles in (0, π),

namely

arctanπ
2
u =

{
arctanu if u ≥ 0,

arctanu+ π if u ≤ 0.

In practice, to construct the marked semitoric polygon of a semitoric system, one does not
need to come up with an explicit generalized toric momentum map. It suffices to apply the
following recipe, based on [VuN07, Theorem 5.3] in which the Duistermaat-Heckman function
ρJ of J (see Section 5.4.2) is computed.

1. Choose the directions of the cuts. Their horizontal locations are given by the first coordi-
nates of the marked points, which are the values of J at each focus-focus point.

2. Let Jmin be the global minimum of J . Assume for simplicity that this minimum is attained
at a single elliptic-elliptic point. Then ∆ will start with a vertex located at x = Jmin. The
angular sector formed by the two edges emanating from this vertex is determined up to
the action of an element of T from the weights of the S1-action at the point.

3. Extend the edges of this piece of polygon until they hit a vertical line containing the J-
values J(pi) of one or several elliptic-elliptic or focus-focus point p1, . . . , pd, and let c be
the corresponding intersection point. Then the change of slopes between the incoming edge
and the outgoing edge at c is obtained by summing contributions coming from each pi, and
more precisely:
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(a) if pi is elliptic-elliptic, its contribution is determined by the weights of the S1-action
at pi;

(b) if pi is focus-focus, this contribution equals k(c) from Equation (3.10).

Notice that we have not been precise about the sign of this change of slopes. We do not
need to, since we know that ∆ must be convex.

4. Continue until ∆ is fully drawn.

5. Compute the height of each marked point in ∆ by computing a symplectic volume as
explained above. Since the first coordinate of each marked point is known, this allows one
to locate all the marked points.

If Jmin is attained on a fixed surface, the polygon ∆ will start with a vertical line segment
of length the symplectic area of this surface divided by 2π. The first ordinate of the elements
of this segment is x = Jmin. The difference of the slopes of the edges emanating from the
two endpoints of this segment is a bit more complicated to compute, but one can proceed as
follows. If the global maximum Jmax of J is attained at a single elliptic-elliptic point, then we
can apply the same strategy as above but starting from this maximum instead of the minimum
of J . Otherwise, the aforementioned difference of slopes will be determined by the length of the
vertical line segment with first ordinate Jmax. Indeed, the lengths of these two walls are the
values of the Duistermaat-Heckman function ρJ at x = Jmin and x = Jmax, and the changes of
slopes computed in Step 3 correspond to changes of slopes between two consecutive affine pieces
of ρJ .

Now we come back to the case of a simple semitoric system (M,ω, F = (J,H)) and define
the remaining symplectic invariants (Taylor series and twisting index) in this context. In order
to do so, we adopt the notation and presentation of Sections 2.4 and 2.5 from [LFVuN21], but
in a slightly different order.

3.4.2 The Taylor series invariant

The Taylor series invariant is a formal series associated with each focus-focus point that describes
the singular dynamics near this point. More precisely, it is obtained as the Taylor expansion of
a canonical regularization of a singular action variable constructed near the singular fiber.

Let m0 ∈ M be a focus-focus point; for the sake of simplicity, we assume that F (m0) = 0
(which amounts to changing F by a constant). Let Λ0 = F−1(0) be the corresponding singular
fiber, which is a torus pinched at m0 only since the system is simple.

Let Ω ⊂ M be a small neighborhood of m0 on which Eliasson’s normal form from Theorem
3.2.5 holds and such that F (Ω) is simply connected, and let (x1, x2, ξ1, ξ2) be the Darboux
coordinates given in this theorem. This normal form implies that there exists a smooth function
fr : R2 → R such that, in these coordinates

fr(J,H) = x1ξ1 + x2ξ2.

This function is unique up to sign, addition of a constant, and addition of a function which is
flat at the origin; the function fr obtained by imposing fr(0) = 0 and ∂yfr > 0 is called the
Eliasson function. It is only unique up to addition of a flat function, but in what follows only
its Taylor expansion at the origin will matter. The corresponding Hamiltonian Hr = fr(J,H)
is called the radial Hamiltonian; its trajectories in Λ0 ∩ Ω are straight lines going to the origin
in the coordinates (x1, x2, ξ1, ξ2). The map q = (J,Hr) must coincide (up to addition of a flat
function to fr) with the quadratic map Q in Eliasson’s normal form (Theorem 3.2.5) and hence
is called the Eliasson momentum map.

Let Ω0 ⊂M be a saturated neighborhood of Λ0, and let B ⊂ F (Ω0) be a small ball centered
at the origin in R2 such that B \ {0} ⊂ Breg. Let U ⊂ B \ {0} be a simply connected open set
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such that U ⊂ F (Ω) and U is contained in the right half-plane {(x, y) ∈ R2 | x > 0}, and choose
action coordinates in F−1(U) of the form (J, L). Extend L over the simply connected open set
F (Ω) \ ` where ` is the vertical half-line {(0, y) ∈ R2 | y ≥ 0}. Since XL is tangent to the fibers
of F , it decomposes uniquely as

XL = τ̃1XJ + τ̃2XHr (3.14)

where τ̃j = τj ◦ F for j = 1, 2, with τj a smooth function on F (Ω) \ `.
Let log be the determination of the complex logarithm obtained by choosing arguments in

(−3π
2 ,

π
2 ] (which means that the cut coincides with the half-line {z ∈ C | <(z) = 0, =(z) ≥ 0}).

The following result is the crucial step in obtaining a nice regularized action from L.

Proposition 3.4.7 ([VuN03], [SVuN18, Lemma 4.46]). The functionsσ1 : c 7→ τ1(c) + 1
2π=(log(c1 + ifr(c1, c2))),

σ2 : c 7→ τ2(c) + 1
2π<(log(c1 + ifr(c1, c2)))

extend smoothly at c = (0, 0).

Now, write L = L̂ ◦ q where q = (J,Hr) is the Eliasson momentum map and L̂ is smooth.
Equation (3.14) yields

τ̃1 =
∂L̂

∂X
◦ q, τ̃2 =

∂L̂

∂Y
◦ q,

hence Proposition 3.4.7 implies that the function

S : R2 → R, (X,Y ) 7→ L̂(X,Y ) + =(w logw − w)

with w = X + iY , extends to a smooth function S in a neighborhood of the origin, with
(g−1)∗dS = σ1dc1 + σ2dc2 where g is the local diffeomorphism from Theorem 3.2.5 associated
with fr, in other words g−1(x, y) = (x, fr(x, y)). Let

S∞ =
∑
`,m≥0

S`,mX
`Y m

be the Taylor series of S at the origin.

Definition 3.4.8. The Taylor series invariant associated with m0 is the equivalence class [S∞]
of S∞ in R[[X,Y ]]/(R ⊕ ZX). The first terms [S1,0] ∈ R/Z and S0,1 ∈ R are called the linear
invariants of this Taylor series invariant.

The action L being defined only up to a constant term, it is natural to forget the term S0,0

in the actual invariant; moreover it is clear from the definition of σ1 that only the class of S1,0

modulo Z should be considered. It is proved in [VuN03, Theorem 2.1] that [S∞] is a complete
symplectic invariant for the singular foliation defined by F in a neighborhood of Λ0.

Example 3.4.9. The Taylor series invariant of the coupled angular momenta system (M,ω, (J,Ht)),
t ∈ (t−, t+) of Example 3.3.4 was computed in [ADH20]. Here we only reproduce the linear in-
variants, and refer the reader to [ADH20, Theorem A] for more details:

S1,0 =
1

2π
arctan

(
(2t− 1)R2 −R(1 + t) + t

(1−R)
√
C(t, R)

)
, S0,1 =

1

2π
ln

4R
5
2
1 C(t, R)

3
2

R
3
2
2 (1− t)t2

 (3.15)

with R = R2
R1

and C(t, R) as in Equation (3.13).
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The functions τ1 and τ2 also have an interpretation as “periods” for some dynamics related
to the Hamiltonian flows of J and Hr, as was originally explained in [VN00].

The height invariant can also be interpreted in this context, using the constant term S0,0

that was discarded in the invariant [S∞]. Indeed, we may extend the action L which was used
to define S∞ so that it is well-defined where H reaches its minimum on J−1(0), and modify it
by a constant so that it vanishes there. With this choice of L, S0,0 is the height invariant of the
focus-focus point m0.

As already stated, we will not construct the Taylor series invariant in the non-simple case, but
we still give a quick idea of its nature. The idea of the construction of this invariant was sketched
at the end of [VuN03] and the corresponding semi-local symplectic classification was obtained
in [PT19]. Roughly, for each focus-focus fiber containing d focus-focus points m1, . . . ,md, the
invariant is given by d formal series. One of them is the analogue of [S∞]: it is constructed
by combining the regularizations of analogues of the functions τ1 and τ2 from Equation (3.14)
constructed near every focus-focus point mi. The d − 1 remaining Taylor series encode how
the Eliasson normal forms near each mi are related. In fact one has to be careful because the
construction of these Taylor series depends on the ordering m1, . . . ,md of the singular points,
but the actual invariant does not. We refer the reader to [PT19] or [PPT19, Section 2.2] for
more details.

3.4.3 Twisting numbers and twisting index

Keeping the same notation as in the previous section, note that action variables of the form
(J, L) on U ⊂ F (Ω) are not unique, and that if (J, L) and (J, L′) are two sets of such action
variables, then there exist an integer n and a real number c such that L′ = L + nJ + c. The
twisting number associated with m0 is the integer n appearing in this relation for an appropriate
choice of L and L′ that we describe now. One is local and reflects the singular dynamics near
the focus-focus fiber, and is called the privileged action variable Lpriv; the other comes from the
global choice of a generalized toric momentum map. More precisely, let ~ε ∈ {−1, 1}Nf , let g~ε
be as in Theorem 3.4.4, and let µ~ε = g~ε ◦ F be the corresponding generalized toric momentum
map. Since U is contained in the right half-plane, it does not intersect the cut above or below
F (m0) = 0, so by construction µ~ε is a local toric momentum map on U , with first component J
and second component L~ε. The reference action variable that we choose is this L~ε.

The privileged action variable Lpriv is a bit more involved to describe. Consider action
variables of the form (J, L) on U , and extend L to F (Ω) \ ` as in the previous section. Let σ1, σ2

be the functions of Proposition 3.4.7 applied to τ1, τ2 appearing in the decomposition (3.14)
for XL. By this proposition, the value σ1(0) of σ1 at the origin is well-defined, and this value
depends only on L. In fact, the integer part of σ1(0) does depend on L but not its fractional
part: if σ′1 is associated with the action variable L′ = L+nJ + c with n ∈ Z and c ∈ R, then one
readily checks that σ′1(0) = σ1(0) +n. We say that L = Lpriv is a privileged action variable when
σ1(0) ∈ [0, 1), that is when the integer part of σ1(0) vanishes; in this case we write σpriv1 (0) for
σ1(0). The action variable Lpriv is only defined up to addition of a constant, but this constant
does not matter in the following definition of the twisting number.

Definition 3.4.10. The twisting number associated with m0 and g~ε is the unique integer p such
that dL~ε = dLpriv + p dJ on U .

This twisting number is not the actual symplectic invariant, as it depends on the choice of
~ε and of an associated generalized toric momentum map µ~ε, or in other words on the choice
of a representative (∆,~c,~ε) of the marked semitoric polygon of the system. Hence we need
to understand how the action of GNf × T impacts the twisting number. So we fix such a
representative (∆,~c,~ε) and investigate the effect of the two actions corresponding to the change
of initial action variables and the change of cut directions, respectively.
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First, let τ ∈ T , and let k ∈ Z be such that the linear part of τ equals T k. Let µ~ε = g~ε ◦F =
(J, L~ε) and µ′~ε = g′~ε ◦F = (J, L′~ε) = τ ◦ µ~ε; then dL′~ε = dL~ε + k dJ , so if p is the twisting number
associated with m0 and g~ε, the twisting number associated with m0 and g′~ε is p+ k.

Second, let ~ε′ ∈ {−1, 1}Nf , and let ~u, ~λ be as in Equation (3.9), so that µ~ε′∗~ε = t
~u,~λ
◦ µ~ε.

Assume that the marked point corresponding to m0 in (∆,~c,~ε) is cj (in other words that cj =
µ~ε(m0)). Then one readily checks, using for instance Equation (3.7), that on U

L~ε′∗~ε = L~ε + (u1 + . . .+ uj)J − (λ1 + . . .+ λj);

therefore dL~ε′∗~ε = dL~ε + (u1 + . . .+ uj)dJ , so the twisting number associated with m0 and g~ε′∗~ε
is p+ u1 + . . .+ uj .

Summing up, if p1, . . . , pNf are the twisting indices associated with the focus-focus points
m1, . . . ,mNf respectively and a representative (∆,~c,~ε) of the marked semitoric polygon of
(M,ω, F ), and if (~ε′, τ) is an element of GNf × T , then the twisting indices associated with
m1, . . . ,mNf and the representative (~ε′, τ) · (∆,~c,~ε) (see Equations (3.6) and (3.8)) are

p1 + k + u1, p2 + k + u1 + u2, . . . , p1 + k + u1 + . . .+ uNf

if the linear part of τ is T k. This leads to the following definition.

Definition 3.4.11. The twisting index of the semitoric system (M,ω, F = (J,H)) is the (GNf ×
T )-orbit of (∆,~c,~ε, ~p), where (∆,~c,~ε) is a representative of the marked semitoric polygon of
(M,ω, F ) and ~p = (p1, . . . , pNf ) is the corresponding collection of twisting numbers, under the
action given by:

∀(~ε′, τ) ∈ GNf × T , (~ε′, τ) · (∆,~c,~ε, ~p) =
(
t
~u,~λ
◦ τ(∆), t

~u,~λ
◦ τ(~c), ~ε′ ∗ ~ε, ~p′

)
(3.16)

where ~u,~λ are as in Equation (3.9) and where

~p′ = (p1 + k + u1, p2 + k + u1 + u2, . . . , pNf + k + u1 + . . .+ uNf )

with k such that the linear part of τ is T k.

This invariant is sometimes also called the decorated semitoric polygon invariant of the sys-
tem, see [SVuN18, Definition 5.38].

This definition differs from the original definition [PVuN09, Definition 5.9] for two reasons.
The first one is that the authors had seemingly missed the effect of changing the cut direction
associated with a focus-focus point ci with i < j (this is also discussed in [AHP23], where several
equivalent definitions of the twisting index are stated). In systems with only one focus-focus
point, as is the case for many explicit examples, this difference is not visible, which explains why
this problem was overlooked. The second one is more subtle, and is only a matter of choice: in
the original definition, the privileged action was defined in such a way that it changed when the
cut at cj = µ~ε(m0) changed (in other words it depended on the choice of εj), while here, following
the approach of [LFVuN21], it does not. The advantage of the choice made in [PVuN09] is that
the twisting number did not change when changing εj while here, it does; however we prefer the
choice that we have made here because the privileged action is then a completely local object,
not depending on the global choice of a generalized toric momentum map. Even in the case of a
system with a unique focus-focus point, this difference is visible when considering representatives
of the marked semitoric polygon with downwards cut (ε = −1) (but it is not visible when working
with an upwards cut).

Example 3.4.12. Let (M,ω, (J,Ht)) be the coupled angular momenta system from Example
3.3.4 with t− < t < t+. Then the twisting number associated with the only focus-focus point
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and the marked semitoric polygon in the top left corner of Figure 3.6 vanishes; this was proved in
[ADH20]. This determines the twisting index of the system. For instance, the twisting numbers
associated with the other polygons from Figure 3.6 are 1 (top right), −1 (bottom left) and 0
(bottom right). Note that for the two polygons in the rightmost column, these numbers differ
(by 1) from the twisting numbers displayed in [ADH20, Figure 15] because of the different choice
made here (see the above discussion).

The twisting index and Taylor series invariants are in fact related, as was understood inde-
pendently in [PPT19] and [LFVuN21]. In order to understand this relation, consider any pair of
action variables of the form (J, L) on U , and let q ∈ Z and c ∈ R be such that L = Lpriv+nJ+c.
Then σ1(0) = σpriv

1 (0) + n. Let ~ε ∈ {−1, 1}Nf and let, as above, L~ε be the action variable
associated with a generalized toric momentum map µ~ε = g~ε ◦F coming from Theorem 3.4.4. Let
p be the twisting number associated with m0 and g~ε, see Definition 3.4.10. Then

dL~ε = dLpriv + p dJ = dL+ (p− n)dJ.

Hence, when L = L~ε we get n = p and obtain the following link between the Taylor series and
twisting index invariants.

Proposition 3.4.13 ([LFVuN21, Proposition 2.14]). Choose action variables of the form (J, L)
on U . The linear terms in the Taylor series invariant and the functions σ1, σ2 associated with L
are related by:

S0,1 = σ1(0) = σpriv
1 (0) + p, S1,0 = σ2(0),

where p ∈ Z is the twisting number associated with m0 and g~ε, with ~ε such that L coincides with
L~ε on U . In particular, [S0,1] = σ1(0) modulo Z, and p = bσ1(0)c.

Of course the fact that [S0,1] = σ1(0) modulo Z was already present in the definition of [S∞],
so the interesting information is that p = bσ1(0)c. One can wonder why the link between these
two invariants was seemingly overlooked for several years. One reason is that, historically, the
semi-global classification near a focus-focus point, achieved through the Taylor series invariant
in [VuN03], preceded the classification of semitoric systems; since in this classification the linear
term S0,1 of the Taylor series was only relevant through its fractional part, it was natural to
discard its integer part, which is related to the twisting number.

As for the Taylor series invariant, we will not describe the twisting index invariant in the
non-simple case. As in Proposition 3.4.13, in this case the twisting numbers are obtained from
the integer parts of certain coefficients of the Taylor series invariant. We refer the reader to
[PPT19, Section 4.4] for more details.

3.4.4 Complete invariant and symplectic classification

Let (M,ω, F = (J,H)) be a simple semitoric system; by combining the above invariants, one
obtains the complete symplectic invariant of (M,ω, F = (J,H)), which is the main character of
the classification results from [PVuN09, PVuN11].

Definition 3.4.14. The complete symplectic invariant of the simple semitoric system (M,ω, F =

(J,H)) is the (GNf ×T )-orbit of (∆,~c,~ε, ~p,
−−→
[S∞]) where (∆,~c,~ε) is a representative of the marked

semitoric polygon of (M,ω, F ), ~p = (p1, . . . , pNf ) is the corresponding collection of twisting

numbers, and
−−→
[S∞] = ([S∞1 ], . . . , [S∞Nf ]) where [S∞j ] is the Taylor series invariant of the focus-

focus point mj . Here GNf × T acts on (∆,~c,~ε, ~p) as in Equation (3.16) and acts trivially on
−−→
[S∞].

The following definition is adapted from [PVuN11, Definition 4.5].
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Definition 3.4.15. A complete semitoric ingredient is the (GNf × T )-orbit of (∆,~c,~ε, ~p,
−→
[S]),

where the action on (∆,~c,~ε, ~p) is given by Equation (3.16) and the action on
−→
[S] is trivial, and

1. Nf ≥ 0 is an integer;

2. (∆,~c,~ε) is a marked semitoric polygon (a marked weighted polygon satisfying the conditions
of Lemma 3.4.3);

3. ~p = (p1, . . . , pNf ) ∈ ZNf is an Nf -tuple of integers;

4.
−→
[S] = (S1, . . . , SNf ) where each Sj , j = 1, . . . , Nf , is an equivalence class of formal series
in R[[X,Y ]]/(R⊕ ZX).

The precise result of [PVuN09, PVuN11] is the following.

Theorem 3.4.16 ([PVuN09, Theorem 6.2] and [PVuN11, Theorem 4.6]). Two semitoric systems
are isomorphic if and only if they have the same complete symplectic invariant. Moreover, given
any complete semitoric ingredient, there exists a semitoric system whose complete symplectic
invariant coincides with this ingredient.

The second part of this statement, namely the construction of a semitoric system with given
symplectic invariants described in [PVuN11], is divided into the following steps:

1. from the data of the marked semitoric polygon (∆,~c,~ε), construct a symplectic manifold
and a momentum map over ∆ minus the cuts, by symplectically gluing local models coming
from normal forms at elliptic-elliptic, elliptic-regular and regular points;

2. over each marked point cj , construct a local model (manifold and momentum map) with
focus-focus singularity whose Taylor series invariant coincides with [S∞j ], using the classifi-
cation result obtained in [VuN03]. Then compose the momentum map on the left with an
appropriate integral affine transformation obtained from the twisting number pj , and glue
this model symplectically to the previous model;

3. finally, it only remains to study what happens at the parts of the cuts that are not con-
cerned by the previous step. For this it suffices, for the j-th cut, to mimic the construction
of the first step but for the polygon tπ1(cj)(∆) where tπ1(cj) is as in Equation (3.7). By sym-
plectically gluing all the local models in these three steps, one obtains a global momentum
map µ;

4. the momentum map µ is not smooth; compose it on the left with an appropriate home-
omorphism to obtain the smooth momentum map (J,H) of a semitoric system with the
desired invariants.

We insist once again on the fact that the classification result from Theorem 3.4.16 has been
extended to the non-simple case in [PPT19], but we will not describe this case here since it would
require to introduce more objects and notation and is not necessary for the next chapters.

3.5 Hamiltonian S1-spaces

In Chapter 4, we will exploit a structure underlying compact semitoric systems, and studied in
[Kar99].

Definition 3.5.1. A Hamiltonian S1-space is a triple (M,ω, J) where (M,ω) is a compact,
connected four-dimensional symplectic manifold and J is the momentum map for an effective
Hamiltonian S1-action.
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In [Kar99], Karshon constructed a labeled graph which is a complete invariant of Hamiltonian
S1-spaces: two Hamiltonian S1-spaces (M,ω, J) and (M ′, ω′, J ′) have the same Karshon graph
if and only if there exists a symplectomorphism Φ : (M,ω) → (M ′, ω′) such that J = J ′ ◦ Φ.
As we will recall below, if (M,ω, F = (J,H)) is a compact semitoric system, the Karshon graph
of the Hamiltonian S1-space (M,ω, J) can be obtained from the marked semitoric polygon of
(M,ω, F ).

Before defining this graph, let us recall some properties and notation. Let (M,ω, J) be a
Hamiltonian S1-space and let MS1 be the fixed point set for the S1-action generated by J .
Then each component of MS1 is either an isolated fixed point or a symplectic surface; the latter
can only happen at the global minimum or maximum of J . For k ≥ 2, let Zk be the cyclic
subgroup of S1 of order k; each component of the closure of the set of points with stabilizer Zk
is a closed symplectic sphere, called a Zk-sphere. On each Zk-sphere, the group S1/Zk acts with
two fixed points which are also isolated fixed points of the S1-action and are called the poles of
the Zk-sphere.

Given a fixed point p ∈ MS1 , one can determine whether it is a pole of a Zk-sphere by
investigating the weights of J at p. By [Kar99, Corollary A.7], near p, there exist local complex
coordinates z1, z2 on C2 with symplectic form ωC = i

2 (dz1 ∧ dz̄1 + dz2 ∧ dz̄2) and relatively
prime integers m,n ∈ Z, called the (isotropy) weights of J at p, such that

J = J(p) +
m

2
|z1|2 +

n

2
|z2|2. (3.17)

If |m| ≥ 2 (respectively |n| ≥ 2) then p is a pole of a Z|m|-sphere (respectively Z|n|-sphere).
The Karshon graph of (M,ω, J) consists of two types of vertices: each isolated fixed point

p ∈ MS1 corresponds to a regular vertex of the graph, labeled with the value J(p), while each
fixed surface Σ ⊂MS1 corresponds to a fat vertex of the graph (drawn as a large oval), labeled
with the common value J(Σ) of its elements, its genus g, and its normalized volume 1

2π

∫
Σ ω.

Any two vertices corresponding to the two poles of the same Zk-sphere are joined by an edge
labeled with k.

In practice, when drawing such a graph (see for instance the bottom of Figure 3.7), we omit
the labels corresponding to J-values and represent these values by the horizontal positions of the
vertices. Note that in [Kar99] these values were instead represented by the vertical positions of
the vertices.

Let (M,ω, F = (J,H)) be a compact semitoric system. The underlying S1-space (M,ω, J)
has the property that every fixed surface is a sphere (see [HSS15, Proposition 3.4]). Therefore in
this context we will simply omit the genus labels when drawing its Karshon graph. Moreover, the
weights of J at any focus-focus point of F are always −1 and 1 (see [Zun02, Theorem 1.2]), so no
focus-focus point can be a pole of a Zk-sphere. As explained in [HSS15, Section 3], the Karshon
graph of (M,ω, J) can be deduced from any representative (∆,~c,~ε) of the marked semitoric
polygon of (M,ω, F ) as follows:

• the fixed surfaces of J correspond to vertical edges of the polygon (called vertical walls),
so any such vertical edge yields a fat vertex of the Karshon graph. This vertex is labeled
with its J-value and the normalized volume of the fixed surface, which is obtained as the
length of the vertical wall;

• the marked points c1, . . . , cNf correspond to regular vertices that are not connected to any
edge, labeled with their J-values J(c`), 1 ≤ ` ≤ Nf ;

• the Delzant and hidden Delzant vertices of ∆ correspond to regular vertices, labeled with
their J-values;

• each Zk-sphere corresponds to a chain of edges of the polygon connecting exactly two
Delzant or hidden Delzant vertices, whose interior vertices are all fake, and such that one,
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Figure 3.7: A marked semitoric polygon and the Karshon graph corresponding to the underlying
Hamiltonian S1-space. The chain of edges indicated in bold corresponds to a Z2-sphere.

and hence all, of the edges in the chain has slope of the form b/k for some b ∈ Z relatively
prime to k. Hence to such a chain of edges we associate an edge in the graph, labeled with
the integer k.

This is illustrated in Figure 3.7.
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Chapter 4

Semitoric families and beyond

In this chapter, we describe the results of [LFP22, LFP23], joint with Joseph Palmer, dealing with
the construction of explicit semitoric systems from the data of their marked semitoric polygons.
In [LFP22], we constructed such explicit systems on Hirzebruch surfaces, as members of certain
one-parameter families of integrable systems in which one point undergoes Hamiltonian-Hopf
bifurcations, transitioning between elliptic-elliptic and focus-focus type. These systems are some
of the strictly minimal semitoric systems with respect to some type of blowups, which we explain
in detail in this chapter. In [LFP23] we extended these definitions and constructions to obtain
explicit semitoric systems for each of these strictly minimal models. We also proposed a recipe
to come up with such constructions.

In Section 4.1 we explain the motivations behind these questions and constructions. In Section
4.2 we describe the relevant notions of blowups and the associated strictly minimal semitoric
systems. In Section 4.3 we define the one-parameter families introduced in [LFP22, LFP23] and
state our main result that every strictly minimal semitoric system can be obtained as a member
of such a family. This result is obtained from two constructions. One consists in performing
sequences of blowups followed by blowdowns on a fully explicit starting system, and is explained
in Section 4.4. The other consists in creating new fully explicit semitoric systems and is detailed
in Section 4.5.

Throughout this whole chapter, all semitoric systems will be of the form (M,ω, (J,H)) with
(M,ω) a compact, connected symplectic manifold. They need not be simple (see Definition
3.3.2), and actually in [LFP23] we adapted several notions and results to the non-simple case.

4.1 Context and motivations

As explained at the end of Section 3.4, the construction of a semitoric system with given sym-
plectic invariants is rather involved, and the gluing procedure that it contains is an obstacle to
the obtainment of fully explicit, global formulas defining the system, in contrast with Delzant’s
algorithm which yields a completely explicit toric system with given Delzant polygon, see Section
3.1. This is of course to be expected because of the much richer nature and complexity of semi-
toric systems. But one can then wonder what happens if we forget some of the invariants: if we
are not interested in the value of the twisting index and Taylor series invariants, the constraints
appearing in the second step in the construction of a system from its invariants described in
Section 3.4.4 disappear (since any local focus-focus model will do, with no need to be modified
by an affine transformation involving the twisting number). Moreover in this case we are left
with the marked Delzant semitoric polygon, and we are closer to the toric case with the Delzant
polygon as the sole invariant, so one might hope to find a simpler procedure to construct an
explicit system.

Consequently, a natural question is the following: can one come up with a procedure which,
given a marked semitoric polygon, produces a semitoric system (M,ω, F = (J,H)) with this
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polygon as its polygonal invariant? Additionally, can one expect to obtain (M,ω, F = (J,H))
fully explicitly?

It is probably too optimistic to hope for a positive answer to these questions. Nevertheless,
in [LFP22, LFP23], we proposed some general strategies to answer them in some cases. In these
works, we considered one-parameter families F = (J,Ht), 0 ≤ t ≤ 1, with fixed J and Ht varying
smoothly with the parameter t (and often obtained as a convex combinationHt = (1−t)H0+tH1).
This choice was originally motivated by the historical examples of the spin-oscillator (Example
3.3.3) and of coupled angular momenta (Example 3.3.4), and allows one to take advantage of the
underlying structure of Hamiltonian S1-space of (M,ω, J), see Section 3.5.

In fact, another motivation came from the scarcity of explicit examples of semitoric systems
with at least one focus-focus singularity. When we first started working on [LFP22], the two
above systems, along with a generalization of the example of coupled angular momenta due to
Hohloch and Palmer [HP18], were the only explicit examples in the literature. Consequently, we
wanted to construct fully explicit examples on manifolds other than S2 × S2 or S2 × R2.

Actually, we were also motivated by the classification of minimal semitoric systems, i.e.
semitoric systems on which no blowdown can be performed (or equivalently from which one can
obtain all semitoric systems by performing sequences of blowups) obtained by Kane, Palmer
and Pelayo in [KPP18]. Here by blowup we mean toric type blowup, see Section 4.2.1, and
we restrict our attention to compact semitoric systems with at least one focus-focus singularity.
These authors introduced an invariant of semitoric systems called the semitoric helix, on which
the blowups can be read, and listed all the minimal semitoric helices. It was then natural to look
for explicit semitoric systems with such a helix.

4.2 Strictly minimal semitoric systems

Actually, there exist two notions of blowups (and the corresponding reverse operations, called
blowdowns) that are relevant in the semitoric world: toric type and semitoric type blowups.
The systems that we were interested in in [LFP22, LFP23], that we called strictly minimal and
discuss in Section 4.2.3, are minimal with respect to both types: they do not admit any toric
type or semitoric type blowdown.

Roughly speaking, in dimension four, blowing up at a point amounts to removing an open
ball around this point and collapsing its boundary along the fibers of a Hopf fibration. This op-
eration can be performed in the presence of a symplectic structure, by removing a symplectically
embedded ball: the new manifold obtained after the blowup can be endowed with a symplectic
form which coincides with the original one away from the removed ball, see for instance [MS17,
Section 7.1].

One can then consider symplectic blowups respecting some additional structure. For instance,
Karshon introduced and studied in [Kar99, Section 6] blowups sending a Hamiltonian S1-space
(see Section 3.5) to another Hamiltonian S1-space. The two kinds of blowups that we will discuss
now lift these S1-equivariant blowups and send a semitoric system to another semitoric system.

4.2.1 Toric type blowups

Toric type blowups, introduced in [LFP22, Chapter 4], are not specific to semitoric systems and
can be performed at any elliptic-elliptic (or completely elliptic in higher dimension) point of any
integrable system to obtain a new integrable system. The idea is to perform a T2-equivariant
blowup (see for instance [CdS03, Section 3.5]) for the local toric integrable system given by
Eliasson’s normal form of Theorem 3.2.5 at such an elliptic-elliptic point. Of course if the
original system is toric then this is nothing but the usual toric blowup, which corresponds to
performing a corner chop at the associated vertex of the Delzant polygon (i.e. removing a certain
triangular region based at this vertex and with two sides directed by the edges emanating from
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Figure 4.1: Performing a corner chop on the Delzant polygon (left) of a toric system (here the
standard T2-action on CP2, see Example 3.1.2) results in another Delzant polygon (right). The
region which is chopped off is shaded in the central figure.

×
×

×
×

×
×

×
×

×
×

×
×

Figure 4.2: Performing a corner chop on a marked semitoric polygon. Note that the removed
region (shaded in the central figure) only has to be a triangle for one representative of the
polygon.

this vertex) to obtain another Delzant polygon, see Figure 4.1.
If the original system is semitoric, there is still a correspondence between toric type blowups

and corner chops, but it is quite subtle. The system (M,ω, F = (J,H)) admits a toric type
blowup at an elliptic-elliptic point p ∈ M if and only if there exists one representative of its
marked semitoric polygon ∆(M,ω,F ) on which a corner chop can be performed at the vertex
corresponding to p. This means in particular that the triangle to be removed from this repre-
sentative should neither contain any marked point nor intersect any cut. This is illustrated in
Figure 4.2; for more details, see [LFP22, Section 4.3].

4.2.2 Semitoric type blowups

Semitoric type blowups are a special case of the almost toric blowups introduced by Symington
in [Sym03, Section 5.4]. A specific example of such a blowup is described in [Aur09, Example
3.1.2]. This type of blowups was discussed by Zung for general integrable systems in [Zun03],
and will be studied for general four-dimensional integrable systems in the upcoming [HSSS]. For
our purpose in [LFP23] it was sufficient to define these blowups from their action on marked
semitoric polygons (using the classification results from [PVuN09, PVuN11, PPT19]), following
[HP21].
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×
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Figure 4.3: Performing a wall chop on a marked weighted polygon; the resulting polygon has
one additional marked point and a smaller vertical wall, and the height of each of the original
marked points is allowed to change.

Roughly speaking, a semitoric type blowup of a semitoric system (M,ω, F = (J,H)) consists
in trading part of a fixed surface of J to create a new focus-focus point. This corresponds to
performing a wall chop (i.e. removing a certain triangle with one side on a vertical wall) on
any representative of the marked semitoric polygon of (M,ω, F ) and introducing a new marked
point. This operation is illustrated in Figure 4.3, and can be described formally as followed.
This description is a bit involved because in fact, the original marked points are allowed to move
vertically during this process.

Let (∆,~c,~ε) be a representative of ∆(M,ω,F ). Assume that J has a fixed surface corresponding
to its minimum, which means that the leftmost edge of ∆ is a vertical wall W . Let λ > 0 be
smaller than the length of this vertical wall and than the width of ∆. For µ ∈ R, let t̃µ : R2 → R2

be defined as the identity on {x ≥ µ} and as T , relative to a given origin on the vertical line
π−1

1 (µ), on {x ≤ µ}, where we recall that π1 : R2 → R is the projection to the first factor.
Explicitly,

t̃µ(x, y) =

{
(x, y) if x ≥ µ,
(x, y + x− µ) if x ≤ µ.

Let ∆′ be the unique convex polygon such that

∂−∆′ = ∂−∆, ∂+∆′ = t̃π1(W )+λ(∂+∆),

where ∂−∆ and ∂+∆ stand for the top and bottom boundary of ∆, respectively, i.e.

∂−∆ =

{
(x, y−) ∈ ∆ | y− = min

(x,y)∈∆
y

}
, ∂+∆ =

{
(x, y+) ∈ ∆ | y+ = max

(x,y)∈∆
y

}
.

Choose any c′b ∈ ∆′ ∩ (π1)−1(π1(W ) + λ), and let c′1 ≤lex . . . ≤lex c
′
s be such that

∀` ∈ {1, . . . , s} c′` ∈ int(∆′) ∩ (π1)−1(c`).

Let ` ∈ {1, . . . , s} be such that c′` ≤lex c
′
b ≤lex c

′
`+1. We call the marked weighted polygon

(∆′, ~c′ = (c′1, . . . , c
′
`, c
′
b, c
′
`+1, . . . , c

′
s),
~ε′ = (ε1, . . . , ε`, 1, ε`+1, . . . , εs))

a wall chop of size λ of (∆,~c,~ε). This new polygon satisfies the conditions of Lemma 3.4.3, and
its (Gs×T )-orbit (recall the actions defined in Equations (3.6) and (3.8)) is a marked semitoric
polygon. Any semitoric system corresponding to this new marked semitoric polygon is called a
semitoric type blowup of (M,ω, F ).
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v0

v1
s = 2

× ×

(a)

v0

v1
s = 2

×
×

(b)

Figure 4.4: Two semitoric polygons giving the same helix. The system in (b) is not simple.

4.2.3 Strictly minimal polygons

We would like to classify the compact semitoric systems with at least one focus-focus singularity
that do not admit any toric type or semitoric type blowdown, which we call strictly minimal.
In [KPP18], the authors studied this question for toric type blowdowns only. In order to do
so, they introduced a semitoric invariant called the semitoric helix (the analogue of a toric fan),
which is a sequence of vectors that can be constructed from the marked semitoric polygon of the
system. This construction is explained in [KPP18, Section 5.3] for simple semitoric systems, and
in [LFP23, Section 3.2] for possibly non-simple systems.

The idea is to start from the counter-clockwise ordered primitive inwards pointing normal
vectors w0, . . . , wp−1 of a given representative of the marked semitoric polygon, to account for
the monodromy induced by focus-focus points by replacing the vectors wj+1, . . . , wp−1 with
(T ∗)kwj+2, . . . , (T

∗)kwp−1 (with T as in Equation (3.5)) in this list each time that the vertex
associated with wj and wj+1 is k-fake or k-hidden Delzant (see Definition 3.4.2), and to extend
the final outcome v0, . . . , vd−1 to an infinite sequence of vectors (vn)n∈Z satisfying a particular
periodicity relation. In fact, more precisely, the semitoric helix is the triple (d, s, [v]) where s is
the number of marked points and [v] is the class of the sequence v = (vn)n∈Z for some equivalence
relation. In practice, such a helix is represented by the data of the vectors v0, . . . , vd−1 and the
number s, as in the example displayed in Figure 4.4. The helix is also defined intrinsically, see
[KPP18, Section 5.1].

As explained above, toric type blowups correspond to corner chops on marked semitoric
polygons, and these corner chops can in turn easily be read off of the semitoric helix. Namely,
a blowdown is possible on the helix (d, s, [v]) if and only if there exists ` ∈ Z such that vj =
vj−1 +vj+1. A semitoric helix not satisfying this condition is called minimal, and the main result
of [KPP18] is the classification of minimal semitoric helices. In fact, some degrees of freedom are
missing in the list obtained in [KPP18], and in [LFP23] we introduced the following operations
on helices in order to fix this.

The J-reflection of a semitoric helix (d, s, [v]) is the helix (d, s, [ṽ]) defined by

∀j ∈ {0, . . . , d− 1}, ṽj =

(
−1 0
0 1

)
vd−1−j ;
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v0

v1

v2

v3

s = 4

(a) (d, s, [v]).

ṽ0

ṽ1

ṽ2

ṽ3

s = 4

(b) (d, s, [ṽ]).

v̌0

v̌1

v̌2

v̌3

s = 4

(c) (d, s, [v̌]).

Figure 4.5: A semitoric helix (d, s, [v]) and its J-reflection (d, s, [ṽ]) and H-reflection (d, s, [v̌]).
These are the semitoric helices associated with the marked semitoric polygons in Figure 4.6 (in
the same order).

×
c1 ×

c2

×
c3

×
c4

(a) (∆,~c,~ε).

×
c̃4×

c̃3

×
c̃1

×
c̃2

(b) (∆, ~̃c, ~̃ε).

×
č1

×
č2

×
č4

×
č3

(c) (∆, ~̌c, ~̌ε).

Figure 4.6: A representative of a marked semitoric polygon [(∆,~c,~ε)] and of its J-reflection
[(∆, ~̃c, ~̃ε)] and H-reflection [(∆, ~̌c, ~̌ε)].

the H-reflection of (d, s, [v]) is the helix (d, s, [v̌]) defined by

∀j ∈ {0, . . . , d− 1}, v̌j =

(
1 0
0 −1

)
vd−1−j .

These operations are illustrated in Figure 4.5. They have natural analogues for marked semitoric
polygons, but for the sake of clarity we will not reproduce their precise definitions here and
refer the reader to [LFP23, Definition 3.20]; the idea is to perform reflections with respect to
the vertical and horizontal axis respectively, but one should respect the fact that in a marked
semitoric polygon the marked points are ordered lexicographically. An example can be seen in
Figure 4.6. In particular, these operations correspond to changing J to −J or H to −H in a
semitoric system.

The minimal semitoric helices are obtained from seven types and their J and H-reflections.
The first six types are illustrated in Figure 4.7 and more precisely, (d, s, [v]) is:

• of type (1) if d = 2, s = 1, v0 =

(
0
1

)
and v1 =

(
−1
−2

)
;

• of type (2) if d = 2, s = 2, v0 =

(
0
1

)
and v1 =

(
−1
−1

)
;

• of type (3) if d = 3, s = 1, v0 =

(
0
1

)
, v1 =

(
−1

1− n

)
and v2 =

(
0
−1

)
for some n ≥ 1,

n 6= 3;

• of type (4) if d = 3, s 6= 2, v0 =

(
1
0

)
, v1 =

(
0
1

)
and v2 =

(
−1
−1

)
;

• of type (5) if d = 4, s 6= 1, v0 =

(
1
0

)
, v1 =

(
0
1

)
, v2 =

(
−1

1− n

)
and v3 =

(
0
−1

)
for some

n ≥ 3;
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v0

v1

s = 1

(a) Type (1).

v0

v1 s = 2

(b) Type (2).

v0

v1

v2

s = 1

(c) Type (3) (here with
n = 2).

v0

v1

v2
s 6= 2

(d) Type (4).

v0

v1

v2

v3

s 6= 1

(e) Type (5) (here with
n = 3).

v0

v1

v2

v3
s ≥ 1

(f) Type (6) (here with
n = 3).

Figure 4.7: The first six types of minimal helices.

• of type (6) if d = 4, s ≥ 1, v0 =

(
1
0

)
, v1 =

(
0
1

)
, v2 =

(
−1
0

)
and v3 =

(
1− n
−1

)
for some

n ∈ Z \ {2, s}.

The seventh type of helix is more complicated to describe but it always contains a horizontal
vector. This is the only necessary information for our purpose, because a semitoric system admits
a semitoric type blowdown if and only if its helix includes a horizontal vector (because this vector
indicates the presence of a vertical wall in the marked semitoric polygon). By combining this
observation with the fact that the helices of type (3) with parameter n = 1, (4), (5) and (6) all
contain a horizontal vector, we obtain the list of strictly minimal semitoric helices.

Proposition 4.2.1 ([LFP23, Proposition 4.5]). A compact semitoric system with at least one
focus-focus point is strictly minimal if and only if the associated helix is of type (1), (2), or (3)
with n ≥ 2 or n ≥ 4, or the J-reflection of H-reflection of one of these.

Proposition 4.2.1 is a statement about semitoric helices, and we would like a statement about
semitoric systems. Unfortunately the semitoric helix does not determine the semitoric system,
for two reasons. First, many non-isomorphic semitoric systems share the same marked semitoric
polygon, since fixing this polygon still allows one to change the Taylor series and twisting index
invariants of the system. Second, the semitoric helix does not even uniquely determine the
marked semitoric polygon, see for instance Figure 4.4; in fact the map associating to a marked
semitoric polygon its semitoric helix is far from injective, essentially because one can change the
relative positions of some of the marked points without changing the helix. Moreover, finding
all marked semitoric polygons corresponding to a given helix is a very complicated problem in
general.

Fortunately, for the helices of types (1), (2) and (3) this question remains tractable, though
tedious: one can find all the corresponding marked semitoric polygons by exhaustion. These
polygons are defined as follows.
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×

(0, 0) (2α, 0)

(α, α2 )

h

(a) Type(1). 0 < h < α
2 .

×
×

(0, 0) (α+ 2β, 0)

(β, β) (α+ β, β)

h1

h2

(b) Type (2a). 0 < h1, h2 < β.

×
×

(0, 0) (2β, 0)

(β, β)

h1
h2

(c) Type (2b). 0 < h1, h2 < β.

×

(0, 0) (α+ nβ, 0)

(α+ β, β)(β, β)

h

(d) Type (3a). n ≥ 1, 0 < h < β.

×

(0, 0) (nβ, 0)

(β, β)

h

(e) Type (3b). n ≥ 2, 0 < h < β.

×

(0, 0) (nβ − α, 0)

(β, β − α
n−1)

(β − α, β − α)

h

(f) Type (3c). n ≥ 2, α < β, 0 < h < β − α
n−1 .

Figure 4.8: A representative of the marked semitoric polygon of each type among (1), (2a), (2b),
(3a), (3b), (3c).

Definition 4.2.2. A marked semitoric polygon is said to be of type (1), (2a), (2b), (3a), (3b)
or (3c) if and only if one of its representatives is as in Figure 4.8. In this figure the parameters
α, β are positive real numbers, the parameter n is an integer, and the height invariants are either
h (one marked point) or (h1, h2) (two marked points); the constraints on these parameters are
precised in the captions.

Using the above arguments, we showed in [LFP23] that these types constitute all the marked
semitoric polygons of strictly minimal semitoric systems.

Theorem 4.2.3 ([LFP23, Theorem 4.8]). Let (M,ω, F ) be a semitoric system with at least one
focus-focus singularity. This system does not admit a toric or semitoric type blowdown if and
only if its marked semitoric polygon is of type (1), (2a), (2b), (3a) with n = 2 or n ≥ 4, (3b) or
(3c) (with n 6= 3 for these last two), see Definition 4.2.2, or the J-reflection or H-reflection of
one of these.

In this statement we omit the freedom in the horizontal translation of the polygon. But as
we explained earlier, it suffices to add a constant to J to translate the marked semitoric polygon
horizontally, so this degree of freedom is not very interesting for our purposes.

In fact the polygons of types (2b) and (3b) with n = 2 (and their J and H-reflections) are
exactly the polygons which admit perfect packings by equivariantly embedded balls, as proved
in [DKL+22]. This gives another reason to be interested in them.

The remaining step to obtain a classification of all strictly minimal semitoric systems is to
understand the relationship between two systems with the same marked semitoric polygon. Natu-
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rally, this involves an isomorphism between the underlying Hamiltonian S1-spaces and conditions
on the positions of the images of rank zero singular points in the polygons.

Theorem 4.2.4 ([LFP23, Corollary 4.17]). Two semitoric systems (M,ω, F = (J,H)) and
(M ′, ω′, F ′ = (J ′, H ′)) have the same marked semitoric polygon if and only if there exists a
symplectomorphism Φ: M →M ′ such that Φ∗J ′ = J and for all fixed points p of J that are not a
global maximum or minimum of J , p is a maximum (respectively minimum) of H on J−1(J(p)) if
and only if Φ(p) is a maximum (respectively minimum) of H ′ on J ′−1(J ′(p)) and for each such p
which is not a maximum or minimum of H on J−1(J(p)) the volumes of J−1(J(p))∩{H < H(p)}
and (J ′)−1(J ′(Φ(p))) ∩ {H ′ < H ′(Φ(p))} are equal.

Note that here we focused on semitoric systems with at least one focus-focus singularity. But
by performing all possible semitoric type blowdowns on a semitoric system with helix of type
(4), (5) or (6), we obtain a system of toric type. Of course these strictly minimal models with
no focus-focus point are related to the usual toric minimal models (discussed in [Ful93]), and in
[LFP23, Section 4.4] we described which of these toric minimal models appears when starting
from each of these types.

4.3 Semitoric families

In [LFP22] and [LFP23], in order to find explicit systems with strictly minimal marked semitoric
polygons (hence of the types from Definition 4.2.2), we considered several kinds of families of
integrable systems, inspired by the two historical systems of Examples 3.3.3 and 3.3.4. Our idea
was to work with one-parameter families lifting a fixed Hamiltonian S1-space (see Section 3.5),
and which are semitoric for almost all values of the parameter. The more general type of such
families that we studied is the following.

Definition 4.3.1 ([LFP22, Definition 1.4]). A semitoric family with degenerate times t1, . . . , tk ∈
[0, 1], is a family of integrable systems (M,ω, Ft), 0 ≤ t ≤ 1 on a four-dimensional symplectic
manifold (M,ω) such that:

• Ft = (J,Ht) where Ht is of the form Ht = H(t, ·) for some smooth H : [0, 1]×M → R;

• (M,ω, Ft) is semitoric if and only if t ∈ [0, 1] \ {t1, . . . , tk}.

By a slight abuse of terminology, and with obvious changes to the definition, we will sometimes
consider semitoric families with parameter t ∈ [0, b] for some b > 0. Moreover, given a semitoric
family with parameter t ∈ [0, b], we will call the same systems restricted to t ∈ [0, c] for some
c ≤ b a sub-family.

In [LFP22] we considered some specific semitoric families, in which one point transitions
from elliptic-elliptic to focus-focus and back to elliptic-elliptic, undergoing at each transition a
Hamiltonian-Hopf bifurcation (see for instance [vdM85]), also called nodal trade in this setting.

Definition 4.3.2 ([LFP22, Definition 1.6]). A semitoric transition family with transition point
p ∈ M and transition times t−, t+, with 0 < t− < t+ < 1, is a family of integrable systems
(M,ω, Ft)0≤t≤1 on a four-dimensional symplectic manifold (M,ω) such that:

• Ft = (J,Ht) where Ht is of the form Ht = H(t, ·) for some smooth H : [0, 1]×M → R;

• (M,ω, Ft) is semitoric for t ∈ [0, 1] \ {t−, t+};

• for t < t− and t > t+ the point p is singular of elliptic-elliptic type;

• for t− < t < t+ the point p is singular of focus-focus type;

• for t = t− and t = t+ there are no degenerate singular points in M \ {p};
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• if p is a maximum (respectively minimum) of (H0)|J−1(J(p)) then p is a minimum (respec-
tively maximum) of (H1)|J−1(J(p)).

Example 4.3.3. Let (M,ω, Ft = (J,Ht))0≤t≤1 be the family of systems of coupled angular
momenta from Example 3.3.4. If R1 6= R2, this system is a semitoric transition family with
transition point m = (0, 0, 1, 0, 0,−1) and transition times t−, t+ defined in Equation (3.4). If
R1 = R2, it is not a semitoric transition family but it is a semitoric family with degenerate
times t− and t+ = 1. In both cases, when t ∈ (t−, t+) the semitoric system (M,ω, Ft) is strictly
minimal, of type:

• (3a) (up to H-reflection, see Section 4.2.3) with parameters n = 2, α = 2(R2 − R1) and
β = 2R1 if R2 > R1;

• (3b) (up to H-reflection) with parameters n = 2 and β = 2R1 if R2 = R1;

• (3c) (up to H-reflection) with parameters n = 2, α = 2(R1−R2) and β = 2R1 if R2 < R1.

Another example which also existed before [LFP22] is given by the two-parameter families of
systems on S2×S2 introduced in [HP18] and generalizing the coupled angular momenta system.
By fixing one of the parameters, one obtains different one-parameter families that constitute
semitoric families (and most of the time, semitoric transition families) including systems of type
(2a), (2b), (3a) with n = 2, (3b) with n = 2 and (3c) with n = 2.

For reasons that we will explain below, in [LFP23] we needed to introduce another kind
of semitoric family, more general than semitoric transition families, in which one point still
undergoes two Hamiltonian-Hopf bifurcations, going from elliptic-elliptic to focus-focus and back
to elliptic-elliptic. The difference with a semitoric transition family is that we do not require the
system to be semitoric after the second transition.

Definition 4.3.4. A half-semitoric transition family with transition point p ∈M and transition
times t−, t+, t− < t+, is a family of integrable systems (M,ω, Ft)0≤t≤1 on a four-dimensional
symplectic manifold (M,ω) such that:

• Ft = (J,Ht) where Ht is of the form Ht = H(t, ·) for some smooth H : [0, 1]×M → R;

• (M,ω, Ft) is semitoric for t ∈ [0, t+) \ {t−};

• for t < t− and t > t+ the point p is singular of elliptic-elliptic type;

• for t− < t < t+ the point p is singular of focus-focus type;

• for t = t− and t = t+ there are no degenerate singular points in M \ {p}.

An example of half-semitoric transition family is described in Section 4.5.2 below, see in
particular Theorem 4.5.2 and Figure 4.23. In this example we see one of the possible behaviors
of a half-semitoric transition family for t > t+: the transition point p is the elliptic-elliptic corner
in a triangular flap, see the discussion after Theorem 4.5.2.

One of the main results that we obtained in [LFP23] is that these one-parameter families
suffice to describe all the strictly minimal systems.

Theorem 4.3.5 ([LFP23, Theorem 1.12]). Every strictly minimal semitoric system (M,ω, F =
(J,H)) can be obtained as part of a semitoric family, i.e. as the t = t0 system in such a family,
for some t0 ∈ [0, 1]. Moreover, this semitoric family can be chosen as

• a semitoric transition family if (M,ω, F ) is of type (2a) or (3a);

• a sub-family of a half-semitoric transition family if (M,ω, F ) is of type (1).
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This statement is obtained by combining many different results from [LFP22] and [LFP23]
(together with some already existing results from other authors) that we will describe in the rest
of this chapter. First, by invoking Theorem 4.2.4, it can be derived from the following statement
about marked semitoric polygons.

Theorem 4.3.6 ([LFP23, Theorem 1.11]). Every strictly minimal marked semitoric polygon
[(∆,~c,~ε)] can be obtained as the marked semitoric polygon of the t = t0 system in a semitoric
family for some t0 ∈ [0, 1]. Moreover, this semitoric family can be chosen as

• a semitoric transition family if [(∆,~c,~ε)] is of type (2a) or (3a);

• a sub-family of a half-semitoric transition family if [(∆,~c,~ε)] is of type (1).

Second, this statement about polygons is obtained by two main arguments. On the one
hand, we can construct (or obtain from the literature) a fully explicit system in a semitoric
family with unmarked semitoric polygon any of the strictly minimal ones from Definition 4.2.2,
and for some of these types we can even obtain every marked semitoric polygon in this way (in
other words, for some of these types we can obtain all possible values of the height invariants
by varying the different parameters). More precisely, in Section 4.5.1 we describe systems of
type (2a), (3a) and (3c) (with n = 2 for the last two) which are members of semitoric transition
families and were constructed in [LFP22]; by varying the different parameters in these systems
we obtain all possible marked semitoric polygons of these types. We also recall how systems
of type (2b) and (3b) with n = 2, again with every possible marked semitoric polygon, can
be obtained as members of semitoric families by choosing appropriate values of the parameters
in the existing systems from [SZ99a] and [HP18]. Then in Section 4.5.2 we present systems of
type (1), allowing us to obtain all marked semitoric polygons of this type, constructed as part
of half-semitoric transition families; we also discuss another family of systems of type (1) from
[CDEW19]. Finally, in Section 4.5.3 we introduce half-semitoric transition families containing
systems with every possible unmarked semitoric polygon of type (3a), (3b) or (3c), for any n ≥ 3.

On the other hand, we can in fact obtain every strictly minimal marked semitoric polygon
in another, albeit less explicit, way, namely by performing alternatively toric type blowups and
blowdowns on a fully explicit starting system. We explain this strategy in the next section,
Section 4.4, and discuss the former regarding explicit systems in Section 4.5.

Both sections contain some results from [LFP22] and some results from [LFP23], for the sake
of clarity. Nevertheless, there is a crucial difference between the systems obtained in these two
papers: the explicit systems obtained in [LFP22], all part of semitoric transition families, were
either of type (2a) or (2b), or of type (3a) or (3c) with n = 2. In particular, the underlying
Hamiltonian S1-spaces do not include any Zk-sphere, since their marked semitoric polygons do
not contain any edge with slope b/k with k ≥ 2 and b ∈ Z relatively prime to k (see Section 3.5).
This is fundamental because, as explained in [LFP23, Section 5], the presence of such Zk-spheres
may constitute an obstruction to being part of a semitoric transition family (and it indeed does
for some of the other types of strictly minimal systems).

More precisely, these obstructions are related to the relative positions of the different elliptic-
elliptic points, focus-focus points and Zk-spheres. They can be stated directly in terms of the
system (see [LFP23, Proposition 5.2]), but for our purpose it is clearer to state them using
marked semitoric polygons.

Corollary 4.3.7 ([LFP23, Corollary 5.3]). Let (M,ω, F ) be a semitoric system and let p ∈ M
be a focus-focus point. Let (∆,~c,~ε) be any representative of the marked semitoric polygon of
(M,ω, F ), let cj be the marked point corresponding to p, and let ` be the vertical line passing
through cj. If ` contains a Delzant or hidden Delzant vertex of ∆, or intersects an edge of ∆
of non-integer slope (or one of its vertices), then (M,ω, F ) can not be obtained as the t = t0
system, t0 ∈ (t−, t+), in a semitoric transition family with p as the transition point.
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2

Figure 4.9: The Karshon graph of the Hamiltonian S1-space underlying a semitoric system of
type (1), which cannot be obtained as part of a semitoric transition family. Indeed, this is
prevented by the interior fixed point lying below an edge (here, coming from a Z2-sphere).

n− 1

Figure 4.10: The Karshon graph of the Hamiltonian S1-space underlying a semitoric system of
type (3b), which cannot be obtained as part of a semitoric transition family.

These obstructions can also be read off of the Karshon graph of the underlying Hamilto-
nian S1-space, which can in turn be deduced from the marked semitoric polygon of the system
(M,ω, F = (J,H)), as recalled in Section 3.5. Indeed, if the regular vertex corresponding to the
fixed point p of J lies below or above an edge with weight k ≥ 2 (corresponding to a Zk-sphere),
then (M,ω, F ) cannot be obtained as the t = t0 system, t0 ∈ (t−, t+), in a semitoric transition
family with transition point p.

In particular, by inspecting the Karshon graphs of the strictly minimal systems (see Figures
4.9, 4.10 and 4.11), we obtain that systems of type (1), (3b) with n ≥ 2 and (3c) with n ≥ 3
cannot be obtained as part of a semitoric transition family (this is the content of Corollaries 5.4
and 5.5 in [LFP23]).

In [LFP23, Proposition 5.7] we also gave some obstructions to being part of a half-semitoric
transition family, but these obstructions do not occur in any of the strictly minimal semitoric
systems and we do not detail them here.

4.4 Obtaining semitoric systems via toric type blowups and blow-
downs

In this section we explain how we obtained semitoric systems with all possible marked semitoric
polygons of type (3a) and of types (3b) and (3c) by means of toric type blowups and blowdowns.
In all these cases the idea is the same: start with a well-known fully explicit semitoric system,
and perform a sequence of successive toric type blowups and blowdowns to arrive to the desired
system.

In fact, we also proved that these systems are part of semitoric families (and sometimes
semitoric transition families). In order to do so, we started with a system which is itself part
of a semitoric (transition) family, and used the fact that, under some natural conditions, toric
type blowups and blowdowns can be performed to all the members of a semitoric family, yielding
another semitoric family. This is the content of [LFP22, Section 4.4], that we do not reproduce

n− 1

Figure 4.11: The Karshon graph of the Hamiltonian S1-space underlying a semitoric system of
type (3c), which cannot be obtained as part of a semitoric transition family if n ≥ 3. Indeed, this
is prevented by the interior fixed point lying below an edge (here, coming from a Zn−1-sphere).

83



here since it is quite technical.
In what follows, we present the results in a chronological order: systems of type (3a) were

obtained in [LFP22], while systems of type (3b) and (3c) were obtained in [LFP23]. And since
type (3c) is slightly subtler than type (3b), we start with the former. In each case we give the
starting system, the statement and a visual idea of its proof. All these systems will take place
on Hirzebruch surfaces, which are certain CP1-bundles over CP1, but which are more convenient
to define from symplectic reduction for our purposes.

Let n ≥ 0 and α, β > 0; the n-th Hirzebruch surface (Wn(α, β), ωWn(α,β)) is the symplectic
reduction of C4 with its standard symplectic form with respect to the T2-action generated by

N(z1, z2, z3, z4) =
1

2

(
|z1|2 + |z2|2 + n|z3|2, |z3|2 + |z4|2

)
at level N = (α + nβ, β). Note that for n = 0, (W0(α, β), ωW0(α,β)) identifies with the product
S2 × S2 of two spheres, each equipped with its standard symplectic form rescaled in such a way
that the volume of the first (respectively second) factor is 2πα (respectively 2πβ).

In what follows, we will consider Hamiltonians which are invariant under the T2-action gen-
erated by N . In this case, slightly abusing notation, we will keep the same formulas for the
Hamiltonians that they induce in the reduced space. We will also abuse notation in this way in
the rest of the manuscript.

4.4.1 Systems of type (3a)

The case of systems of type (3a) was studied in [LFP22]. Here we start with the system of
coupled angular momenta from Example 3.3.4, which it is best to translate to a system on the
zeroth Hirzebruch surface for our purposes. The following lemma (stated slightly differently as
Lemma 5.1 in [LFP22]) follows from the explicit identification between S2 × S2 and W0(α, β)
and the explicit formulas of Equation (3.3) (see also the discussion in Example 4.3.3).

Lemma 4.4.1. Let 0 < α′ < β′. The family of systems (W0(α′, β′), ωW0(α′,β′), (J,Ht)) where

J =
1

4

(
|z2|2 − |z1|2

)
+

1

4

(
|z4|2 − |z3|2

)
=

1

2

(
|z2|2 + |z4|2

)
− 1

2
(α′ + β′)

and

Ht =
(1− t)

2α′
(
|z2|2 − |z1|2

)
+

t

α′β′

(
<(z1z̄2z̄3z4) +

1

4

(
|z2|2 − |z1|2

) (
|z4|2 − |z3|2

))
is a semitoric transition family with transition point m = [

√
2α′, 0, 0,

√
2β′] and transition times

t− =
β′

2β′ + α′ + 2
√
α′β′

, t+ =
β′

2β′ + α′ − 2
√
α′β′

.

More precisely, it is

• of toric type with (unmarked) semitoric polygon [(∆2,a(α
′, β′), ∅, ∅)] as in Figure 4.12b when

0 < t < t−;

• semitoric with one focus-focus pointm and marked semitoric polygon [(∆2,a(α
′, β′), (β′, h(t)),−1)]

as in Figure 4.12a when t− < t < t+, where h(t) is the height invariant of m for the system
(W0(α′, β′), ωW0(α′,β′), (J,Ht));

• of toric type with (unmarked) semitoric polygon [(∆̃2,a(α
′, β′), ∅, ∅)] as in Figure 4.12c when

t+ < t ≤ 1.

Furthermore, the system (J, α
′

2 H0) is actually toric, with Delzant polygon ∆2,a(α
′, β′).
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(0, 0)

(α′, α′) (α′ + β′, α′)

(β′, 0)

×

(a) (∆2,a(α′, β′), (β′, h(t)), 1).

(0, 0)

(α′, α′) (α′ + β′, α′)

(β′, 0)

(b) ∆2,a(α′, β′).

(0, 0) (α′, 0)

(β′, β′ − α′)

(α′ + β′, α′ + β′)

(c) ∆̃2,a(α′, β′).

Figure 4.12: Representatives of the marked semitoric polygons associated with the semitoric
transition family of Lemma 4.4.1 for (a) t− < t < t+, (b) t < t−, and (c) t > t+.

The next statement slightly differs from the original statement in [LFP22] since we wanted
to use a consistent notation throughout this section.

Theorem 4.4.2 ([LFP22, Theorem 5.2]). For every n ∈ Z≥0 and α, β > 0 there exists a
semitoric transition family on Wn(α, β) with transition point

[√
2α, 0,

√
2β, 0

]
and transition

times t−n , t+n ∈ (0, 1) satisfying

β

2β + α+ 2
√
αβ
≤ t−n <

1

2
< t+n ≤

β

2β + α− 2
√
αβ

with equality on both sides if and only if n = 0, such that

1. for t−n < t < t+n the system is semitoric and has associated marked semitoric polygon
[(∆n,a, (β, y(t)), 1)] where y(t) belongs to the interval (0, β), see Figure 4.13a (in particular,
it is of type (3a) with parameters α, β, n and y(t));

2. if t = t−n or t = t+n the system has exactly one degenerate point at
[√

2α, 0,
√

2β, 0
]
;

3. if t < t−n the system is of toric type with marked semitoric polygon [(∆n,a, ∅, ∅)], shown in
Figure 4.13b;

4. if t > t+n the system is of toric type with marked semitoric polygon [(∆̃n,a, ∅, ∅)], shown in
Figure 4.13c;

Moreover, such a system can be obtained from the system of Lemma 4.4.1 for some appropriate
choice of α′ and β′, by alternately performing blowups and blowdowns, each n times.

The proof of Theorem 4.4.2 goes by induction on n, and is illustrated in Figure 4.14.
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(0, 0)

(β, β) (α+ β, β)

(α+ nβ, 0)

×

(a) The polygon (∆n,a, (β, y(t)), 1).

(0, 0)

(β, β) (α+ β, β)

(α+ nβ, 0)

(b) The polygon ∆n,a.

(0, 0) (β, 0)

(α+ nβ, α+ (n− 1)β)

(α+ β, α+ β)

(c) The polygon ∆̃n,a.

Figure 4.13: Polygons associated with the semitoric transition family of Theorem 4.4.2. Here we
chose different representatives than in [LFP22, Figure 20] in order to compare more easily this
case with the cases of types (3b) and (3c) described in the next two sections.

n = 0

n = 1

n = 2

× × ×

× × ×

× × ×

Figure 4.14: A visual proof of Theorem 4.4.2. Here we display one representative of the marked
semitoric polygon of the semitoric system obtained at each step of the proof, starting from the
system in Lemma 4.4.1. At each step, we perform a corner chop (corresponding to a toric type
blowup) at the black point and then a corner unchop (corresponding to a toric type blowdown)
at the bold edge, thus creating a new vertex indicated by the blue point.
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4.4.2 Systems of type (3c)

In this case the starting system is a subset of the two-parameter family on S2 × S2 described in
[HP18], which we translate here to a family of systems on the zeroth Hirzebruch surface.

Lemma 4.4.3 ([LFP23, Lemma 6.2]). Let 0 < α′ < β′. The family of systems

(W0(α′, β′), ωW0(α′,β′), (J,Ht))0≤t≤1

where
J =

1

4

(
|z2|2 − |z1|2

)
+

1

4

(
|z4|2 − |z3|2

)
=

1

2

(
|z2|2 + |z4|2

)
− 1

2
(α′ + β′)

and

Ht =
(1− t)

2α′
(
|z2|2 − |z1|2

)
+

t

α′β′

(
<(z1z̄2z̄3z4)− 1

4

(
|z2|2 − |z1|2

) (
|z4|2 − |z3|2

))
is a semitoric transition family with transition point m = [

√
2α′, 0, 0,

√
2β′] and transition times

t− =
β′

2β′ + α′ + 2
√
α′β′

, t+ =
β′

2β′ + α′ − 2
√
α′β′

.

More precisely, it is

• of toric type with (unmarked) semitoric polygon [(∆2,c(α
′, β′), ∅, ∅)] as in Figure 4.15b when

0 < t < t−;

• semitoric with one focus-focus pointm and marked semitoric polygon [(∆2,c(α
′, β′), (β′, h(t)),−1)]

as in Figure 4.15a when t− < t < t+, where h(t) is the height invariant of m for the system
(W0(α′, β′), ωW0(α′,β′), (J,Ht));

• of toric type with (unmarked) semitoric polygon [(∆̃2,c(α
′, β′), ∅, ∅)] as in Figure 4.15c when

t+ < t ≤ 1.

Furthermore, the system (J, α
′

2 H0) is actually toric, with Delzant polygon ∆2,c(α
′, β′).

By performing sequences of successive blowups and blowdowns, we obtain the following result.

Theorem 4.4.4. For any n ≥ 2, any α, β > 0 with α < β and any h ∈ (0, β − α
n−1), there exist

b ∈ (0, 1) and a semitoric family(
Wn−2(β − α, β), ωWn−2(β−α,β), F

n
t = (J,Hn

t )
)

0≤t≤b

with one degenerate time t−n satisfying

β

3β − α+ 2
√
β(β − α)

≤ t−n <
1

2

with equality on the left if and only if n = 2, such that there exists one point pn ∈Wn−2(β−α, β)
such that

1. Ft−n has no degenerate singular point in M \ {pn};

2. if t ∈ (t−n , b), the system is semitoric with one focus-focus point pn and its marked semitoric
polygon is [(∆n,c(β − α, β), (β, hn(t)),−1)] as in Figure 4.16 where the image of t 7→ hn(t)
is the interval (0, h) (in particular, it is of type (3c) with parameters α, β, n, hn(t));

3. if t ∈ [0, t−n ), the system is of toric type (pn being elliptic-elliptic) and its (unmarked) semi-
toric polygon is [(∆n,c(β−α, β), ∅, ∅)]. Furthermore, for t = 0 it is toric up to multiplication
of H0 by a constant, with Delzant polygon ∆n,c(β − α, β).
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(0, 0)

(α′, α′) (α′ + β′, α′)

(β′, 0)

×

(a) (∆2,c(α
′, β′), (β′, h(t)),−1).

(0, 0)

(α′, α′) (α′ + β′, α′)

(β′, 0)

(b) ∆2,c(α
′, β′).

(0, 0)

(α′, α′) (β′, α′)

(α′ + β′, 0)

(c) ∆̃2,c(α
′, β′).

Figure 4.15: Representatives of the marked semitoric polygons associated with the semitoric
transition family of Lemma 4.4.3 for (a) t− < t < t+, (b) t < t−, and (c) t > t+.

×

(0, 0)

(nβ − α, (n− 1)β − α)

(β, 0)

(β − α, β − α)

Figure 4.16: The marked weighted polygon (∆n,c(β − α, β), (β, hn(t)),−1).
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` = 2

` = 3

` = 4

× × ×

× × ×

× × ×

Figure 4.17: A visual proof of Theorem 4.4.4. As in Figure 4.14, we display one representative of
the marked semitoric polygon of the semitoric system obtained at each step of the proof, starting
from the system in Lemma 4.4.3. At each step, we perform a corner chop (corresponding to a
toric type blowup) at the black point and then a corner unchop (corresponding to a toric type
blowdown) at the bold edge, thus creating a new vertex indicated by the blue point.

× × ×

Figure 4.18: Performing a corner chop at the vertex indicated by the black dot, then a corner
unchop along the bold segment, to a marked semitoric polygon of type (3b) does not yield a
marked semitoric polygon of type (3b).

Moreover, such a family can be obtained by alternatively performing toric type blowups and blow-
downs, each n − 2 times, to the system of Lemma 4.4.3 for some appropriate choice of α′ and
β′.

The fact that the system is of type (3c) for t ∈ (t−n , b) comes from the fact that the polygon
∆n(β−α, β) is obtained from the polygon of Figure 4.8f by changing the cut direction. Note that
the maximal height invariant of a system of type (3c) with this polygon is β− α

n−1 ; consequently,
the statement allows one to obtain every marked semitoric polygon of type (3c) in this way. A
visual proof of Theorem 4.4.4 is given in Figure 4.17; unlike the case of type (3a) presented in
the previous section, it is better here to fix n and perform a finite induction on ` ∈ {2, . . . , n}.

4.4.3 Systems of type (3b)

The case of type (3b) is a bit more difficult because by performing a toric type blowup followed
by a toric type blowdown on a system of type (3b), one does not obtain a system of type (3b),
as illustrated in Figure 4.18.

Hence we will in fact start with the family of systems described in Lemma 4.4.3, but this
time with α′ > β′, unless n = 2 in which case we need to choose α′ = β′. The statement of
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×

(0, 0)

(nβ, (n− 1)β)

(β, 0)

(β, β)

Figure 4.19: The marked weighted polygon
(
∆0
n(β), (β, hn(t)),−1

)
.

Lemma 4.4.3 remains valid in the former case, but in the latter case this family is not a semitoric
transition family anymore. This is not a problem since in the statement and its proof we only
need to consider the restriction of this family to parameters in [0, a) for a < t+, and this restricted
family is a semitoric family with one point transitioning from elliptic-elliptic to focus-focus.

Theorem 4.4.5 ([LFP23, Theorem 6.7]). For any n ≥ 2, any β > 0 and any h ∈ (0, β), there
exist b ∈ (0, 1) and a semitoric family(

Wn−2(β, β), ωWn−2(β,β), F
n
t = (J,Hn

t )
)

0≤t≤b

with one degenerate time t−n <
1
2 , such that there exists one point pn ∈Wn−2(β, β) such that

1. Ft−n has no degenerate singular point in M \ {pn};

2. if t ∈ (t−n , b), the system is semitoric with one focus-focus point pn and its marked semitoric
polygon is

[(
∆0
n(β), (β, hn(t)),−1

)]
as in Figure 4.19 where the image of t 7→ hn(t) is the

interval (0, h) (in particular, it is of type (3b) with parameters β, n, hn(t));

3. if t ∈ [0, t−n ), the system is of toric type (pn being elliptic-elliptic) and its (unmarked)
semitoric polygon is [(∆0

n(β), ∅, ∅)], and for t = 0 it is even toric up to multiplication of
H0 by a constant, with Delzant polygon ∆0

n(β).

Moreover, such a family can be obtained by alternatively performing blowups and blowdowns, each
n− 2 times, to the system of Lemma 4.4.3 for some appropriate choice of α′ and β′.

The proof of Theorem 4.4.5 is illustrated in Figure 4.20.

4.5 Explicit semitoric systems

In this section, we start by listing the various explicit semitoric systems constructed in [LFP22]
and [LFP23] and describing some of their properties. The important message here is the fact
that these systems are indeed fully explicit, rather than the precise explicit formulas which will
appear. We conclude by giving a few ideas on how to come up with such explicit examples, in
Section 4.5.4.

Again, we present these systems in chronological order and increasing difficulty level. Explicit
systems of type (2a), (3a) or (3c) with n = 2 were obtained in [LFP22] and do not include any
Zk-sphere. Explicit systems of type (1) and (3a), (3b) or (3c) with parameter n ≥ 3 were
constructed in [LFP23]; systems of type (1) contain a Z2-sphere, while systems of type (3a), (3b)
or (3c) with parameter n ≥ 3 contain a Zn−1-sphere.
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` = 2

` = 3

` = 4

× × ×

× × ×

× × ×

Figure 4.20: A visual proof of Theorem 4.4.5. As in Figure 4.14, we display one representative of
the marked semitoric polygon of the semitoric system obtained at each step of the proof, starting
from the system in Lemma 4.4.3 with α′ > β′. At each step, we perform a corner chop (corre-
sponding to a toric type blowup) at the black point and then a corner unchop (corresponding to
a toric type blowdown) at the bold edge, thus creating a new vertex indicated by the blue point.
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We also discuss, in the relevant sections, some other important explicit systems from the
literature. There are systems which we do not mention for the sake of clarity, but which are
still interesting. For instance, in [LFP22] we constructed a semitoric transition family on the
first Hirzebruch surface (with any scaling) which allowed us to obtain all the marked semitoric
polygons of type (3a) with n = 1. Another example is the one-parameter family of systems from
[DMH21] which transitions between systems with zero or four focus-focus points, and for some
value of the parameter possesses two singular fibers with two pinches each; this system was built
using the recipe from [LFP22].

4.5.1 Systems of type (2) and (3) with n = 2

In [LFP22, Section 7] we constructed a two-parameter family of systems on the second Hirzebruch
surface, which, depending on the values of the parameters, can be semitoric of type (2a), or (3a)
or (3c) with n = 2. By fixing one of the parameters, we obtain semitoric transition families
containing systems of these types.

Recall from Section 4.4 that the second Hirzebruch surface (W2(α, β), ωW2(α,β)) is obtained
as the symplectic reduction of C4 by the T2-action generated by

N(z1, z2, z3, z4) =
1

2

(
|z1|2 + |z2|2 + 2|z3|2, |z3|2 + |z4|2

)
at level N = (α+ 2β, β).

Let J = 1
2

(
|z2|2 + |z3|2

)
; it is the momentum map for an effective S1-action on the sym-

plectic manifold (W2(α, β), ωW2(α,β)), with fixed points A =
[√

2(α+ 2β), 0, 0,
√

2β
]
, B =[√

2α, 0,
√

2β, 0
]
, C =

[
0,
√

2α,
√

2β, 0
]
and D =

[
0,
√

2(α+ 2β), 0,
√

2β
]
. Consider moreover

the Hamiltonians
R =

1

2

(
|z3|2 − |z4|2

)
, X = <(z1z2z̄3z4),

which also descend to the symplectic quotient.
The following statement is the object of [LFP22, Section 7.4]. Strictly speaking, in that

section we only proved that the system was semitoric for the choice of parameters (t, 1), 0 ≤ t ≤ 1,
and in a neighborhood of (1

2 ,
1
2) in the parameter space, since we only checked the types of the

singular points B and C there. But it is not complicated to compute these types for all values
of the parameters, using the criterion from [LFP23, Proposition 7.5].

Theorem 4.5.1. Let α, β > 0 and let γ > 0 be such that
1

2(1 + 2ν)
√
ν
< γ <

1

2
√
ν
, with ν =

β

α
.

For s1, s2 ∈ [0, 1], let

Hs1,s2 = (1− s1)(1− s2)H00 + s2(1− s1)H01 + s1(1− s2)H10 + s1s2H11

where H01 = R, H10 = −R and

H00 =
(α+ β)

(
γX − (2J − α− 2β)(R+ β2

α+β )
)

α(α+ 2β)
, H11 =

β (γX + (2J − α− 2β)(R+ α+ β))

α(α+ 2β)
.

Moreover, let

f±(s1, s2) = 2γ
√
ν ((1 + 2ν)s1s2 − (1 + ν)(s1 + s2 − 1))± (s1s2 − (2 + 3ν)s1 + νs2 + 1 + ν)

and

g±(s1, s2) = 2γ
√
ν ((1 + 2ν)s1s2 − (1 + ν)(s1 + s2 − 1))∓ (s1s2 + νs1 − (2 + 3ν)s2 + 1 + ν) .

Let (s1, s2) ∈ [0, 1]× [0, 1] be such that none of the quantities f±(s1, s2) and g±(s1, s2) vanishes.
Then (W2(α, β), ωW2(α,β), Fs1,s2 = (J,Hs1,s2)) is
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Figure 4.21: Image of the momentum map Fs1,s2 = (J,Hs1,s2) from Theorem 4.5.1 with α = 1,
β = 1, γ = 9

20
√
ν
and various values of the parameters (s1, s2).

• semitoric with two focus-focus points B and C if all four quantities f±(s1, s2) and g±(s1, s2)
are positive. In this case it is of type (2a) with marked semitoric polygon as in Figure 4.8b
(for the same α and β);

• semitoric with one focus-focus point B if f±(s1, s2) > 0 and at least one of g+(s1, s2),
g−(s1, s2) is negative. In this case it is of type (3a) with n = 2, with marked semitoric
polygon as in Figure 4.8d;

• semitoric with one focus-focus point C if g±(s1, s2) > 0 and at least one of f+(s1, s2),
f−(s1, s2) is negative. In this case it is of type (3c) with n = 2, with marked semitoric
polygon as in Figure 4.8f;

• of toric type otherwise.

Moreover, by fixing the value of one of the parameters s1, s2 and varying the other, we obtain
a semitoric transition family with transition point either B or C. In particular, by varying the
parameters α and β, we obtain all possible marked semitoric polygons of type (2a) or (3a) or
(3c) with n = 2 from this system.

The image of the momentum map Fs1,s2 is displayed in Figure 4.21 for some choice of α, β
and γ and various values of (s1, s2). The conditions involving f± and g± can be visualized in
Figure 4.22 for a particular choice of α, β and γ. The parameters α and β give the scalings of the
marked semitoric polygon. And since in a semitoric transition family, the transition point travels
from one side of the boundary of the image of the momentum map to the other, all possible values
of the height invariant are attained. This is why we can obtain every possible marked semitoric
polygon of type (2a) or (3a) by choosing these different parameters appropriately.

The system of Theorem 4.5.1 can never be of type (2b) or (3b) because, as one can see by
inspecting the marked semitoric polygons, this would require choosing α = 0, which is impossible
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Figure 4.22: A plot showing the types of the points B and C depending on the parameters s1

and s2 for the system from Theorem 4.5.1, here with α = 1, β = 1 and γ = 9
20
√
ν

= 9
20 . In the

purple region, f±, g± > 0 so both points are focus-focus. In the red region, f± > 0 and either
g+ or g− is negative so only B is focus-focus. In the blue region, the same situation applies
with the roles of f± and g± reversed, so only C is focus-focus. In the white region, both points
are elliptic-elliptic. The solid lines separating the different regions correspond to parameters for
which at least one of these two points is degenerate. This can be compared with Figure 4.21.

in this setting. However, we already saw in Example 4.3.3 that when R1 = R2 and for appropriate
values of the parameter t, the coupled angular momenta system from [SZ99a] is of type (3b) with
parameter n = 2 (up to H-reflection); by varying t and R1, one obtains in this way all possible
marked semitoric polygons of this type, as the marked semitoric polygons of systems with are
part of semitoric families. Moreover, when R1 = R2, the generalized coupled momenta system
introduced in [HP18] and discussed after Example 3.3.4 is actually of type (2b), and also allows
one to obtain every marked semitoric polygon of this type as the polygon of a system in a
semitoric family.

4.5.2 Systems of type (1)

In [LFP23], we constructed explicit systems of type (1) as members of half-semitoric transition
families, and thus obtained all possible marked semitoric polygons of this type.

Concretely, we worked on (M,ω) = (CP2, αωFS) where ωFS is the Fubini-Study symplectic
form, normalized so that the Liouville volume of CP2 equals 2π2, and α > 0. This symplec-
tic manifold can be obtained as the symplectic reduction of C3 by the Hamiltonian T2-action
generated by

N =
1

2
(|z1|2 + |z2|2 + |z3|2)

at level N = α. Consider the invariant Hamiltonians

J =
1

2
(|z1|2 − |z2|2), R =

1

2
(|z1|2 + |z2|2), X = <(z1z2z̄

2
3).

Theorem 4.5.2 ([LFP23, Theorem 1.5]). Let α > 0 and let 0 < γ < 1
4α and δ > 1

2γα . Let

Ht = (2t− 1)
|z3|2

2
− 2γt(X − δR2)− 2γδtα2. (4.1)

Then the family (CP2, αωFS, Ft = (J,Ht))0≤t≤1 is

• of toric type when 0 ≤ t < t−;
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Figure 4.23: Image of (J,Ht) as in Theorem 4.5.2 with α = 1, γ = 1
8 and δ = 5, for various

values of t. Here t− = 2
5 and t+ = 2

3 .

• semitoric with one focus-focus point (at B = [0, 0,
√

2α]) when t− < t < t+;

• hypersemitoric (see below) with one triangular flap with elliptic corner Ft(B) when t+ <
t ≤ 1

where
t− =

1

2(1 + 2γα)
, t+ =

1

2(1− 2γα)
.

Moreover, when t− < t < t+, this system is of type (1) with parameter α as in Figure 4.8a.
Furthermore, for any h0 ∈ (0, α2 ), there exists a choice of γ ∈ (0, 1

4α), δ ∈ ( 1
2γα ,+∞) and

t ∈ (t−, t+) such that the height invariant of the system is h = h0.

This statement means that this family of explicit systems forms a half-semitoric transition
family (recall Definition 4.3.4), and that by varying all the parameters, we obtain all possible
marked semitoric polygons of type (1) from this family. Indeed, the parameter α determines the
scaling of the marked semitoric polygon, and by varying the parameters t, γ and δ we vary the
height invariant.

The image of the momentum map Ft, for a given choice of α and δ and various values of t,
is shown in Figure 4.23. The underlying S1-space (M,ω, J) has one Z2-sphere {z3 = 0}, and
this Z2-sphere is sent to the top boundary in the image Ft(M). When t > t+, the system is
not semitoric anymore but hypersemitoric in the sense of [HP21]: the singular points of Ft are
either non-degenerate or parabolic, which roughly means that they are of the mildest possible
degenerate form (see [BGK18, Definition 2.1] for a precise definition). The flap in the image of
Ft(M) is the triangular region that can be observed in Figure 4.24, which corresponds to the t = 1
part of Figure 4.23. One of its vertices is the elliptic-elliptic value and the other two correspond
to parabolic values; the edges emanating from the elliptic-elliptic vertex correspond to elliptic-
regular values, and the other edge consists of hyperbolic-regular values. In [LFP23, Section 8.2.3]
we study this flap and in particular give a bound on its size in terms of the parameters α, γ, δ
and t.

Note that there exists another family of systems of type (1), coming from physics (more
precisely from a separation of the 3D harmonic oscillator), forming semitoric families and from
which one can obtain every marked semitoric polygon of type (1). These systems were studied
in [CDEW19], and one crucial difference is that they do not display flaps; instead the transition
point becomes degenerate exactly at one endpoint of the parameter interval. We discuss the
comparison between our system and this system in more detail in [LFP23, Remark 1.7].

4.5.3 Systems of type (3a), (3b) and (3c)

Finally, in [LFP23] we constructed explicit semitoric systems of type (3a), (3b) and (3c). Since
these systems are quite similar we all discuss them here.
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Figure 4.24: The triangular flap in the t = 1 system from Theorem 4.5.2, with the same choice
of parameters as in Figure 4.23. Here P stands for parabolic, E-R for elliptic-regular, H-R for
hyperbolic-regular and E-E for elliptic-elliptic.

Type (3a). Let n ≥ 3 and let α, β > 0. We consider the symplectic reduction (M,ω) =(
Wn−2(α+ β, β), ωWn−2(α+β,β)

)
of C4 by the T2-action generated by

N =
1

2

(
|z1|2 + |z3|2 + (n− 2)|z4|2, |z2|2 + |z4|2

)
at level N = (α+ (n− 1)β, β). Moreover, we consider the Hamiltonians

J =
1

2
(|z1|2 + |z2|2), X = <(z1z2z̄

n−1
3 z4), R =

1

2

(
|z1|2 + (n− 2)|z4|2

)
,

which are all invariant under the action of N and hence descend to (M,ω). Note that compared
to the description of the Hirzebruch surfaces given at the beginning of Section 4.4, the coordinates
z2, z3 and z4 have been replaced by z3, z4 and z2 respectively. This is because here we wanted
the Zn−1-sphere of J to correspond to {z3 = 0}, to keep a certain consistency with the explicit
system of type (1) discussed in Section 4.5.2.

Theorem 4.5.3. Let α, β > 0. Let 0 < γ < n−1

2
n+3
2 ((n−1)β+α)

n−1
2
√

2β
and let

δ > max

(
1

2((n− 1)β + α)γ
,
2
n+1
2 ((n− 1)β + α)

n−3
2 (n(n− 1)β + α)

(n− 1)2
√

2β

)
.

Moreover, let

J =
1

2
(|z1|2 + |z2|2), Ht =

(2t− 1)

2
|z3|2 + 2γt(X + δR2)− 2γδt((n− 1)β + α)2.

Then (M,ω, Ft = (J,Ht)) is

• of toric type when 0 ≤ t < t−;

• semitoric with one focus-focus point (the point D = [0,
√

2β,
√

2(α+ (n− 1)β), 0]) when
t− < t < t+,

where

t− =
1

2

(
1 + 2

n+1
2 γ((n−1)β+α)

n−1
2
√

2β
n−1

) , t+ =
1

2

(
1− 2

n+1
2 γ((n−1)β+α)

n−1
2
√

2β
n−1

) .
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Figure 4.25: Image of (J,Ht) as in Theorem 4.5.3 with n = 4, α = 2, β = 1, γ = 1
90 and δ = 15.

For these values of the parameters, t− = 27
2(27+4

√
5)
≈ 0.38 and t+ = 27

2(27−4
√

5)
≈ 0.75.

Moreover, for t ∈ (t−, t+) the semitoric polygon of the system is the one shown in Figure 4.8d,
so it is of type (3a) with parameters α, β and n. Furthermore, if n = 3, for any h0 ∈ (0, h+),
where

h+ =



16β(α+2β) arctan
(√

6β−α
α+2β

)
+16β2 arctan

(√
(6β−α)(α+2β)

2β−α

)
−(α+6β)

√
(6β−α)(α+2β)

16πβ if α < 2β,(
3
2 −

2
π

)
β if α = 2β,

β −
(α+6β)

√
(6β−α)(α+2β)+16β2 arctan

(√
(6β−α)(α+2β)

α−2β

)
−16β(α+2β) arctan

(√
6β−α
α+2β

)
16πβ if 2β < α < 6β,

β if α ≥ 6β,

there exists a choice of γ ∈
(

0, 1
4(α+2β)

√
2β

)
, δ ∈

(
max

(
1

2(α+2β)γ ,
α+6β√

2β

)
,+∞

)
and t ∈ (t−, t+)

such that the height invariant of the system is h = h0.

The last part of this statement means that for some values of the parameters α and β, when
n = 3, we can obtain every possible marked semitoric polygon of type (3a) from a system in this
family. However, in general we cannot obtain every possible value for the height invariant, hence
we only obtain all possible unmarked semitoric polygon of type (3a) in this way. And for n ≥ 4,
the computation of the maximal height invariant that we can obtain by varying the parameters
is too involved (this is the same for the explicit systems of type (3b) and (3c) below, except
that for type (3b) the case n = 4 remains tractable). The image of the momentum map for this
system when n = 4 and for some choice of parameters is displayed in Figure 4.25.

Type (3b). Let n ≥ 3 and let β > 0. We work in the symplectic manifold (M,ω) =(
Wn−2(β, β), ωWn−2(β,β)

)
obtained as the symplectic reduction of C4 by

N =
1

2

(
|z1|2 + |z3|2 + (n− 2)|z4|2, |z2|2 + |z4|2

)
at level N = (2β, β), and we consider the Hamiltonians

J =
1

2
(|z1|2 + |z2|2), X = <(z1z2z̄

n−1
3 z4), R =

1

2

(
|z1|2 + (n− 2)|z4|2

)
.

Theorem 4.5.4. Let β > 0. Let 0 < γ < 1

4(2β)
n
2 (n−1)

n−3
2

and let

δ > max

(
1

2(n− 1)βγ
, n2

n
2 (n− 1)

n−5
2 β

n
2
−1

)
.
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Figure 4.26: Image of (J,Ht) as in Theorem 4.5.4 with n = 3, β = 2, γ = 1
50 and δ = 7. For this

choice of parameters, t− = 25
66 ≈ 0.38 and t+ = 25

34 ≈ 0.74.

Moreover, let

J =
1

2
(|z1|2 + |z2|2), Ht =

(2t− 1)

2
|z3|2 + 2γt(X + δR2)− 2γδt(n− 1)2β2.

Then (M,ω, Ft = (J,Ht)) is

• of toric type when 0 ≤ t < t−;

• semitoric with one focus-focus point when t− < t < t+,

where
t− =

1

2
(

1 + 2
n
2

+1γ(n− 1)
n−3
2 β

n
2

) , t+ =
1

2
(

1− 2
n
2

+1γ(n− 1)
n−3
2 β

n
2

) .
Moreover, for t ∈ (t−, t+) the semitoric polygon of the system is the one shown in Figure 4.8e,
so it is of type (3b) with parameters β and n. Furthermore:

• if n = 3, for any h0 ∈ (0, h+) where

h+ =

(
1− 3

√
3

4π

)
β,

there exists a choice of γ ∈
(

0, 1
8β
√

2β

)
, δ ∈

(
max

(
1

4βγ , 3
√

2β
)
,+∞

)
and t ∈ (t−, t+)

such that the height invariant of the system is h = h0;

• if n = 4, for any h0 ∈ (0, h+) where

h+ =

(
1− ln(12− 8

√
2)

π

)
β,

there exists a choice of γ ∈
(

0, 1
16β2

√
3

)
, δ ∈

(
max

(
1

6βγ ,
16β√

3

)
,+∞

)
and t ∈ (t−, t+) such

that the height invariant of the system is h = h0.

Again, we can obtain every possible unmarked semitoric polygon of type (3b) by varying the
parameters in this system, but not every marked semitoric polygon. The image of the momentum
map for this system for a certain choice of parameters is shown in Figure 4.26.
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Type (3c). Let n ≥ 3 and let β > 0 and 0 < α < β. We work in the symplectic reduction
(M,ω) =

(
Wn−2(β − α, β), ωWn−2(β−α,β)

)
of C4 by the action of

N =
1

2

(
|z1|2 + |z3|2 + (n− 2)|z4|2, |z2|2 + |z4|2

)
at level N = ((n− 1)β − α, β), and we consider

J =
1

2
(|z1|2 + |z2|2), X = <(z1z̄2z̄

n−1
3 z4), R =

1

2

(
|z1|2 + (n− 2)|z4|2

)
.

Theorem 4.5.5. Let n ≥ 3. Let β > 0 and 0 < α < β. Let 0 < γ < n−1

2
n+3
2 ((n−1)β−α)

n−1
2
√

2β
and

let δ > max

(
1

2((n−1)β−α)γ ,
2
n+1
2 ((n−1)β−α)

n−3
2 (n(n−1)β−α)

(n−1)2
√

2β

)
. Let

J =
1

2
(|z1|2 + |z2|2), Ht =

(2t− 1)

2
|z3|2 + 2γt(X + δR2)− 2γδt((n− 1)β − α)2.

Then (M,ω, Ft = (J,Ht)) is

• of toric type when 0 ≤ t < t−;

• semitoric with one focus-focus point (the point D = [0,
√

2β,
√

2((n− 1)β − α), 0]) when
t− < t < t+,

where

t− =
1

2

(
1 + 2

n+1
2 γ((n−1)β−α)

n−1
2
√

2β
n−1

) , t+ =
1

2

(
1− 2

n+1
2 γ((n−1)β−α)

n−1
2
√

2β
n−1

) .
Moreover, for t ∈ (t−, t+) the semitoric polygon of the system is the one shown in Figure 4.8f, so
it is of type (3c) with parameters α, β and n. Furthermore, if n = 3, for any h0 ∈ (0, h+), where

h+ =

16β(2β − α) arctan
(√

α+6β
2β−α

)
+ 16β2 arctan

(√
(α+6β)(2β−α)

α+2β

)
− (6β − α)

√
(α+ 6β)(2β − α)

16πβ
,

there exists a choice of γ ∈
(

0, 1
4(2β−α)

√
2β

)
, δ ∈

(
max

(
1

2(2β−α)γ ,
6β−α√

2β

)
,+∞

)
and t ∈ (t−, t+)

such that the height invariant of the system is h = h0.

As before, we can obtain every possible unmarked semitoric polygon of type (3c) from this
system by choosing the parameters appropriately, but not every marked semitoric polygon. The
image of the momentum map Ft for n = 5 and some choice of parameters is displayed in Figure
4.27.

4.5.4 General strategy

We conclude by giving some recipes to come up with such explicit systems. Concretely, we fix
a marked semitoric polygon [(∆,~c,~ε)] and want to find an explicit semitoric system with this
polygon as its invariant. In most examples, we looked for very particular families (M,ω, Ft =
(J,Ht))0≤t≤1 in which the Hamiltonian Ht is obtained as a convex combination

Ht = (1− t)H0 + tH1 or Ht = (1− 2t)H0 + 2tH 1
2
;

in this case the question is how (M,ω), J , H0 and H1 (or H 1
2
) should be chosen.

Assume that one of the vertices in one representative of [(∆,~c,~ε)]

99



-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0 1 2 3 4

t = 0

-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0 1 2 3 4

t = 0.11

-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0 1 2 3 4

t = 0.22

-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0 1 2 3 4

t = 0.33

-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0 1 2 3 4

t = 0.44

-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0 1 2 3 4

t = 0.56

-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0 1 2 3 4

t = 0.67

-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0 1 2 3 4

t = 0.78

-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0 1 2 3 4

t = 0.89

-3

-2

-1

0
0 1 2 3 4

t = 1

Figure 4.27: Image of (J,Ht) as in Theorem 4.5.5 with n = 5, α = 1
2 , β = 1, γ = 1

100 and δ = 26.
For these values of the parameters, t− = 100

200+49
√

2
≈ 0.37 and t+ = 100

200−49
√

2
≈ 0.77.

• either is 1-fake and at the same time satisfies the Delzant condition;

• or is k-fake for some k ≥ 2 and at the same time satisfies the (k − 1)-hidden Delzant
condition (see Definition 3.4.2).

Then we can erase one cut hitting this vertex and the marked point it emanates from to obtain
a different marked semitoric polygon [(∆′, ~c′, ~ε′)], corresponding to a semitoric system with one
less focus-focus point. If we know a fully explicit semitoric system with [(∆′, ~c′, ~ε′)] as its marked
semitoric polygon, we will take this system as our (M,ω, (J,H0)). In particular, if [(∆′, ~c′, ~ε′)] =
[(∆′, ∅, ∅)] with ∆′ Delzant, we do know such an explicit (M,ω, (J,H0)) thanks to Delzant’s
algorithm (see Section 3.1). This is what happens in practice for most of our examples.

Example 4.5.6. In this example and Examples 4.5.7 and 4.5.8 below, we will explain how we
came up with the systems of type (1) from Section 4.5.2. The fake vertex of the polygon in
Figure 4.8a is not Delzant, so we change the cut direction to obtain the representative shown on
the left in Figure 4.28. The vertex (α, 0) is 1-fake and satisfies the Delzant condition, so we erase
the corresponding cut and marked point. We obtain a Delzant polygon, and Delzant’s algorithm
yields that (CP2, αωFS, (J,H0)) where

J =
1

2

(
|z1|2 − |z2|2

)
, H0 =

1

2
|z1|2,

is a toric system with this polygon as its momentum map image. The Hamiltonian H0 is actually
not the one that we used in Theorem 4.5.2, for a reason that will be explained in Example 4.5.8.

Now it remains to choose an appropriate H1 (or H 1
2
). In [LFP22, Section 3.3] we proposed

to approach this question geometrically as follows. Let j be a singular level of J containing
one fixed point p of the corresponding S1-action and embed the singular symplectic quotient
M red
j = J−1(j)/S1 in R3 in such a way that the singularity [p] corresponds to the global maximum

of the height function Z. Let Hred,j
t be the reduced Hamiltonian induced by Ht on M red

j , and
assume that Z is a function of the reduced Hamiltonian R = Hred,j

0 , as in Figure 4.29. Let
(X ,Y) be horizontal coordinates on M red

j . Then by choosing H 1
2
in such a way that Hred,j

1
2

= X ,

we see that p transitions from elliptic-elliptic to focus-focus as the parameter t varies in [0, 1
2 ].

This approach requires to find good coordinates on the reduced space M red
j , in a consistent

way as j varies. In [LFP23] we gave another point of view, perhaps less geometric but more useful
in practice. Recall from Equation (3.17) and from the fact that the weights at a focus-focus point
are −1 and 1 that there exist local complex symplectic coordinates z1, z2 near the point p that
we want to transition between elliptic-elliptic and focus-focus such that

J =
1

2

(
|z1|2 − |z2|2

)
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×

(0, 0) (α, 0)

(2α, α)

(a) One representative of a marked semi-
toric polygon of type (1).

(0, 0) (α, 0)

(2α, α)

(b) The same polygon, but with the cut
and marked point erased.

Figure 4.28: Erasing the cut incident to a 1-fake vertex satisfying the Delzant condition, and the
corresponding marked point, in a representative of a marked semitoric polygon of type (1). The
outcome is a Delzant polygon.

Hred,j
0

(a) The singularity corresponds
to an elliptic-elliptic point.

Hred,j
t

(b) The singularity corresponds to
a focus-focus point.

Hred,j
1
2

(c) The singularity corresponds
to a focus-focus point.

Figure 4.29: Top row: the singular level (in red, with the red circle indicating the singular point)
and a regular level (in black) for the function Hred,j

t = (1− 2t)Hred,j
0 + 2tX , for different values

of t, on the reduced space M red
j (in blue) where j is a singular value of J . Bottom row: the

corresponding singular fibers in M .
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(assuming that J(p) = 0 for the sake of simplicity). In [LFP23, Proposition 7.5] we proved that
the quadratic Hamiltonians commuting with this normal form are of the form

H(z1, z2) = µ1<(eiψz1z2) + µ2|z1|2 + µ3|z2|2 (4.2)

for some µ1, µ2, µ3, ψ ∈ R. We showed moreover that (q1, H) is integrable if and only if (µ1, µ2 +
µ3) 6= (0, 0) and that in this case the singular point (0, 0) of (q1, H) is

• of focus-focus type if |µ2 + µ3| < |µ1|;

• of elliptic-elliptic type if |µ2 + µ3| > |µ1|;

• degenerate if |µ2 + µ3| = |µ1|.

This gives a recipe to choose H 1
2
: put J in normal form near p, and then choose locally H 1

2
of

the above form (4.2) with |µ2 + µ3| < |µ1|, so that p is focus-focus for (J,H 1
2
). Then extend

this to a global H 1
2
on M . In practice, since in most of the examples (M,ω, (J,H0)) comes from

Delzant’s algorithm, the coordinates of the normal form for J are very often easy to obtain.

Example 4.5.7. Let us continue investigating the constructions of Section 4.5.2. Recall from
Example 4.5.6 that we consider J = 1

2

(
|z1|2 − |z2|2

)
; hence J is already in normal form near

the point p = [0, 0,
√

2α]. Choosing ψ = 0, µ1 = −γ with γ > 0 and µ2 = 0 = µ3 leads to
considering the local Hamiltonian −γ<(z1z2) near p. This can be extended to a globally defined
Hamiltonian H 1

2
= −γ<(z1z2z̄

2
3) on CP2. This is part of the actual Hamiltonian H 1

2
in Equation

(4.1), but there is an additional term which will be justified in Example 4.5.8.

The above recipe ensures that the point p will transition from focus-focus to elliptic-elliptic
as t varies, but it does not guarantee that the system (M,ω, F 1

2
= (J,H 1

2
)) will be semitoric.

Nevertheless, it is sufficient to come up with the explicit examples from [LFP22]. However, as
already explained, these examples had the nice property to not include any Zk-sphere. And
unfortunately, Zk-spheres can cause some trouble: it can happen that the image of some points
in such a Zk-sphere lies in the interior of the image Ft(M) for some t ∈ [0, 1

2 ], in which case
(M,ω, Ft) cannot be semitoric (see for instance [LFP23, Lemma 2.14]). To solve this problem,
it is necessary to modify Ht so that the images of the Zk-spheres lie on the boundary of Ft(M)
for all t, and this can be done by adding some correction terms to Ht. But these correction
terms should not modify the quadratic part of Ht, to ensure that p stays of the desired type
(elliptic-elliptic or focus-focus, depending on t).

Example 4.5.8. Again, we work in the setting of Section 4.5.2. Recall from Example 4.5.6 that
we work with J = 1

2

(
|z1|2 − |z2|2

)
; J has a Z2-sphere given by the set of points with z3 = 0.

First, it is convenient to make the image of this Z2-sphere become horizontal for t = 0; this is
why instead of the Hamiltonian H0 obtained in Example 4.5.6, we work with H0 = −1

2 |z3|2, in
which case the image of the Z2-sphere coincides with the top boundary of F0(CP2). Second, we
want to make sure that this is still the case for t 6= 0; this is the part played by the correction
term 2γδtR2 in Equation (4.1), see [LFP23, Remark 8.4] for more details, and recall Figure 4.23.

Once a potentially interesting integrable system is constructed by applying this general strat-
egy, it still remains to check that it is indeed integrable and of the desired kind depending on the
value of the parameter (e.g. of toric type, semitoric with a given number of focus-focus points,
or hypersemitoric as in Theorem 4.5.2). This involves computations that can be lengthy and
tedious, see for instance [HP18, Section 3], [LFP19b, Section 2 and Appendix B], [DMH21] or
[LFP22, Sections 6 and 7]. In [LFP23, Section 7], we introduced some general procedures to
simplify these computations.
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4.6 Perspectives

To conclude, we describe a few potentially interesting questions related to the contents of this
chapter.

In [LFP23], we constructed fully explicit semitoric systems from all strictly minimal unmarked
semitoric polygons; it would be interesting to obtain an explicit system for each strictly minimal
marked semitoric polygon. This means that we would like to construct an example for every
possible value of the height invariant in systems of type (3) (see Section 4.5.3); this seems difficult
and may require to refine our strategies. Another possibility would be to try these strategies
on systems which are not strictly minimal anymore but possess some interesting features. For
instance, finding an explicit system with either one focus-focus point and two distinct Zk and
Z`-spheres, or two focus-focus points and one Zk-sphere, would be a good test for the recipe
described in Section 4.5.4. Here we talk about the case where these three features (focus-focus
point and non-trivial isotropy spheres) do not lie in the same J-fiber; if they did, this would
constitute an obstruction to be part of a half-semitoric transition family.

These obstructions, which can be read on the marked semitoric polygon, for a semitoric
system to be a member of a half-semitoric transition family, were obtained in [LFP23, Proposition
5.7]. A natural question is whether these obstructions can be turned into a necessary and
sufficient condition: if a semitoric system (M,ω, F ) does not satisfy them, can one find a half-
semitoric family including it? Or at least, can one find a semitoric family including it? One
possible strategy would be to perform blowdowns of toric and semitoric type on (M,ω, F ) to
obtain a strictly minimal system, to apply Theorem 4.3.5 that states that this strictly minimal
system is a member of a semitoric family, and then to go back to the initial system (M,ω, J) by
performing blowups of toric and semitoric type. The difficulty is that we do not know if there is
a way to obtain a semitoric (or half-semitoric transition) family from the semitoric type blowup
of a semitoric (or half-semitoric transition) family, and this would require to study closely these
blowups in the manifold M and not only on marked semitoric polygons. This study will be
performed in the upcoming [HSSS].

Finally, as explained in Section 4.2.3, in [LFP23] we studied the strictly minimal semitoric
systems by computing all possible marked semitoric polygons associated with strictly minimal
semitoric helices and using the marked polygon isomorphism from Theorem 4.2.4. For strictly
minimal helices this remains tractable because the number of marked semitoric polygons asso-
ciated with a given helix is relatively small, but in general the map sending a marked semitoric
polygon to its helix is far from injective. Moreover as we already explained, the semitoric he-
lix can be constructed directly from the system rather than its marked semitoric polygon. It
would be interesting to study the helix invariant in more detail, in order to give a necessary and
sufficient condition for two semitoric systems to possess the same helix.
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Chapter 5

Inverse spectral theory for semitoric
systems

In this chapter we introduce the inverse spectral problem for semitoric systems and explain its
resolution in [LFVuN21] with San Vũ Ngo.c. In this whole chapter, the semitoric systems
are assumed to be simple (see Definition 3.3.2), unless stated otherwise. In Section 5.1,
we introduce quantum semitoric systems and their joint spectra. In Section 5.2, we state the
main result of [LFVuN21], namely the complete, constructive resolution of the inverse spectral
problem for semitoric systems. In Section 5.3 we discuss two crucial ingredients of the proof
of this result, namely asymptotic lattices and half-lattices and their relationship with the joint
spectra of quantum integrable systems. Then in Section 5.4 we explain how to recover, using
these ingredients, all symplectic invariants of a semitoric system from the joint spectrum of its
quantum counterpart. Finally, in Section 5.5 we describe some potentially interesting research
directions.

We believe that the results from [LFVuN21] can be extended with few modifications to the
case of a semitoric system which may have several focus-focus points in the same J-fiber but
not in the same F -fiber, in other words in the case where there may be several tori pinched at a
single point in a given J-fiber, but no torus pinched at two or more points. In the latter case, the
question remains open and it is possible that the spectral data will not be sufficient to determine
all the symplectic invariants, in particular the Taylor series invariant.

5.1 Quantum semitoric systems

In order to quantize a semitoric system, we may need to consider, depending on the phase space
(M,ω), either ~-pseudodifferential operators or Berezin-Toeplitz operators. The former now form
a very standard topic and we refer the reader to the abundant literature (a good starting point
is the recent book [Zwo12]), and the latter are reviewed in Section 2.1 in the Kähler case. For
our purpose, working in this Kähler setting is not restrictive, since by [Kar99, Theorem 7.1] a
compact symplectic manifold endowed with an effective Hamiltonian S1-action is automatically
Kähler.

More precisely, in [LFVuN21] we considered three settings:

1. (M,ω) = (T ∗X,dλ) where X = R2 or X is a compact Riemannian surface and λ is
the Liouville one-form. In this case a semiclassical operator is a (possibly unbounded)
~-pseudodifferential operator acting on H~ = L2(X);

2. (M,ω) is a quantizable compact Kähler manifold of dimension four, with prequantum line
bundle L and auxiliary line bundle L′. In this case a semiclassical operator is a Berezin-
Toeplitz operator acting on H~ = H0(M,L⊗k ⊗L′) with k a positive integer and ~ = k−1;

104



3. (M,ω) = (C × N,ω0 ⊕ ωN ) where ω0 is the standard symplectic form on C and (N,ωN )
is a quantizable compact Kähler surface with prequantum line bundle L and auxiliary line
bundle L′. In this case a semiclassical operator is a (possibly unbounded) Berezin-Toeplitz
operator acting on

Bk ⊗H0(N,Lk ⊗ L′)
still with k ≥ 1 and ~ = k−1. Here Bk is the Bargmann space of Example 2.1.2.

The joint principal symbol of two commuting semiclassical operators is (f1, f2) ∈ C∞(M,R2)
where f1 and f2 are the respective principal symbols of these operators.

Definition 5.1.1. Consider a set I ⊂ (0,+∞) having zero as an accumulation point. A quantum
integrable system (Ĵ~, Ĥ~)~∈I is the data of two commuting semiclassical operators Ĵ~ and Ĥ~
on H~ whose joint principal symbol F = (J,H) is the momentum map of an integrable system.
If moreover this system is semitoric, we call (Ĵ~, Ĥ~)~∈I a quantum semitoric system.

Throughout this chapter and to keep a certain consistency with the rest of the manuscript,
we will illustrate our results on an example whose underlying phase space is compact, namely a
quantization of the coupled angular momenta system described in Example 3.3.4. We refer the
reader who is interested in the non-compact case to [LFVuN21], in which we also investigate the
example of the Jaynes-Cummings system, which quantizes the spin-oscillator system described
in Example 3.3.3. One interesting feature that both examples share is that their symplectic
invariants have been computed explicitly in [ADH20, ADH19], so they provide a fertile ground
to verify numerically the validity of our results. It would also be interesting to verify them on
an example with two or more focus-focus points, but at the time that we wrote [LFVuN21] the
literature did not contain any example with two focus-focus points for which all the invariants
were computed; such an example now exists in [AHP23].

Example 5.1.2 (Coupled angular momenta.). Assume that the quantities R1, R2 > 0 introduced
in Example 3.3.4 are half-integers. Then the system (S2 × S2,−(R1ωS2 ⊕R2ωS2), (J,Ht)), with
(J,Ht) as in Equation (3.3) can be quantized as follows, using Example 2.1.1. The operatorsĴk = R1Ẑ2kR1 ⊗ Id +R2Id⊗ Ẑ2kR2 ,

Ĥk = (1− t)Ẑ2kR1 ⊗ Id + t
(
X̂2kR1 ⊗ X̂2kR2 + Ŷ2kR1 ⊗ Ŷ2kR2 + Ẑ2kR1 ⊗ Ẑ2kR2

)
.

(5.1)

acting on H0(CP1,O(2kR1 − 1)) ⊗ H0(CP1,O(2kR2 − 1)), with X̂, Ŷ , Ẑ as in Equation (2.8),
are commuting Berezin-Toeplitz operators with joint principal symbol (J,Ht). More details can
be found in [LFP19b, Section 4], in which we used a slightly different notation.

Recall that the commuting operators Ĵ~, Ĥ~ have a joint spectral measure σ~ such that

Ĵ~ =

∫
R2

s1 dσ~(s), Ĥ~ =

∫
R2

s2 dσ~(s),

see for instance [SBS87, Section 6.5].

Definition 5.1.3. The joint spectrum Σ~ of a quantum integrable system (Ĵ~, Ĥ~) is the support
of the joint spectral measure of Ĵ~ and Ĥ~.

For instance, in the finite-dimensional case, or more generally if the joint spectrum is discrete,
this joint spectrum is simply the set of all joint eigenvalues of Ĵ~ and Ĥ~:

Σ~ = {(λ1, λ2) ∈ R2 | ∃ψ ∈ H~ \ {0}, Ĵ~ψ = λ1ψ, Ĥ~ψ = λ2ψ}.

In what follows we will always assume that the joint spectrum is discrete. This can be ensured
by assuming the ellipticity at infinity of the operator Ĵ2

~ + Ĥ2
~ , in which case the system is

called proper ; this is well-known in the ~-pseudodifferential case and also works in the case of
Berezin-Toeplitz operators on Bargmann spaces. Hence we will always make this assumption
that (Ĵ~, Ĥ~) is proper.

105



Example 5.1.4. The joint spectrum of the coupled angular momenta system (Ĵk, Ĥk) of Exam-
ple 5.1.2 has been computed with different notation in [LFP19b, Section 4.4], and alternatively
readily follows from Equations (5.1) and (2.8). It is given by

Σk =

Jk⋃
j=0

{(
−(R1 +R2) +

j + 1

k
,E0(j)

)
, . . . ,

(
−(R1 +R2) +

j + 1

k
,Ed(j)(j)

)}

where Jk = 2 (k(R1 +R2)− 1),

d(j) =


j if 0 ≤ j ≤ 2kR1 − 1,

2kR1 − 1 if 2kR1 ≤ j ≤ 2kR2 − 1,

2k(R1 +R2)− j − 2 if 2kR2 ≤ j ≤ Jk,

and E0(j), . . . , Ed(j)(j) are the eigenvalues of the matrix

Aj =
1

4k2R1R2



α0(j) β1(j) 0 . . . 0

β1(j) α1(j) β2(j)
. . .

...

0 β2(j) α2(j)
. . . 0

...
. . . . . . . . . βd(j)(j)

0 . . . 0 βd(j)(j) αd(j)(j)


with

α`(j) = (2(`− kR1) + 1) (2kR2 + (2(j − `) + 1) t)

for 0 ≤ ` ≤ d(j) and

βm(j) = 2t
√
`(j − `+ 1)(2kR1 − `)(2kR2 − (j − `+ 1))

for 1 ≤ m ≤ d(j). Here for the sake of simplicity we have assumed that R2 > R1 (when R1 = R2

there are only two cases for d(j) which can be easily sorted out). This joint spectrum can then
be computed by numerically diagonalizing the matrix Aj ; see Figure 5.1 in which we display this
joint spectrum for the choice of parameters R1 = 1, R2 = 5

2 and t = 1
2 that we will keep in all

the examples of this chapter.

So for each value of ~ ∈ I we have a discrete subset of R2 given by the joint spectrum Σ~
of the semiclassical operators (Ĵ~, Ĥ~). The question that we addressed in [LFVuN21] is the
semitoric case of the following more general question. Given a quantum integrable system, does
this family (Σ~)~∈I of joint spectra determine the underlying classical integrable system (up to
a good notion of isomorphism)? This was answered positively for the toric case in [CPVuN13],
see also [PPVuN14], in a constructive way: Σ~ converges, as ~ → 0, to the Delzant polygon of
the underlying toric system.

For focus-focus fibers containing one singularity, it was proved in [PVN14] that the Taylor
series invariant (see Section 3.4.2) is determined by the joint spectrum, as a uniqueness statement:
if two quantum integrable systems share the same joint spectrum near the singular value, then
the Taylor series invariants of the underlying semitoric systems coincide. In the semitoric case, we
also obtained a uniqueness statement in [LFPVN16, LFPVN19]: we showed that if two quantum
semitoric systems have the same joint spectrum, then the underlying semitoric systems must
possess the same marked semitoric polygon and Taylor series invariant (hence only the twisting
numbers were potentially missing, and at the time we did not know if it could be detected from
the joint spectrum). In particular, this showed that two systems with only one focus-focus point,
the same joint spectrum and the same twisting index must be isomorphic.
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Figure 5.1: The blue dots are the joint eigenvalues of the quantum coupled angular momenta
with R1 = 1, R2 = 5

2 and t = 1
2 for k = 10, see Example 5.1.4. The red line corresponds to

the boundary of the image of the momentum map, and the black circle indicates the focus-focus
value.

5.2 The inverse spectral result

The main result that we obtained in [LFVuN21] is a positive answer to the inverse spectral
question: from the data of the family of joint spectra of a quantum semitoric system, one can
recover, in a constructive way, all the symplectic invariants of the underlying semitoric system,
and hence this system itself up to isomorphism. When the classical phase space is non-compact,
stating this result precisely requires some care, because these joint spectra may be unbounded
in the horizontal direction (recall that in a semitoric system (M,ω, (J,H)) the first component
J of the momentum map is proper, so these joint spectra are necessarily bounded in the vertical
direction). This is why in the following statement, we need to introduce a vertical strip and
restrict ourselves to the study of the joint spectrum in this strip. Of course, for a compact phase
space one can simply take this strip to be large enough to contain the whole joint spectrum for
all values of the semiclassical parameter.

Theorem 5.2.1 ([LFVuN21, Theorem 3.6]). Let I ⊂ (0,+∞) be an interval having zero as an
accumulation point and let (Σ~)~∈I be a collection of point sets in R2, which is assumed to be the
joint spectrum of some unknown proper quantum semitoric system (Ĵ~, Ĥ~) with joint principal
symbol F = (J,H). Let S ⊂ R2 be a vertical strip of bounded width. Then all symplectic
invariants of the underlying classical semitoric system on F−1(S) can be explicitly recovered, in
a constructive way, from the data of (Σ~ ∩ S)~∈I modulo O(~2). In particular, if two proper
quantum semitoric systems have the same spectrum modulo O(~2), then the underlying semitoric
systems are isomorphic.

Here modulo O(~2) means that we can start with a family of subsets which is not exactly
(Σ~)~∈I but is only O(~2)-close to this joint spectrum, in the sense of the Gromov-Hausdorff
distance of their intersections with compact sets, see [LFVuN21, Definition 3.8]. This means
that a sufficiently small error in the measurement of this joint spectrum does not change the
outcome of the theorem.

Theorem 5.2.1 is obtained by combining several results regarding the explicit recovery of
the different symplectic invariants, that we describe now and until the end of this chapter. In
fact, our method to recover the Taylor series invariant (see Section 5.4.1) is not specific to the
semitoric case and applies to any four-dimensional integrable system with a focus-focus point
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which is the only one in its F -fiber. The last statement in Theorem 5.2.1 comes from the result
of [PVuN09] that a semitoric system is determined up to isomorphism from its complete list of
symplectic invariants, see Theorem 3.4.16.

Here we insist on the fact that we recover constructively all the symplectic invariants of the
system from the joint spectrum. Concretely, we obtain formulas and algorithms giving these
invariants as limits of quantities formed by means of the joint eigenvalues. Hence we recover the
uniqueness result from [LFPVN16, LFPVN19] discussed above for systems with only one focus-
focus point, but we go beyond it by giving these explicit formulas and algorithms to recover all
the invariants, including the twisting index, and also by handling the general case of any number
of focus-focus points.

The general idea is that coming up with a good, consistent way of numbering the joint
eigenvalues amounts to obtaining nice action variables for the classical system, which in turn
allows us to infer the symplectic invariants. Thus, our next task is to explain this link between
good quantum numbers and action variables.

5.3 Asymptotic lattices and half-lattices

Bohr-Sommerfeld conditions give a description of the joint spectrum of a proper quantum inte-
grable system (Â~, B̂~) near a regular value c of its joint principal symbol F = (a0, b0). These
conditions, recalled in the theorem below, state that this joint spectrum is locally a deformed lat-
tice, and the deformation is related to a choice of action variables near c. For ~-pseudodifferential
operators, they are due to Charbonnel [Cha88] (following Colin de Verdière [CdV80]), while they
were obtained by Charles in [Cha03b] (see also [Cha06]) for Berezin-Toeplitz operators.

Theorem 5.3.1. Let (A~, B~)~∈I , be a proper quantum integrable system with joint principal
symbol F = (a0, b0), and let Σ~ be its joint spectrum. Let c ∈ R2 be a regular value of F such
that F−1(c) is connected. Then there exists an open ball B ⊂ R2 containing c such that

1. the joint eigenvalues in Σ~ ∩B are simple, in the sense of [Cha88, DHVN22]: there exists
~0 > 0 such that for every ~ < ~0, ~ ∈ I and every λ~ ∈ Σ~∩B, the joint spectral projector
of (A~, B~) onto the ball B(λ~, ~2) has rank 1;

2. there exist a bounded open set U ⊂ Rn and a smooth function G~ : U → R2 with an
asymptotic expansion

G~ = G0 + ~G1 + ~2G2 + . . .

in the C∞ topology, such that

Σ~ ∩B = G~(~Z2) +O(~∞)

inside B, with a uniform remainder O(~∞). Moreover, dG0 = dG̃0 where G̃−1
0 is an

oriented action diffeomorphism associated with a choice of action variables near F−1(c)
(see the beginning of Section 3.2).

For more details, see for instance [LFVuN21, Theorem 4.3 and Definition 4.1].
In view of this description, it is quite clear that, near a regular value of the momentum map,

possessing action variables (I1, I2) (and hence an action diffeomorphism G−1
0 ) allows one to label

the joint eigenvalues in a natural way: the joint eigenvalue corresponding to G0(~(`,m)) up to
O(~2) is labeled λ`,m. In other words, ~` and ~m are the (approximate) values of the action
variables I1 and I2 on F−1(λ`,m).

However, for the inverse question, one starts with the joint spectrum Σ~ and does not know
the underlying system a priori, hence such action variables cannot be obtained classically. This
raises the following question: from the sole knowledge of the family of joint spectra of a quantum
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integrable system, can one number the joint eigenvalues in a consistent way? This question led
to the introduction of asymptotic lattices and their labelings in [DHVN22].

The precise definition of an asymptotic lattice [DHVN22, Definition 3.6] is rather involved,
so we will not reproduce it here. Let us simply say that this definition (here, specialized to two
degrees of freedom) formalizes the notion of a local deformed lattice as the set G~(~Z2), where
G~, called an asymptotic chart, admits an asymptotic expansion

G~ = G0 + ~G1 + ~2G2 + . . . (5.2)

in the C∞ topology and G0 is a local orientation-preserving diffeomorphism. In particular, the
definition of asymptotic lattice is such that the joint spectrum of an integrable system near
a regular value of its momentum map is an asymptotic lattice, with G−1

0 an oriented action
diffeomorphism. And of course, the simplest example is the intersection of the rescaled lattice
~Z2 with a bounded open subset of R2, which is an asymptotic lattice with G0 = Id. Note that
asymptotic charts are not unique in general; for instance, for the joint spectrum evoked above,
one can always choose a different set of action variables, which results in a different action
diffeomorphism G−1

0 and thus in a different asymptotic chart.
In [DHVN22], the authors studied asymptotic lattices and proved in particular that they all

admit a preferred way, once an asymptotic chart is chosen, to label their elements consistently as
~ → 0, called a good labeling. They also provided some algorithms (one in the general case and
one more adapted to the semitoric case) to produce a labeling of any asymptotic lattice (with
the subtlety that the labeling thus obtained is not good but linear, i.e. good up to constants
depending on ~). In particular, this allows one to label the joint spectrum Σ~ of a proper quantum
integrable system in the neighborhood of a regular value c of the underlying momentum map,
and the above discussion hints at the fact that this in turns allows one to recover a pair of action
variables near F−1(c).

An example of asymptotic lattice, with two different labelings, is displayed in Figure 5.2.

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
+1.004

1.004

1.006

1.008

1.010

1.012

1.014

1.016

(a) A labeling.

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
+1.004

1.004

1.006

1.008

1.010

1.012

1.014

1.016

(b) Another labeling.

Figure 5.2: An asymptotic lattice and two labelings for it (for some fixed value of ~). Recall
that an asymptotic lattice is a deformed rescaled lattice; the labellings are suggested by the red
dashed lines.

As we will see below, in the semitoric case this idea can be realized concretely and is enough
to recover the Taylor series and height invariants associated to a given focus-focus point from
the joint spectrum. However, to recover the complete symplectic invariant of the system, we
will need to label the whole joint spectrum, with the exception of the joint eigenvalues close
to elliptic-elliptic values and to vertical half-lines above each focus-focus value. Indeed, this is
quite natural since the marked semitoric polygon is constructed as the image of global action
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variables on the set of regular values of F minus the cuts above or below each focus-focus value.
In [LFVuN21] we came up with such a global labeling using two ingredients: the description of
the joint spectrum near an elliptic-regular value as an asymptotic half-lattice, and the extension
of local labelings of such asymptotic lattices and half-lattices to a global labeling for their union.
The latter will be described in Section 5.4.2 below, and now we focus on the former.

Asymptotic half-lattices. The joint spectrum of a proper quantum integrable system near
an elliptic-regular value is not obtained as a deformation of the rescaled lattice ~Z2 but rather
of the rescaled half-lattice ~(N × Z). Roughly, the joint eigenvalues only lie on one side of the
boundary of the image of the underlying momentum map (see Figure 5.1). Another way to
think about this is to inspect the following normal form near such an elliptic-regular singularity,
which was first stated in the homogeneous setting in [CdV80], generalized to hyperbolic flows in
[CdVVuN03], and extended to all non-degenerate singularities in [MZ04].

Lemma 5.3.2 ([DM91]). Let F = (J,H) be an integrable system and let c = (c1, c2) be an
elliptic-regular value of F with compact and connected fiber F−1(c). Then there exist a saturated
neighborhood U of F−1(c) in M , a neighborhood V of (S1 × {0}) × {(0, 0)} in T ∗S1 × T ∗R, a
local symplectomorphism φ : (U , ω) → (V, ω0) and a local diffeomorphism G0 : (R2, 0) → (R2, c)
such that

(F ◦ φ−1)(x1, ξ1, x2, ξ2) = G0(ξ1, q(x2, ξ2))

where q(x2, ξ2) = 1
2(x2

2 + ξ2
2). If moreover (J,H) is semitoric, then φ can be chosen such that

J ◦ φ−1 − c1 = ξ1.

Here T ∗S1×T ∗R is endowed with coordinates (x1, ξ1, x2, ξ2), with x1 as periodic coordinate,
and symplectic form ω0 = dξ1∧dx1 +dξ2∧dx2. Note that near any regular value of F sufficiently
close to c, G−1

0 is an action diffeomorphism.
Since the spectrum of the quantized version of the harmonic oscillator q consists of discrete

points lying in the positive half of the real axis, this is another hint that the joint spectrum is a
deformed half-lattice near such a singularity. The precise statement, which is displayed below,
was initially proved in [CdV80, Theorem 6.1] for homogeneous pseudodifferential operators,
while for ~-pseudodifferential operators it was only stated in [VN06, Théorème 5.2.4] (see also
[DHVN22, Theorem 3.38]), with a sketch of proof. Moreover, to our knowledge it was not
available in the literature for Berezin-Toeplitz operators. Hence, even though the statement
itself is not surprising, in [LFVuN21] we needed to include a complete proof of this result.

Theorem 5.3.3 ([LFVuN21, Theorem 7.4]). Let (Ĵ~, Ĥ~) be a proper quantum integrable system,
with momentum map F = (J,H), and let c be an elliptic-regular value of F with compact and
connected fiber F−1(c). Then there exists an open ball B ⊂ R2 around c in which the joint
spectrum Σ~ of (Ĵ~, Ĥ~) has the following properties:

1. the joint eigenvalues are simple (in the sense of the first item in Theorem 5.3.1);

2. there exist a bounded open set U ⊂ R2 and a smooth map G~ : U → R2 with an asymptotic
expansion G~ = G0 + ~G1 + . . . in the C∞ topology such that λ~ ∈ Σ~ ∩ B if and only if
there exist j(~) ∈ Z and `(~) ∈ N such that λ~ = G~(~(j(~), `(~))) + O(~∞) where the
remainder is uniform on B. Furthermore, G0 is the same as in Lemma 5.3.2.

In particular, away from the singularity this statement allows one to recover the regular
Bohr-Sommerfeld conditions from Theorem 5.3.1. Note also that this statement is not restricted
to semitoric systems. The idea of the proof is quite standard: by quantizing a local normal form
(near one elliptic-regular point m ∈ F−1(c)) derived from the one of Lemma 5.3.2 using Fourier
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integral operators, we microlocally conjugate (Ĵ~, Ĥ~) to the pair (Ξ~, g~(Ξ~, Q~)) of operators
on L2(R2),where Ξ~, Q~ act as

Ξ~ =
~
i

∂

∂x1
, Q~ =

1

2

(
−~2 ∂

2

∂x2
2

+ x2
2

)
on compactly supported smooth functions, and g~ is a family of smooth function with an asymp-
totic expansion g~ = g0 +~g1 +~2g2 + . . . in the C∞ topology, with ∂yg0 6= 0. The microlocal solu-
tions of (Ξ~, Q~)v~ = (ν~, µ~)v~+O(~∞) near the origin can be studied using the knowledge of the
joint spectrum of the harmonic oscillator Q~: it consists of the simple eigenvalues ~(n+ 1

2), n ∈ N.
This in turn gives some information on the microlocal solutions of (Ĵ~, Ĥ~)v~ = (ν̃~, µ̃~)v~+O(~∞)
near m, where the integer `(~) ∈ N from Theorem 5.3.3 appears. To end the proof we study the
microlocal solutions near the whole singular fiber F−1(c) by following the punctual microlocal
solutions around the fiber, which gives a cocycle condition responsible for the appearance of the
integer j(~) in Theorem 5.3.3.

In order to analyze Σ~ near an elliptic-regular singularity, we introduced the notion of asymp-
totic half-lattice by adapting the definition of asymptotic lattice, in such a way that Theorem
5.3.3 means that locally near the singularity, the joint spectrum is an asymptotic half-lattice.
Again, we will not reproduce the full definition ([LFVuN21, Definition 4.7]) since it is rather
technical. We proved that these asymptotic half-lattices also admit good labelings, and we gave
an algorithm to produce linear labelings for any asymptotic half-lattice.

We insist on the fact that our proof of Theorem 5.2.1 does not necessitate the description
of the joint spectrum near a focus-focus value of the system. Such a description is known in
the ~-pseudodifferential case for a focus-focus point which is alone in its F -fiber [VN00], but
not for the case of a singular fiber with multiple pinches and not at all in Berezin-Toeplitz
quantization. Proving such a result would be interesting but would require more work than
the elliptic-transverse case from Theorem 5.3.3, and this also explains why it was convenient to
circumvent it.

5.4 Recovering the invariants

We now explain how to recover, from the joint spectrum of a proper quantum semitoric system
(Ĵ~, Ĥ~), the symplectic invariants of the underlying semitoric system (M,ω, (J,H)), thanks to
all the tools discussed above. As we already explained, it is natural to first study the recovery of
the Taylor series and height invariants, which only uses asymptotic lattices and their labelings,
and then show how to use global labelings to recover the complete symplectic invariant.

As already explained earlier, our method to reconstruct the Taylor series invariant from the
joint spectrum is not specific to semitoric systems and can be applied to recover this invariant for
a focus-focus fiber containing only one singular point in any four-dimensional integrable system.
This invariant, in turn, completely determines (up to symplectomorphism) F in a neighborhood
of the singular fiber, modulo composition on the left by a local diffeomorphism. In fact as we will
see, we can also recover the full Taylor expansion at the origin of the Eliasson function defined
in Section 3.4.2, and hence we recover F up to a flat term near the singular fiber.

5.4.1 Taylor series and height invariants

Let c0 ∈ R2 be a focus-focus value of F = (J,H); by replacing F with F (c0) we may, and will,
assume that c0 = (0, 0). Let c ∈ R2 be a regular value of F close to c0, and let B ⊂ R2 be
an open ball containing only regular values of F , including c; here “close to c0” means that we
choose c and B such that B is contained in the simply connected open set U defined in Section
3.4.2. In view of the discussions in the previous sections, we first apply the semitoric labeling
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algorithm from [DHVN22, Section 3.5.2] to obtain a labeling

λj,`(~) = (Jj,`(~), Ej,`(~)) (5.3)

of the joint eigenvalues of (Ĵ~, Ĥ~) contained in B. This labeling is associated with an asymptotic
chart G~ of the form (5.2) with G−1

0 a semitoric action diffeomorphism, i.e. corresponding to
action variables of the form (J, L).

Let fr be the Eliasson function defined in Section 3.4.2, and let τ1, τ2 be the two functions
defined by decomposing XL as in Equation (3.14). Then the functions a1, a2 defined as{

a1 = τ1 + τ2∂xfr,

a2 = τ2∂yfr
(5.4)

satisfy
XL = ã1XJ + ã2XH

with ãj = aj ◦ F for j = 1, 2. A preliminary result is that these two functions can be recovered
from the joint spectrum Σ~.

Lemma 5.4.1 ([LFVuN21, Lemma 5.2]). Let j, ` be ~-dependent integers such that the joint
eigenvalues λj,`, λj+1,` and λj,`+1 are well-defined in an O(~)-neighborhood of c. Then:

1.
Ej,`(~)− Ej+1,`(~)

~
=
a1(c)

a2(c)
+Oc(~),

2.
~

Ej,`+1(~)− Ej,`(~)
= a2(c) +Oc(~),

where Ej,`(~) is as in Equation (5.3) and Oc(~) means O(~) with constants depending on c.

Recall from Definition 3.4.8 that the Taylor series invariant of c0 is defined in terms of the
functions σ1 and σ2 introduced in Proposition 3.4.7, which are known whenever τ1, τ2 and fr
are known. Thus, in order to recover this Taylor series invariant from Σ~, the idea is to exploit
the relation (5.4) to derive these three functions from the knowledge of a1 and a2 ensured by the
above lemma.

To make this idea more precise, recall that ∂yfr > 0 and note that Equation (5.4) implies
that

τ1 = a1 + sa2, τ2 =
a2

∂yfr
(5.5)

where s = −∂xfr
∂yfr

. To come back to σ1 and σ2, we studied τ1 and τ2 along the image by F of
the zero set of the radial Hamiltonian Hr, called the radial curve γr, and given by the equation
fr(x, y) = 0; note that s(0) is the slope of the tangent to this curve at the origin. This allowed
us to resolve the logarithmic behavior of τ1 and τ2 as follows. Write locally γr as the graph of a
function ϕ; then it follows from Proposition 3.4.7 that the functions

ν1 : x > 0 7→ τ1(x, ϕ(x)), ν2 : x > 0 7→ τ2(x, ϕ(x)) +
lnx

2π
(5.6)

extend smoothly at x = 0 by setting ν1(0) = σ1(0) and ν2(0) = σ2(0). Indeed, for every x > 0,
ν1(x) = σ1(x, ϕ(x)) and ν2(x) = σ2(x, ϕ(x)).

To sum up, if we knew the Eliasson function fr, we would know the parametrization ϕ of
the curve γr and the function s, so we could fix a small x > 0 and use Lemma 5.4.1 to recover
a1(x, ϕ(x)) and a2(x, ϕ(x)) from Σ~, then Equation (5.5) to recover τ1(x, ϕ(x)) and τ2(x, ϕ(x)),
and finally take the limit x→ 0+ in Equation (5.6) to recover σ1(0) and σ2(0). And this would
also allow us to recover the higher order terms in the Taylor series invariant.

Unfortunately, we do not know the Eliasson function, so we also need to be able to recover it
from the joint spectrum. In fact, we will see that we only need to recover the Taylor expansion
of this function at the origin, and this can be derived from the knowledge of a1 and a2.
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Linear invariants. First we explain how this idea can be applied to obtain the linear invariants
[S1,0] and S0,1. Note that S0,1 = σ2(0) and recall from Proposition 3.4.13 that [S1,0] = σ1(0)
modulo Z. First we proved that, if γ is any curve which is tangent to the radial curve γr at the
origin, the restrictions of σ1 and σ2 to γ also tend to σ1(0) and σ2(0) at the origin (see Lemmas
5.4 and 6.7 in [LFVuN21]). Consequently, it suffices to work with the tangent line to γr at the
origin, in other words to compute its slope s(0) = −∂xfr(0)

∂yfr(0) .

Lemma 5.4.2 ([LFVuN21, Lemma 5.5]). One can recover the first order derivatives ∂xfr(0) and
∂yfr(0) of the Eliasson function from the knowledge of a1 and a2. Explicitly, for any fixed τ > 1,∂xfr(0) = 2π(a1(x,0)−a1(τx,0))

ln τ +O(x lnx),

∂yfr(0) = 2π(a2(x,0)−a2(τx,0))
ln τ +O(x lnx)

when x→ 0+.

To obtain explicit formulas to compute this derivatives from Σ~, it suffices to combine this
lemma with Lemma 5.4.1. Assume that both (x, 0) and (τx, 0) belong to the set B defined
above, so that the labeling from Equation (5.3) covers them both. Let j1, `1 (respectively j2, `2)
be ~-dependent integers such that the joint eigenvalues λj1,`1 , λj1+1,`1 and λj1,`1+1 (respectively
λj2,`2 , λj2+1,`2 and λj2,`2+1) are well-defined in an O(~)-neighborhood of (x, 0) (respectively of
(τx, 0)). Then,

∂xfr(0) = lim
x→0+

lim
~→0

2π

ln τ

(
Ej1,`1 − Ej1+1,`1

Ej1,`1+1 − Ej1,`1
−
Ej2,`2 − Ej2+1,`2

Ej2,`2+1 − Ej2,`2

)
(5.7)

and
∂yfr(0) = lim

x→0+
lim
~→0

2π~
ln τ

(
1

Ej1,`1+1 − Ej1,`1
− 1

Ej2,`2+1 − Ej2,`2

)
. (5.8)

Example 5.4.3. We work with the only focus-focus point of the coupled angular momenta
system (M,ω, (J,Ht)) from Example 3.3.4 with t− < t < t+. The Taylor expansion of the corre-
sponding Eliasson function fr can be inferred from [ADH20, Lemma 3.8] thanks to a straightfor-
ward computation (see [LFVuN21, Section 8.1] for a similar computation for the spin-oscillator
system of Example 3.3.3). More precisely,

∂xfr(0) =
(2t− 1)R− t√

C(t, R)
, ∂yfr(0) =

2R√
C(t, R)

where R = R1
R2

and C(t, R) is as in Equation (3.13). In particular when R1 = 1, R2 = 5
2 and

t = 1
2 this yields

∂xfr(0) = −1

3
, ∂yfr(0) =

10

3
. (5.9)

We recover these quantities from the joint spectrum of the corresponding quantum system
(Ĵk, Ĥk) from Example 5.1.2 (see also Example 5.1.4), using Equations (5.7) and (5.8), in Figures
5.3 and 5.4.

Formulas (5.7) and (5.8) allow us to recover the slope s(0) from Σ~. Then for x > 0,

a1(x, s(0)x) + s(0)a2(x, s(0)x) = τ1(x, s(0)x) +O(x lnx) −→
x→0+

σ1(0). (5.10)

In practice, once s(0) is known, we obtain using the notation and results of Lemma 5.4.1 applied
to c = (x, s(0)x) that

σ1(0) = lim
x→0+

lim
~→0

Ej,`(~)− Ej+1,`(~)

Ej,`+1(~)− Ej,`(~)
+

~s(0)

Ej,`+1(~) − Ej,`(~)
. (5.11)
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Figure 5.3: Determination of ∂xfr(0) for the coupled angular momenta system (see Example
5.4.3) using Formula (5.7) with x = 0.01, τ = 2 and (j1, `1) = (0, 0) = (j2, `2), for different
values of k. The red line corresponds to the theoretical result ∂xfr(0) = −1

3 , see Equation (5.9).
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Figure 5.4: Determination of ∂yfr(0) for the coupled angular momenta system (see Example
5.4.3) using Formula (5.8) with x = 0.01, τ = 2 and (j1, `1) = (0, 0) = (j2, `2), for different
values of k. The red line corresponds to the theoretical result ∂yfr(0) = 10

3 , see Equation (5.9).
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Figure 5.5: Determination of [S1,0] for the coupled angular momenta system (see Example 5.4.4).
The blue diamonds correspond to Formula (5.11) evaluated at (j, `) = (0, 0) with x = 0.01,
for different values of k. Here we directly work with the privileged labeling (which can be
recovered from the joint spectrum, as explained in the discussion right before Example 5.4.4)
so [S1,0] = σ1(0); the red line corresponds to the theoretical result [S1,0] = 1

2π arctan(13
9 ), see

Equation (5.12).

Thus we recover [S1,0] from the joint spectrum, as the fractional part of σ1(0). These results are
summarized in [LFVuN21, Theorem 5.1].

Note that we can then recover the privileged labeling, i.e. the labeling corresponding to the
choice of action variables (J, Lpriv) with Lpriv the privileged action variable defined in Section
3.4.3. Indeed, recall that we started from a labeling λj,`(~) as in Equation (5.3), corresponding
to the pair of action variables (J, L). Recall also that by definition of Lpriv, the actions L and
Lpriv are related by Lpriv = L− bσ1(0)cJ . Then the privileged labeling λpj,`(~) is given by

λpj,`(~) = λj,`+pj(~),

see [LFVuN21, Proposition 5.8] for more details.

Example 5.4.4. We consider once again the coupled angular momenta system from Examples
3.3.4 and 5.1.2, with parameters R1 = 1, R2 = 5

2 and t = 1
2 . In this case we derive from Equation

(5.9) that s(0) = 1
10 , and Equation (3.15) yields

[S1,0] =
1

2π
arctan

(
13

9

)
. (5.12)

We recover this linear invariant from the joint spectrum of the quantum system (Ĵk, Ĥk) from
Example 5.1.2, using Equation (5.11), in Figure 5.5.

In [LFVuN21] we also explained how to recover the second linear invariant from the joint
spectrum. Indeed, we obtained that for x > 0,

a2(x, s(0)x)

∂yfr(0)
+

lnx

2π
−→
x→0+

σ2(0) = S0,1.

Using once again the notation and results of Lemma 5.4.1 applied to c = (x, s(0)x), this yields

S0,1 = lim
x→0+

lim
~→0

(
~

∂yfr(0)(Ej,`+1 − Ej,`)
+

lnx

2π

)
. (5.13)
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Figure 5.6: Determination of S0,1 for the coupled angular momenta system (see Example
5.4.5). The blue diamonds correspond to Formula (5.13) evaluated at (j, `) = (0, 0) with
x = 0.01, for different values of k. The red line corresponds to the theoretical value S0,1 =
1

2π

(
7
2 ln 2 + 3 ln 3− 3

2 ln 5
)
, see Equation (5.14).

Example 5.4.5. We keep working with the coupled angular momenta system from Examples
3.3.4 and 5.1.2, with parameters R1 = 1, R2 = 5

2 and t = 1
2 . In this case Equation (3.15) yields

S0,1 =
1

2π

(
7

2
ln 2 + 3 ln 3− 3

2
ln 5

)
. (5.14)

We recover this quantity from the joint spectrum of the quantum system (Ĵk, Ĥk) from Example
5.1.2, using Equation (5.13), in Figure 5.6.

Higher order terms in the Taylor series invariant. Recovering the higher order terms in
the Taylor series invariant from the joint spectrum is more complicated, but the idea remains
the same: in order to recover the coefficients S`,m with ` + m = n ≥ 1, we will first need to
recover the derivatives of order n of fr at the origin. This can be achieved by considering certain
combinations of the functions a1 and a2 evaluated at suitable points. Recall that the functions
a1 and a2 can be recovered from Σ~ (see Lemma 5.4.1), so from now on we assume that these
functions are known.

Let µ be an additional formal parameter. For n1, n2 ∈ N, let F≤n1,≤n2 (respectively Fn1,n2)
be the polynomial algebra in the variables ∂βfr(0) with |β| ≤ n1 (respectively |β| = n1), in the
variables Sα with |α| ≤ n2 (respectively |α| = n2), and in µ.

Proposition 5.4.6 ([LFVuN21, Proposition 6.10]). Let µ ∈ R; the function

gµ : x > 0 7→ a1(x, µx) + µa2(x, µx)

has an asymptotic expansion of the form

gµ(x) ∼
∑
n≥0

xn(cn(µ) + dn(µ) lnx) as x→ 0+. (5.15)

Moreover, for n ≥ 0, dn(µ) ∈ Fn+1,0, explicitly:

dn(µ) = − 1

2πn!

n+1∑
`=0

(
n+ 1

`

)
µn+1−`∂`x∂

n+1−`
y fr(0). (5.16)
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Furthermore, cn(µ) ∈ F≤n+1,≤n ⊕F1,n+1, explicitly:

cn(µ) = c̃n(µ) +

n+1∑
`=0

µn−`
(
µ(n+ 1)∂yfr(0) + (n− `+ 1)∂xfr(0)

)
S`,n+1−`

with c̃n(µ) ∈ F≤n+1,≤n which can be computed explicitly. Here, for the sake of simplicity, we
slightly abuse notation and use the conventions (n− `+ 1)µn−` = 0 if ` = n+ 1 and 00 = 0.

The idea of the proof of this result is that, because of Proposition 3.4.7 and Equation (5.4),
there holds

gµ(x) = σ1(x, µx)− 1

2π
arctan

(
fr(x, µx)

x

)
+ (∂xfr(x, µx) + µ∂yfr(x, µx))

(
σ2(x, µx)− lnx

2π
− 1

4π
ln

(
1 +

(
fr(x, µx)

x

)2
))

.

It then suffices to carefully keep track of the coefficients in the expansion of the different terms
involved in this equality, using for instance Faá di Bruno’s formula.

Before explaining how to employ this result to recover the Taylor expansion of the Eliasson
function fr and the higher order terms in the Taylor series invariant, let us investigate the case
n = 0. In this case the statement means that

gµ(x) = a1(x, µx) + µa2(x, µx) = d0(µ) lnx+ c0(µ) +O(x lnx)

with

c0(µ) = c̃0(µ) = σ1(0)− 1

2π
arctan (C(µ)) + C(µ)

(
σ2(0)− 1

4π
ln
(
1 + C(µ)2

))
where C(µ) = ∂xfr(0) + µ∂yfr(0), and

d0(µ) = − 1

2π
(µ∂yfr(0) + ∂xfr(0)) = −C(µ)

2π
.

In particular, for µ = 0 this yields

a1(x, 0) = −∂xfr(0)

2π
lnx+ c̃0(0) +O(x lnx)

and a straightforward computation gives the first equality in the statement of Lemma 5.4.2,
allowing one to recover ∂xfr(0). And then one can recover ∂yfr(0) by fixing any µ 6= 0 and using
the limit

a1(x, µx) + µa2(x, µx)

lnx
−→
x→0+

d0(µ) = − 1

2π
(µ∂yfr(0) + ∂xfr(0)) .

Subsequently, one can then choose µ = s(0) = −∂xfr(0)
∂yfr(0) to obtain

a1(x, s(0)x) + s(0)a2(x, s(0)x) = σ1(0) +O(x lnx),

which yields the limit in Equation (5.10). And then one can recover S0,1 = σ2(0) by choosing
any µ 6= s(0) and using

a1(x, µx) + µa2(x, µx)− d0(µ) lnx −→
x→0+

c0(µ)

to extract the value of σ2(0) from c0(µ).
This illustrates the method to recover all the coefficients S`,n−`, which constitutes the proof

of [LFVuN21, Theorem 6.12] and works by induction on n ∈ N. Indeed, let n ≥ 1 and assume
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that we know all the derivatives ∂βfr(0) for |β| ≤ n and all the coefficients Sα for |α| ≤ n, and
for any µ ∈ R, let gµ be as in Proposition 5.4.6. Then we can compute the coefficients c`(µ) and
d`(µ) in the asymptotic expansion (5.15) for every ` ≤ n− 1. This allows us to obtain dn(µ) as
the limit

dn(µ) = lim
x→0+

gµ(x)−
∑n−1

`=0 x
`(c`(µ) + d`(µ) lnx)

xn lnx
,

and henceforth cn(µ) as the limit

cn(µ) = lim
x→0+

gµ(x)−
∑n−1

`=0 x
`(c`(µ) + d`(µ) lnx)− dn(µ)xn lnx

xn
.

Recall that dn(µ) only depends on the n+ 2 derivatives ∂βfr(0) with |β| = n+ 1 (see Equation
(5.16)). By choosing n + 2 distinct parameters µ0, . . . , µn+1 and recovering the correspond-
ing values dn(µ0), . . . , dn(µn+1), we obtain a linear system whose unique solution is the tuple
(∂n+1
y fr(0), ∂x∂

n
y fr(0), . . . , ∂n+1

x fr(0)).
Once this is done, a similar argument allows one to recover the coefficients Sα for |α| = n+1.

Indeed, we know all the quantities needed to compute c̃n(µ) for any µ and then we solve a linear
system of the form

A

S0,n+1
...

Sn+1,0

 =

 cn(µ0)− c̃n(µ0)
...

cn(µn+1)− c̃n(µn+1)


with A an invertible (n + 1) × (n + 1)-matrix depending only on ∂xfr(0), ∂yfr(0) and on the
distinct parameters µ0, . . . , µn+1.

For once, we do not illustrate this on the system of coupled angular momenta from Example
3.3.4 because the computations would be too involved and not very enlightening. However, in
[LFVuN21] (in particular Figures 15 and 16), we studied the recovery of these higher order terms
for the spin-oscillator system from Example 3.3.3, for which the computations are tractable since
several derivatives of the Eliasson function and several coefficients of the Taylor series invariant
vanish.

Height invariant. Recall that the height invariant of c0 = (0, 0) can be interpreted as the
volume of some submanifold in the reduced space at J = 0. Thus it is natural to obtain this
invariant by means of a particular Weyl formula. We did so by counting the joint eigenvalues in
a vertical strip of size of order ~δ below c0, for some suitable δ.

More precisely, for δ ∈ (0, 1
2), c > 0 and y ≥ 0, consider the quantity N~(δ, c, y) = #Σ~ ∩(

[−c~δ, c~δ]× (−∞,−y]
)
.

Proposition 5.4.7 ([LFVuN21, Proposition 6.1]). Let δ ∈ (0, 1
2) and c > 0. Then

S0,0 = lim
y→0

lim
~→0

~2−δ

2c
N~(δ, c, y). (5.17)

Furthermore,

S0,0 = lim
~→0

~2−δ

2c
N~(δ, c, 0). (5.18)

The second equality is much nicer than the first one since it only involves one limit (~→ 0),
but it is more involved than the first one because of the singular value at y = 0 (see below for
more details), and this is why we chose to display both.

Example 5.4.8. Again, we consider the coupled angular momenta system from Examples 3.3.4
and 5.1.2, with parameters R1 = 1, R2 = 5

2 and t = 1
2 . For this choice of parameters, Equation

(3.12) gives

S0,0 = 2 +
1

π

(
3− 5 arctan

(
3

4

)
− 2 arctan 3

)
. (5.19)
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Figure 5.7: Determination of the height invariant for the coupled angular momenta (see Ex-
ample 5.4.8) using Equation (5.18) in Proposition 5.4.7. The blue diamonds correspond to
~2−δ

2c N~(δ, c, 0) for c = 1, δ = 0.4 and different values of k = ~−1. The solid red line is the
theoretical value S0,0 = 2 + 1

π

(
3− 5 arctan

(
3
4

)
− 2 arctan 3

)
given in Equation (5.19).

In Figure 5.7, we recover this height invariant from the joint spectrum thanks to Equation (5.18).

The proof of Proposition 5.4.7 is based on results about the number of elements of an asymp-
totic lattice or half-lattice in a given domain. The corresponding formulas behave nicely with
respect to the union of such domains, so the idea is to cover the vertical strip by rectangles in
which Σ~ is either an asymptotic lattice (from the regular Bohr-Sommerfeld conditions of The-
orem 5.3.1) or an asymptotic half-lattice (from the elliptic-regular Bohr-Sommerfeld conditions
of Theorem 5.3.3). This reasoning leads to Formula (5.17); Equation (5.18) requires more care
since the focus-focus value, around which Σ~ is neither an asymptotic lattice nor an asymptotic
half-lattice, precisely occurs at y = 0. For more details, see [LFVuN21, Section 6.1].

5.4.2 Global labelings, semitoric polygons and complete invariant

As explained earlier, the reconstruction of the complete symplectic invariant from the joint spec-
trum Σ~ is based on the construction of a “global labeling” of Σ~. More precisely, in [LFVuN21]
we labeled the joint eigenvalues consistently everywhere except in a vertical strip of small width
above each focus-focus value and near the elliptic-elliptic values and potential vertical walls.

Detection of singularities. Therefore, a first step is to detect these vertical walls and elliptic-
elliptic and focus-focus values from the data of the joint spectrum Σ~ only. This can be done
by using the results of either [PV16], namely that Σ~ is everywhere dense in F (M) when ~→ 0
(which can already be guessed for the small value k = 10 in Figure 5.1), or of [LFPVN16] in
which it is shown that the intersection of Σ~ with the set of regular values of F is also dense;
hence the vertical walls and elliptic-elliptic values can be located, and one can find the focus-focus
values by using the logarithmic singularities of the periods at these values as in [LFPVN16]. An
alternative, perhaps more satisfactory way of proceeding is to recover the Duistermaat-Heckman
measure of J from the data of Σ~.

Recall that this Duistermaat-Heckman measure is a measure µJ on R defined as µJ(I) =

Vol(J−1(I)) for any interval I ⊂ R. In [DH82] it is proved that µJ(x) = ρJ(x) |dx|2π where
the density ρJ , called the Duistermaat-Heckman function, is continuous and piecewise affine. By
[VuN07, Theorem 5.3], in the semitoric case, a positive value for ρJ at the minimum or maximum
of J indicates the presence of a vertical wall, and a change of slope for ρJ at x0 indicates the
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Figure 5.8: Computation of the inverse level spacings ~
E0,1−E0,0

related to the function a2(c), see
Lemma 5.4.1, where c = (−3

2 , y) for various values of y; here we work in the setting of Example
5.4.9 and k = 50. Notice the peak indicating the position of the focus-focus critical value at
y = 0 (recall Equation (5.20)).

presence of elliptic-elliptic or focus-focus values of F in the fiber J−1(x0). For our purpose it is
not a problem to remove points on the boundary of F (M) that may not be elliptic-elliptic, so
each time there is such a change of slope we will simply get rid of the joint eigenvalues in small
neighborhoods of the top and bottom of Σ~ ∩ {(x0, y) | y ∈ R}. The sole Duistermaat-Heckman
function is not sufficient to obtain the location of the focus-focus values, but in order to do so
we can proceed as follows. Let x0 ∈ R be any of the points where ρJ has a change of slope;
then from the second item in Lemma 5.4.1 we can recover the restriction of the function a2

from Equation (5.4) to the interior of H(J−1(x0)) minus the potential focus-focus points that it
contains, and the logarithmic behavior of this function allows us to detect the focus-focus values.
More precisely, if (x0, y0) is a focus-focus value, then, by Proposition 3.4.7 and Equation (5.4),

a2(x0, y) ∼y→y0 C ln |y − y0| (5.20)

for some C 6= 0.

Example 5.4.9. For the coupled angular momenta system from Examples 3.3.4 and 5.1.2, with
parameters R1 = 1, R2 = 5

2 and t = 1
2 , the focus-focus value is located at (−3

2 , 0). We localize
this singularity numerically from the joint spectrum by computing the inverse level spacings

~
Ej,`+1(~)−Ej,`(~) from the second item of Lemma 5.4.1 applied to c = (−3

2 , y) for different values
of y. This is shown in Figure 5.8.

The Duistermaat-Heckman function ρJ can be recovered from the joint spectrum by using
the following version of Weyl’s law. Let δ ∈ (0, 1

2), c > 0 and for x ∈ J(M), set N~(x, δ, c) =
#Σ~ ∩

(
[x− c~δ, x+ c~δ]× R

)
. Then

~2−δ

2c
N~(x, δ, c) −→

~→0
ρJ(x). (5.21)

This version of Weyl’s law for ~ can be proved by adapting the usual case of Weyl’s law in a
fixed interval (see for instance [Zwo12, Theorem 14.11]), but one needs to work with semiclassical
operators with symbols in appropriate classes Sδ. This is standard for ~-pseudodifferential oper-
ators (see for instance [Sjö91, Section 8]) and has been worked out recently for Berezin-Toeplitz
operators in [Olt22].

Example 5.4.10. We keep considering the coupled angular momenta system from Examples
3.3.4 and 5.1.2, with parameters R1 = 1, R2 = 5

2 and t = 1
2 . The Duistermaat-Heckman function
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Figure 5.9: Determination of the Duistermaat-Heckman function ρJ for the coupled angular
momenta system (see Example 5.4.10) using Equation (5.21); the blue dots represent the left-
hand side of this equation, with k = 200, δ = 1

4 and c = 1. The solid red line is the graph of ρJ ,
see Equation (5.22).

ρJ can easily be computed from any representative (∆,~c,~ε) of the marked semitoric polygon
of the system (some of these representatives are displayed in Figure 3.6). Indeed, ρJ(x) equals
the length of the vertical segment obtained by intersecting the polygon ∆ with the vertical line
through (x, 0). In our case

ρJ(x) =


x+ 7

2 if − 7
2 ≤ x ≤ −

3
2 ,

2 if − 3
2 ≤ x ≤

3
2 ,

7
2 − x if 3

2 ≤ x ≤
7
2

(5.22)

and ρJ(x) = 0 otherwise. We recover this Duistermaat-Heckman function in Figure 5.9, thanks
to Equation (5.21).

Global labelings and polygons. The next step is to remove sufficiently small neighborhoods
of the vertical walls, elliptic-elliptic values and vertical half-lines above the focus-focus values.
We thus obtain a new set Σ̃~ which is simply connected and can be written as a finite union
of asymptotic lattices and half-lattices satisfying some compatibility conditions. We proved in
[LFVuN21, Theorem 4.30] that any union of asymptotic lattices and half-lattices satisfying these
conditions possesses a “global labeling” whose restriction to any of these asymptotic lattices or
half-lattices is a linear labeling, and which is uniquely determined, in a constructive way, once
we fix one of these local labelings. Furthermore, this global labeling corresponds to a “global
asymptotic chart” Φ~ = Φ +O(~) extending the local asymptotic charts.

In the case of Σ̃~, the local asymptotic charts are the inverses of action diffeomorphisms
(or generalized action diffeomorphisms as in Lemma 5.3.2) and the map Φ is a cartographic
homeomorphism as in Theorem 3.4.4, with ~ε = (1, . . . , 1) (all cuts up). So starting from the
labeling of any of the asymptotic lattices or half-lattices constituting Σ̃~, produced thanks to the
algorithms discussed in Section 5.3, we obtain an explicit global labeling whose image (multiplied
by ~) is a “discrete polygon” ∆~ converging (in the sense of the Hausdorff distance) to a subset of
the convex polygon Φ(M) (see [LFVuN21, Proposition 5.12]); the missing parts of this polygon
correspond to the neighborhoods of vertical walls, elliptic-elliptic values and upwards cuts that
we removed to construct Σ̃~. This is still sufficient to reconstruct the full polygon Φ(M), precisely
because it is a polygon so we can easily draw the missing parts. There is in fact one subtlety,
namely that the convergence of the discrete polygon ∆~ is only true up to translation by a vector
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Figure 5.10: Determination of the privileged polygon for the coupled angular momenta system
(see Example 5.4.11) by computing the discrete polygon ∆~. The blue dots represent the set
∆~, for k = 20 and ~ = k−1, obtained from a global labeling of the joint spectrum minus
neighborhoods of the elliptic-elliptic values and of the vertical half-line above the focus-focus
value. This global labeling is constructed from the initial choice of the privileged labeling near the
singularity (see the discussion before Example 5.4.4). The solid red lines represent a translation
of the privileged polygon shown in the top left corner of Figure 3.6.

that may depend on ~, but again this is not a problem (indeed, we already recovered the image
of J as the support of the Duistermaat-Heckman function ρJ).

Recall that the image Φ(M) gives one representative of the unmarked semitoric polygon
which corresponds to the initial choice of action variables to be extended to a cartographic
homeomorphism; here this initial choice of action variables corresponds to the initial local labeling
used to construct the global labeling of Σ̃~. This is actually important in the next step.

Example 5.4.11. We still work with the coupled angular momenta system from Examples 3.3.4
and 5.1.2, with parameters R1 = 1, R2 = 5

2 and t = 1
2 . Recall from Example 3.4.12 that the

representative of the marked semitoric polygon of this system with upwards cut and vanishing
twisting number is the polygon displayed in the top left corner of Figure 3.6. We call this polygon
the privileged polygon of the system, and we recover it from the joint spectrum in Figure 5.10,
by computing the discrete polygon ∆~ described above.

Recovering the complete symplectic invariant. To sum up, from the joint spectrum Σ~
we have obtained the image ∆ = Φ(M) of a cartographic homeomorphism Φ with cuts up,
together with the first coordinates of the marked points in ∆ which are the images by Φ of
the focus-focus points. Moreover, we already saw in Section 5.4.1 how to recover the heights
and Taylor series invariants of the focus-focus values from Σ~. Therefore, to obtain the complete
symplectic invariant of (M,ω, F ) it only remains to recover the twisting numbers associated with
the representative ∆. This can be done as follows.

Consider the restriction of Φ to a set of regular values sufficiently close to one of the focus-
focus values F (m0). Then the corresponding local labeling is associated with an asymptotic
chart whose leading term is the inverse of the action diffeomorphism corresponding to the choice
of action variables (J, L~ε) with ~ε = (1, . . . , 1) (see the discussion above Definition 3.4.10). So
we can recover the quantity σ1(0) corresponding to L~ε using Equation (5.11). By Proposition
3.4.13, the twisting number associated with m0 and ~ε = (1, . . . , 1) is bσ1(0)c.

122



5.5 Perspectives

We conclude this chapter by giving a few directions of research that stem naturally from the
results described above.

Because we were only using the regular (or singular near a value of elliptic-regular type) Bohr-
Sommerfeld conditions, the explicit formulas that we obtained in [LFVuN21] (see for instance
Equations (5.7), (5.8), (5.11) and (5.13)) involve a double limit: first we fix a value c ∈ F (M)
close to a focus-focus value cff and let ~ go to zero, and then we let c go to cff. Of course it
would be better to get rid of this double limit, but for this we would need a description of the
joint spectrum in a spectral window containing cff; such singular Bohr-Sommerfeld conditions
are available for ~-pseudodifferential operators [VN00], but not for Berezin-Toeplitz operators.
And even though the results of [VN00] can surely be adapted to the latter case without too much
trouble, these results only hold for a singular fiber F−1(cff) containing exactly one focus-focus
point (a torus pinched at a single point). Hence it would be interesting to directly obtain singular
Bohr-Sommerfeld rules near a focus-focus value cff such that F−1(cff) contains two or more focus-
focus points, for both ~-pseudodifferential and Berezin-Toeplitz operators. This description of
the joint spectrum would certainly involve the symplectic classification of such fibers obtained in
[PT19] and, besides being of independent interest, it would allow one not only to get rid of the
aforementioned double limit, but also to gain some insights regarding the inverse question in the
non-simple case. As explained earlier, we believe that our proofs in [LFVuN21] can be adapted
with few changes to allow for several simple focus-focus fibers in the same J-fiber; therefore the
most interesting non-simple case is when there exist tori pinched at two or more focus-focus
points. It is not clear whether in this case the joint spectrum determines the system, and this
question would be worth investigating.

Of course, the general question of recovering an integrable system from the joint spectrum of
its quantization constitutes a desirable horizon, but which is already hard to reach in dimension
four. An important step towards this goal would be to understand the case of the class of hy-
persemitoric systems introduced in [HP21] and discussed in Section 4.5.2. These systems have
been getting more and more attention in the past few years, see for instance [HP21, GH22] or
the recent survey [HHM23], and are most probably generic among four-dimensional integrable
systems lifting Hamiltonian S1-spaces (see the discussion in [HP21, Remark 1.9]). On top of sin-
gularities of elliptic and focus-focus type, hypersemitoric systems display hyperbolic-regular and
parabolic singularities. A first requirement, before considering the inverse spectral problem for
hypersemitoric systems, would be to produce a symplectic classification of such systems. While
a complete classification is still missing, some steps have been taken towards it: in [Gul22], the
author classifies hyperbolic-regular fibers in four-dimensional integrable systems lifting Hamil-
tonian S1-spaces (see also [CdVVuN03] and [BF04, BO06]), and in [KM21] the authors sym-
plectically classify neighborhoods of parabolic orbits; this classification question is discussed in
the recent survey [GH23]. As for the quantum aspects, the joint spectrum near a singular value
of hyperbolic-regular type has been described in [CdVVuN03] for ~-pseudodifferential operators,
but to our knowledge no such description has been proposed near parabolic values. In [MVuN23],
the authors discuss the possibility of an inverse spectral result for Ak singularities in dimension
two; for k = 2, these are the analogues of parabolic singularities.

Finally, another related inverse problem which would be worth studying concerns Hamilto-
nian S1-spaces (see Section 3.5). Concretely, we would consider (M,ω, J) with (M,ω) a four-
dimensional compact, symplectic manifold and J the momentum map of an effective Hamiltonian
S1-action, and a semiclassical operator (Ĵ~)~∈I quantizing J , and we would try to understand
which properties of (M,ω, J) can be recovered from the family of spectra (Sp(Ĵ~))~∈I in the
semiclassical limit ~ → 0. We do not expect to recover the full Karshon graph of (M,ω, J)
from these spectra, but we believe that some information can be extracted thanks to the results
obtained in [CLF20, CLF23b, CLF23a] and described in Section 2.4, see also the discussion at
the end of Section 2.5.
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[SVuN18] D. Sepe and S. Vũ Ngo.c. Integrable systems, symmetries, and quantization. Lett.
Math. Phys., 108(3):499–571, 2018.

[Sym03] Margaret Symington. Four dimensions from two in symplectic topology. In Topol-
ogy and geometry of manifolds (Athens, GA, 2001), volume 71 of Proc. Sympos.
Pure Math., pages 153–208. Amer. Math. Soc., Providence, RI, 2003.

[SZ99a] D. A. Sadovskií and B. I. Zĥilinskií. Monodromy, diabolic points, and angular
momentum coupling. Phys. Lett. A, 256(4):235–244, 1999.

133



[SZ99b] Bernard Shiffman and Steve Zelditch. Distribution of zeros of random and quantum
chaotic sections of positive line bundles. Comm. Math. Phys., 200(3):661–683, 1999.

[SZ02] Bernard Shiffman and Steve Zelditch. Asymptotics of almost holomorphic sections
of ample line bundles on symplectic manifolds. J. Reine Angew. Math., 544:181–
222, 2002.

[Tia90] Gang Tian. On a set of polarized Kähler metrics on algebraic manifolds. J.
Differential Geom., 32(1):99–130, 1990.

[Uhl76] A. Uhlmann. The “transition probability” in the state space of a ∗-algebra. Rep.
Mathematical Phys., 9(2):273–279, 1976.

[vdM85] Jan-Cees van der Meer. The Hamiltonian Hopf bifurcation, volume 1160 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1985.

[Vey78] J. Vey. Sur certains systèmes dynamiques séparables. Amer. J. Math., 100(3):591–
614, 1978.

[Via14] Renato Vianna. On exotic Lagrangian tori in CP2. Geom. Topol., 18(4):2419–2476,
2014.

[Via16] Renato Ferreira de Velloso Vianna. Infinitely many exotic monotone Lagrangian
tori in CP2. J. Topol., 9(2):535–551, 2016.
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Dans ce mémoire, nous présentons quelques-unes de nos contributions dans le cadre
de la quantification de Berezin-Toeplitz, qui correspond à la limite semi-classique de
la quantification des espaces de phases compacts, et de l’étude des systèmes semi-
toriques, qui sont des systèmes intégrables en dimension quatre avec une symétrie S1

sous-jacente.
Ce manuscrit est divisé en cinq chapitres, incluant un premier chapitre introductif. Le
deuxième chapitre expose des résultats purement semi-classiques: une estimation de
la fidélité d’états lagrangiens mixtes, l’étude de la distribution des zéros de certaines
sections holomorphes, et une description du propagateur quantique d’un opérateur de
Berezin-Toeplitz avec des applications aux formules de traces. Le troisième chapitre
constitue une préparation aux chapitres suivants en présentant les prérequis sur les
systèmes semi-toriques. Dans le quatrième chapitre, nous décrivons nos résultats con-
cernant la construction d’exemples explicites de systèmes semi-toriques avec certains
invariants symplectiques donnés. Enfin, dans le cinquième chapitre, nous présentons
un résultat spectral inverse pour les systèmes semi-toriques quantiques, qui combine
l’analyse semi-classique et la géométrie des systèmes semi-toriques.
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