Quantum propagation for Berezin-Toeplitz
operators

Laurent Charles, Yohann Le Floch

November 18, 2025

Abstract

We describe the asymptotic behaviour of the quantum propagator
generated by a Berezin-Toeplitz operator with real-valued principal
symbol. We also give precise asymptotics for smoothed spectral pro-
jectors associated with the operator in the autonomous case; this leads
us to introducing quantum states associated with immersed Lagrangian
submanifolds. These descriptions involve geometric quantities of two
origins, coming from lifts of the Hamiltonian flow to the prequantum
bundle and the canonical bundle respectively. The latter are the main
contribution of this article and are connected to the Maslov indices ap-
pearing in trace formulas, as will be explained in a forthcoming paper.

1 Introduction

In quantum mechanics, the evolution of a state ¥; under the influence of a
Hamiltonian H can be described using Schrodinger’s equation
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Under suitable assumptions on H, the solutions to this equation are of the
form U; = Up;¥o where Up; is an operator called the quantum propaga-
tor. This propagator is the quantum analogue of the Hamiltonian flow in
classical Hamiltonian mechanics. This analogy can be studied rigorously by
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investigating the so-called semiclassical limit i — 0 in which, if A quantizes
the classical Hamiltonian H, Uj; is expected to behave like the Hamiltonian
flow of H. This statement has been given a precise meaning by studying
the Schwartz kernel of Uy, in different regimes of i and ¢, for semiclassical
Schrodinger Hamiltonians H = —h2A + V on T*R?, and more generally for
hi-pseudodifferential operators on T*R% or T*X with X a compact Rieman-
nian manifold; see Section 1.5 for a longer discussion and references.

Here we are interested in a different setting where the underlying phase
space is a compact symplectic manifold; then the quantum states are sections
of a power of some well-chosen line bundle, and this power is the relevant
semiclassical parameter. This setting naturally appears in several problems
from physics, such as the study of spin systems in the large spin limit,
coherent states, and the quantum Hall effect, ¢f. for example [24, 15, 22].
The limit of large power of a suitable line bundle is also very important in
complex geometry, see for instance [13, 26, 16, 1].

The aim of our work is to understand, in this context, the geometric
invariants appearing in the asymptotic description of the quantum propaga-
tor (and its counterparts, smoothed spectral projectors) in the semiclassical
limit. As can be seen from other results in the same direction [3, 28, 21],
this is in fact non trivial and different authors have different, more or less
explicit, ways to compute these invariants. Here we obtain expressions that
are both completely natural and easily computable. This will be particularly
important in forthcoming papers in which we revisit trace formulae: the ex-
plicit asymptotics that we obtain here will allow us to derive those in a direct
way and with a precise control of the quantities they involve, in particular
the Maslov-like indices contained in the subprincipal contributions.

1.1 Berezin-Toeplitz operators

Let M™ be a compact complex manifold endowed with two Hermitian holo-
morphic line bundles L and L’. We assume that L is positive, meaning that
the curvature of its Chern connection is 1w with w € Q2(M,R) N QLY (M)
positive. For any positive integer k, let Hj be the space of holomorphic
sections of L* @ L'. The scalar product of sections of L¥ @ L’ is defined
as the integral of the pointwise scalar product against the Liouville volume
form p = %L

Given a function f € C*°(M), the Berezin-Toeplitz operator Tj(f) is the
endomorphism of Hj such that

(Ti(flu,v) = (fu, ), Vu,v € Hy.



We are interested in the semiclassical limit k& — 400 and the techniques
we use allow to consider more general families T' := (Tx(f(-,k))) where
the multiplicator itself depends on k& and has an expansion of the form
f k) = fo+rk™1fi+... with coefficients f, € C°°(M). We will also consider
time-dependent sequences f(-,t, k) with an expansion with time-dependent
coefficients.

We call the family T a Toeplitz operator, fo its principal symbol and
fi+ %A fo its subprincipal symbol. Here A is the holomorphic Laplacian
associated with the Kéhler form w, so A = 3> h79,, Oz, whenw =43 hizdz\
dzj. The reason why we introduce this subprincipal symbol is merely that
it simplifies the subleading calculus.

Typically, if T and S are two Toeplitz operators with principal symbols f
and g, then T'S and k[T, S| are Toeplitz operators with respective principal
symbols fg and the Poisson bracket {f, g} with respect to w [4, 2]. If now
T and S have identically zero subprincipal symbols, then the subprincipal
symbols of T'S and k[T, S| are %{f,g} and —wi(X,Y) respectively [10],
where X, Y are the Hamiltonian vector fields of f and ¢g and w; is the real
two-form given by wy = (O — %GK), with O/, © the curvatures of the
Chern connections of L’ and of the canonical bundle K.

1.2 The quantum propagator

It is a well-known result that the solution of the Schrédinger equation for
a pseudo-differential operator is a Fourier integral operator associated with
the Hamiltonian flow of its principal symbol. Our first result is the Toeplitz
analogue of this fact. Consider a time-dependent Toeplitz operator (7} )
with principal symbol (H;) and subprincipal symbol (H{"?). The quantum
propagator generated by T}, ; is the smooth path (Uy¢, t € R) of (unitary in
case T}, ; is self-adjoint) maps of H;, satisfying the Schrédinger equation
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Our goal is to describe the Schwartz kernel of Uy, ;, which by definition is

di

Ura(z,y) = S (Upst) (@) @ i(y) € (IF 0 L), @ (TP 0 T),
=1

where dj, = dim Hj, and (v;) is any orthonormal basis of Hy. In the sequel,
we will view Uy 4(x,y) as a map from (LF @ L'), to (L¥ @ L), using the
scalar product of (L¥ @ L'),.



As we will see, when the principal symbol (H;) is real, this Schwartz
kernel is concentrated on the graph of the Hamiltonian flow ¢; of H;. Here
the symplectic form w is 7 times the curvature of L, and the Hamiltonian
vector field X; is such that

(X, ) + dH, = 0. (2)

To describe the asymptotic behavior of Uy, 1(¢¢(x), x), we need to introduce
two lifts of ¢¢, the first one to L and the second one to the canonical bundle
K of M. The relevant structures on L will be its metric and its connection,
which is generally called the prequantum structure.

Parallel transport and prequantum lift

If A — M is a Hermitian line bundle endowed with a connection V, the
parallel transport in A along a path ~ : [0,7] — M is a unitary map

T(A, )« Ayo) = Ay

which can be computed as follows: if u is a frame of y* A, then T (A, v)u(0) =
exp(i [, a)u(r), where a € QL([0,7],R) is the connection one-form defined
in terms of the covariant derivative of u by Vu = —ia ® u. In particular
we can lift by parallel transport the Hamiltonian flow ¢;. We set T;4(z) :=
T(A, qf)[oﬂ (x)) A — Aq‘)t(z)'

The prequantum lift of the Hamiltonian flow ¢; to L is defined by

L (z) = et Jo (@) drpL gy, (3)

This lift has an interest independently of Toeplitz operators: by the Kostant-
Souriau theory, qﬁf is the unique (up to a phase) lift of ¢; which preserves the
metric and the connection of L. Furthermore, if z belongs to a contractible
periodic trajectory with period 7', so that we can define the action A(x,T) €
R, then ¢%(x) : Ly — L, is the multiplication by exp(iA(z,T)).

In our results, it is actually the k-th power (¢tL)®’LC that will appear,
with some corrections involving the subprincipal data L' and H;", more
precisely we will see

torrsu Rk /
e%fo H3 b(¢r($)) dr [d)tL(x)} ®7;L (.%') . (Lk ® L/)az N (Lk ® L,)qbt(x) (4)

So we merely replace L by L* ® L’ and H; by kH; + H{"" in (3).



Holomorphic determinant and lift to the canonical bundle

The second ingredient we need is an invariant of the complex and symplectic
structures together. If g : S — S’ is a linear symplectomorphism between
two 2n-dimensional symplectic vector spaces both endowed with linear com-
plex structures, we define an isomorphism K(g) : K(S) — K(S’) between
the canonical lines K (S) = A™08* | K(S") = A™0(S')* characterized by

K(g)(a)(gsu) = a(u), Va € K(5),ue A"S. (5)

Equivalently, if £ and E’ are the (1,0)-spaces of S and S’ respectively, we
have decompositions

— o 1,0
SeC=EaFE, SeoC=EaF, g®id¢;:<g* I)

with g''? : E — E’. Then K(g) is the dual map of det g''* : A"E — A"E’ in
the sense that K (g)(a)((det g'%)u) = a(u) for any a € K(S) and u € A"E.

This holomorphic determinant has a nice structure in terms of the polar
decomposition of linear symplectic maps. When S = §' = R?" with its
usual complex structure j, g = g192 where g1 and gs are both symplectic,
g1 commutes with j, and gy is symmetric positive definite. Then K(g) is a
complex number whose inverse is

L P
ey = (I e 0
=1

with0 <A\ <...< <1< )\;1 <... < )\1_1 the eigenvalues of g9, and
detc g1 the determinant of g; viewed as a C-linear endomorphism of C™.
Indeed, detc ¢'* = detc g%’o detc g1 and one readily computes detc g% 0 using
the diagonalization of go in an orthonormal basis (e1,...,en,j€1,...,j€n)
with goey = A\pey and gojep = )\E_ljeg. This formula generalizes for (S, j) #
(S7,7"), with now linear symplectic maps g1 : S — S and g : S — S,
where g1 0 j = j' 0 g1, and g is positive definite for the Euclidean structure
w(+,j+) of S. The complex determinant of g; may be viewed as a map from
detc(S, j) to detc(S’, ') or equivalently from A'PE to AYPE’.

This definition provides us with a lift D, of the Hamiltonian flow ¢; to
the canonical bundle K = AO)T*M | defined by

We have another lift of ¢; to the canonical bundle which is the parallel trans-
port 7,%. Define the complex number p;(z) such that Dy(x) = ps(z) T, (z).



The result

Theorem 1.1. Let (Uyy) be the quantum propagator of a time-dependent
Toeplitz operator (T} +) with real principal symbol. Then for any t € R and
reM,

Upi(de(2), 2) = (i)n[pt(w)]% ot [y H2> (¢ () dr [qbf(x)]@k@ﬁy(@ .

where ¢y is the Hamiltonian flow of the principal symbol Hy, ¢F and 7;L/ are
its prequantum and parallel transport lifts, Hf“b is the subprincipal symbol
and (pt)1/2 is the continuous square root equal to 1 at t = 0 of the function
pt such that Dy = py T,X with Dy(z) = K(Tpy).

If y € M is different from ¢;(x), then Uy (y,z) = O(k~N) for all N.

The first part of the result has an alternative formulation when M has
a half-form bundle, that is a line bundle § and an isomorphism between
62 and the canonical bundle K. Introducing the line bundle L; such that
L' = L1 ® § and using that 7;* = T,** @ T, we obtain

k

n 1t rrsub 2)) dr ®k 1 %
%) et Jo HP (0 () [éf(w)} QT (2) ® [Di(x))]

Uk s(d1() ) ~ (

where [Dt(az)]l/g : 0z — g, () is the continuous square root of Dy(z) equal
to 1 at t = 0. Observe that to write this equation, it is sufficient to define &
on the trajectory t — ¢¢(x), which is always possible.

In the above statement, we focused on the geometrical description of
the leading order term, because it is the real novelty. The complete result,
Theorem 4.2, too long for the introduction, is that Uy +(¢¢(z),x) has a full
asymptotic expansion in integral powers of k= and we also have a uniform
description with respect to x, ¥ and ¢ on compact regions. Such a uniform
description is not obvious because the asymptotic behavior of Uy ¢(y,x) is
completely different whether y = ¢;(x) or not. We actually show that the
Schwartz kernel of Uy, is a Lagrangian state in the sense of [8] (see the
definition in Section 2), associated with the graph of ¢;.

In the Appendix, we investigate an explicit example in which the Hamil-
tonian flow does not preserve the complex structure, and verify the validity
of the above theorem for the kernel of the propagator on the graph of this
flow.



1.3 Smoothed spectral projector

Our second result is the asymptotic description of the Schwartz kernel of
f(k(E — Ty)) where (Ty) is a self-adjoint Toeplitz operator, E is a regular
value of the principal symbol H of (1) and f € C>°(R,R) is a smooth
function having a compactly supported Fourier transform. For a function
g : R = R, g(T}) is merely defined as }"5cq(7,) 9(A)Iy where for each
eigenvalue \ of Ty, Il is the orthogonal projector onto the corresponding
eigenspace. For g smooth, g(T}) is itself a Toeplitz operator with principal
symbol g o H and so its Schwartz kernel is concentrated on the diagonal;
more precisely

9T 2) = (o) g(H (@) + O,

g(Ty)(z,y) = O(k™N), VN when x # y.

In the rest of the paper we will work with a function g depending on k in the
very specific way g(7) = f(k(r — E)), which we interpret as a focus at scale
k~! around E. For instance, for f the characteristic function of a subset
A of R, f(k(- — E)) is the characteristic function of E + k~'A. However,
we will only consider very regular functions f, having a smooth compactly
supported Fourier transform f .

Our result is that the Schwartz kernel of f(k(E — T})) is (up to normal-
ization by some power of k, see Remark 2.1 for a discussion) a Lagrangian
state associated with the Lagrangian immersion

jg:Rx H YE) - M?, (t,x) = (¢(x), x). (9)

Here ¢; is the flow of the autonomous Hamiltonian H. It is important to
note that jg is not injective and not proper in general. However only the
times t in the support of the Fourier transform of f matter, so we will work
with the restriction of jg to a compact subset. Still, it is possible for jg to
have multiple points because of the periodic trajectories.

The description of the Schwartz kernel on the image of jg will be in
terms of the parallel transport lift of ¢; to L and L’ as introduced above
and a lift D} to the canonical bundle of the restriction of ¢; to the energy
level set H~1(E), defined as follows.

First since E is regular, for any x € H~!(F), the Hamiltonian vector
field X of H is not zero at . Second, H being time-independent, T, ¢; sends
Xz into Xy, (4, so it induces a symplectic map from T.H 1 (E)/RX, into
Tm(m)H_l(E)/RX@(Z). In the case z is periodic with period ¢, this map is
the tangent linear map to the Poincaré section map.



For any x € H*I(E), write T, M = F, ® G, where F,, is the subspace
spanned by X, and j, X, and G is its symplectic orthogonal. Observe that
T.H Y (E) = G, ® RX, so that G, = T, H '(E)/RX,. Furthermore, both
F, and G, are symplectic subspaces preserved by j,, so K, ~ K(F,) ®
K (Gz). Then we define

as the tensor product of the following maps:

1. K(Fy) — K(Fy,()), A = 2|| X2\ where A, X are normalised by
MXz) = N (Xgy) = 1,

2. K(¢) : K(Gz) = K(G4, () with i the symplectomorphism

i Gy = ToH Y(E) /RX, 2225 Ty o H Y (E) /R X 4y () = Gopy ()
In the particular case where T,¢; sends (jX) into (jX)g, (), one checks
that D,(z) = 2||X.| 2Di(x). Otherwise, there does not seem to be any
simple relation between D;(x) and Dj(z).
Exactly as we did for D;, we define p}(x) as the complex number such
that
Di(x) = py(a) T (2).

We denote by [pg(x)]l/z the continuous square root equal to v/2|| X, ~" at
t=0.

Theorem 1.2. For any self-adjoint Toeplitz operator (1)) and regular value
E of its principal symbol H, we have for any x,y € H1(E),

E\™ 1
SO =T ) = (=) W2
Y ()] et oy o (¢ () dr [ﬁL(x)}@)k@ﬁL’(x)_|_(’)(k”_%).
i)
t(T)=Y

Furthermore, for any (z,y) € M? not belonging to j(Supp(f) x HY(E)),
we have f(k(E —Tg))(x,y) = O(k~).

As in Theorem 1.1, in the case M has a half-form bundle §, we can write
L' = Ly ® ¢ and replace the sum above by

NI

> fayet e 1) T T @) @ (D)

teSupp f,
ot (z)=y



where [Dl’t(ac)]l/2 : 62 = 04, (z) is continuous and equal to v2 || X, || !ids, at
t=0.

Furthermore, we will give a uniform description with respect to (z,y)
of the Schwartz kernel of f(k(E — T})) by showing it is a Lagrangian state
associated with the Lagrangian immersion jg.

1.4 Discussion

Let us explain more the structure of the Lagrangian states appearing in
the previous results (see also Section 2 for precise definitions). Roughly,
a Lagrangian state of M is a family (U € Hy, k € N) which is O(k~°)
outside a Lagrangian submanifold I' of M and which has an asymptotic
expansion at any point € I' of the form

Wi (w) = K" [t(2))%* (ao(w) + b~ ar(2) + . ) (11)

where m is some real number, t(x) € L, has norm one, and the coefficients
ao(x), ai(z), ... belong to L’,. We can think of [t(x)]* as an oscillatory
factor and k™ Y k~as(x) as an amplitude, so the right-hand side of (11) is
completely analogous to the well-known WKB ansatz. Indeed, locally in a
trivialization open set for M, L and L', sections of L and L’ can be identified
with functions, which yields t(z)®*F = ¢'*9(*) for some phase ¢ which is real
on I'. Furthermore, t(x) and the ay(x) all depend smoothly on x so that
they define sections of L and L’ respectively over I'. The section ¢ has the
important property to be flat. Regarding the leading order term ag(x) of
the amplitude, it is often useful to think about it as a product t;(z) ® v(z)
where t1(x) € (L1), and v(z) € §,. Here ¢ is a half-form bundle, which can
be introduced at least locally, and L' = L; ® 6. Then [t(x)]®* ® t1(x) may
be viewed as a deformation of [t(z)]®¥, whereas v(x) is a square root of a
volume element of I". Indeed, I" being Lagrangian, there is a natural pairing
between the restriction of the canonical bundle to I' and the determinant
bundle det TT @ C.

In our results, the Lagrangian states, which are Schwartz kernels of op-
erators, are defined on M?, with the prequantum bundle L X L. Here, the
symplectic and prequantum structures are such that the graphs of sym-
plectomorphisms are Lagrangian submanifolds and their prequantum lifts
define flat sections. In Theorem 1.1, the Schwartz kernel of the quantum
propagator is defined as a Lagrangian state associated with the graph of
the Hamiltonian flow and its prequantum lift. As was already noticed, the
prequantum lift appears with correction terms exp(i f(f HE"(¢,.(z)) dr) and



7,51 (x), which are the contributions of the corrections H*"* to H and L,

1

to L. Then the last term D} is merely the square root of the image of the
Liouville volume form by the map M — graph ¢, sending z into (¢¢(x), ).

The relation between Theorems 1.1 and 1.2 relies on the time/energy
duality. Roughly, for a time-independent operator H, we pass from the
quantum propagator (exp(—ih_ltlﬁ[ ), t € R) to the smoothed spectral pro-
jector (f(h~'(H — E)), E € R), by multiplying by f(¢) and then doing a
partial A-Fourier transform with respect to the variables ¢, E (here k plays
the part of A~1). In the microlocal point of view, the variables t and F
are equivalent and we can view the quantum propagator and the spectral
projector as two facets of the same object.

In our results, this duality is expressed by the fact that the graph of ¢;
and the Lagrangian immersion jg are obtained in a symmetric way from the
Lagrangian submanifold

I ={(t,H(z),d¢(x),z)/z € M,t € R} (12)

of T*"R x M x M~. Indeed, the graph of ¢; and the image of jr are the
projections onto M? of the slices

L,=TNn({t} xRxM?), TF=TnRx{E}xM?).

The prequantum lifts and the volume elements can also be incorporated in
this picture. In particular, we pass from D; to D; by canonical isomorphisms
between volume elements of f, f‘t and T'F.

As we will see in a next paper, the quantum propagator viewed as a
function of time is actually a Lagrangian state associated with r (and we
will particularly focus on the computation of the precise geometric quantities
involved in its principal symbol). This statement is delicate because here we
mix real and complex variables, cotangent bundles and Ké&hler manifolds,
and the description of Lagrangian states is rather different in these two
settings. To give a sense to this, we will perform a Bargmann transform
so that the quantum propagator will become a holomorphic function of the
complex variable ¢t +¢FE. This point of view will be interesting, even for the
proof of Theorem 1.1, to understand the transport equation satisfied by the
leading order term of the amplitude.

1.5 Comparison with earlier results

The introduction of Fourier integral operators with application to the Schro-
dinger equation and spectral properties of pseudodifferential operators has

10



its origin in the seminal Hérmander [19] and Duistermaat-Guillemin [14]
papers, cf. the survey [17]. In these first developments, the operator under
study is the Laplace-Beltrami operator and the corresponding classical flow
is the geodesic flow.

The transcription of these results to Berezin-Toeplitz operators has been
done in the paper [3] by Bothwick-Paul-Uribe, by applying the Boutet de
Monvel-Guillemin approach of [4]. Similar results have been proved in a
recent paper [28] by Zelditch-Zhou where the application to spectral den-
sities has been pushed further. These papers both rely on the Boutet de
Monvel-Guillemin book [4]. In particular the properties of Berezin-Toeplitz
operators are deduced from the pseudodifferential calculus, and the quantum
propagator is viewed as a Fourier integral operator. From this is deduced the
asymptotics of the smoothed spectral projector on the diagonal, [3, Theorem
1.1} and [28, Theorem 2.2]. The leading order term is computed in terms of
the symbolic calculus of Fourier integral operator of Hermite type in [3], or
with a non-linear problem in Bargmann space in [28]. Another description
of the kernel of the quantum propagator associated with an autonomous
Hamiltonian was obtained by Ioos [21]; this description involves quantities
related with parallel transport in the canonical bundle with respect to a
connection induced by the tranport of the initial complex structure by the
Hamiltonian flow, and computing these coefficients appears to be quite com-
plicated in general, relatively to our formulas. In fact, in all these works the
analysis is well-understood but our main addition, apart from obtaining a
direct derivation in our context, is the precise computation of the geometric
quantities contained in the principal symbol of the kernel of the quantum
propagator seen as a Lagrangian state. In particular these quantities have
a very natural interpretation in terms of half-forms, and can be easily com-
puted for concrete examples.

The techniques that we use come from the work of the first author where
a direct definition of Lagrangian states on a Kéhler manifold is introduced
[8]. As explained in the discussion following Equation (11), these Lagrangian
states locally look like WKB functions with complex phase. The microlocal
toolbox for complex phase WKB states was developed in the seminal paper
[25] in the homogeneous case. However our Lagrangian states are specific to
the Kéhler setting, for instance, the states being defined directly on phase
space, there are no caustics. Moreover the relevant symplectic geometry is
not the geometry of the cotangent space of the base but the Kéhler geometry
of the base itself.

In the first author’s PhD thesis [6, Section 3.5.2], it is shown that the
quantum propagator is a Lagrangian state, but without the precise compu-

11



tation of the principal symbol that we obtain here. The use of half-form
bundles for Berezin-Toeplitz operators started in [9, 10] and here we ap-
ply them to the description of the quantum propagator. The isomorphisms
(5) have been introduced in [10], [11] where their square roots are called
half-form bundle morphisms. A similar invariant appears in [28] under the
form (6). Again, we insist that the main novelty in our results is the precise
description and computation of the coefficients p;(x) and p}(z) appearing in
Theorems 1.1, 1.2.

Whereas the relation between the quantum propagator and the Hamilto-
nian flow is a classical result, the similar statement for the smoothed spectral
projector and the Lagrangian immersion (9) seems to be new. In [3] and
[28], only the diagonal behavior of the Schwartz kernel is described. To state
our result, we will introduce a general class of Lagrangian states associated
with Lagrangian immersions.

1.6 Outline of the paper

Section 2 is devoted to time-dependent Lagrangian states, that we call La-
grangian state families. The main result is that these states provide solutions
to the Schrédinger equation with quantum Hamiltonian a Toeplitz operator
and initial data a Lagrangian state, cf. Theorem 2.6. The principal symbol
of these solutions satisfies a transport equation, that is solved in Section 2.3
(up to a rather technical part which is postponed to Section 7 for the sake
of clarity), while in Section 3, we give an elegant expression in the context
of metaplectic quantization. These results will be applied in Section 4 to
the quantum propagator, where Theorem 1.1 is proved.

In Section 5, we prove that the Fourier transform of a time-dependent La-
grangian state is a Lagrangian state as well, with an underlying Lagrangian
manifold which is in general only immersed and not embedded, c¢f. Theorem
5.4. The needed adaptations in the Lagrangian state definition for immersed
manifolds are given in Section 5.2. In Section 6, we deduce Theorem 1.2 on
the smoothed spectral projector.

Acknowledgments. We thank two anonymous referees for useful com-
ments.

2 Propagation of Lagrangian states

In this section, we introduce some one-parameter families of Lagrangian
states which are relevant to our setting and study how they evolve under the
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Schrodinger equation. The definition of these states is new and builds on the
standard definition of Lagrangian states introduced in [8], which we briefly
recall now. It will also be useful to have the standard definition in mind
when introducing Lagrangian states associated with immersed Lagrangians,
see Section 5.2.

Let M, L and L' be as in Section 1.1. Let I" be a Lagrangian submanifold
of M equipped with a flat unitary section s € C*°(T', L). A Lagrangian state
associated with (I, s) is a sequence (¥j, € Hy)r>1 of the form

Uy(x) = (;ﬂ) ! F*(z)a(x, k) + O(k™>)

where

- F € C®(M, L) is such that OF vanishes to infinite order along T,

Fip =sand |[F(z)] < 1forx ¢ T,

- a(-, k) is a sequence of smooth sections of L' — M with an asymptotic
expansion a(-, k) = > 45 k~*ay for the C*> topology, where each section
ag, for £ > 0, is such that day vanishes to infinite order along I,

- the O is for the pointwise norm and uniform on M.

For any sequence (by)r>o of elements of C*°(I',L’), there exists a La-
grangian state Wy such that for every ¢ > 0, by = agr. The full symbol of
W}, is the formal series )~ htby, and uniquely determines ¥, up to O(k~°).
The first term by in this full symbol is called the principal symbol of Wy,

Since we will use later some generalisations of this construction, let us
briefly recall the proof, the details being in [8, Section 2|. First, since I
is a totally real submanifold, any smooth function of I' has an extension
f to M such that df vanishes to infinite order along I'. The same holds
for the sections of a holomorphic line bundle. In this way we construct
F and the a/’s from s and the b,’s respectively. These sections are not
uniquely determined, but their Taylor expansion along I' is. In particular,
a computation shows that In|F| has a non degenerate minimum along T,
so modifying F' away from T" if necessary, the condition |F| < 1 on M \ T
is satisfied. The Lagrangian state Wy is then obtained by projecting the
smooth section U = (k/27)"*Fka(-, k) onto Hy. We claim that ¥, =
Ty, + O(k=*°). The proof of this fact was obtained by stationary phase
computations in [8]. Alternatively, this follows from the fact that oW =
O(k~°°) and the Kodaira-Hérmander estimates [23, 18].
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Remark 2.1. The normalization factor (%) 1 is somewhat arbitrary. First,
the power of 27 could be included in the symbol of the Lagrangian state.
Second, the choice of the power of k is more or less convenient depending
on the context, since Lagrangian states appear in different situations (for
instance as approximate eigenvectors for Berezin-Toeplitz operators, or as
an ansatz for the Schwartz kernel of such an operator). Here the choice of

normalization yields a L?-norm of order O(1) for the Lagrangian states. [

2.1 Families of Lagrangian states

As explained above, to define a Lagrangian state, we need a Lagrangian
submanifold of M equipped with a flat unitary section of the prequantum
bundle L. Let us consider a one-parameter family of such pairs. More
precisely, let I C R be an open interval, C; be the trivial complex line
bundle over I, T" be a closed submanifold of I x M and s € C>*(I',C; X L)
be such that

1. the map ¢ : I' — I, ¢q(t,x) = t is a proper submersion. So for any
t € I, the fiber I'y :=T'N ({t} x M) is a submanifold of M,

2. for any t € I, I'; is a Lagrangian submanifold of M and the restriction
of s to I'; is flat and unitary.

Remark 2.2. a. Since ¢ is a proper submersion, by Ehresmann’s lemma,
I is diffeomorphic to I x A for some manifold N in such a way that
q becomes the projection onto 1.

b. Given a proper submersion ¢ : I' — I and a map f : ' — M, it is
equivalent that the map I' — I x M, x — (q(x), f(x)) is a proper
embedding and that for any t, f(¢,-) : 'y — M is an embedding. We
decided to start from a closed submanifold of I x M to be more efficient
in the definition of Lagrangian states below. O

We will consider states ¥, in Hj; depending smoothly on ¢t € I, so ¥y,
belongs to C*°(I,H},). Equivalently Wy, is a smooth section of C; X (LF® L)
such that ¥}, = 0. Here the @ operator only acts on the M factor. Similarly,
it makes sense to differentiate with respect to t € I a section of C;X A, where
A is any vector bundle over M.

Definition 2.3. A Lagrangian state family associated with (T, s) is a family
(U € C®(1,Hy), k € N) such that for any N,

n N
Welt) = (o) FH ) Yok et ) + Rt k) (13)
=0
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where

- F is a section of C; ® L such that F|p = s, OF vanishes to infinite
order along I and |F'| < 1 outside of T,

- (ay) is a sequence of sections of C; X L’ such that da, vanishes to
infinite order along T,

- for any p and N, 0V Ry = O(kP~N~1) in pointwise norm uniformly on
any compact subset of I x M.

It is not difficult to adapt the argument of [8, Section 2] and to prove the
following facts. First, the section F' exists. Second, we can specify arbitrarily
the coefficients ay of the asymptotic expansion along I' and this determines
(¥g) up to O(k~°°). More precisely, for any sequence (by) € C*(I', C; X L),
there exists a Lagrangian state (V) satisfying for any y € T’

n N
Wely) = (o) s ) YK ) + O N,
/=0

Furthermore, (V) is unique up to a family (&, € C*(I,Hy), k € N) sat-
isfying ||(%)p(1>k(t)\| = O(k~N) for any p and N uniformly on any compact
subset of I.

We will call the formal series 3 Aby the full symbol of (¥}). The first
coeflicient by will be called the principal symbol.

It could be interesting to define Lagrangian state families with a different
regularity with respect to t. Here, our ultimate goal is to solve a Cauchy
problem, so we will differentiate with respect to ¢t and in a later proof, we
will use that (k='0;¥}) is still a Lagrangian state family. So we need to
consider states which are smooth in ¢. Observe that in the estimate satisfied
by Ry we lose one power of k for each derivative; this is consistent with the
fact that 0;(F*) = kF*f where f is the logarithmic derivative of F, that is
oF = fF.

A last result which is an easy adaptation of [8, section 2.4] is the action
of Toeplitz operators on Lagrangian state families. Let (7.) be a time-
dependent Toeplitz operator and (¥j;) be a Lagrangian state as above.
Then (T} :Vy,) is a Lagrangian state family associated with (I', s) as well.
Furthermore, its full symbol is equal to . A“"Q,,(by) where 3 hfb, is
the full symbol of (¥;) and the @, are differential operators acting on
C>®(I',C;r ® L') and depending only on (T ;). In particular, Qo is the mul-
tiplication by the restriction to I' of the principal symbol of (7}).
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2.2 Propagation

Consider the same data I' C I x M and s € C*°(I", C; X L) as in the previous
section. We claim that the covariant derivative of s has the form

Vs=irdt®s with T € C>*(I,R). (14)

Here the covariant derivative is induced by the trivial derivative of C; and
the connection of L. To prove (14), use that the restriction of s to each I'y is
flat. So Vs = ia ® s, with a € Q!(T', R) vanishing in the vertical directions
of ¢:T'— I. So o = 7dt for some function 7 € C*(T",R).

In the following two propositions, (V) is a Lagrangian state family
associated with (T, s) with full symbol b(h) = 3 hfb,.

Proposition 2.4. ((ik)~'0,¥},) is a Lagrangian state family associated with
(T, s) with full symbol (T + hP)b(h), where P is a differential operator of
C®(T,C X L).

Proof. Differentiating the formula (13) with respect to ¢, we obtain on a
neighborhood of T" that

N
0, = (%) o ze: kY (kfae + Oya)

where f € C*°(I x M) is the logarithmic derivative of F' with respect to time,
so O;F = fF. Using that @ and the derivative with respect to ¢t commute,
we easily prove that df and 9(0;a,;) both vanish to infinite order along T.
This shows that (k=10;¥};) is a Lagrangian state associated with (T, s).

Its full symbol is the restriction to I' of the series 3 h(fay + hdsap). We
claim that f|p = i7. Indeed, at any point of I'; VF vanishes in the directions
tangent to M, because it vanishes in the directions of type (0,1) and in the
directions tangent to I'y as well. So VF = fdt ® F along I'. The restriction
of F' to I' being s, (14) implies that f|p = i7.

Using similarly that at any « € Ty, (1,1} ® C) @ T>*M = T,M ® C, and
Oay = 0 along T, it comes that dya; = V zay along T', where Z(t,x) € Tl
is the projection of 9/0t onto T{; ,)I" parallel to TO1M. This concludes the
proof with P the operator %V 7. ]

We now assume that (I, s) is obtained by propagating a Lagrangian
submanifold 'y of M and a flat section sy of L — I'g by a Hamiltonian
flow and its prequantum lift. Let (H;) be the time-dependent Hamiltonian
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generating our flow (¢;) and denote by ¢F its prequantum lift defined as in
the introduction by (3). So we set

Pe=¢u(To),  si(@e(2)) = of ()s0(x).

Let Y be the vector field of R x M given by Y (t,z) = % + Xy (x) where X;
is the Hamiltonian vector field of H;.

Introduce a time-dependent Toeplitz operator (T} ;) with principal sym-
bol (Ht)

Proposition 2.5. (i@tll’k-i-Tk,t\Pk) is a Lagrangian state family associated
with (T, s) with full symbol R(XVy + )by + O(h?) for some ¢ € C>=(T).

Proof. By Proposition 2.4 and the last paragraph of section 2.1, we already
know that (iat\llk + T+ V) is a Lagrangian state with full symbol

(7(t,z) + Hy(z))(bo + hb1) 4+ hEQby + O(h?), (15)

where @ is a differential operator acting on C*°(T", C;®L’). By differentiating
(3) in the definition of s; and by the fact that Vs = itdt ® s, it comes that

(L, ¢i(x)) + Hi(¢1(2)) = 0, (16)

so the leading order term in (15) is zero. Consider f € C*°(R x M) and
compute the commutator

(5500 + T, Ti(f)] = 3 (Te(Ocf) + Tu({Hy, f}) + O(k?)
=LY )+ O(k™?).

Letting this act on our Lagrangian state family Wy, it comes that [Q, f|r] =
%(Y f)|r- Since this holds for any f, this proves that i) is a derivation in
the direction of Y so i) = Vy + i( for some function (. O

Theorem 2.6. For any Lagrangian state (Vo i, € Hy) associated with (g, so),
the solution of the Schridinger equation

TV + Ty Uy = 0, U(0,-) = ¥o (17)

is a Lagrangian state family associated with (I',s) with symbol by + O(h)
where by satisfies the transport equation %Vybo + (bg = 0.

Since the integral curves of Y are t — (¢, ¢:(z)), the solution of the
transport equation is

bo(t, de(x)) = e+ Jo S @I TL (1 o0, ). (18)

In the next section, we will give a geometric formula for ¢ in terms of the
canonical bundle.
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Proof. The proof is the same as for differential operators (see the proof of
Theorem 20.1 in [27] for instance), so we only sketch it. We successively
construct the coefficients b, to solve i@t\llk + T3 Vg = O(k~N-1) with
initial condition ¥ (0,-) = g+ O(k~). At each step, we have to solve a
transport equation Vyby + dby = ry with initial condition by (0, ) = bo n,
which has a unique solution. This provides us with a Lagrangian state
(Ux) such that both equations of (17) are satisfied up to a O(k~>°). Then,
applying Duhamel’s principle, we show that the difference between 0,V
and the actual solution of (17) is a O(k~>°) uniformly on any bounded
interval. O

2.3 Transport equation

We will now give a formula for the function ¢ and solve the above transport
equation. Essential to our presentation are line bundle isomorphisms involv-
ing the canonical bundle K of M and the determinant bundles A" T*T'; and
/\n+1 TT.

First, for any ¢ € I, let K; be the restriction of K to I';. Then we have
an isomorphism

K; ~ det(T*T}) ® C (19)

defined by sending Q2 € (K}), = A0 TxM to its restriction to T,,I'y C T, M.
This is an isomorphism because (T,I'; ® C) N TO1M = {0}, which follows
from the fact that I'; is Lagrangian.

Second, I'; being a fiber of I' — I, the linear tangent maps to the injection
I'y — I" and the projection I' — R give an exact sequence

0—= T, Iy = Tyl = R=T;T 0.
Since R has a canonical volume element, we obtain an isomorphism
det(T"Ty) ~ det(T*T)|r, (20)

defined in the usual way: for any a € A"T, (* )I‘, one sends dt A a €

t,x
A" TE‘; z)F into the restriction of o to T,.T';.
Gathering these two isomorphisms , we get a third one:

Kp:=(C;RK)|r = det(T"T)®C, (1Ra)|p— j (dtAa) (21

for any o € Q™°(M) with j the embedding I' — I x M. On the one hand,
Kr has a natural connection induced by the Chern connection of K, which
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gives us a derivation Vy acting on sections of K. On the other hand, the
Lie derivative Ly acts on the differential forms of I'; and in particular on
the sections of det(7*T"). Under the isomorphism (21),

Ly =Vy +1i0
where 6 € C*°(T") since Ly and Vy are derivatives in the same direction Y.

Theorem 2.7. The function ¢ defined in Proposition 2.5 satisfies the equal-
ity ¢ = 360 + H™P|p.

The proof is postponed to Section 7 since it does not help to understand
what follows and it is quite technical. On the one hand, we can compute 6
in terms of second derivatives of Hy, cf. Proposition 7.1. On the other hand,
we directly compute the function (, cf. Proposition 7.2.

We will now give an explicit expression for the term involving ( in the
solution (18) of the transport equation in light of Theorem 2.7. For any
t € I, the tangent map to ¢; restricts to an isomorphism from 7T to TT%.
By the identification (19), we get an isomorphism & from K|p, to K|r,
lifting ¢;. More precisely, for any = € I'g, u € K, and v € det(T,I'y), we
define & (v)u € Ky, (g so that

(E(x)u) (Tedr)sv) = u(v). (22)

The parallel transport 7% restricts as well to an isomorphism K|r, — K|r,.
Define the complex number Cy(z) by &(z) = Cy(x)T,X ().

Proposition 2.8. The solution of the transport equation %Vyb +¢b=0
with b € C®(T, L") is

t su !
b, ¢u(x)) = Cilw)E e Jo TN TL (3 b0, ) (23)
with the square root of Cy(x) chosen continuously and Cy = 1.

Proof. In view of Equation (18) and Theorem 2.7, it suffices to deal with
the case H*"P|r = 0. Moreover, observe that if b satisfies Vyb = 0, then
b= fb solves 1Vyb+ (b =0 if and only if 2Y.f + ¢(f = 0. So it suffices to
prove that f : (t,¢:(z)) — Ci(x)/? is a solution of the latter equation.

First the isomorphism I x I'y ~ T', (¢,2) — (¢, ¢¢(x)) sends the vector
field 9; to Y. The solutions of Ly, 3 = 0 with 3 € Q" (I x ['g) have the
form g = dt A By with Gy € Q"(Ty). So the solutions of Ly« = 0 with
a € QYT are parametrised by ag € 27(I'g) and given by

l(t,6,()) = dt A (¢7) " o
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Now, identify K and det(7*T")®C through (21). Then by (22), the previous
equation becomes

(.60 (2)) = Et(T) Al (0,2)-

Second, the solutions of Vy o' = 0 with now o’ € C*°(T', K1) are given by

N tgu(a)) = e (2) & (0,0)-

Assume that o[, = af(z); then we have a = Ca’ with C' € C*(T)
defined by C(t, ¢+(x)) = C¢(z). Therefore

0=~Lya=Ly(Cd)=(Y.C)d/ + CLyd = (Y.C)d' + C Vyd +2i(Cd/
=0

so Y.C' + 2i¢C = 0, hence %Y.Cl/2 +¢C?2 = . O

3 Metaplectic correction

It is useful to reformulate the previous results with a half-form bundle.

3.1 Definitions

Recall first some definitions. A square root (B, ) of a complex line bundle
A — N over a manifold A is a complex line bundle B — N with an
isomorphism ¢ : B®? — A. A half-form bundle of a complex manifold
is a square root of its canonical bundle. Since the group of isomorphism
classes of complex line bundles of a manifold N is isomorphic to H?(N\),
the isomorphism being the Chern class, a sufficient condition for a complex
manifold to have a half-form bundle is that its second cohomology group
is trivial. This condition will be sufficient for our purposes. Before we
discuss the uniqueness, let us explain how derivatives and connections can
be transferred from a bundle to its square roots.

Assume that (B, ¢) is a square root of A. Then any derivative Dp acting
on sections of B induces a derivative D4 acting on sections of A such that
the Leibniz rule is satisfied

Di(u®v) =Dp(u) @ v+ u® Dp(v), Vu,v e C®(B)

The converse is true as well: any derivative D4 of A determines a derivative
Dp of B such that the above identity is satisfied. Similarly a covariant
derivative VB of B induces a covariant derivative V4 of A such that VA (u®
v) = VB(u) @ v +u ® VB(v), and the converse holds as well.
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Two square roots (B, ¢) and (B’, ¢’) of A are isomorphic if there exists a
line bundle isomorphism 1 : B — B’ such that ¢/01)? = ¢. The isomorphism
classes of square roots of the trivial line bundle Cyr of N are in bijection with
HY(N,Z3). Indeed, each square root of C,r has a natural flat structure with
holonomy in {—1,1} C U(1), induced by the flat structure of Cyr. We easily
check this determines the square root up to isomorphism. Furthermore, the
tensor product of line bundles defines an action of square roots of Cpr on
the space of square roots of a given line bundle A. This makes the set of
isomorphism classes of square root of A a homogeneous space for the group

HY(N, Zy).
3.2 Propagation in terms of half-form bundle

When M has a half-form bundle §, we can reformulate the previous results
by introducing a new line bundle L; such that L' = L1 ® §. The relevant
structures of Ly and ¢ have a different nature:

e L1 has a natural connection, its Chern connection,

e the restriction of § to a Lagrangian submanifold A of M is a square
root of det(T*N)®@C, through the isomorphism K| ~ det(T*N)®C.

For instance, in our propagation results, on the one hand, the tangent map
to the flow defines a map from det(7%Ty) to det(7*T;), which gives the map
&« K|, = K|r,. We then introduce the square root of &

[€:(2)]

which is equal to the identity at ¢ = 0. On the other hand, we can define
the parallel transport ’7;L1 from the connection of L;. Then (23) writes

N|=

10 — 5%(_%), z el

equivalently

N

b(t, du(x)) = et Jo HC0r@)dr L1 1y o (8, (2)]3 (0, 2) (24)

The transport equation (Vy + i¢)b = 0 has a similar formulation in terms
of the decomposition L' = L1 ® §. Here it is convenient to lift everything to
I'. So we consider C; X L' — T" as the tensor product of C; X L1 — I" and
or :== (C; X0 — T'). Then the transport equation is

(Vi @id +ideLs) +iH*P)b =0 (25)

21



On the one hand, V%! is the Chern connection of L; with derivative V{?l
acting on C®(I',C; ® L;). On the other hand, £j is the derivative of
C> (T, or) induced by the Lie derivative Ly of I' through the isomorphism

62 ~ Kp ~ det(T*T") @ C

defined by (21). More precisely, E‘gf is the unique derivative such that
Ly(s?) = 25 ® L5 for any section s € C®(T,dr). Then Formula (25)
follows from the relation between ¢ and @ and the fact that V&b = (Vi @
id +id ®V$-)b where V° is the connection on d induced by the one on K,
which satisfies V. = L"; — % .

Interestingly, these formulations can be used even when M has no half-
form bundle. To give a meaning to Equation (24), we need a square root ¢ of
the restriction of K to the trajectory ¢y (x) of x on the interval [0,¢]. This
trajectory being an arc or a circle, such a square root exists. In the circle
case, there are two square roots up to isomorphism, but it is easy to see
that the right-hand side of (24) does not depend on the choice. Similarly
we can give a meaning to the transport equation (25) even when M has
no half-form bundle. Indeed a differential operator of I' is determined by
its restriction to the open sets of any covering of I'.  And we can always
introduce a half-form bundle on the neighborhood of each point of M.

3.3 Norm estimates

The introduction of half-form bundles is also useful when we estimate the
norm of a Lagrangian state. For instance, consider a Lagrangian state Wy (t)
as in (13). Then, by [9, Theorem 3.2],

1@, = [ 20+ 06 (26)

where ; is a density on I'y, which is given in terms of the principal symbol
bo(-,t) of Wy(t) as follows. We assume that L' = L; ® § with ¢ a half-form
bundle. Again we treat 6 and L; in completely different ways. On the one
hand, L; has a natural metric so L1 ® L; ~ C. On the other hand, d|r,
being a square root of det(T*I';) ® C, the identity 2Z = |2?| induces an
isomorphism between d|r, ® d|r, and the bundle | A [T*Ty ® C of densities.
So we have an isomorphism

L'|r, ® L'r, ~ |\|T*T; @ C. (27)

Then Q; is the image of by(+,t) @ by(+,t) by (27). When M does not have a
half-form bundle, we can still define the isomorphism (27) by working locally
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and the global estimate (26) still holds. The normalization (k/27)* in the
definition (13) has been chosen to obtain this formula.

Interestingly the isomorphism (21) is also meaningful for our norm esti-
mates. Indeed, consider now by as a section of C; X L' — TI'; repeating the
previous considerations to (C; X d)|r and (C; X Ly)|p, we define a density

Q on I such that
/1 £ 10012, dt = /F (Foq) Q+OY),  YfeCr). (28)

where ¢ is the projection I' — I. This follows from (26), because € is the
restriction of 1,2 to I'; and a geometric version of Fubini’s theorem tells us

that [7 f(t) frt Q= [r(foq)

4 The quantum propagator

In this section, we prove Theorem 1.1. We will apply the previous con-
siderations to M x M, L ® L and L' X I’ instead of M, L and L. The
holomorphic sections of (LR L)* @ (L' K L') are the Schwartz kernels of the
endomorphisms of Hy.

The symplectic structure of M being the opposite of w, the diagonal
A is a Lagrangian submanifold of M x M. There is a canonical flat
section s : Ay — L X L defined by s(z,2) = u ® u where u € L, is any
vector of norm 1. The Lagrangian states corresponding to (A, s) are the
Toeplitz operators up to a factor (%)% More precisely, the Schwartz kernel
of (%)_%Tk( f) is a Lagrangian state associated with (Ajy, s) with principal
symbol f, where we identify the restriction of L' X T’ to the diagonal with
the trivial line bundle Cp; = L' ® L' by using the Hermitian metric of
L’. This applies in particular to the identity of #Hj, which is the Toeplitz
operator Ty (1) and is actually a reformulation of a theorem by Boutet de
Monvel-Sjostrand [5, 7].

By Theorem 2.6, the Schwartz kernel of the quantum propagator (U ;)
multiplied by (%)_% is a Lagrangian state family, associated with the graph
of ¢; and its prequantum lift. Indeed, in the Schrédinger equation (1), we
can interpret the product T} .Uy as the action of the Toeplitz operator
Ty Xid on Uy, Its principal symbol is H; X 1, so its Hamiltonian flow is
¢¢ K id. There is no difficulty to deduce Formula (8) from Proposition 2.8
except for the relation between & and D;.

Lemma 4.1. & (x,x)(idk,) = Di(z).
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Everything relies on the identification (19) which in our case is an iso-
morphism between Ky, ;) ® K, and the space of volume forms on the graph
of T,¢¢. On the one hand, the elements of Ky, z) ® K, will be viewed as
morphisms from K; to Ky, (). On the other hand, the graph of T,¢; is
naturally isomorphic with 7, M through the map & — (T, ¢¢(£),€). So (19)
becomes an isomorphism

Mor(Ky, Kg,(z)) =~ det(T, M) @ C (29)

Now the tangent map to the flow ¢; X id sends the graph of T,¢g to the
graph of T,.¢:, and with our identifications, it becomes the identity of T, M.
So the map &(x,x) is the isomorphism

Mor (K, K;) ~ Mor (K, K@(x))
otained by applying (29) with ¢ = 0 and then the inverse of (29).

Proof of Lemma 4.1, technical part. First we claim that (29) sends a mor-
phism ¢ : K — K, () to

(Te¢e) () N

where o € K, is any vector with norm 1. Indeed, 1 is first identified with
Y(o)@a e K«m(w)@Fx- Then it is viewed as the 2n-form of T, M ®T . M given
by piv(a) A psa where p; and po are the projections T, M & T, M — T, M
onto the first and the second factor respectively. Then it is restricted to the
graph of T, ¢; which is identified with T, M via the map h(§) = (Tp¢¢(£),§),
so we obtain

B (pip(a) A psa) = (Tude) () AT

because p; o h = T, ¢ and p2 o h = id.
For t = 0 and ¢ = id, we have ((Tp¢¢)* (o)) AN@ = a A@. So we have
to prove that for 8 = Dy(z)(«)

(Tepr)*B) Na=ana (30)

This is equivalent to j*(Ty¢:)*B = a where j is the injection T}OM —
T, M @ C. Since 8 € Ky,(,), we have 7" = 8 where 7 is the projection of
Ty, ()M ® C onto the (1,0)-subspace with kernel the (0, 1)-subspace. So we
have to show that (7 o (Tp¢¢) 0 7)*8 = a. But mo (Tp¢) 0 j = (Tpgs)'P,
so (30) is equivalent to ((T,¢¢)'*)*3 = . And this last equality is actually
the definition of 5 = Dy(z)(«) . O
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Theorem 4.2. Let (Tj, 4, t € I) be a smooth family of Toeplitz operators with
real principal symbol Hy and subprincipal symbol H™. Then the Schwartz
kernel of the quantum propagator of (Tj+) multiplied by (%)_% is a La-
grangian state family associated with (I', s, o) given by I' = {(t, ¢¢(x),z)/ t €
I, x € M} and

s(t, pr(x), ) = ¢f (x) : Ly = Ly, (a),

1 1 t rrsub T r /
o(t,de(w), ) = [po(a)] et Jo V@ Ity Ly, ()

where (¢¢) is the Hamiltonian flow of Hy, ¢ its prequantum lift, ’ELI its
parallel transport lift to L' and Dy(x) = ps(2)T,5 () with Dy(z) = K(Tpdy) :
K:L« — K@(Z,).

As explained in the introduction, it is very natural to express the symbol
by using a half-form bundle:

N

o(t, (), ) = e Jo HEVOr@) dr L 0y @ (D, ()]

N

where L' = L1 ® § and [D;(z)]
of Dy(x) equal to 1 at t = 0.

: 0z — 0g,(z) is the continuous square root

Remark 4.3. In our next paper on trace formulas, we will use the following
expression for p;(z). Denote by v : R — M, t — ¢(x) the trajectory of x.
Choose a unitary frame sy of v*K and write Vs = %det ® sg. Then

—1 f; fr(r)dr

pe(x) = cre where  ¢:Q:(&u) = Qo(Eou). (31)

Here u is any generator of AYPT, M, & is the linear map T, M — TynyM o
T M sending X into (T;¢¢(X), X), and € is the 2n-form of T,y M & T, M
equal to € = pisk(t) A p35k(0), p1 and pa being the projection on T, ) M
and T, M respectively.

The proof of (31) is that on the one hand & (z,z)Q = ¢ Q; and on the

other hand 755K (z, )0y = €' Jo fr(mydrqy, O

5 Fourier Transform of Lagrangian state families

In this section, we investigate how the (inverse) semiclassical Fourier trans-
form acts on the Lagrangian state families introduced in Section 2.1. It turns
out that the outcomes are states which are associated with Lagrangians that
are only immersed; hence we need to generalize the usual definition of La-
grangian states recalled at the beginning of Section 2.
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5.1 Symplectic preliminaries

Consider the same data I' C I x M and s € C*°(I',C; X L) as in Section 2.1.
So we assume that I' — I, (f,x) — t is a proper submersion and that for
any t € I, I'y is a Lagrangian submanifold of M and the restriction of s to
I'; is flat and unitary. Recall that Vs = irdt ® s for a function 7 € C*°(I),
cf (14). For any E in R, introduce

.= {(t,z) el | 7(t,z) + E = 0}. (32)
Proposition 5.1. Let E be a regular value of —7. Then

1. T¥ is a submanifold of T and jg : T¥ — M, (t,z) — = is a Lagrangian
immersion,

2. 7: T =5 Rx M, (t,z) — (1(t,z),x) is an immersion at any (ty,zo) €
I,

3. the section s¥ of (jP)*L given by s®(t,x) = eFs(t, ) is flat.

Proof. For any tangent vectors Y1 = (a1,£1), Y2 = (a2,&2) in Ty, 00 C
R @ Ty M, we have

w(§1,§2) = aldT(Yg) — a2d7'<Y1) (33)

To prove this, we extend Y7 and Y5 to vector fields of I" on a neighborhood
of (to,xo) so that [Y7, Y] = 0. Then, the curvature of V being 1w, we have
that

[VY17VY2] = %w(&, 52)

Furthermore, since dt(Y;) = a;, we have that Vy,s = ia;7®s so Vy, Vy,s =
i((Y1.a2)T + az(Y1.7))s — arjasm?s. Using that Y7.as — Yo.a1 = [Y1, Ya].t = 0,
it comes that

[Vyl, VYQ]S = i(ag(yl.T) — a1 (YQ.T))S.

Comparing with the previous expression for the curvature, we obtain (33).

We prove the second assertion. Assume Y] = (a1,&;) is in the kernel of
the tangent map of j : I' = R x M, that is d7(Y1) = 0 and & = 0. Then
(33) writes 0 = a1d7(Y2). If a1 # 0, this implies that d7(Y2) = 0 for any
Yo €T, I", which contradicts the assumption that —F is a regular value
of 7.

This implies that jg is an immersion. It is Lagrangian by (33) again
because if Y1, Yz are tangent to I'F, then d7 (Y1) = d7(Ya) = 0, so w(&1,&) =
0. Finally, V(eFs) = (iEdt + itdt) ® 'Fs = 0 on T'F. O

t0,%0)
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5.2 Immersed Lagrangian states

We will adapt the definition of Lagrangian states for immersed manifolds.
Suppose we have a Lagrangian immersion j : ' — M, a flat unitary section
s of j*L and a formal series 3 Ab, with coefficients by € C®(j*L’).

First, for any y € N, we will define a germ of Lagrangian state at j(y),
uniquely defined up to O(k~°) as follows. Let us assume temporarily that
there exists an open set V in M such that j : ' — V is a proper embedding,
so that j(N) is a closed submanifold of V. Then we can introduce sections
F:V — Landay:V — L' such that OF and da, vanish to infinite order
along j(N), j*F = s and j*a; = by and |F| < 1 on V'\ j(N). These sections
are not unique but if (F”, aj, ¢ € N) satisfy the same condition, then for any
N,

N N
FFY "k fag = (F)"> k™ fap + Ok (34)
=0 (=0

the O being uniform on any compact set of V. This follows on one hand
from the fact that |F| and |F’| are < 1 on V' \ j(N), so that both sides of
(34) are in O(k~N~1) uniformly on any compact set of V'\ j(A). On the
other hand, the sections F, F" and ay, aj have the same Taylor expansions
along j(N') which implies (34) on a neighborhood of j(N), (see [8, Section
2.2] for details).

Back to a general immersion N’ — M, for any y € N, by the local normal
form for immersions, there exists open neighborhoods U and V' of y and j(y)
respectively such that j(U) C V and j restricts to a closed embedding from
U into V. Then we can introduce the sections F' and ay, £ € N as above on
V', which extend the restrictions of s and b, to U. This defines the expansion

N
Ungo=F"> ktay (35)
=0

on V. If we have another set of data (U’,V’, F’,a}), we obtain another
sequence Wy, = (F')k SN ok~tal, on V',

Lemma 5.2. For any N, Yy = \119\% + O(k~N=1) on a neighborhood of
Ji(y)-

So we have a well defined germ of Lagrangian states at j(y).
Proof. Choose open sets W and W’ of V and V' respectively such that
JUNU") = 5(U)NW = j({UNW'. Set U”" = UNU" and V" = WNW'. Then
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j restricts to an embedding from U” into V" and j(U"”) = j(U')NV". So the
restriction of F, ay to V" gives us a new set of data (U", V", F|yu,aglyn).
The fact that j(U") = j(U') N V" is used to see that |F| <1 on V" \ j(U").
Similarly, we can restricts F”, aj to V" and get (U”, V", F'|yn,a}|y~). The
final result follows from our initial remark (34). O

Now assume that there exists a compact subset K of N such that for
each /¢, ay is supported in K. Our goal is to construct a Lagrangian state
which, on a neighborhood of each x € M, is equal to the sum of the local
Lagrangian states defined previously for each y € j~!(x) N K. An essential
observation is that j71(z) is discrete in NV, so j71(z) N K is finite since K
is compact.

Lemma 5.3. There exists a family (V) € Hy) such that for any x € M and
any N:

1. ifx ¢ j(K), |¥] = O(k™) on a neighborhood of x,

2. if 7Y ) N K = {y;,i € I}, then ¥y = 3, \I'gv,k + Ok™™N) on a
neighborhood of x, where each \Ifﬁv,C is defined as in (35) with y = y;.

We will call (U;) a Lagrangian state associated with the Lagrangian
immersion j : N — M, the flat unitary section s of j7*L and the formal
series 3 h'by with coefficients in (N, j*L'). (¥}) is unique up to O(k~°).
But unlike the case of a Lagrangian submanifold, we can not recover the
symbol 3 A‘b, from the state by taking the restriction to j(N) because of
the possible multiple points.

Proof. Consider an open set V of M and a finite family (U;);cs of disjoint
open sets of A such that for any ¢ € I, j restricts to a proper embedding
from U; into V and K Nj~%(V) C UU;. Then introduce sections Fj, a; ¢ on
V' as above associated with each submanifold j(U;). Consider the sum

n N
(5) T @Yk ate),  wev, (30)
/=0

iel

Then for any = € V, each y € j~!(z) N K belongs to one of the U;, so
on a neighborhood of z, (36) is equal to the sum of the Lagrangian state
germs associated with the y € j7!(z) N K. So by the previous discussion,
the state defined by (36) on a neighborhood of x does not depend, up to
O(k~°), on the choice of V' and of (Uj, Fj,a;e) for i € I and £ € N. Tt
is not difficult to prove that any point x of M has an open neighborhood

28



V admitting a family (U;) as above. Indeed, if we set I = j~(z) N K,
then for any y € I, there exists a pair (U, 3 y, V}) such that j restricts to a
proper embedding from U, into V,,. Then we choose for V' a sufficiently small
neighborhood of x in NV}, such that 71 (V)N K C U,U, and we restrict the
U, accordingly. So with a partition of unity, we can construct global states
), € C®(M,L*F ® L"),k € N, such that for any data (V,U;,i € I) as above,
Uy, is equal to (36) on V up to a O(k~°°), uniform on any compact subset
of V. Since d¥y, is in O(k~>), we can replace ¥}, by its projection onto
‘Hy., which only modifies it by a O(k~>°) by Kodaira-Hérmander estimates
[23, 18]. O

5.3 Fourier transform

Introduce the h-Fourier transform and its inverse with parameter k = 1~

R0 = () [ e pmyam, 7o m) = (£) [ e Fgmar

We are now ready to state the main result of this section.

Theorem 5.4. Let (U, € C*(I,Hy), k € N) be a Lagrangian state family
associated with (T, s) and such that the ¥y are supported in a compact set
of I independent of k. Let —E be a regular value of T and I'F := 771 (—E),
using the notation introduced before and in Equation (32).

Then F;, ' (Uy)(E) is a Lagrangian state associated with the Lagrangian
immersion jg : T¥ — M, (t,z) = =, the section s¥ € C®(I'F jLL) given
by sE(t,x) = eFs(t,x) and the principal symbol

oB(t,x) = B(t,x) " 20(t,z),  (t,z) € TF

where o is the principal symbol of (Vi) and B(t,x) is such that dr N o =
iB(t,z)dt Ao on Ty I for any a € Ky, the square root B(t,z)'/? having
a non negative real part.

We already explained that for a non-zero o € K., dt A a is nonzero
on T{y »I'. By the second assertion of Proposition 5.1, the same argument
shows that dr A a is non zero on Ty ,yI' when (t,z) € I'E. This proves that
B(t,z) is uniquely determined and nonzero as well.

Proof. Introduce a local unitary frame u of L and write F(t, ) = e/ (:®)y(z),
where F' is the section appearing in the definition (13) of Uy. Then

k

ﬂ+l i
) ) / GROT gt xRy dE (37)
™ R

FHw)(B)(@) = (
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with ¢(¢t,x) = tE + f(t,z). The imaginary part of ¢ is nonnegative. It
vanishes when |F'(t,z)| = 1, that is when (¢,2) € I'. We have

Qb;(t’x) =FE+ ft,(tvx)’ Z&(t?x) = tlzlt(tvl‘)

Here g — g; means differentiation with respect to ¢.

We claim that the function f/ is an extension of 7 such that df; vanishes
to infinite order along I'. Indeed, by taking the restriction of VF to I', we
obtain that f/ = 7 on I' (see also the argument in the proof of Proposition
2.4). Then since OF vanishes to infinite order along I', the same holds for

of + 8—;‘, and by taking the derivative with respect to ¢, the same holds for
off.

So for (t,z) € T, ¢}(t,x) = 0if and only if (¢, 2) € T'*. So by Lemma 7.7.1
in [20], if (to,x0) & T'F, then the integral in (37) restricted to a neighborhood
of tp is in O(k~>°) on a neighborhood of zp. So to estimate (37) on a
neighborhood of a point xg, it suffices to integrate on a neighborhood of
jg*(z0). Let V, U be neighborhoods of zg and ty € j,'(zq) respectively
such that W =TF N (U x V) is a graph {(t(z),z), v € je(W)NV}.

Since f; = 7 and df; = 0 on ', we have f/;dt+0f/ = dr on T'. Mutiplying
by a € Q"0(M), we get f/idt Na = dr A a on I'. As explained before the
proof, dr A a does not vanish on T;,I', so f/; does not vanish on I'? and
we can apply the stationary phase lemma for a complex valued phase, see
[25, Theorem 2.3] or [20, Theorem 7.7.12]. This theorem implies that on a
neighborhood of jz(W)

k % iko(t,z) _ ikér( —N-1
(5) /Ue a(t, o, k) dt = e Zk ap(z) + OkN"1)  (38)

for any N, where

op(x) = (T(x),2),  apo(x) = (~ig}(t,2)) 2ao(T(x), ),

the square root having a non negative real part. Here T": U — C is an
extension of x — t(x), that is (T'(z),z) € T¥ when 2 € jg(W). The
extension is chosen so that ¢;(T'(x),x) = 0, where ¢ itself has been extended
almost analytically to a neighborhood of R x M in C x M. We claim that
F(z) = 2@y(z) is adapted to (jp(W), sZ|w). First if z € jp(W), then

eid)E(m)u(x) = eit(m)EHf(t(x)’I)u(x) = eit(w)Es(t(a:), z) = sE(t(z), x)

It remains to show that JF vanishes to infinite order along jg(W). Assume
first that we can choose the section F' to be holomorphic, so that ¢; depends
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holomorphically on x. If furthermore we can extend ¢} so that it depends
holomorphically on ¢, then by the holomorphic version of the implicit func-
tion theorem 7' is holomorphic and F' is holomorphic as well. In general,
we only know that OF vanishes to infinite order along I' and by adapting
the previous argument, we conclude that F vanishes to infinite order along
Je(W).

With a similar proof, we can also show that the same holds for the
coefficients: dag ¢ = 0 along j(W) to infinite order. However, it is actually
easier to use the following fact: F¥ Y k=%, = O(k~°) if and only if all
the coefficients by vanish to infinite order along jz(W). And here we know
that O(F* Y k~‘ap,) = O(k~>°) by differentiating (38) under the integral
sign. O

6 Spectral projector

Consider a self-adjoint operator H acting on a finite dimensional Hilbert
space £. Here it is important that H is time-independent. Introduce a
smooth function f : R — C with smooth compactly supported Fourier
transform f . We will work with the unitary Fourier transform, so

= \/12? /R et Ef(t) di

A

1 .
t)=—— | e "Ff(E)dE, E
fy= = [P rEaE,  pE)
The second formula directly gives
1 itE _itA A
hYE -\ :7/ e h f(t)dt
FNE - x) = o [ e f)

with A and A two real parameters. Doing a spectral decomposition H =
> Al where the A and II) are the eigenvalues and spectral projectors,

and introducing the quantum propagator U; = exp(—it}f ) => e~ Rl 2, We
obtain

itE

w U f(t) dt

_ - 1
s E i) = o | .

We can apply this to our Toeplitz operator (T : Hyr — Hj) with quantum
propagator Uy ;, which gives

FIR(E = Ty)) = k25 (F (1) Ur,) (B) (39)

If E is a regular value of the principal symbol H of T}, we deduce by Theorem
5.4 that the Schwartz kernel of this operator is a Lagrangian state. This will
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be done in Section 6.2 and will prove Theorem 1.2 of the introduction. Before
that, we will consider the simpler case of a state (¥ € Hy):

F(R(E = Ty)) 0y, = k™2 Fy  (F(8) Uh) (E) (40)

where Wy, ; is the solution of (#8,5 + T}) ¥y + = 0 with initial condition Wy,

6.1 Lagrangian state spectral decomposition

Let I'g be Lagrangian submanifold of M and let H be an autonomous Hamil-
tonian with flow ¢;. Set I'y = ¢¢(I'g) and I' = {(t,x) | z € I';}. Let £ € R
be a regular value of the restriction of H to I'g and define

' ={(t,2) |z e Ty, nH Y(E)}.

This submanifold is the same as the submanifold T'* defined in (32) from
a (local) flat section sy of L — T'y, because the corresponding function 7 is
the restriction of —H to I', see (16). Furthermore our assumption on F is
equivalent to the fact that —F is regular value of 7.

The computation of the symbol of f(k(E—Ty)) Uy in terms of the symbol
of Wy o will amount to transforming a volume element of I'g into a volume
element of T'¥. Let us explain this. We denote by X the Hamiltonian vector
field of H and by X« the symplectic orthogonal of RX, in T, M. For any
(t,z) € I'¥, the Lagrangian space

Lo =RX, & (T,Ty N X;) (41)

is the image of T, ,)jE with jg : 'Y — M the projection (t,z) — x. Observe
that X, does not belong to T,I't because E is a regular value of H|p,, so it
a regular value of H|p, as well.

Assume now t = 0 and (0,z) € T'¥. Choose € T,TI'g such that
w(Xz,m) = 1. Then we have

T,To = Rn & (T,To N X;*), L0 =RX, @ (T,Io N X;).

Starting from v € det T,,Tg, we write v = n Aw with w € det((T,To) N X3)
and we set v(0, z) := Xy Aw € det £(0,z)- This definition makes sense because
n is unique modulo (T,T'g N X;«) so that w is unique. More generally, if
t is any real and (0,z) € ¥, we set v(t,z) := (Tor)+v(0, ) € det £ 4, (x),
viewing T3¢t as a map from £y ) to £ 4, (). Equivalently

v(t,w) = Xy, (2) N (Tetr)sw. (42)
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We now define a map &/(z) : K, — Ky, () for any z € Do N H'(E) by
(& (z)a)(v(t, x)) = —ia(v), Vv € det T, I'y. (43)
We define the function C} by the equality &/(z) = C}(z) T, ().

Proposition 6.1. Let (Vy) be a Lagrangian state of M associated with
(To, s0) with symbol oy € C®(To, L"), (T) a self-adjoint Toeplitz operator
with principal and subprincipal symbol H, H*™, and f € C*®(R) having a
smooth compactly supported Fourier transform.

If E is a regular value of H|p,, then U}, = k%f((k(E —Ty)) Vg is a
Lagrangian state associated with the Lagrangian immersion jg : TP — M,
the flat section s® of j5 L given by s(t, ¢1(x)) = T;E(z)so(x) and the symbol
of € C®(jLL’) defined as

B (t, () = F(t) i)t et Jo 0N dr L (4 60 (2,

where the square root is chosen so as to be continuous and to have a positive
real part att = 0.

Proof. The solution of the Schrodinger equation with initial condition Wy
is described as a Lagrangian state associated with (T, s(t, z) = ¢F(z)s0(x))
in Theorem 2.6. Then ¥ is the k-Fourier transform of this solution (40),
so by Theorem 5.4, it is a Lagrangian state associated with the immersion
jg : TF — M and the section s¥(t,2) = e!Fs(t,z) = T, (x)so(x) because
for an autonomous Hamiltonian, ¢f = e #HT.F see (3).

It remains to check the formula for the principal symbol. By Proposition
2.8, we have to prove that Cj(z) = B(tc’iT%, that is &/(x) = %, with
B the function of Theorem 5.4. Comparing the definitions (22) and (43) of
() and &{(x), we have to show that for any 8 € Ky, (,) and v € det(T,To),

iB(u(t, x))
ﬁ((Tx¢t)*v)

where v(t, z) is as in Equation (42). Let us first explain the proof at ¢ = 0.
Recall that v(0,2) = X, Aw and v = nAw. Now B is defined by the relation
dr NG =1t1BdtN\pB onl for every § € K. We have

T = R(1, X,) & R(0,n) & {(0,€), £ € (T,To) N X}

and d7(1,X;) = 0 so that dr(0,7) = 1 and d7(0,&) =0 for any £ € T,To N
X~ by (33). So evaluating the relation dr A 8 = iBdt A 8 on (1,X,) A
(0,m) A (0,&) A ... A(0,&,) where w =& A ... A&, we get

—B(Xz Aw) =1iB(0,z)5(n A w), (45)

B(t, (x)) = (44)
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which gives (44). The proof for ¢t # 0 is exactly the same where all the
symplectic data X, n, w, I'g are replaced by their image under ¢;.

The last point is the determination of the square root: we have (C4(z))'/? =
Cy(x)Y2/B(t, ¢ (x))/?, with Co(z)'/? = 1 and the square root B(t, z)'/? has
a non negative real part by Theorem 5.4. It is even positive as explained in
Remark 6.2. O

Remark 6.2. The quantity C)(z) = B(0,z)~! can be computed explicitly
as follows. For z € H~'(E) N Ty,

B(0,2) = || X1]] + iw(X1, X2) (46)

where X, = X7 + Xy with X7 € ]:p(TxFO) and X9 € T,I'g. Recall that
X, ¢ T,To, so || X1]|? # 0.

Proof of (46). We set n = || X1|72j,X1 and compute B(0,z) from (45).
On the one hand, § being a (n,0) form, (X1 A w) = —if(jX1 A w) =
—i|| X1)?8(n A w). On the other hand, X5 = w(X1, X2)n plus a linear com-
bination of the &, so X2 A w = w(X1, X2)n A w. Gathering these equalities
we get

B(Xe Aw) = (w(X1, Xa) = i1 X1]?) By A w)

and the conclusion follows. O

6.2 Smoothed spectral projector

Recall that (T}) is a self-adjoint Toeplitz operator with principal symbol H
and subprincipal symbol H*"" and that f € C°°(R) has a smooth compactly
supported Fourier transform.

Theorem 6.3. Let E be a regular value of H. Then the Schwartz kernel of
f(k(E—Ty)) is a Lagrangian state associated with the Lagrangian immersion
jg : TF — M2, the flat section s¥ € C®(j*T'F) and the symbol o¥ €
Coo(jEL/) given by ¥ = R x H_l(E): Je(t,z) = (de(x),z), SE(ta T) =
T,k (x) and

NI

on(t,z) = F(t)[pl(x)]Fet Jo 0 @r@) drpt o

where the function py(x) is defined below.

Recall from the introduction the decomposition in symplectic subspaces
T,M = F, ® G, where F, = Vect(X,, j,X,) and G, = Fj*. F, and G, are
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both preserved by j, and we denote by K (F,), K(G;) their canonical lines.
We define

O K(Fy) = K(Fy), Pr(he) = 201X 7N, @) (47)

where A\, € K(F,) is normalised by \,(X,;) = 1. Furthermore ®¢ is the
map K(G:) — K(Gg,()) such that

Do) (Yu) = au), Va € K(Gy), Yu e N"T, M (48)

where 1 is the symplectic map Gy — Gg, () induced by T;¢: and the iso-
morphism G, ~ T, H ' (E)/RX,.

Then we set Dj(z) := ®p ® ®¢ : Ky — Ky, () and we denote by pj(z)
the complex number such that

Dj(x) = py(2)T;" ().

N|=

We denote by [p}(z)]
t=0.

the continuous square root equal to v/2|| X, |~ at

Proof. This is a particular case of Proposition 6.1 just as Theorem 4.2 on the
quantum propagator was a particular case of Theorem 2.6. Let us compute
the coefficient &/ (x)(idx, ). We first describe the image (41) of T( »)jg:

Lio =R(X,,0) & {(Tude(€),€), £ € T.H ' (E)}

and its volume (42). Set n = || X,[|7%j. X, so that (X,,7) is a symplectic
basis of F,. Let (§) be a symplectic basis of G,. Then if the volume of
diag T, M is v = vp A vg with

UF:(XxyX:B)/\(n)n)> UG:(glagl)/\"'/\(gm¢§m)>
then we have v(0,2) = —(X4,0) A (Xz, Xo) A (&1, &) A v oo A (€, Em) SO that

U(tvx) - _(X¢t(33)70) N (qut(x)ﬂ Xﬂf) A (Tx¢t<£1)7€1) Ao A (Tx¢t(§m)7§m)
= _(Xqﬁt(x)?()) N (vaw) N (w(&),&) ARERRA (w(gm)agm)

because Typ¢4(§) = 1(§) modulo RXy, ;). Then &(z)(idk,) = Pr @ O¢
where ®p : K(F;) — K(Fy,()) is such that
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and ®¢ : K(Gz) — K(Gg,(z)) is such that

(Pa, (V&) &) A+ A (Y(6m), Em)) = (idk (G.,)s vG), (50)

Here the pairings are based on the identifications Mor(K(S), K(S")) =~
K(S) ® K(S) ~ K(S'® S). Now ®¢ is the application satisfying (48)
by Lemma 4.1. And ®p is the application (47) by a straightforward com-
putation. ]

7 Proof of theorem 2.7

We choose complex normal coordinates (z;) of M centered at xop € M. So
Gij(xo) = 0;5 and 0, Gk (x0) = 05,Gji(x0) = 0. We may assume that 75, I'y,
is spanned by the vectors 0, +03,, 7 = 1,...,n. Recall that Y is the vector
field (0y, Xy) of I x M where X, is the Hamiltonian vector field of H;. Since
W=7k Gjrdz? A dz*, we have

Xy =1y (-G*H, 8, + G'*Hz,0.)) (51)
7.k

where we use the notation H,, = 8., H; and Hz, = 0z, H; (and below we
will use similar notation for higher order derivatives). As explained before
the statement of Theorem 2.7, we have two derivatives Vy and Ly acting
on (C; X K)|p in the same direction Y, so 6 := }(Ly — Vy) is a function in
Cc(I).

Proposition 7.1. 0(xo) = 3, (H.;z,;(w0) + Hz,z,;(w0))

Proof. Let a = dz1 \...Ndz,. First we have the section 1X« of (C; X K)|p
and we compute its covariant derivative with respect to Y. We claim that
this derivative vanishes at xg. This follows from the fact that |a|™2 =
det G, so the Chern connection of K (given near z( by the one-form %@)
is zero at xg because the coordinates are normal at xy. Second we have
to compute the Lie derivative with respect to Y of j*(dt A ) with j the
embedding I' — I x M. We have Ly j*(dtAa) = 7*(Ly (dtAa)). Furthermore

Ly, dt = Ly,dz; = 0 and by (51), we have

Lx,dzj = d(Xy.2j) =iy (Hz,z dz + Hzz,dzy)
k

at xo because the coordinates are normal. Furthermore j*(dtAdzy) = 7% (dtA
dzy) at xo by the assumption on Ty,I";,. Collecting all these informations,
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we deduce that

‘CY(j*(dt A a)) =1 Z(szzj (l’o) + szzj (.CE[))) ]*(dt A a)

at xg. The conclusion follows. O

Introduce the Szegd projector Il which is the orthogonal projector of
C®(M,L* ® L") onto Hy.

Proposition 7.2. For any Lagrangian state (Vy) associated with T'y, with
symbol o and any function f € C°(M), Iy (fVy) is a Lagrangian state with
symbol

flry, o+ R(AVE +0f) 0+ O(K?) (52)

where U is the vector field of Ty, such that U(z) = Xf(z) mod TO'M, Xy
being the Hamiltonian vector field of f, and Of = 37(f.,z, + %fgjgj) at xg.

Proof. We already know that ITx(f¥y) is a Lagrangian state associated with
['y,. We compute its symbol up to O(h?) at zg. It suffices to prove that this
symbol has the form

(co + hier) f(wo)o(zo) + R(AVE +Of)o(z0) + O(K?) (53)

where ¢y and ¢ are independent of f. Since for f = 1, we have to recover
o(xo), co =1 and ¢; = 0 necessarily.

Besides our normal coordinates (z;) and our assumption on 75, 'y, let us
introduce two holomorphic normal frames v and v’ of L and L’ respectively.
So |v| = e~ % with ¢ a real function such that

¢(T0) = 0z;(w0) = 0.,;0,,0(x0) = 0, Vi, k.
Similarly [v/| = e~ T with ¢ satisfying the same conditions. Notice that the
curvature of L is equal to both 09¢ and —iw, so 0,0z, = Gyj for every i, j.
We can assume that v(zg) = s(zg) where s is the section over I';, associated
with our Lagrangian state. In the rest of the proof we write all the sections
of L* ® L' in the frame v* @ v'.

More details on the computations to come can be found in [8, Sections
2.4, 2.5]. We have

k\n /
Hk(x(bx) = <%) ekw(z)+w (m)p(m, k) + O(kaO)

37



where 1 has the following Taylor expansion at zp: ¥ (z) = > Benn tpo,g%ﬂj

with the notations ¢, g = 8?8?90(9:0), ¢’ has the same Taylor expansion in
terms of ¢’ and p(z,k) = 1+ k7 1p1(x) + k2pa(x) + .. ..
We have a similar expression for Wy:

k

Uy (x) = (*

277) Yekr@) g (2, k) + O(k™)

where p has the Taylor expansion p(z) = %Zz? + 2 lafz3 pmo%. This
follows from the fact that the section F' entering in the definition (13) of Wy
satisfies F'(zg) = s(xo) so that we can assume that p(z¢) =0, VF|;, = 0 so
that the first derivatives of p all vanish at zy and finally the second order
derivatives of F' at xy depend only on the linear data at x [8, Proposition
2.2] which leads to the expression above.

So it comes that

(0 (w0) = (5) * [ e f(@)ate, plar, HD() dzdz + Ok)

27
(54)
where
$(z) = —p(x) +¢(z) — plx) = |2|* = 5 2 + R«
with R having the Taylor expansion at zg

«a

R(.%‘) = Z P B B + Z —Pa,0 + Qpa,O)%
a£0,870 T |alz3
laf+|5]=3
Furthermore D(z) = e¥' (®)=¢'(®) det(Gy;) = 1+ O(|z]?).
By applying the stationary phase method, we obtain the asymptotic
expansion of (54). At first order:

(1) (w0) = () * (Fao)atan, k) + O(K))

where C can be computed in terms of the Hessian determinant of ¢ at xg.
Actually it is shorter to compare with (53), which gives C' = ¢y = 1. We
now compute the second order term,

I, (f¥5,) (o) = (2";) (f(zo)a(wo, k) + k~'er + O(k™2))

with

er =Y (€= 1)) P((—R)"" fal(, k)D)(x0)



where P = 37(9,,0z, + %8@.8%).

Recall that we do not try to compute the terms ¢y and ¢; in (53), which
means that we do not take into account the terms without derivative on
a(z, k). Considering the form of the Taylor expansions of R and D given
above and the fact that 0.,0z,¢0 = Giyj so that ¢, = 0 when (|af,|5]) =
(1,2) or (2,1), we deduce after some investigations that we only have a single
term to consider which is k' P(f(x)a(z, k)). Now a(x, k) = ag(z) +O(k~1)
and agp has the Taylor expansion of a holomorphic function at xy because
0(apv") vanishes to infinite order along I'y, and the frame v’ is holomorphic.

So

P(fao) = (Pf)ao + Z(fkjf)(azj%)- (55)

The Hamiltonian vector field of f at zo being >°,(—if.; 0z, +ifz;0:;) (see
(51)), and by using again that dag = 0 at x(, we obtain that the sum in (55)

is %X rag = %U ap. Now the frame v’ being normal, its covariant derivative
is 0 at xg, so Vi (apv') = (U.ap)v'. O

Proof of Theorem 2.7. It suffices to consider the case where T}, ; = Tj,(H; +
k~1H]) for some Hy;, H, € C>®°(M). But the symbol of k~'Ty(H])¥; is
hH]o + O(h?), so in fact we only need to consider the case H| = 0.

By Proposition 7.2 and the proof of Proposition 2.4, the symbol of
iat\l/k + Tk(Ht)\I/k is

M3 (Vz + Vu) +0H) o 4+ O(R?), (56)
where Z and U are the vector fields of I' such that Z(t,z) = 9; mod T2 M
and U(t,z) = X¢(z) mod TO'M. Since here Y (t,x) = (9;, X;) is tangent
toI', we have Z+U =Y on I'. By Proposition 7.1, OH; = %0—1— %AHt with

A=3%7, G0,,0z, (indeed, recall that the coordinates are normal at g so
AH(xo) =>; Hzz,(z0)). So the symbol in (56) is

h(iVy + 20+ SAH) o+ O(R?)

which concludes the proof. O

A Appendix: an explicit example

Let (M,w) = (T? = R?/A,wp2) where A C R? is a lattice of symplectic
volume 47. (M,w) is naturally endowed with a prequantum line bundle L
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induced by the line bundle R? x C — R? with connection V = d — ia where
a = 27(p dq — q dp). Here (p,q) are coordinates associated with a basis
(e, f) of A with w(e, f) = 4m. In other words w = 4wdp A dg; we will also
work with the holomorphic coordinate z = p+iq, for which w = 2iwrdz A dz.

For k > 1, the quantum space Hy = H°(M, L*) identifies with the space
of A-invariant sections of R? x C — R?, which is a space of theta functions
with dimension 2k. More precisely, the family (Uy)o</<2r—1 given by

ki

Wy(z) = exp(2im (€ + k3(2))) exp (_ i

‘) 93(m(2kz + i), exp(—2k))

V2T 2k

forall z € Cand ¢ € {0,...,2k—1}, where ¥3(w, ) = 1+2 37> ¢ cos(2nw)
is the Jacobi theta function, forms an orthonormal basis of Hy. The diag-
onal operator defined as T, ¥, = cos(7 )\I/g for every ¢ € {0,...,2k — 1}
is a Berezin-Toeplitz operator with pr1nc1pal symbol H : (p,q) — cos(27rq)
and vanishing subprincipal symbol. For more details, see [12, Section 3.1,
Appendix].

On the one hand, one can easily compute numerically the kernel of the
quantum propagator Uy ; = exp(—iktT}) by using the formula

2k—1

Ukt(w, z) = Z exp (—ikt cos (f)) Wo(w)Wy(2) (57)

=0

and the above expression of ¥y (in practice, we use the built-in commands

for Jacobi theta functions in the mpmath library for Python). On the other

hand, the coefficients in Equation (8) can be explicitly computed as follows.

Since the subprincipal symbol of T} vanishes, it suffices to compute p; and
tL . First, the parallel transport term reads

t
T (p,q) = exp (Z /0 Qg (p.q) (X (D5 (P, Q)))ds) = exp (—imigsin(27q))
since X (p, q) = 5 sin(2mq)8, and ¢(p, ¢) = [p+ L sin(2mq), g], and we obtain

o1 (p, q) = exp(—it cos(2mq)) T (p, ) = exp (—it (cos(2mq) + mqsin(2mq))) .

Second, one readily checks that (7] (p,a) #¢)*¥ is the operator of multiplication
by 1 — ”2” cos(2mq). Since the connection on the canonical bundle is trivial,
this yields

imt -5 exp ( arctan ( 5 008(27rq)))
(1 - cos(27rq)) = )
2 \/1 + 2 ¢os2(2mq)

NI

pe(p, q)
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So we finally obtain that for z = p + iq,

k exp (z (% arctan (% cos(2mq)) — kt (cos(2mq) + mq sin(27rq))>)

U, (2),2) ~
ralr(2), 2 27r\/1 + # cos?(2mq)
(58)
We compare this theoretical equivalent with the numerical value in Fig-
ures 1, 2, 3, 4 and 5. In these computations, we fix k£ and (p,q), and plot
the real part of the kernel of the propagator evaluated at (¢:(z), z) with
z = p + iq, as a function of t; we also plot the imaginary part of this ker-
nel only for one set of parameters, since the behaviour is very similar to
the one of the real part. In all these figures, the blue diamonds represent
the numerical values obtained from Equation (57) while the solid red line
corresponds to the right hand side of Equation (58). Note that a priori
the O(k~!) remainder may depend on t, so once k and (p, ¢) are fixed, the
approximation may become less precise as t increases. In Figures 4 and 5,
we display the behaviour at small and (relatively) large times. Investigat-
ing the k-dependent times up to which the approximation in Equation (8)
remains valid is a classical topic in the semiclassical literature, that we do
not consider in the present paper.

15 g &

10

R(Uk, (@t(2), 2))
o

-10

-15

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Real part of Uy .(¢:(2),2) for k = 100 and z = p + ig with
(p,q) = (0.3,0.1), for 0 < ¢ < 1.
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Figure 2: Imaginary part of Uy (¢¢(2),2) for kK = 100 and z = p + iq with
(p,q) = (0.3,0.1), for 0 <t < 1.
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Figure 3: Real part of Uy +(¢¢(2), z) for k = 50 and z = p +iq with (p,q) =
(0.5,0.7), for 0 <t < 1.
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Figure 4: Real part of Uj;(¢¢(2),2) for & = 100 and z = p + ig with
(p,q) = (0.3,0.1), for 0 < ¢t <0.1.
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Figure 5: Real part of Uy .(¢:(2),2) for k = 100 and z = p + ig with

(p,q

) = (0.3,0.1), for 0.8 < t < 0.9.
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