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Abstract

We describe the asymptotic behaviour of the quantum propagator
generated by a Berezin-Toeplitz operator with real-valued principal
symbol. We also give precise asymptotics for smoothed spectral pro-
jectors associated with the operator in the autonomous case; this leads
us to introducing quantum states associated with immersed Lagrangian
submanifolds. These descriptions involve geometric quantities of two
origins, coming from lifts of the Hamiltonian flow to the prequantum
bundle and the canonical bundle respectively. The latter are the main
contribution of this article and are connected to the Maslov indices ap-
pearing in trace formulas, as will be explained in a forthcoming paper.

1 Introduction
In quantum mechanics, the evolution of a state Ψt under the influence of a
Hamiltonian Ĥ can be described using Schrödinger’s equation

iℏ
d

dt
Ψt = ĤΨt.

Under suitable assumptions on Ĥ, the solutions to this equation are of the
form Ψt = Uℏ,tΨ0 where Uℏ,t is an operator called the quantum propaga-
tor. This propagator is the quantum analogue of the Hamiltonian flow in
classical Hamiltonian mechanics. This analogy can be studied rigorously by
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investigating the so-called semiclassical limit ℏ → 0 in which, if Ĥ quantizes
the classical Hamiltonian H, Uℏ,t is expected to behave like the Hamiltonian
flow of H. This statement has been given a precise meaning by studying
the Schwartz kernel of Uℏ,t in different regimes of ℏ and t, for semiclassical
Schrödinger Hamiltonians Ĥ = −ℏ2∆ + V on T ∗Rd, and more generally for
ℏ-pseudodifferential operators on T ∗Rd or T ∗X with X a compact Rieman-
nian manifold; see Section 1.5 for a longer discussion and references.

Here we are interested in a different setting where the underlying phase
space is a compact symplectic manifold; then the quantum states are sections
of a power of some well-chosen line bundle, and this power is the relevant
semiclassical parameter. This setting naturally appears in several problems
from physics, such as the study of spin systems in the large spin limit,
coherent states, and the quantum Hall effect, cf. for example [24, 15, 22].
The limit of large power of a suitable line bundle is also very important in
complex geometry, see for instance [13, 26, 16, 1].

The aim of our work is to understand, in this context, the geometric
invariants appearing in the asymptotic description of the quantum propaga-
tor (and its counterparts, smoothed spectral projectors) in the semiclassical
limit. As can be seen from other results in the same direction [3, 28, 21],
this is in fact non trivial and different authors have different, more or less
explicit, ways to compute these invariants. Here we obtain expressions that
are both completely natural and easily computable. This will be particularly
important in forthcoming papers in which we revisit trace formulae: the ex-
plicit asymptotics that we obtain here will allow us to derive those in a direct
way and with a precise control of the quantities they involve, in particular
the Maslov-like indices contained in the subprincipal contributions.

1.1 Berezin-Toeplitz operators

Let Mn be a compact complex manifold endowed with two Hermitian holo-
morphic line bundles L and L′. We assume that L is positive, meaning that
the curvature of its Chern connection is 1

iω with ω ∈ Ω2(M,R) ∩ Ω(1,1)(M)
positive. For any positive integer k, let Hk be the space of holomorphic
sections of Lk ⊗ L′. The scalar product of sections of Lk ⊗ L′ is defined
as the integral of the pointwise scalar product against the Liouville volume
form µ = ωn

n! .
Given a function f ∈ C∞(M), the Berezin-Toeplitz operator Tk(f) is the

endomorphism of Hk such that

⟨Tk(f)u, v⟩ = ⟨fu, v⟩, ∀u, v ∈ Hk.
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We are interested in the semiclassical limit k → +∞ and the techniques
we use allow to consider more general families T := (Tk(f(·, k))) where
the multiplicator itself depends on k and has an expansion of the form
f(·, k) = f0+k−1f1+. . . with coefficients fℓ ∈ C∞(M). We will also consider
time-dependent sequences f(·, t, k) with an expansion with time-dependent
coefficients.

We call the family T a Toeplitz operator, f0 its principal symbol and
f1 + 1

2∆f0 its subprincipal symbol. Here ∆ is the holomorphic Laplacian
associated with the Kähler form ω, so ∆ = ∑

hij∂zi∂zj when ω = i
∑
hijdzi∧

dzj . The reason why we introduce this subprincipal symbol is merely that
it simplifies the subleading calculus.

Typically, if T and S are two Toeplitz operators with principal symbols f
and g, then TS and ik[T, S] are Toeplitz operators with respective principal
symbols fg and the Poisson bracket {f, g} with respect to ω [4, 2]. If now
T and S have identically zero subprincipal symbols, then the subprincipal
symbols of TS and ik[T, S] are 1

2i{f, g} and −ω1(X,Y ) respectively [10],
where X, Y are the Hamiltonian vector fields of f and g and ω1 is the real
two-form given by ω1 = i(ΘL′ − 1

2ΘK), with ΘL′ , ΘK the curvatures of the
Chern connections of L′ and of the canonical bundle K.

1.2 The quantum propagator

It is a well-known result that the solution of the Schrödinger equation for
a pseudo-differential operator is a Fourier integral operator associated with
the Hamiltonian flow of its principal symbol. Our first result is the Toeplitz
analogue of this fact. Consider a time-dependent Toeplitz operator (Tk,t)
with principal symbol (Ht) and subprincipal symbol (Hsub

t ). The quantum
propagator generated by Tk,t is the smooth path (Uk,t, t ∈ R) of (unitary in
case Tk,t is self-adjoint) maps of Hk satisfying the Schrödinger equation

(ik)−1 d

dt
Uk,t + Tk,tUk,t = 0, Uk,0 = id . (1)

Our goal is to describe the Schwartz kernel of Uk,t, which by definition is

Uk,t(x, y) =
dk∑
i=1

(Uk,tψi)(x) ⊗ ψi(y) ∈ (Lk ⊗ L′)x ⊗ (Lk ⊗ L
′)y

where dk = dim Hk and (ψi) is any orthonormal basis of Hk. In the sequel,
we will view Uk,t(x, y) as a map from (Lk ⊗ L′)y to (Lk ⊗ L′)x using the
scalar product of (Lk ⊗ L′)y.
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As we will see, when the principal symbol (Ht) is real, this Schwartz
kernel is concentrated on the graph of the Hamiltonian flow ϕt of Ht. Here
the symplectic form ω is i times the curvature of L, and the Hamiltonian
vector field Xt is such that

ω(Xt, ·) + dHt = 0. (2)

To describe the asymptotic behavior of Uk,t(ϕt(x), x), we need to introduce
two lifts of ϕt, the first one to L and the second one to the canonical bundle
K of M . The relevant structures on L will be its metric and its connection,
which is generally called the prequantum structure.

Parallel transport and prequantum lift

If A → M is a Hermitian line bundle endowed with a connection ∇, the
parallel transport in A along a path γ : [0, τ ] → M is a unitary map

T (A, γ) : Aγ(0) → Aγ(τ)

which can be computed as follows: if u is a frame of γ∗A, then T (A, γ)u(0) =
exp(i

∫
γ α)u(τ), where α ∈ Ω1([0, τ ],R) is the connection one-form defined

in terms of the covariant derivative of u by ∇u = −iα ⊗ u. In particular
we can lift by parallel transport the Hamiltonian flow ϕt. We set T A

t (x) :=
T (A, ϕ[0,t](x)) : Ax → Aϕt(x).

The prequantum lift of the Hamiltonian flow ϕt to L is defined by

ϕLt (x) = e
1
i

∫ t

0 Hr(ϕr(x)) drT L
t (x). (3)

This lift has an interest independently of Toeplitz operators: by the Kostant-
Souriau theory, ϕLt is the unique (up to a phase) lift of ϕt which preserves the
metric and the connection of L. Furthermore, if x belongs to a contractible
periodic trajectory with period T , so that we can define the action A(x, T ) ∈
R, then ϕLT (x) : Lx → Lx is the multiplication by exp(iA(x, T )).

In our results, it is actually the k-th power (ϕLt )⊗k that will appear,
with some corrections involving the subprincipal data L′ and Hsub

t , more
precisely we will see

e
1
i

∫ t

0 H
sub
r (ϕr(x)) dr

[
ϕLt (x)

]⊗k
⊗T L′

t (x) : (Lk ⊗ L′)x → (Lk ⊗ L′)ϕt(x). (4)

So we merely replace L by Lk ⊗ L′ and Ht by kHt +Hsub
t in (3).
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Holomorphic determinant and lift to the canonical bundle

The second ingredient we need is an invariant of the complex and symplectic
structures together. If g : S → S′ is a linear symplectomorphism between
two 2n-dimensional symplectic vector spaces both endowed with linear com-
plex structures, we define an isomorphism K(g) : K(S) → K(S′) between
the canonical lines K(S) = ∧n,0S∗ , K(S′) = ∧n,0(S′)∗ characterized by

K(g)(α)(g∗u) = α(u), ∀α ∈ K(S), u ∈ ∧nS. (5)

Equivalently, if E and E′ are the (1, 0)-spaces of S and S′ respectively, we
have decompositions

S ⊗ C = E ⊕ E, S′ ⊗ C = E′ ⊕ E
′
, g ⊗ idC =

(
g1,0 ∗
∗ ∗

)

with g1,0 : E → E′. Then K(g) is the dual map of det g1,0 : ∧nE → ∧nE′ in
the sense that K(g)(α)((det g1,0)u) = α(u) for any α ∈ K(S) and u ∈ ∧nE.

This holomorphic determinant has a nice structure in terms of the polar
decomposition of linear symplectic maps. When S = S′ = R2n with its
usual complex structure j, g = g1g2 where g1 and g2 are both symplectic,
g1 commutes with j, and g2 is symmetric positive definite. Then K(g) is a
complex number whose inverse is

detC g1,0 =
(

n∏
i=1

λi + λ−1
i

2

)
detC g1 (6)

with 0 < λ1 ⩽ . . . ⩽ λn < 1 < λ−1
n ⩽ . . . ⩽ λ−1

1 the eigenvalues of g2, and
detC g1 the determinant of g1 viewed as a C-linear endomorphism of Cn.
Indeed, detC g1,0 = detC g1,0

2 detC g1 and one readily computes detC g1,0
2 using

the diagonalization of g2 in an orthonormal basis (e1, . . . , en, je1, . . . , jen)
with g2eℓ = λℓeℓ and g2jeℓ = λ−1

ℓ jeℓ. This formula generalizes for (S, j) ̸=
(S′, j′), with now linear symplectic maps g1 : S → S′ and g2 : S → S,
where g1 ◦ j = j′ ◦ g1, and g2 is positive definite for the Euclidean structure
ω(·, j·) of S. The complex determinant of g1 may be viewed as a map from
detC(S, j) to detC(S′, j′) or equivalently from ∧topE to ∧topE′.

This definition provides us with a lift Dt of the Hamiltonian flow ϕt to
the canonical bundle K = ∧(n,0)T ∗M , defined by

Dt(x) = K(Txϕt) : Kx → Kϕt(x). (7)

We have another lift of ϕt to the canonical bundle which is the parallel trans-
port T K

t . Define the complex number ρt(x) such that Dt(x) = ρt(x)T K
t (x).
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The result

Theorem 1.1. Let (Uk,t) be the quantum propagator of a time-dependent
Toeplitz operator (Tk,t) with real principal symbol. Then for any t ∈ R and
x ∈ M ,

Uk,t(ϕt(x), x) =
( k

2π
)n[

ρt(x)
] 1

2 e
1
i

∫ t

0 H
sub
r (ϕr(x)) dr

[
ϕLt (x)

]⊗k
⊗T L′

t (x)

+ O(kn−1)
(8)

where ϕt is the Hamiltonian flow of the principal symbol Ht, ϕLt and T L′
t are

its prequantum and parallel transport lifts, Hsub
t is the subprincipal symbol

and (ρt)1/2 is the continuous square root equal to 1 at t = 0 of the function
ρt such that Dt = ρtT K

t with Dt(x) = K(Txϕt).
If y ∈ M is different from ϕt(x), then Uk,t(y, x) = O(k−N ) for all N .

The first part of the result has an alternative formulation when M has
a half-form bundle, that is a line bundle δ and an isomorphism between
δ2 and the canonical bundle K. Introducing the line bundle L1 such that
L′ = L1 ⊗ δ and using that T L′

t = T L1
t ⊗ T δ

t , we obtain

Uk,t(ϕt(x), x) ∼
( k

2π
)n
e

1
i

∫ t

0 H
sub
r (ϕr(x)) dr

[
ϕLt (x)

]⊗k
⊗T L1

t (x) ⊗
[
Dt(x)

] 1
2

where
[
Dt(x)

]1/2 : δx → δϕt(x) is the continuous square root of Dt(x) equal
to 1 at t = 0. Observe that to write this equation, it is sufficient to define δ
on the trajectory t → ϕt(x), which is always possible.

In the above statement, we focused on the geometrical description of
the leading order term, because it is the real novelty. The complete result,
Theorem 4.2, too long for the introduction, is that Uk,t(ϕt(x), x) has a full
asymptotic expansion in integral powers of k−1 and we also have a uniform
description with respect to x, y and t on compact regions. Such a uniform
description is not obvious because the asymptotic behavior of Uk,t(y, x) is
completely different whether y = ϕt(x) or not. We actually show that the
Schwartz kernel of Uk,t is a Lagrangian state in the sense of [8] (see the
definition in Section 2), associated with the graph of ϕt.

In the Appendix, we investigate an explicit example in which the Hamil-
tonian flow does not preserve the complex structure, and verify the validity
of the above theorem for the kernel of the propagator on the graph of this
flow.
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1.3 Smoothed spectral projector

Our second result is the asymptotic description of the Schwartz kernel of
f(k(E − Tk)) where (Tk) is a self-adjoint Toeplitz operator, E is a regular
value of the principal symbol H of (Tk) and f ∈ C∞(R,R) is a smooth
function having a compactly supported Fourier transform. For a function
g : R → R, g(Tk) is merely defined as ∑λ∈sp(Tk) g(λ)Πλ where for each
eigenvalue λ of Tk, Πλ is the orthogonal projector onto the corresponding
eigenspace. For g smooth, g(Tk) is itself a Toeplitz operator with principal
symbol g ◦ H and so its Schwartz kernel is concentrated on the diagonal;
more precisely

g(Tk)(x, x) =
( k

2π
)n
g(H(x)) + O(kn−1),

g(Tk)(x, y) = O(k−N ), ∀N when x ̸= y.

In the rest of the paper we will work with a function g depending on k in the
very specific way g(τ) = f(k(τ −E)), which we interpret as a focus at scale
k−1 around E. For instance, for f the characteristic function of a subset
A of R, f(k(· − E)) is the characteristic function of E + k−1A. However,
we will only consider very regular functions f , having a smooth compactly
supported Fourier transform f̂ .

Our result is that the Schwartz kernel of f(k(E − Tk)) is (up to normal-
ization by some power of k, see Remark 2.1 for a discussion) a Lagrangian
state associated with the Lagrangian immersion

jE : R ×H−1(E) → M2, (t, x) → (ϕt(x), x). (9)

Here ϕt is the flow of the autonomous Hamiltonian H. It is important to
note that jE is not injective and not proper in general. However only the
times t in the support of the Fourier transform of f matter, so we will work
with the restriction of jE to a compact subset. Still, it is possible for jE to
have multiple points because of the periodic trajectories.

The description of the Schwartz kernel on the image of jE will be in
terms of the parallel transport lift of ϕt to L and L′ as introduced above
and a lift D′

t to the canonical bundle of the restriction of ϕt to the energy
level set H−1(E), defined as follows.

First since E is regular, for any x ∈ H−1(E), the Hamiltonian vector
field X of H is not zero at x. Second, H being time-independent, Txϕt sends
Xx into Xϕt(x), so it induces a symplectic map from TxH

−1(E)/RXx into
Tϕt(x)H

−1(E)/RXϕt(x). In the case x is periodic with period t, this map is
the tangent linear map to the Poincaré section map.
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For any x ∈ H−1(E), write TxM = Fx ⊕ Gx where Fx is the subspace
spanned by Xx and jxXx and Gx is its symplectic orthogonal. Observe that
TxH

−1(E) = Gx ⊕ RXx so that Gx = TxH
−1(E)/RXx. Furthermore, both

Fx and Gx are symplectic subspaces preserved by jx, so Kx ≃ K(Fx) ⊗
K(Gx). Then we define

D′
t(x) : Kx → Kϕt(x) (10)

as the tensor product of the following maps:
1. K(Fx) → K(Fϕt(x)), λ 7→ 2∥Xx∥−2λ′ where λ, λ′ are normalised by
λ(Xx) = λ′(Xϕt(x)) = 1,

2. K(ψ) : K(Gx) → K(Gϕt(x)) with ψ the symplectomorphism

ψ : Gx ≃ TxH
−1(E)/RXx

Txϕt−−−→ Tϕt(x)H
−1(E)/RXϕt(x) ≃ Gϕt(x).

In the particular case where Txϕt sends (jX)x into (jX)ϕt(x), one checks
that D′

t(x) = 2∥Xx∥−2Dt(x). Otherwise, there does not seem to be any
simple relation between Dt(x) and D′

t(x).
Exactly as we did for Dt, we define ρ′

t(x) as the complex number such
that

D′
t(x) = ρ′

t(x)T K
t (x).

We denote by
[
ρ′
t(x)

]1/2 the continuous square root equal to
√

2∥Xx∥−1 at
t = 0.
Theorem 1.2. For any self-adjoint Toeplitz operator (Tk) and regular value
E of its principal symbol H, we have for any x, y ∈ H−1(E),

f(k(E − Tk))(y, x) =
(
k

2π

)n
k− 1

2

×
∑

t∈Supp f̂ ,
ϕt(x)=y

f̂(t)
[
ρ′
t(x)

] 1
2 e

1
i

∫ t

0 H
sub(ϕr(x)) dr

[
T L
t (x)

]⊗k
⊗T L′

t (x) + O(kn− 3
2 ).

Furthermore, for any (x, y) ∈ M2 not belonging to jE(Supp(f̂) ×H−1(E)),
we have f(k(E − Tk))(x, y) = O(k−∞).

As in Theorem 1.1, in the case M has a half-form bundle δ, we can write
L′ = L1 ⊗ δ and replace the sum above by∑

t∈Supp f̂ ,
ϕt(x)=y

f̂(t) e
1
i

∫ t

0 H
sub(ϕr(x)) dr

[
T L
t (x)

]⊗k
⊗T L1

t (x) ⊗
[
D′
t(x)

] 1
2
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where
[
D′
t(x)

]1/2 : δx → δϕt(x) is continuous and equal to
√

2 ∥Xx∥−1 idδx at
t = 0.

Furthermore, we will give a uniform description with respect to (x, y)
of the Schwartz kernel of f(k(E − Tk)) by showing it is a Lagrangian state
associated with the Lagrangian immersion jE .

1.4 Discussion

Let us explain more the structure of the Lagrangian states appearing in
the previous results (see also Section 2 for precise definitions). Roughly,
a Lagrangian state of M is a family (Ψk ∈ Hk, k ∈ N) which is O(k−∞)
outside a Lagrangian submanifold Γ of M and which has an asymptotic
expansion at any point x ∈ Γ of the form

Ψk(x) = km[t(x)]⊗k
(
a0(x) + k−1a1(x) + . . .) (11)

where m is some real number, t(x) ∈ Lx has norm one, and the coefficients
a0(x), a1(x), . . . belong to L′

x. We can think of [t(x)]k as an oscillatory
factor and km∑ k−ℓaℓ(x) as an amplitude, so the right-hand side of (11) is
completely analogous to the well-known WKB ansatz. Indeed, locally in a
trivialization open set for M , L and L′, sections of L and L′ can be identified
with functions, which yields t(x)⊗k = eikϕ(x) for some phase ϕ which is real
on Γ. Furthermore, t(x) and the aℓ(x) all depend smoothly on x so that
they define sections of L and L′ respectively over Γ. The section t has the
important property to be flat. Regarding the leading order term a0(x) of
the amplitude, it is often useful to think about it as a product t1(x) ⊗ ν(x)
where t1(x) ∈ (L1)x and ν(x) ∈ δx. Here δ is a half-form bundle, which can
be introduced at least locally, and L′ = L1 ⊗ δ. Then [t(x)]⊗k ⊗ t1(x) may
be viewed as a deformation of [t(x)]⊗k, whereas ν(x) is a square root of a
volume element of Γ. Indeed, Γ being Lagrangian, there is a natural pairing
between the restriction of the canonical bundle to Γ and the determinant
bundle detTΓ ⊗ C.

In our results, the Lagrangian states, which are Schwartz kernels of op-
erators, are defined on M2, with the prequantum bundle L ⊠ L. Here, the
symplectic and prequantum structures are such that the graphs of sym-
plectomorphisms are Lagrangian submanifolds and their prequantum lifts
define flat sections. In Theorem 1.1, the Schwartz kernel of the quantum
propagator is defined as a Lagrangian state associated with the graph of
the Hamiltonian flow and its prequantum lift. As was already noticed, the
prequantum lift appears with correction terms exp

(
i
∫ t

0 H
sub
r (ϕr(x)) dr

)
and
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T L1
t (x), which are the contributions of the corrections Hsub to H and L1

to L. Then the last term D
1
2
t is merely the square root of the image of the

Liouville volume form by the map M → graphϕt sending x into (ϕt(x), x).
The relation between Theorems 1.1 and 1.2 relies on the time/energy

duality. Roughly, for a time-independent operator Ĥ, we pass from the
quantum propagator (exp(−iℏ−1tĤ), t ∈ R) to the smoothed spectral pro-
jector (f(ℏ−1(Ĥ − E)), E ∈ R), by multiplying by f̂(t) and then doing a
partial ℏ-Fourier transform with respect to the variables t, E (here k plays
the part of ℏ−1). In the microlocal point of view, the variables t and E
are equivalent and we can view the quantum propagator and the spectral
projector as two facets of the same object.

In our results, this duality is expressed by the fact that the graph of ϕt
and the Lagrangian immersion jE are obtained in a symmetric way from the
Lagrangian submanifold

Γ̃ = {(t,H(x), ϕt(x), x)/x ∈ M, t ∈ R} (12)

of T ∗R × M × M−. Indeed, the graph of ϕt and the image of jE are the
projections onto M2 of the slices

Γ̃t = Γ̃ ∩ ({t} × R ×M2), Γ̃E = Γ̃ ∩ (R × {E} ×M2).

The prequantum lifts and the volume elements can also be incorporated in
this picture. In particular, we pass from Dt to D′

t by canonical isomorphisms
between volume elements of Γ̃, Γ̃t and Γ̃E .

As we will see in a next paper, the quantum propagator viewed as a
function of time is actually a Lagrangian state associated with Γ̃ (and we
will particularly focus on the computation of the precise geometric quantities
involved in its principal symbol). This statement is delicate because here we
mix real and complex variables, cotangent bundles and Kähler manifolds,
and the description of Lagrangian states is rather different in these two
settings. To give a sense to this, we will perform a Bargmann transform
so that the quantum propagator will become a holomorphic function of the
complex variable t+ iE. This point of view will be interesting, even for the
proof of Theorem 1.1, to understand the transport equation satisfied by the
leading order term of the amplitude.

1.5 Comparison with earlier results

The introduction of Fourier integral operators with application to the Schrö-
dinger equation and spectral properties of pseudodifferential operators has
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its origin in the seminal Hörmander [19] and Duistermaat-Guillemin [14]
papers, cf. the survey [17]. In these first developments, the operator under
study is the Laplace-Beltrami operator and the corresponding classical flow
is the geodesic flow.

The transcription of these results to Berezin-Toeplitz operators has been
done in the paper [3] by Bothwick-Paul-Uribe, by applying the Boutet de
Monvel-Guillemin approach of [4]. Similar results have been proved in a
recent paper [28] by Zelditch-Zhou where the application to spectral den-
sities has been pushed further. These papers both rely on the Boutet de
Monvel-Guillemin book [4]. In particular the properties of Berezin-Toeplitz
operators are deduced from the pseudodifferential calculus, and the quantum
propagator is viewed as a Fourier integral operator. From this is deduced the
asymptotics of the smoothed spectral projector on the diagonal, [3, Theorem
1.1] and [28, Theorem 2.2]. The leading order term is computed in terms of
the symbolic calculus of Fourier integral operator of Hermite type in [3], or
with a non-linear problem in Bargmann space in [28]. Another description
of the kernel of the quantum propagator associated with an autonomous
Hamiltonian was obtained by Ioos [21]; this description involves quantities
related with parallel transport in the canonical bundle with respect to a
connection induced by the tranport of the initial complex structure by the
Hamiltonian flow, and computing these coefficients appears to be quite com-
plicated in general, relatively to our formulas. In fact, in all these works the
analysis is well-understood but our main addition, apart from obtaining a
direct derivation in our context, is the precise computation of the geometric
quantities contained in the principal symbol of the kernel of the quantum
propagator seen as a Lagrangian state. In particular these quantities have
a very natural interpretation in terms of half-forms, and can be easily com-
puted for concrete examples.

The techniques that we use come from the work of the first author where
a direct definition of Lagrangian states on a Kähler manifold is introduced
[8]. As explained in the discussion following Equation (11), these Lagrangian
states locally look like WKB functions with complex phase. The microlocal
toolbox for complex phase WKB states was developed in the seminal paper
[25] in the homogeneous case. However our Lagrangian states are specific to
the Kähler setting, for instance, the states being defined directly on phase
space, there are no caustics. Moreover the relevant symplectic geometry is
not the geometry of the cotangent space of the base but the Kähler geometry
of the base itself.

In the first author’s PhD thesis [6, Section 3.5.2], it is shown that the
quantum propagator is a Lagrangian state, but without the precise compu-

11



tation of the principal symbol that we obtain here. The use of half-form
bundles for Berezin-Toeplitz operators started in [9, 10] and here we ap-
ply them to the description of the quantum propagator. The isomorphisms
(5) have been introduced in [10], [11] where their square roots are called
half-form bundle morphisms. A similar invariant appears in [28] under the
form (6). Again, we insist that the main novelty in our results is the precise
description and computation of the coefficients ρt(x) and ρ′

t(x) appearing in
Theorems 1.1, 1.2.

Whereas the relation between the quantum propagator and the Hamilto-
nian flow is a classical result, the similar statement for the smoothed spectral
projector and the Lagrangian immersion (9) seems to be new. In [3] and
[28], only the diagonal behavior of the Schwartz kernel is described. To state
our result, we will introduce a general class of Lagrangian states associated
with Lagrangian immersions.

1.6 Outline of the paper

Section 2 is devoted to time-dependent Lagrangian states, that we call La-
grangian state families. The main result is that these states provide solutions
to the Schrödinger equation with quantum Hamiltonian a Toeplitz operator
and initial data a Lagrangian state, cf. Theorem 2.6. The principal symbol
of these solutions satisfies a transport equation, that is solved in Section 2.3
(up to a rather technical part which is postponed to Section 7 for the sake
of clarity), while in Section 3, we give an elegant expression in the context
of metaplectic quantization. These results will be applied in Section 4 to
the quantum propagator, where Theorem 1.1 is proved.

In Section 5, we prove that the Fourier transform of a time-dependent La-
grangian state is a Lagrangian state as well, with an underlying Lagrangian
manifold which is in general only immersed and not embedded, cf. Theorem
5.4. The needed adaptations in the Lagrangian state definition for immersed
manifolds are given in Section 5.2. In Section 6, we deduce Theorem 1.2 on
the smoothed spectral projector.

Acknowledgments. We thank two anonymous referees for useful com-
ments.

2 Propagation of Lagrangian states
In this section, we introduce some one-parameter families of Lagrangian
states which are relevant to our setting and study how they evolve under the
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Schrödinger equation. The definition of these states is new and builds on the
standard definition of Lagrangian states introduced in [8], which we briefly
recall now. It will also be useful to have the standard definition in mind
when introducing Lagrangian states associated with immersed Lagrangians,
see Section 5.2.

Let M , L and L′ be as in Section 1.1. Let Γ be a Lagrangian submanifold
of M equipped with a flat unitary section s ∈ C∞(Γ, L). A Lagrangian state
associated with (Γ, s) is a sequence (Ψk ∈ Hk)k≥1 of the form

Ψk(x) =
(
k

2π

)n
4
F k(x)a(x, k) + O(k−∞)

where

- F ∈ C∞(M,L) is such that ∂̄F vanishes to infinite order along Γ,

- F|Γ = s and |F (x)| < 1 for x /∈ Γ,

- a(·, k) is a sequence of smooth sections of L′ → M with an asymptotic
expansion a(·, k) = ∑

ℓ≥0 k
−ℓaℓ for the C∞ topology, where each section

aℓ, for ℓ ≥ 0, is such that ∂̄aℓ vanishes to infinite order along Γ,

- the O is for the pointwise norm and uniform on M .

For any sequence (bℓ)ℓ≥0 of elements of C∞(Γ, L′), there exists a La-
grangian state Ψk such that for every ℓ ≥ 0, bℓ = aℓ|Γ. The full symbol of
Ψk is the formal series∑ℓ≥0 ℏℓbℓ, and uniquely determines Ψk up to O(k−∞).
The first term b0 in this full symbol is called the principal symbol of Ψk.

Since we will use later some generalisations of this construction, let us
briefly recall the proof, the details being in [8, Section 2]. First, since Γ
is a totally real submanifold, any smooth function of Γ has an extension
f to M such that ∂f vanishes to infinite order along Γ. The same holds
for the sections of a holomorphic line bundle. In this way we construct
F and the aℓ’s from s and the bℓ’s respectively. These sections are not
uniquely determined, but their Taylor expansion along Γ is. In particular,
a computation shows that ln |F | has a non degenerate minimum along Γ,
so modifying F away from Γ if necessary, the condition |F | < 1 on M \ Γ
is satisfied. The Lagrangian state Ψk is then obtained by projecting the
smooth section Ψ̃k = (k/2π)n/4F ka(·, k) onto Hk. We claim that Ψk =
Ψ̃k + O(k−∞). The proof of this fact was obtained by stationary phase
computations in [8]. Alternatively, this follows from the fact that ∂Ψk =
O(k−∞) and the Kodaira-Hörmander estimates [23, 18].
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Remark 2.1. The normalization factor
(
k

2π
)n

4 is somewhat arbitrary. First,
the power of 2π could be included in the symbol of the Lagrangian state.
Second, the choice of the power of k is more or less convenient depending
on the context, since Lagrangian states appear in different situations (for
instance as approximate eigenvectors for Berezin-Toeplitz operators, or as
an ansatz for the Schwartz kernel of such an operator). Here the choice of
normalization yields a L2-norm of order O(1) for the Lagrangian states.

2.1 Families of Lagrangian states

As explained above, to define a Lagrangian state, we need a Lagrangian
submanifold of M equipped with a flat unitary section of the prequantum
bundle L. Let us consider a one-parameter family of such pairs. More
precisely, let I ⊂ R be an open interval, CI be the trivial complex line
bundle over I, Γ be a closed submanifold of I × M and s ∈ C∞(Γ,CI ⊠ L)
be such that

1. the map q : Γ → I, q(t, x) = t is a proper submersion. So for any
t ∈ I, the fiber Γt := Γ ∩ ({t} ×M) is a submanifold of M ,

2. for any t ∈ I, Γt is a Lagrangian submanifold of M and the restriction
of s to Γt is flat and unitary.

Remark 2.2. a. Since q is a proper submersion, by Ehresmann’s lemma,
Γ is diffeomorphic to I × N for some manifold N in such a way that
q becomes the projection onto I.

b. Given a proper submersion q : Γ → I and a map f : Γ → M , it is
equivalent that the map Γ → I × M , x → (q(x), f(x)) is a proper
embedding and that for any t, f(t, ·) : Γt → M is an embedding. We
decided to start from a closed submanifold of I×M to be more efficient
in the definition of Lagrangian states below.

We will consider states Ψk in Hk depending smoothly on t ∈ I, so Ψk

belongs to C∞(I,Hk). Equivalently Ψk is a smooth section of CI⊠ (Lk⊗L′)
such that ∂Ψk = 0. Here the ∂ operator only acts on the M factor. Similarly,
it makes sense to differentiate with respect to t ∈ I a section of CI⊠A, where
A is any vector bundle over M .
Definition 2.3. A Lagrangian state family associated with (Γ, s) is a family
(Ψk ∈ C∞(I,Hk), k ∈ N) such that for any N ,

Ψk(t, x) =
( k

2π
)n

4
F k(t, x)

N∑
ℓ=0

k−ℓaℓ(t, x) +RN (t, x, k) (13)
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where

- F is a section of CI ⊠ L such that F |Γ = s, ∂F vanishes to infinite
order along Γ and |F | < 1 outside of Γ,

- (aℓ) is a sequence of sections of CI ⊠ L′ such that ∂aℓ vanishes to
infinite order along Γ,

- for any p and N , ∂ptRN = O(kp−N−1) in pointwise norm uniformly on
any compact subset of I ×M .

It is not difficult to adapt the argument of [8, Section 2] and to prove the
following facts. First, the section F exists. Second, we can specify arbitrarily
the coefficients aℓ of the asymptotic expansion along Γ and this determines
(Ψk) up to O(k−∞). More precisely, for any sequence (bℓ) ∈ C∞(Γ,CI ⊠L′),
there exists a Lagrangian state (Ψk) satisfying for any y ∈ Γ

Ψk(y) =
( k

2π
)n

4
sk(y)

N∑
ℓ=0

k−ℓbℓ(y) + O(k−N−1) ∀N.

Furthermore, (Ψk) is unique up to a family (Φk ∈ C∞(I,Hk), k ∈ N) sat-
isfying ∥( ddt)pΦk(t)∥ = O(k−N ) for any p and N uniformly on any compact
subset of I.

We will call the formal series ∑ ℏℓbℓ the full symbol of (Ψk). The first
coefficient b0 will be called the principal symbol.

It could be interesting to define Lagrangian state families with a different
regularity with respect to t. Here, our ultimate goal is to solve a Cauchy
problem, so we will differentiate with respect to t and in a later proof, we
will use that (k−1∂tΨk) is still a Lagrangian state family. So we need to
consider states which are smooth in t. Observe that in the estimate satisfied
by RN we lose one power of k for each derivative; this is consistent with the
fact that ∂t(F k) = kF kf where f is the logarithmic derivative of F , that is
∂tF = fF .

A last result which is an easy adaptation of [8, section 2.4] is the action
of Toeplitz operators on Lagrangian state families. Let (Tk,t) be a time-
dependent Toeplitz operator and (Ψk,t) be a Lagrangian state as above.
Then (Tk,tΨk,t) is a Lagrangian state family associated with (Γ, s) as well.
Furthermore, its full symbol is equal to ∑

ℏℓ+mQm(bℓ) where ∑ ℏℓbℓ is
the full symbol of (Ψk) and the Qm are differential operators acting on
C∞(Γ,CI ⊗ L′) and depending only on (Tk,t). In particular, Q0 is the mul-
tiplication by the restriction to Γ of the principal symbol of (Tk).
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2.2 Propagation

Consider the same data Γ ⊂ I×M and s ∈ C∞(Γ,CI⊠L) as in the previous
section. We claim that the covariant derivative of s has the form

∇s = iτdt⊗ s with τ ∈ C∞(Γ,R). (14)

Here the covariant derivative is induced by the trivial derivative of CI and
the connection of L. To prove (14), use that the restriction of s to each Γt is
flat. So ∇s = iα⊗ s, with α ∈ Ω1(Γ,R) vanishing in the vertical directions
of q : Γ → I. So α = τdt for some function τ ∈ C∞(Γ,R).

In the following two propositions, (Ψk) is a Lagrangian state family
associated with (Γ, s) with full symbol b(ℏ) = ∑

ℏℓbℓ.

Proposition 2.4. ((ik)−1∂tΨk) is a Lagrangian state family associated with
(Γ, s) with full symbol (τ + ℏP )b(ℏ), where P is a differential operator of
C∞(Γ,CI ⊠ L′).

Proof. Differentiating the formula (13) with respect to t, we obtain on a
neighborhood of Γ that

∂tΨk =
( k

2π
)n

4
F k
∑
ℓ

k−ℓ(kfaℓ + ∂taℓ)

where f ∈ C∞(I×M) is the logarithmic derivative of F with respect to time,
so ∂tF = fF . Using that ∂ and the derivative with respect to t commute,
we easily prove that ∂f and ∂(∂taℓ) both vanish to infinite order along Γ.
This shows that (k−1∂tΨk) is a Lagrangian state associated with (Γ, s).

Its full symbol is the restriction to Γ of the series ∑ ℏℓ(faℓ +ℏ∂taℓ). We
claim that f |Γ = iτ . Indeed, at any point of Γ, ∇F vanishes in the directions
tangent to M , because it vanishes in the directions of type (0, 1) and in the
directions tangent to Γt as well. So ∇F = fdt⊗ F along Γ. The restriction
of F to Γ being s, (14) implies that f |Γ = iτ .

Using similarly that at any x ∈ Γt, (TxΓt ⊗C) ⊕T 0,1
x M = TxM ⊗C, and

∂aℓ = 0 along Γ, it comes that ∂taℓ = ∇Zaℓ along Γ, where Z(t, x) ∈ T(t,x)Γ
is the projection of ∂/∂t onto T(t,x)Γ parallel to T 0,1

x M . This concludes the
proof with P the operator 1

i∇Z .

We now assume that (Γ, s) is obtained by propagating a Lagrangian
submanifold Γ0 of M and a flat section s0 of L → Γ0 by a Hamiltonian
flow and its prequantum lift. Let (Ht) be the time-dependent Hamiltonian

16



generating our flow (ϕt) and denote by ϕLt its prequantum lift defined as in
the introduction by (3). So we set

Γt = ϕt(Γ0), st(ϕt(x)) = ϕLt (x)s0(x).

Let Y be the vector field of R ×M given by Y (t, x) = ∂
∂t +Xt(x) where Xt

is the Hamiltonian vector field of Ht.
Introduce a time-dependent Toeplitz operator (Tk,t) with principal sym-

bol (Ht).
Proposition 2.5. ( 1

ik∂tΨk+Tk,tΨk) is a Lagrangian state family associated
with (Γ, s) with full symbol ℏ(1

i∇Y + ζ)b0 + O(ℏ2) for some ζ ∈ C∞(Γ).
Proof. By Proposition 2.4 and the last paragraph of section 2.1, we already
know that ( 1

ik∂tΨk + Tk,tΨk) is a Lagrangian state with full symbol

(τ(t, x) +Ht(x))(b0 + ℏb1) + ℏQb0 + O(ℏ2), (15)

whereQ is a differential operator acting on C∞(Γ,CI⊗L′). By differentiating
(3) in the definition of st and by the fact that ∇s = iτdt⊗ s, it comes that

τ(t, ϕt(x)) +Ht(ϕt(x)) = 0, (16)

so the leading order term in (15) is zero. Consider f ∈ C∞(R × M) and
compute the commutator[ 1

ik∂t + Tk,t, Tk(f)
]

= 1
ik

(
Tk(∂tf) + Tk({Ht, f}

)
+ O(k−2)

= 1
ikTk(Y f) + O(k−2).

Letting this act on our Lagrangian state family Ψk, it comes that [Q, f |Γ] =
1
i (Y f)|Γ. Since this holds for any f , this proves that iQ is a derivation in
the direction of Y so iQ = ∇Y + iζ for some function ζ.

Theorem 2.6. For any Lagrangian state (Ψ0,k ∈ Hk) associated with (Γ0, s0),
the solution of the Schrödinger equation

1
ik∂tΨk + Tk,tΨk = 0, Ψk(0, ·) = Ψ0,k (17)

is a Lagrangian state family associated with (Γ, s) with symbol b0 + O(ℏ)
where b0 satisfies the transport equation 1

i∇Y b0 + ζb0 = 0.
Since the integral curves of Y are t 7→ (t, ϕt(x)), the solution of the

transport equation is

b0(t, ϕt(x)) = e
1
i

∫ t

0 ζ(r,ϕr(x)) drT L′
t (x) b0(0, x). (18)

In the next section, we will give a geometric formula for ζ in terms of the
canonical bundle.
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Proof. The proof is the same as for differential operators (see the proof of
Theorem 20.1 in [27] for instance), so we only sketch it. We successively
construct the coefficients bℓ to solve 1

ik∂tΨk + Tk,tΨk = O(k−N−1) with
initial condition Ψk(0, ·) = Ψ0,k + O(k−N ). At each step, we have to solve a
transport equation ∇Y bN + dbN = rN with initial condition bN (0, ·) = b0,N ,
which has a unique solution. This provides us with a Lagrangian state
(Ψk) such that both equations of (17) are satisfied up to a O(k−∞). Then,
applying Duhamel’s principle, we show that the difference between ∂tΨk

and the actual solution of (17) is a O(k−∞) uniformly on any bounded
interval.

2.3 Transport equation

We will now give a formula for the function ζ and solve the above transport
equation. Essential to our presentation are line bundle isomorphisms involv-
ing the canonical bundle K of M and the determinant bundles ∧n T ∗Γt and∧n+1 T ∗Γ.

First, for any t ∈ I, let Kt be the restriction of K to Γt. Then we have
an isomorphism

Kt ≃ det(T ∗Γt) ⊗ C (19)

defined by sending Ω ∈ (Kt)x = ∧n,0 T ∗
xM to its restriction to TxΓt ⊂ TxM .

This is an isomorphism because (TxΓt ⊗ C) ∩ T 0,1
x M = {0}, which follows

from the fact that Γt is Lagrangian.
Second, Γt being a fiber of Γ → I, the linear tangent maps to the injection

Γt → Γ and the projection Γ → R give an exact sequence

0 → TxΓt → T(t,x)Γ → R = T ∗
t I → 0.

Since R has a canonical volume element, we obtain an isomorphism

det(T ∗Γt) ≃ det(T ∗Γ)|Γt (20)

defined in the usual way: for any α ∈
∧n T ∗

(t,x)Γ, one sends dt ∧ α ∈∧n+1 T ∗
(t,x)Γ into the restriction of α to TxΓt.

Gathering these two isomorphisms , we get a third one:

KΓ := (CI ⊠K)|Γ ≃−→ det(T ∗Γ) ⊗ C, (1 ⊠ α)|Γ 7→ j∗(dt ∧ α) (21)

for any α ∈ Ωn,0(M) with j the embedding Γ → I ×M . On the one hand,
KΓ has a natural connection induced by the Chern connection of K, which
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gives us a derivation ∇Y acting on sections of KΓ. On the other hand, the
Lie derivative LY acts on the differential forms of Γ, and in particular on
the sections of det(T ∗Γ). Under the isomorphism (21),

LY = ∇Y + iθ

where θ ∈ C∞(Γ) since LY and ∇Y are derivatives in the same direction Y .

Theorem 2.7. The function ζ defined in Proposition 2.5 satisfies the equal-
ity ζ = 1

2θ +Hsub|Γ.

The proof is postponed to Section 7 since it does not help to understand
what follows and it is quite technical. On the one hand, we can compute θ
in terms of second derivatives of Ht, cf. Proposition 7.1. On the other hand,
we directly compute the function ζ, cf. Proposition 7.2.

We will now give an explicit expression for the term involving ζ in the
solution (18) of the transport equation in light of Theorem 2.7. For any
t ∈ I, the tangent map to ϕt restricts to an isomorphism from TΓ0 to TΓt.
By the identification (19), we get an isomorphism Et from K|Γ0 to K|Γt

lifting ϕt. More precisely, for any x ∈ Γ0, u ∈ Kx and v ∈ det(TxΓ0), we
define Et(x)u ∈ Kϕt(x) so that

(Et(x)u)
(
(Txϕt)∗v

)
= u(v). (22)

The parallel transport T K
t restricts as well to an isomorphism K|Γ0 → K|Γt .

Define the complex number Ct(x) by Et(x) = Ct(x)T K
t (x).

Proposition 2.8. The solution of the transport equation 1
i∇Y b + ζb = 0

with b ∈ C∞(Γ, L′) is

b(t, ϕt(x)) = Ct(x)
1
2 e

1
i

∫ t

0 H
sub
r (ϕr(x)) dr T L′

t (x) b(0, x) (23)

with the square root of Ct(x) chosen continuously and C0 = 1.

Proof. In view of Equation (18) and Theorem 2.7, it suffices to deal with
the case Hsub|Γ = 0. Moreover, observe that if b̃ satisfies ∇Y b̃ = 0, then
b = f b̃ solves 1

i∇Y b+ ζb = 0 if and only if 1
iY.f + ζf = 0. So it suffices to

prove that f : (t, ϕt(x)) 7→ Ct(x)1/2 is a solution of the latter equation.
First the isomorphism I × Γ0 ≃ Γ, (t, x) → (t, ϕt(x)) sends the vector

field ∂t to Y . The solutions of L∂tβ = 0 with β ∈ Ωn+1(I × Γ0) have the
form β = dt ∧ β0 with β0 ∈ Ωn(Γ0). So the solutions of LY α = 0 with
α ∈ Ωn+1(Γ) are parametrised by α0 ∈ Ωn(Γ0) and given by

α|(t,ϕt(x)) = dt ∧ (ϕ∗
t )−1α0|x.
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Now, identify KΓ and det(T ∗Γ)⊗C through (21). Then by (22), the previous
equation becomes

α|(t,ϕt(x)) = Et(x)α|(0,x).

Second, the solutions of ∇Y α
′ = 0 with now α′ ∈ C∞(Γ,KΓ) are given by

α′|(t,ϕt(x)) = T K
t (x)α′|(0,x).

Assume that α′|(0,x) = α|(0,x); then we have α = Cα′ with C ∈ C∞(Γ)
defined by C(t, ϕt(x)) = Ct(x). Therefore

0 = LY α = LY (Cα′) = (Y.C)α′ + CLY α′ = (Y.C)α′ + C ∇Y α
′︸ ︷︷ ︸

=0

+2iζCα′

so Y.C + 2iζC = 0, hence 1
iY.C

1/2 + ζC1/2 = 0.

3 Metaplectic correction
It is useful to reformulate the previous results with a half-form bundle.

3.1 Definitions

Recall first some definitions. A square root (B,φ) of a complex line bundle
A → N over a manifold N is a complex line bundle B → N with an
isomorphism φ : B⊗2 → A. A half-form bundle of a complex manifold
is a square root of its canonical bundle. Since the group of isomorphism
classes of complex line bundles of a manifold N is isomorphic to H2(N ),
the isomorphism being the Chern class, a sufficient condition for a complex
manifold to have a half-form bundle is that its second cohomology group
is trivial. This condition will be sufficient for our purposes. Before we
discuss the uniqueness, let us explain how derivatives and connections can
be transferred from a bundle to its square roots.

Assume that (B,φ) is a square root of A. Then any derivative DB acting
on sections of B induces a derivative DA acting on sections of A such that
the Leibniz rule is satisfied

DA(u⊗ v) = DB(u) ⊗ v + u⊗DB(v), ∀u, v ∈ C∞(B)

The converse is true as well: any derivative DA of A determines a derivative
DB of B such that the above identity is satisfied. Similarly a covariant
derivative ∇B of B induces a covariant derivative ∇A of A such that ∇A(u⊗
v) = ∇B(u) ⊗ v + u⊗ ∇B(v), and the converse holds as well.
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Two square roots (B,φ) and (B′, φ′) of A are isomorphic if there exists a
line bundle isomorphism ψ : B → B′ such that φ′◦ψ2 = φ. The isomorphism
classes of square roots of the trivial line bundle CN of N are in bijection with
H1(N ,Z2). Indeed, each square root of CN has a natural flat structure with
holonomy in {−1, 1} ⊂ U(1), induced by the flat structure of CN . We easily
check this determines the square root up to isomorphism. Furthermore, the
tensor product of line bundles defines an action of square roots of CN on
the space of square roots of a given line bundle A. This makes the set of
isomorphism classes of square root of A a homogeneous space for the group
H1(N ,Z2).

3.2 Propagation in terms of half-form bundle

When M has a half-form bundle δ, we can reformulate the previous results
by introducing a new line bundle L1 such that L′ = L1 ⊗ δ. The relevant
structures of L1 and δ have a different nature:

• L1 has a natural connection, its Chern connection,

• the restriction of δ to a Lagrangian submanifold N of M is a square
root of det(T ∗N )⊗C, through the isomorphism K|N ≃ det(T ∗N )⊗C.

For instance, in our propagation results, on the one hand, the tangent map
to the flow defines a map from det(T ∗Γ0) to det(T ∗Γt), which gives the map
Et : K|Γ0 → K|Γt . We then introduce the square root of Et

[Et(x)]
1
2 : δx → δϕt(x), x ∈ Γ0

which is equal to the identity at t = 0. On the other hand, we can define
the parallel transport T L1

t from the connection of L1. Then (23) writes
equivalently

b(t, ϕt(x)) = e
1
i

∫ t

0 H
sub(r,ϕr(x)) dr T L1

t (x) ⊗ [Et(x)]
1
2 b(0, x) (24)

The transport equation (∇Y + iζ)b = 0 has a similar formulation in terms
of the decomposition L′ = L1 ⊗ δ. Here it is convenient to lift everything to
Γ. So we consider CI ⊠ L′ → Γ as the tensor product of CI ⊠ L1 → Γ and
δΓ := (CI ⊠ δ → Γ). Then the transport equation is(

(∇L1
Y ⊗ id + id ⊗LδY ) + iHsub)b = 0 (25)
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On the one hand, ∇L1 is the Chern connection of L1 with derivative ∇L1
Y

acting on C∞(Γ,CI ⊠ L1). On the other hand, LδY is the derivative of
C∞(Γ, δΓ) induced by the Lie derivative LY of Γ through the isomorphism

δ2
Γ ≃ KΓ ≃ det(T ∗Γ) ⊗ C

defined by (21). More precisely, LδY is the unique derivative such that
LY (s2) = 2s ⊗ LδY s for any section s ∈ C∞(Γ, δΓ). Then Formula (25)
follows from the relation between ζ and θ and the fact that ∇L′

Y b = (∇L1
Y ⊗

id + id ⊗∇δ
Y )b where ∇δ is the connection on δ induced by the one on K,

which satisfies ∇δ
Y = LδY − i

2θ.
Interestingly, these formulations can be used even when M has no half-

form bundle. To give a meaning to Equation (24), we need a square root δ of
the restriction of K to the trajectory ϕ[0,t](x) of x on the interval [0, t]. This
trajectory being an arc or a circle, such a square root exists. In the circle
case, there are two square roots up to isomorphism, but it is easy to see
that the right-hand side of (24) does not depend on the choice. Similarly
we can give a meaning to the transport equation (25) even when M has
no half-form bundle. Indeed a differential operator of Γ is determined by
its restriction to the open sets of any covering of Γ. And we can always
introduce a half-form bundle on the neighborhood of each point of M .

3.3 Norm estimates

The introduction of half-form bundles is also useful when we estimate the
norm of a Lagrangian state. For instance, consider a Lagrangian state Ψk(t)
as in (13). Then, by [9, Theorem 3.2],

∥Ψk(t)∥2
Hk

=
∫

Γt

Ωt + O(k−1) (26)

where Ωt is a density on Γt, which is given in terms of the principal symbol
b0(·, t) of Ψk(t) as follows. We assume that L′ = L1 ⊗ δ with δ a half-form
bundle. Again we treat δ and L1 in completely different ways. On the one
hand, L1 has a natural metric so L1 ⊗ L1 ≃ C. On the other hand, δ|Γt

being a square root of det(T ∗Γt) ⊗ C, the identity zz = |z2| induces an
isomorphism between δ|Γt ⊗ δ|Γt and the bundle |

∧
|T ∗Γt ⊗ C of densities.

So we have an isomorphism

L′|Γt ⊗ L′Γt ≃ |
∧

|T ∗Γt ⊗ C. (27)

Then Ωt is the image of b0(·, t) ⊗ b0(·, t) by (27). When M does not have a
half-form bundle, we can still define the isomorphism (27) by working locally
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and the global estimate (26) still holds. The normalization
(
k/2π

)n
4 in the

definition (13) has been chosen to obtain this formula.
Interestingly the isomorphism (21) is also meaningful for our norm esti-

mates. Indeed, consider now b0 as a section of CI ⊠ L′ → Γ; repeating the
previous considerations to (CI ⊠ δ)|Γ and (CI ⊠ L1)|Γ, we define a density
Ω on Γ such that∫

I
f(t) ∥Ψk(t)∥2

Hk
dt =

∫
Γ
(f ◦ q) Ω + O(k−1), ∀ f ∈ C∞

0 (I). (28)

where q is the projection Γ → I. This follows from (26), because Ωt is the
restriction of ι∂tΩ to Γt and a geometric version of Fubini’s theorem tells us
that

∫
I f(t)

∫
Γt

Ωt =
∫

Γ(f ◦ q) Ω.

4 The quantum propagator
In this section, we prove Theorem 1.1. We will apply the previous con-
siderations to M × M , L ⊠ L and L′ ⊠ L

′ instead of M , L and L′. The
holomorphic sections of (L⊠L)k ⊗ (L′ ⊠L

′) are the Schwartz kernels of the
endomorphisms of Hk.

The symplectic structure of M being the opposite of ω, the diagonal
∆M is a Lagrangian submanifold of M × M . There is a canonical flat
section s : ∆M → L ⊠ L defined by s(x, x) = u ⊗ u where u ∈ Lx is any
vector of norm 1. The Lagrangian states corresponding to (∆M , s) are the
Toeplitz operators up to a factor ( k

2π ) n
2 . More precisely, the Schwartz kernel

of ( k
2π )− n

2 Tk(f) is a Lagrangian state associated with (∆M , s) with principal
symbol f , where we identify the restriction of L′ ⊠ L

′ to the diagonal with
the trivial line bundle CM = L′ ⊗ L

′ by using the Hermitian metric of
L′. This applies in particular to the identity of Hk, which is the Toeplitz
operator Tk(1) and is actually a reformulation of a theorem by Boutet de
Monvel-Sjöstrand [5, 7].

By Theorem 2.6, the Schwartz kernel of the quantum propagator (Uk,t)
multiplied by ( k

2π )− n
2 is a Lagrangian state family, associated with the graph

of ϕt and its prequantum lift. Indeed, in the Schrödinger equation (1), we
can interpret the product Tk,tUk,t as the action of the Toeplitz operator
Tk,t ⊠ id on Uk,t. Its principal symbol is Ht ⊠ 1, so its Hamiltonian flow is
ϕt ⊠ id. There is no difficulty to deduce Formula (8) from Proposition 2.8
except for the relation between Et and Dt.

Lemma 4.1. Et(x, x)(idKx) = Dt(x).
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Everything relies on the identification (19) which in our case is an iso-
morphism between Kϕt(x) ⊗Kx and the space of volume forms on the graph
of Txϕt. On the one hand, the elements of Kϕt(x) ⊗ Kx will be viewed as
morphisms from Kx to Kϕt(x). On the other hand, the graph of Txϕt is
naturally isomorphic with TxM through the map ξ → (Txϕt(ξ), ξ). So (19)
becomes an isomorphism

Mor(Kx,Kϕt(x)) ≃ det(T ∗
xM) ⊗ C (29)

Now the tangent map to the flow ϕt ⊠ id sends the graph of Txϕ0 to the
graph of Txϕt, and with our identifications, it becomes the identity of TxM .
So the map Et(x, x) is the isomorphism

Mor(Kx,Kx) ≃ Mor(Kx,Kϕt(x))

otained by applying (29) with t = 0 and then the inverse of (29).

Proof of Lemma 4.1, technical part. First we claim that (29) sends a mor-
phism ψ : Kx → Kϕt(x) to

((Txϕt)∗ψ(α)) ∧ α

where α ∈ Kx is any vector with norm 1. Indeed, ψ is first identified with
ψ(α)⊗α ∈ Kϕt(x)⊗Kx. Then it is viewed as the 2n-form of TxM⊕TxM given
by p∗

1ψ(α) ∧ p∗
2α where p1 and p2 are the projections TxM ⊕ TxM → TxM

onto the first and the second factor respectively. Then it is restricted to the
graph of Txϕt which is identified with TxM via the map h(ξ) = (Txϕt(ξ), ξ),
so we obtain

h∗(p∗
1ψ(α) ∧ p∗

2α) = ((Txϕt)∗ψ(α)) ∧ α

because p1 ◦ h = Txϕt and p2 ◦ h = id.
For t = 0 and ψ = id, we have ((Txϕt)∗ψ(α)) ∧ α = α ∧ α. So we have

to prove that for β = Dt(x)(α)

((Txϕt)∗β) ∧ α = α ∧ α (30)

This is equivalent to j∗(Txϕt)∗β = α where j is the injection T 1,0
x M →

TxM ⊗ C. Since β ∈ Kϕt(x), we have π∗β = β where π is the projection of
Tϕt(x)M ⊗C onto the (1, 0)-subspace with kernel the (0, 1)-subspace. So we
have to show that (π ◦ (Txϕt) ◦ j)∗β = α. But π ◦ (Txϕt) ◦ j = (Txϕt)1,0,
so (30) is equivalent to ((Txϕt)1,0)∗β = α. And this last equality is actually
the definition of β = Dt(x)(α) .
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Theorem 4.2. Let (Tk,t, t ∈ I) be a smooth family of Toeplitz operators with
real principal symbol Ht and subprincipal symbol Hsub

t . Then the Schwartz
kernel of the quantum propagator of (Tk,t) multiplied by ( k

2π )− n
2 is a La-

grangian state family associated with (Γ, s, σ) given by Γ = {(t, ϕt(x), x)/ t ∈
I, x ∈ M} and

s(t, ϕt(x), x) = ϕLt (x) : Lx → Lϕt(x),

σ(t, ϕt(x), x) =
[
ρt(x)

] 1
2 e

1
i

∫ t

0 H
sub
r (ϕr(x)) drT L′

t (x) : L′
x → L′

ϕt(x),

where (ϕt) is the Hamiltonian flow of Ht, ϕLt its prequantum lift, T L′
t its

parallel transport lift to L′ and Dt(x) = ρt(x)T K
t (x) with Dt(x) = K(Txϕt) :

Kx → Kϕt(x).

As explained in the introduction, it is very natural to express the symbol
by using a half-form bundle:

σ(t, ϕt(x), x) = e
1
i

∫ t

0 H
sub
r (ϕr(x)) drT L1

t (x) ⊗
[
Dt(x)

] 1
2

where L′ = L1 ⊗ δ and
[
Dt(x)

] 1
2 : δx → δϕt(x) is the continuous square root

of Dt(x) equal to 1 at t = 0.

Remark 4.3. In our next paper on trace formulas, we will use the following
expression for ρt(x). Denote by γ : R → M , t 7→ ϕt(x) the trajectory of x.
Choose a unitary frame sK of γ∗K and write ∇sK = 1

i fKdt⊗ sK . Then

ρt(x) = cte
−i
∫ t

0 fK(r) dr where ctΩt(ξtu) = Ω0(ξ0u). (31)

Here u is any generator of ∧topTxM , ξt is the linear map TxM → Tγ(t)M ⊕
TxM sending X into (Txϕt(X), X), and Ωt is the 2n-form of Tγ(t)M ⊕ TxM
equal to Ωt = p∗

1sK(t) ∧ p∗
2sK(0), p1 and p2 being the projection on Tγ(t)M

and TxM respectively.
The proof of (31) is that on the one hand Et(x, x)Ω0 = ct Ωt and on the

other hand T K⊠K̄
t (x, x)Ω0 = ei

∫ t

0 fK(r)drΩt.

5 Fourier Transform of Lagrangian state families
In this section, we investigate how the (inverse) semiclassical Fourier trans-
form acts on the Lagrangian state families introduced in Section 2.1. It turns
out that the outcomes are states which are associated with Lagrangians that
are only immersed; hence we need to generalize the usual definition of La-
grangian states recalled at the beginning of Section 2.
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5.1 Symplectic preliminaries

Consider the same data Γ ⊂ I×M and s ∈ C∞(Γ,CI ⊠L) as in Section 2.1.
So we assume that Γ → I, (t, x) 7→ t is a proper submersion and that for
any t ∈ I, Γt is a Lagrangian submanifold of M and the restriction of s to
Γt is flat and unitary. Recall that ∇s = iτdt⊗ s for a function τ ∈ C∞(Γ),
cf (14). For any E in R, introduce

ΓE := {(t, x) ∈ Γ | τ(t, x) + E = 0}. (32)

Proposition 5.1. Let E be a regular value of −τ . Then

1. ΓE is a submanifold of Γ and jE : ΓE → M , (t, x) 7→ x is a Lagrangian
immersion,

2. j : Γ → R ×M , (t, x) 7→ (τ(t, x), x) is an immersion at any (t0, x0) ∈
ΓE,

3. the section sE of (jE)∗L given by sE(t, x) = eitEs(t, x) is flat.

Proof. For any tangent vectors Y1 = (a1, ξ1), Y2 = (a2, ξ2) in T(t0,x0)Γ ⊂
R ⊕ Tx0M , we have

ω(ξ1, ξ2) = a1dτ(Y2) − a2dτ(Y1) (33)

To prove this, we extend Y1 and Y2 to vector fields of Γ on a neighborhood
of (t0, x0) so that [Y1, Y2] = 0. Then, the curvature of ∇ being 1

iω, we have
that

[∇Y1 ,∇Y2 ] = 1
iω(ξ1, ξ2).

Furthermore, since dt(Yj) = aj , we have that ∇Yjs = iajτ⊗s so ∇Y1∇Y2s =
i((Y1.a2)τ + a2(Y1.τ))s− a1a2τ

2s. Using that Y1.a2 − Y2.a1 = [Y1, Y2].t = 0,
it comes that

[∇Y1 ,∇Y2 ]s = i(a2(Y1.τ) − a1(Y2.τ))s.

Comparing with the previous expression for the curvature, we obtain (33).
We prove the second assertion. Assume Y1 = (a1, ξ1) is in the kernel of

the tangent map of j : Γ → R × M , that is dτ(Y1) = 0 and ξ1 = 0. Then
(33) writes 0 = a1dτ(Y2). If a1 ̸= 0, this implies that dτ(Y2) = 0 for any
Y2 ∈ T(t0,x0)Γ, which contradicts the assumption that −E is a regular value
of τ .

This implies that jE is an immersion. It is Lagrangian by (33) again
because if Y1, Y2 are tangent to ΓE , then dτ(Y1) = dτ(Y2) = 0, so ω(ξ1, ξ2) =
0. Finally, ∇(eitEs) = (iEdt+ iτdt) ⊗ eitEs = 0 on ΓE .
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5.2 Immersed Lagrangian states

We will adapt the definition of Lagrangian states for immersed manifolds.
Suppose we have a Lagrangian immersion j : N → M , a flat unitary section
s of j∗L and a formal series ∑ ℏℓbℓ with coefficients bℓ ∈ C∞(j∗L′).

First, for any y ∈ N , we will define a germ of Lagrangian state at j(y),
uniquely defined up to O(k−∞) as follows. Let us assume temporarily that
there exists an open set V in M such that j : N → V is a proper embedding,
so that j(N ) is a closed submanifold of V . Then we can introduce sections
F : V → L and aℓ : V → L′ such that ∂F and ∂aℓ vanish to infinite order
along j(N ), j∗F = s and j∗aℓ = bℓ and |F | < 1 on V \ j(N ). These sections
are not unique but if (F ′, a′

ℓ, ℓ ∈ N) satisfy the same condition, then for any
N ,

F k
N∑
ℓ=0

k−ℓaℓ = (F ′)k
N∑
ℓ=0

k−ℓa′
ℓ + O(k−N−1) (34)

the O being uniform on any compact set of V . This follows on one hand
from the fact that |F | and |F ′| are < 1 on V \ j(N ), so that both sides of
(34) are in O(k−N−1) uniformly on any compact set of V \ j(N ). On the
other hand, the sections F , F ′ and aℓ, a′

ℓ have the same Taylor expansions
along j(N ) which implies (34) on a neighborhood of j(N ), (see [8, Section
2.2] for details).

Back to a general immersion N → M , for any y ∈ N , by the local normal
form for immersions, there exists open neighborhoods U and V of y and j(y)
respectively such that j(U) ⊂ V and j restricts to a closed embedding from
U into V . Then we can introduce the sections F and aℓ, ℓ ∈ N as above on
V , which extend the restrictions of s and bℓ to U . This defines the expansion

ΨN,k := F k
N∑
ℓ=0

k−ℓaℓ (35)

on V . If we have another set of data (U ′, V ′, F ′, a′
ℓ), we obtain another

sequence Ψ′
N,k := (F ′)k∑N

ℓ=0 k
−ℓa′

ℓ on V ′.

Lemma 5.2. For any N , ΨN,k = Ψ′
N,k + O(k−N−1) on a neighborhood of

j(y).

So we have a well defined germ of Lagrangian states at j(y).

Proof. Choose open sets W and W ′ of V and V ′ respectively such that
j(U∩U ′) = j(U)∩W = j(U ′)∩W ′. Set U ′′ = U∩U ′ and V ′′ = W∩W ′. Then
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j restricts to an embedding from U ′′ into V ′′ and j(U ′′) = j(U ′)∩V ′′. So the
restriction of F , aℓ to V ′′ gives us a new set of data (U ′′, V ′′, F |V ′′ , aℓ|V ′′).
The fact that j(U ′′) = j(U ′) ∩ V ′′ is used to see that |F | < 1 on V ′′ \ j(U ′′).
Similarly, we can restricts F ′, a′

ℓ to V ′′ and get (U ′′, V ′′, F ′|V ′′ , a′
ℓ|V ′′). The

final result follows from our initial remark (34).

Now assume that there exists a compact subset K of N such that for
each ℓ, aℓ is supported in K. Our goal is to construct a Lagrangian state
which, on a neighborhood of each x ∈ M , is equal to the sum of the local
Lagrangian states defined previously for each y ∈ j−1(x) ∩K. An essential
observation is that j−1(x) is discrete in N , so j−1(x) ∩ K is finite since K
is compact.

Lemma 5.3. There exists a family (Ψk ∈ Hk) such that for any x ∈ M and
any N :

1. if x /∈ j(K), |Ψk| = O(k−N ) on a neighborhood of x,

2. if j−1(x) ∩ K = {yi, i ∈ I}, then Ψk = ∑
i Ψi

N,k + O(k−N ) on a
neighborhood of x, where each Ψi

N,k is defined as in (35) with y = yi.

We will call (Ψk) a Lagrangian state associated with the Lagrangian
immersion j : N → M , the flat unitary section s of j∗L and the formal
series ∑ ℏℓbℓ with coefficients in C∞(N , j∗L′). (Ψk) is unique up to O(k−∞).
But unlike the case of a Lagrangian submanifold, we can not recover the
symbol ∑ ℏℓbℓ from the state by taking the restriction to j(N ) because of
the possible multiple points.

Proof. Consider an open set V of M and a finite family (Ui)i∈I of disjoint
open sets of N such that for any i ∈ I, j restricts to a proper embedding
from Ui into V and K ∩ j−1(V ) ⊂

⋃
Ui. Then introduce sections Fi, ai,ℓ on

V as above associated with each submanifold j(Ui). Consider the sum

( k
2π
)n

4 ∑
i∈I

F ki (x)
N∑
ℓ=0

k−ℓaℓ(x), x ∈ V. (36)

Then for any x ∈ V , each y ∈ j−1(x) ∩ K belongs to one of the Ui, so
on a neighborhood of x, (36) is equal to the sum of the Lagrangian state
germs associated with the y ∈ j−1(x) ∩ K. So by the previous discussion,
the state defined by (36) on a neighborhood of x does not depend, up to
O(k−∞), on the choice of V and of (Ui, Fi, ai,ℓ) for i ∈ I and ℓ ∈ N. It
is not difficult to prove that any point x of M has an open neighborhood
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V admitting a family (Ui) as above. Indeed, if we set I = j−1(x) ∩ K,
then for any y ∈ I, there exists a pair (Uy ∋ y, Vy) such that j restricts to a
proper embedding from Uy into Vy. Then we choose for V a sufficiently small
neighborhood of x in ∩yVy such that j−1(V )∩K ⊂ ∪yUy and we restrict the
Uy accordingly. So with a partition of unity, we can construct global states
Ψk ∈ C∞(M,Lk ⊗ L′), k ∈ N, such that for any data (V,Ui, i ∈ I) as above,
Ψk is equal to (36) on V up to a O(k−∞), uniform on any compact subset
of V . Since ∂Ψk is in O(k−∞), we can replace Ψk by its projection onto
Hk, which only modifies it by a O(k−∞) by Kodaira-Hörmander estimates
[23, 18].

5.3 Fourier transform

Introduce the ℏ-Fourier transform and its inverse with parameter k = ℏ−1

Fk(f)(t) =
( k

2π
) 1

2
∫
R
e−iktEf(E) dE, F−1

k (g)(E) =
( k

2π
) 1

2
∫
R
eiktEg(t) dt.

We are now ready to state the main result of this section.

Theorem 5.4. Let (Ψk ∈ C∞(I,Hk), k ∈ N) be a Lagrangian state family
associated with (Γ, s) and such that the Ψk are supported in a compact set
of I independent of k. Let −E be a regular value of τ and ΓE := τ−1(−E),
using the notation introduced before and in Equation (32).

Then F−1
k (Ψk)(E) is a Lagrangian state associated with the Lagrangian

immersion jE : ΓE → M , (t, x) 7→ x, the section sE ∈ C∞(ΓE , j∗
EL) given

by sE(t, x) = eitEs(t, x) and the principal symbol

σE(t, x) = B(t, x)− 1
2σ(t, x), (t, x) ∈ ΓE

where σ is the principal symbol of (Ψk) and B(t, x) is such that dτ ∧ α =
iB(t, x) dt ∧ α on T(t,x)Γ for any α ∈ Kx, the square root B(t, x)1/2 having
a non negative real part.

We already explained that for a non-zero α ∈ Kx, dt ∧ α is nonzero
on T(t,x)Γ. By the second assertion of Proposition 5.1, the same argument
shows that dτ ∧ α is non zero on T(t,x)Γ when (t, x) ∈ ΓE . This proves that
B(t, x) is uniquely determined and nonzero as well.

Proof. Introduce a local unitary frame u of L and write F (t, x) = eif(t,x)u(x),
where F is the section appearing in the definition (13) of Ψk. Then

F−1
k (Ψk)(E)(x) =

( k
2π
)n

4 + 1
2
uk(x)

∫
R
eikϕ(t,x)a(t, x, k) dt (37)
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with ϕ(t, x) = tE + f(t, x). The imaginary part of ϕ is nonnegative. It
vanishes when |F (t, x)| = 1, that is when (t, x) ∈ Γ. We have

ϕ′
t(t, x) = E + f ′

t(t, x), ϕ′′
tt(t, x) = f ′′

tt(t, x).

Here g 7→ g′
t means differentiation with respect to t.

We claim that the function f ′
t is an extension of τ such that ∂f ′

t vanishes
to infinite order along Γ. Indeed, by taking the restriction of ∇F to Γ, we
obtain that f ′

t = τ on Γ (see also the argument in the proof of Proposition
2.4). Then since ∂F vanishes to infinite order along Γ, the same holds for
∂f + ∂u

u , and by taking the derivative with respect to t, the same holds for
∂f ′

t .
So for (t, x) ∈ Γ, ϕ′

t(t, x) = 0 if and only if (t, x) ∈ ΓE . So by Lemma 7.7.1
in [20], if (t0, x0) /∈ ΓE , then the integral in (37) restricted to a neighborhood
of t0 is in O(k−∞) on a neighborhood of x0. So to estimate (37) on a
neighborhood of a point x0, it suffices to integrate on a neighborhood of
j−1
E (x0). Let V , U be neighborhoods of x0 and t0 ∈ j−1

E (x0) respectively
such that W = ΓE ∩ (U × V ) is a graph {(t(x), x), x ∈ jE(W ) ∩ V }.

Since f ′
t = τ and ∂f ′

t = 0 on Γ, we have f ′′
ttdt+∂f ′

t = dτ on Γ. Mutiplying
by α ∈ Ωn,0(M), we get f ′′

ttdt ∧ α = dτ ∧ α on Γ. As explained before the
proof, dτ ∧ α does not vanish on Tt,xΓ, so f ′′

tt does not vanish on ΓE and
we can apply the stationary phase lemma for a complex valued phase, see
[25, Theorem 2.3] or [20, Theorem 7.7.12]. This theorem implies that on a
neighborhood of jE(W )

( k
2π
) 1

2
∫
U
eikϕ(t,x)a(t, x, k) dt = eikϕE(x)

N∑
ℓ=0

k−ℓaE,ℓ(x) + O(k−N−1) (38)

for any N , where

ϕE(x) = ϕ(T (x), x), aE,0(x) = (−iϕ′′
tt(t, x))− 1

2a0(T (x), x),

the square root having a non negative real part. Here T : U → C is an
extension of x → t(x), that is (T (x), x) ∈ ΓE when x ∈ jE(W ). The
extension is chosen so that ϕ′

t(T (x), x) = 0, where ϕ itself has been extended
almost analytically to a neighborhood of R × M in C × M . We claim that
F (x) = eiϕE(x)u(x) is adapted to (jE(W ), sE |W ). First if x ∈ jE(W ), then

eiϕE(x)u(x) = eit(x)E+if(t(x),x)u(x) = eit(x)Es(t(x), x) = sE(t(x), x)

It remains to show that ∂F vanishes to infinite order along jE(W ). Assume
first that we can choose the section F to be holomorphic, so that ϕ′

t depends
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holomorphically on x. If furthermore we can extend ϕ′
t so that it depends

holomorphically on t, then by the holomorphic version of the implicit func-
tion theorem T is holomorphic and F is holomorphic as well. In general,
we only know that ∂F vanishes to infinite order along Γ and by adapting
the previous argument, we conclude that ∂F vanishes to infinite order along
jE(W ).

With a similar proof, we can also show that the same holds for the
coefficients: ∂aE,ℓ ≡ 0 along jE(W ) to infinite order. However, it is actually
easier to use the following fact: F k

∑
k−ℓbℓ = O(k−∞) if and only if all

the coefficients bℓ vanish to infinite order along jE(W ). And here we know
that ∂(F k∑ k−ℓaE,ℓ) = O(k−∞) by differentiating (38) under the integral
sign.

6 Spectral projector
Consider a self-adjoint operator Ĥ acting on a finite dimensional Hilbert
space E . Here it is important that Ĥ is time-independent. Introduce a
smooth function f : R → C with smooth compactly supported Fourier
transform f̂ . We will work with the unitary Fourier transform, so

f̂(t) = 1√
2π

∫
R
e−itEf(E) dE, f(E) = 1√

2π

∫
R
eitE f̂(t) dt

The second formula directly gives

f(ℏ−1(E − λ)) = 1√
2π

∫
R
e

itE
ℏ e− itλ

ℏ f̂(t) dt

with ℏ and λ two real parameters. Doing a spectral decomposition Ĥ =∑
λΠλ where the λ and Πλ are the eigenvalues and spectral projectors,

and introducing the quantum propagator Ut = exp(− itĤ
ℏ ) = ∑

e− itλ
ℏ Πλ, we

obtain

f(ℏ−1(E − Ĥ)) = 1√
2π

∫
R
e

itE
ℏ Ut f̂(t) dt

We can apply this to our Toeplitz operator (Tk : Hk → Hk) with quantum
propagator Uk,t, which gives

f
(
k(E − Tk)

)
= k− 1

2 F−1
k (f̂(t)Uk,t)(E) (39)

If E is a regular value of the principal symbolH of Tk, we deduce by Theorem
5.4 that the Schwartz kernel of this operator is a Lagrangian state. This will

31



be done in Section 6.2 and will prove Theorem 1.2 of the introduction. Before
that, we will consider the simpler case of a state (Ψk ∈ Hk):

f
(
(k(E − Tk)

)
Ψk = k− 1

2 F−1
k (f̂(t)Ψk,t)(E) (40)

where Ψk,t is the solution of ( 1
ik∂t + Tk)Ψk,t = 0 with initial condition Ψk.

6.1 Lagrangian state spectral decomposition

Let Γ0 be Lagrangian submanifold of M and let H be an autonomous Hamil-
tonian with flow ϕt. Set Γt = ϕt(Γ0) and Γ = {(t, x) | x ∈ Γt}. Let E ∈ R
be a regular value of the restriction of H to Γ0 and define

ΓE = {(t, x) | x ∈ Γt ∩H−1(E)}.

This submanifold is the same as the submanifold ΓE defined in (32) from
a (local) flat section s0 of L → Γ0, because the corresponding function τ is
the restriction of −H to Γ, see (16). Furthermore our assumption on E is
equivalent to the fact that −E is regular value of τ .

The computation of the symbol of f(k(E−Tk))Ψk in terms of the symbol
of Ψk,0 will amount to transforming a volume element of Γ0 into a volume
element of ΓE . Let us explain this. We denote by X the Hamiltonian vector
field of H and by X⊥ω

x the symplectic orthogonal of RXx in TxM . For any
(t, x) ∈ ΓE , the Lagrangian space

L(t,x) := RXx ⊕ (TxΓt ∩X⊥ω
x ) (41)

is the image of T(t,x)jE with jE : ΓE → M the projection (t, x) 7→ x. Observe
that Xx does not belong to TxΓt because E is a regular value of H|Γ0 , so it
a regular value of H|Γt as well.

Assume now t = 0 and (0, x) ∈ ΓE . Choose η ∈ TxΓ0 such that
ω(Xx, η) = 1. Then we have

TxΓ0 = Rη ⊕ (TxΓ0 ∩X⊥ω
x ), L(0,x) = RXx ⊕ (TxΓ0 ∩X⊥ω

x ).

Starting from v ∈ detTxΓ0, we write v = η∧w with w ∈ det((TxΓ0) ∩X⊥ω
x )

and we set v(0, x) := Xx∧w ∈ detL(0,x). This definition makes sense because
η is unique modulo (TxΓ0 ∩ X⊥ω

x ) so that w is unique. More generally, if
t is any real and (0, x) ∈ ΓE , we set v(t, x) := (Txϕt)∗v(0, x) ∈ detLt,ϕt(x),
viewing Txϕt as a map from L(0,x) to L(t,ϕt(x)). Equivalently

v(t, x) = Xϕt(x) ∧ (Txϕt)∗w. (42)
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We now define a map E ′
t(x) : Kx → Kϕt(x) for any x ∈ Γ0 ∩H−1(E) by

(E ′
t(x)α)(v(t, x)) = −iα(v), ∀v ∈ detTxΓ0. (43)

We define the function C ′
t by the equality E ′

t(x) = C ′
t(x)T K

t (x).
Proposition 6.1. Let (Ψk) be a Lagrangian state of M associated with
(Γ0, s0) with symbol σ0 ∈ C∞(Γ0, L

′), (Tk) a self-adjoint Toeplitz operator
with principal and subprincipal symbol H, Hsub, and f ∈ C∞(R) having a
smooth compactly supported Fourier transform.

If E is a regular value of H|Γ0, then Ψ′
k = k

1
2 f
(
(k(E − Tk)

)
Ψk is a

Lagrangian state associated with the Lagrangian immersion jE : ΓE → M ,
the flat section sE of j∗

EL given by sE(t, ϕt(x)) = T L
t (x)s0(x) and the symbol

σE ∈ C∞(j∗
EL

′) defined as

σE(t, ϕt(x)) = f̂(t)C ′
t(x)

1
2 e

1
i

∫ t

0 H
sub(ϕr(x)) dr T L′

t (x)σ0(x).

where the square root is chosen so as to be continuous and to have a positive
real part at t = 0.

Proof. The solution of the Schrödinger equation with initial condition Ψk

is described as a Lagrangian state associated with (Γ, s(t, x) = ϕLt (x)s0(x))
in Theorem 2.6. Then Ψ′

k is the k-Fourier transform of this solution (40),
so by Theorem 5.4, it is a Lagrangian state associated with the immersion
jE : ΓE → M and the section sE(t, x) = eitEs(t, x) = T L

t (x)s0(x) because
for an autonomous Hamiltonian, ϕLt = e−itHT L

t , see (3).
It remains to check the formula for the principal symbol. By Proposition

2.8, we have to prove that C ′
t(x) = Ct(x)

B(t,ϕt(x)) , that is E ′
t(x) = Et(x)

B(t,ϕt(x)) , with
B the function of Theorem 5.4. Comparing the definitions (22) and (43) of
Et(x) and E ′

t(x), we have to show that for any β ∈ Kϕt(x) and v ∈ det(TxΓ0),

B(t, ϕt(x)) = iβ(v(t, x))
β((Txϕt)∗v) (44)

where v(t, x) is as in Equation (42). Let us first explain the proof at t = 0.
Recall that v(0, x) = Xx∧w and v = η∧w. Now B is defined by the relation
dτ ∧ β = iB dt ∧ β on Γ for every β ∈ K. We have

T(0,x)Γ = R(1, Xx) ⊕ R(0, η) ⊕ {(0, ξ), ξ ∈ (TxΓ0) ∩X⊥ω
x }

and dτ(1, Xx) = 0 so that dτ(0, η) = 1 and dτ(0, ξ) = 0 for any ξ ∈ TxΓ0 ∩
X⊥ω
x by (33). So evaluating the relation dτ ∧ β = iB dt ∧ β on (1, Xx) ∧

(0, η) ∧ (0, ξ2) ∧ . . . ∧ (0, ξn) where w = ξ2 ∧ . . . ∧ ξn, we get

−β(Xx ∧ w) = iB(0, x)β(η ∧ w), (45)
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which gives (44). The proof for t ̸= 0 is exactly the same where all the
symplectic data Xx, η, w, Γ0 are replaced by their image under ϕt.

The last point is the determination of the square root: we have (C ′
t(x))1/2 =

Ct(x)1/2/B(t, ϕt(x))1/2, with C0(x)1/2 = 1 and the square root B(t, x)1/2 has
a non negative real part by Theorem 5.4. It is even positive as explained in
Remark 6.2.

Remark 6.2. The quantity C ′
0(x) = B(0, x)−1 can be computed explicitly

as follows. For x ∈ H−1(E) ∩ Γ0,

B(0, x) = ∥X1∥2 + iω(X1, X2) (46)

where Xx = X1 + X2 with X1 ∈ jx(TxΓ0) and X2 ∈ TxΓ0. Recall that
Xx /∈ TxΓ0, so ∥X1∥2 ̸= 0.

Proof of (46). We set η = ∥X1∥−2jxX1 and compute B(0, x) from (45).
On the one hand, β being a (n, 0) form, β(X1 ∧ w) = −iβ(jX1 ∧ w) =
−i∥X1∥2β(η ∧ w). On the other hand, X2 = ω(X1, X2)η plus a linear com-
bination of the ξi, so X2 ∧ w = ω(X1, X2)η ∧ w. Gathering these equalities
we get

β(Xx ∧ w) =
(
ω(X1, X2) − i∥X1∥2

)
β(η ∧ ω)

and the conclusion follows.

6.2 Smoothed spectral projector

Recall that (Tk) is a self-adjoint Toeplitz operator with principal symbol H
and subprincipal symbol Hsub and that f ∈ C∞(R) has a smooth compactly
supported Fourier transform.

Theorem 6.3. Let E be a regular value of H. Then the Schwartz kernel of
f
(
k(E−Tk)

)
is a Lagrangian state associated with the Lagrangian immersion

jE : ΓE → M2, the flat section sE ∈ C∞(j∗ΓE) and the symbol σE ∈
C∞(j∗

EL
′) given by ΓE = R × H−1(E), jE(t, x) = (ϕt(x), x), sE(t, x) =

T L
t (x) and

σE(t, x) = f̂(t)
[
ρ′
t(x)

] 1
2 e

1
i

∫ t

0 H
sub(ϕr(x)) drT L′

t (x)

where the function ρ′
t(x) is defined below.

Recall from the introduction the decomposition in symplectic subspaces
TxM = Fx⊕Gx where Fx = Vect(Xx, jxXx) and Gx = F⊥ω

x . Fx and Gx are
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both preserved by jx and we denote by K(Fx), K(Gx) their canonical lines.
We define

ΦF : K(Fx) → K(Fϕt(x)), ΦF (λx) = 2∥Xx∥−2λϕt(x) (47)

where λx ∈ K(Fx) is normalised by λx(Xx) = 1. Furthermore ΦG is the
map K(Gx) → K(Gϕt(x)) such that

ΦG(α)(ψu) = α(u), ∀α ∈ K(Gx), ∀u ∈ ∧nTxM (48)

where ψ is the symplectic map Gx → Gϕt(x) induced by Txϕt and the iso-
morphism Gx ≃ TxH

−1(E)/RXx.
Then we set D′

t(x) := ΦF ⊗ ΦG : Kx → Kϕt(x) and we denote by ρ′
t(x)

the complex number such that

D′
t(x) = ρ′

t(x)T K
t (x).

We denote by
[
ρ′
t(x)

] 1
2 the continuous square root equal to

√
2∥Xx∥−1 at

t = 0.

Proof. This is a particular case of Proposition 6.1 just as Theorem 4.2 on the
quantum propagator was a particular case of Theorem 2.6. Let us compute
the coefficient E ′

t(x)(idKx). We first describe the image (41) of T(t,x)jE :

Lt,x = R(Xx, 0) ⊕ {(Txϕt(ξ), ξ), ξ ∈ TxH
−1(E)}

and its volume (42). Set η = ∥Xx∥−2jxXx so that (Xx, η) is a symplectic
basis of Fx. Let (ξi) be a symplectic basis of Gx. Then if the volume of
diag TxM is v = vF ∧ vG with

vF = (Xx, Xx) ∧ (η, η), vG = (ξ1, ξ1) ∧ . . . ∧ (ξm, ξm),

then we have v(0, x) = −(Xx, 0) ∧ (Xx, Xx) ∧ (ξ1, ξ1) ∧ . . .∧ (ξm, ξm) so that

v(t, x) = −(Xϕt(x), 0) ∧ (Xϕt(x), Xx) ∧ (Txϕt(ξ1), ξ1) ∧ . . . ∧ (Txϕt(ξm), ξm)
= −(Xϕt(x), 0) ∧ (0, Xx) ∧ (ψ(ξ1), ξ1) ∧ . . . ∧ (ψ(ξm), ξm)

because Txϕt(ξ) = ψ(ξ) modulo RXϕt(x). Then E ′
t(x)(idKx) = ΦF ⊗ ΦG

where ΦF : K(Fx) → K(Fϕt(x)) is such that〈
ΦF , (Xϕt(x), 0) ∧ (0, Xx)

〉
= i⟨idK(Fx), vF ⟩, (49)
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and ΦG : K(Gx) → K(Gϕt(x)) is such that

⟨ΦG, (ψ(ξ1), ξ1) ∧ . . . ∧ (ψ(ξm), ξm)⟩ = ⟨idK(Gx), vG⟩, (50)

Here the pairings are based on the identifications Mor(K(S),K(S′)) ≃
K(S′) ⊗ K(S) ≃ K(S′ ⊕ S). Now ΦG is the application satisfying (48)
by Lemma 4.1. And ΦF is the application (47) by a straightforward com-
putation.

7 Proof of theorem 2.7
We choose complex normal coordinates (zi) of M centered at x0 ∈ M . So
Gij(x0) = δij and ∂ziGjk(x0) = ∂ziGjk(x0) = 0. We may assume that Tx0Γt0
is spanned by the vectors ∂zi + ∂zi , i = 1, . . . , n. Recall that Y is the vector
field (∂t, Xt) of I ×M where Xt is the Hamiltonian vector field of Ht. Since
ω = i

∑
j,kGjkdz

j ∧ dzk, we have

Xt = i
∑
j,k

(
−GjkHzj∂zk

+GjkHzk
∂zj

)
(51)

where we use the notation Hzj = ∂zjHt and Hzk
= ∂zk

Ht (and below we
will use similar notation for higher order derivatives). As explained before
the statement of Theorem 2.7, we have two derivatives ∇Y and LY acting
on (CI ⊠K)|Γ in the same direction Y , so θ := 1

i (LY − ∇Y ) is a function in
C∞(Γ).

Proposition 7.1. θ(x0) = ∑
j

(
Hzjzj (x0) +Hzjzj (x0)

)
Proof. Let α = dz1 ∧ . . .∧dzn. First we have the section 1⊠α of (CI ⊠K)|Γ
and we compute its covariant derivative with respect to Y . We claim that
this derivative vanishes at x0. This follows from the fact that |α|−2 =
detGij , so the Chern connection of K (given near x0 by the one-form ∂(|α|2)

|α|2 )
is zero at x0 because the coordinates are normal at x0. Second we have
to compute the Lie derivative with respect to Y of j∗(dt ∧ α) with j the
embedding Γ → I×M . We have LY j∗(dt∧α) = j∗(LY (dt∧α)). Furthermore
L∂tdt = L∂tdzi = 0 and by (51), we have

LXtdzj = d(Xt.zj) = i
∑
k

(Hzjzk
dzk +Hzjzk

dzk)

at x0 because the coordinates are normal. Furthermore j∗(dt∧dzk) = j∗(dt∧
dzk) at x0 by the assumption on Tx0Γt0 . Collecting all these informations,
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we deduce that

LY (j∗(dt ∧ α)) = i
∑
j

(
Hzjzj (x0) +Hzjzj (x0)

)
j∗(dt ∧ α)

at x0. The conclusion follows.

Introduce the Szegö projector Πk which is the orthogonal projector of
C∞(M,Lk ⊗ L′) onto Hk.

Proposition 7.2. For any Lagrangian state (Ψk) associated with Γt0 with
symbol σ and any function f ∈ C∞(M), Πk(fΨk) is a Lagrangian state with
symbol

f |Γt0
σ + ℏ

(1
i∇

L′
U + □f

)
σ + O(ℏ2) (52)

where U is the vector field of Γt0 such that U(x) = Xf (x) mod T 0,1
x M , Xf

being the Hamiltonian vector field of f , and □f = ∑
j(fzjzj + 1

2fzjzj ) at x0.

Proof. We already know that Πk(fΨk) is a Lagrangian state associated with
Γt0 . We compute its symbol up to O(ℏ2) at x0. It suffices to prove that this
symbol has the form

(c0 + ℏc1)f(x0)σ(x0) + ℏ(1
i∇

L′
U + □f)σ(x0) + O(ℏ2) (53)

where c0 and c1 are independent of f . Since for f = 1, we have to recover
σ(x0), c0 = 1 and c1 = 0 necessarily.

Besides our normal coordinates (zi) and our assumption on Tx0Γt0 , let us
introduce two holomorphic normal frames v and v′ of L and L′ respectively.
So |v| = e− φ

2 with φ a real function such that

φ(x0) = ∂zjφ(x0) = ∂zj∂zk
φ(x0) = 0, ∀j, k.

Similarly |v′| = e− φ′
2 with φ′ satisfying the same conditions. Notice that the

curvature of L is equal to both ∂∂φ and −iω, so ∂zi∂zjφ = Gij for every i, j.
We can assume that v(x0) = s(x0) where s is the section over Γt0 associated
with our Lagrangian state. In the rest of the proof we write all the sections
of Lk ⊗ L′ in the frame vk ⊗ v′.

More details on the computations to come can be found in [8, Sections
2.4, 2.5]. We have

Πk(x0, x) =
( k

2π
)n
ekψ(x)+ψ′(x)p(x, k) + O(k−∞)
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where ψ has the following Taylor expansion at x0: ψ(x) = ∑
β∈Nn φ0,β

zβ

β!
with the notations φα,β = ∂αz ∂

β
z φ(x0), ψ′ has the same Taylor expansion in

terms of φ′ and p(x, k) = 1 + k−1p1(x) + k−2p2(x) + . . ..
We have a similar expression for Ψk:

Ψk(x) =
( k

2π
)n

4
ekρ(x)a(x, k) + O(k−∞)

where ρ has the Taylor expansion ρ(x) = 1
2
∑
z2
i + ∑

|α|⩾3 ρα,0
zα

α! . This
follows from the fact that the section F entering in the definition (13) of Ψk

satisfies F (x0) = s(x0) so that we can assume that ρ(x0) = 0, ∇F |x0 = 0 so
that the first derivatives of ρ all vanish at x0 and finally the second order
derivatives of F at x0 depend only on the linear data at x0 [8, Proposition
2.2] which leads to the expression above.

So it comes that

Πk(fΨk)(x0) =
( k

2π
) 5n

4
∫
e−kϕf(x)a(x, k)p(x, k)D(x) dzdz + O(k−∞)

(54)

where
ϕ(x) = −ψ(x) + φ(x) − ρ(x) = |z|2 − 1

2
∑

z2
i +R(x)

with R having the Taylor expansion at x0

R(x) =
∑

α ̸=0,β ̸=0
|α|+|β|⩾3

φα,β
zαzβ

α!β! +
∑

|α|⩾3
(−ρα,0 + φα,0)z

α

α! .

Furthermore D(x) = eψ
′(x)−φ′(x) det(Gij) = 1 + O(|z|2).

By applying the stationary phase method, we obtain the asymptotic
expansion of (54). At first order:

Πk(fΨk)(x0) = C
( k

2π
)n

4
(
f(x0)a(x0, k) + O(k−1)

)
where C can be computed in terms of the Hessian determinant of ϕ at x0.
Actually it is shorter to compare with (53), which gives C = c0 = 1. We
now compute the second order term,

Πk(fΨk)(x0) =
( k

2π
)n

4
(
f(x0)a(x0, k) + k−1εk + O(k−2)

)
with

εk =
3∑
ℓ=1

(ℓ! (ℓ− 1)!)−1P ℓ((−R)ℓ−1fa(·, k)D)(x0)
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where P = ∑(∂zj∂zj + 1
2∂zj∂zj ).

Recall that we do not try to compute the terms c0 and c1 in (53), which
means that we do not take into account the terms without derivative on
a(x, k). Considering the form of the Taylor expansions of R and D given
above and the fact that ∂zi∂zjφ = Gij so that φα,β = 0 when (|α|, |β|) =
(1, 2) or (2, 1), we deduce after some investigations that we only have a single
term to consider which is k−1P (f(x)a(x, k)). Now a(x, k) = a0(x) + O(k−1)
and a0 has the Taylor expansion of a holomorphic function at x0 because
∂(a0v

′) vanishes to infinite order along Γt0 and the frame v′ is holomorphic.
So

P (fa0) = (Pf)a0 +
∑
j

(∂zjf)(∂zja0). (55)

The Hamiltonian vector field of f at x0 being ∑j(−ifzj∂zj + ifzj∂zj ) (see
(51)), and by using again that ∂a0 = 0 at x0, we obtain that the sum in (55)
is 1

iXfa0 = 1
iUa0. Now the frame v′ being normal, its covariant derivative

is 0 at x0, so ∇U (a0v
′) = (U.a0)v′.

Proof of Theorem 2.7. It suffices to consider the case where Tk,t = Tk(Ht +
k−1H ′

t) for some Ht, H
′
t ∈ C∞(M). But the symbol of k−1Tk(H ′

t)Ψk is
ℏH ′

tσ + O(ℏ2), so in fact we only need to consider the case H ′
t = 0.

By Proposition 7.2 and the proof of Proposition 2.4, the symbol of
1
ik∂tΨk + Tk(Ht)Ψk is

ℏ
(1
i (∇Z + ∇U ) + □Ht

)
σ + O(ℏ2), (56)

where Z and U are the vector fields of Γ such that Z(t, x) = ∂t mod T 0,1
x M

and U(t, x) = Xt(x) mod T 0,1
x M . Since here Y (t, x) = (∂t, Xt) is tangent

to Γ, we have Z+U = Y on Γ. By Proposition 7.1, □Ht = 1
2θ+ 1

2∆Ht with
∆ = ∑

i,j G
ij∂zi∂zj (indeed, recall that the coordinates are normal at x0 so

∆Ht(x0) = ∑
iHzizi(x0)). So the symbol in (56) is

ℏ
(1
i∇Y + 1

2θ + 1
2∆Ht

)
σ + O(ℏ2)

which concludes the proof.

A Appendix: an explicit example
Let (M,ω) = (T2 = R2/Λ, ωT2) where Λ ⊂ R2 is a lattice of symplectic
volume 4π. (M,ω) is naturally endowed with a prequantum line bundle L
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induced by the line bundle R2 ×C → R2 with connection ∇ = d− iα where
α = 2π(p dq − q dp). Here (p, q) are coordinates associated with a basis
(e, f) of Λ with ω(e, f) = 4π. In other words ω = 4πdp ∧ dq; we will also
work with the holomorphic coordinate z = p+ iq, for which ω = 2iπdz ∧ dz̄.

For k ≥ 1, the quantum space Hk = H0(M,Lk) identifies with the space
of Λ-invariant sections of R2 × C → R2, which is a space of theta functions
with dimension 2k. More precisely, the family (Ψℓ)0≤ℓ≤2k−1 given by

Ψℓ(z) = k
1
4

√
2π

exp(2iπ(ℓ+ kℑ(z))) exp
(

−πℓ2

2k

)
ϑ3(π(2kz + iℓ), exp(−2kπ))

for all z ∈ C and ℓ ∈ {0, . . . , 2k−1}, where ϑ3(w, q) = 1+2∑+∞
n=1 q

n2 cos(2nw)
is the Jacobi theta function, forms an orthonormal basis of Hk. The diag-
onal operator defined as TkΨℓ = cos(πℓk )Ψℓ for every ℓ ∈ {0, . . . , 2k − 1}
is a Berezin-Toeplitz operator with principal symbol H : (p, q) 7→ cos(2πq)
and vanishing subprincipal symbol. For more details, see [12, Section 3.1,
Appendix].

On the one hand, one can easily compute numerically the kernel of the
quantum propagator Uk,t = exp(−iktTk) by using the formula

Uk,t(w, z) =
2k−1∑
ℓ=0

exp
(

−ikt cos
(
πℓ

k

))
Ψℓ(w)Ψℓ(z) (57)

and the above expression of Ψℓ (in practice, we use the built-in commands
for Jacobi theta functions in the mpmath library for Python). On the other
hand, the coefficients in Equation (8) can be explicitly computed as follows.
Since the subprincipal symbol of Tk vanishes, it suffices to compute ρt and
ϕLt . First, the parallel transport term reads

T L
t (p, q) = exp

(
i

∫ t

0
αϕs(p,q)(X(ϕs(p, q)))ds

)
= exp (−iπtq sin(2πq))

since X(p, q) = 1
2 sin(2πq)∂p and ϕt(p, q) = [p+ t

2 sin(2πq), q], and we obtain

ϕLt (p, q) = exp(−it cos(2πq))T L
t (p, q) = exp (−it (cos(2πq) + πq sin(2πq))) .

Second, one readily checks that (T(p,q)ϕt)1,0 is the operator of multiplication
by 1 − iπt

2 cos(2πq). Since the connection on the canonical bundle is trivial,
this yields

ρt(p, q)
1
2 =

(
1 − iπt

2 cos(2πq)
)− 1

2
=

exp
(
i
2 arctan

(
πt
2 cos(2πq)

))√
1 + π2t2

4 cos2(2πq)
.
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So we finally obtain that for z = p+ iq,

Uk,t(ϕt(z), z) ∼
k exp

(
i
(

1
2 arctan

(
πt
2 cos(2πq)

)
− kt (cos(2πq) + πq sin(2πq))

))
2π
√

1 + π2t2

4 cos2(2πq)
.

(58)
We compare this theoretical equivalent with the numerical value in Fig-

ures 1, 2, 3, 4 and 5. In these computations, we fix k and (p, q), and plot
the real part of the kernel of the propagator evaluated at (ϕt(z), z) with
z = p + iq, as a function of t; we also plot the imaginary part of this ker-
nel only for one set of parameters, since the behaviour is very similar to
the one of the real part. In all these figures, the blue diamonds represent
the numerical values obtained from Equation (57) while the solid red line
corresponds to the right hand side of Equation (58). Note that a priori
the O(k−1) remainder may depend on t, so once k and (p, q) are fixed, the
approximation may become less precise as t increases. In Figures 4 and 5,
we display the behaviour at small and (relatively) large times. Investigat-
ing the k-dependent times up to which the approximation in Equation (8)
remains valid is a classical topic in the semiclassical literature, that we do
not consider in the present paper.
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Figure 1: Real part of Uk,t(ϕt(z), z) for k = 100 and z = p + iq with
(p, q) = (0.3, 0.1), for 0 ≤ t ≤ 1.
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Figure 2: Imaginary part of Uk,t(ϕt(z), z) for k = 100 and z = p + iq with
(p, q) = (0.3, 0.1), for 0 ≤ t ≤ 1.
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Figure 3: Real part of Uk,t(ϕt(z), z) for k = 50 and z = p+ iq with (p, q) =
(0.5, 0.7), for 0 ≤ t ≤ 1.
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Figure 4: Real part of Uk,t(ϕt(z), z) for k = 100 and z = p + iq with
(p, q) = (0.3, 0.1), for 0 ≤ t ≤ 0.1.
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Figure 5: Real part of Uk,t(ϕt(z), z) for k = 100 and z = p + iq with
(p, q) = (0.3, 0.1), for 0.8 ≤ t ≤ 0.9.
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