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1 Introduction

Studying the topology of real algebraic varieties is an old topic. The ancient Greek mathematicians
already were familiar with real algebraic curves, in particular with conics and quartics. In the
17th and 18th centuries, mathematicians like Descartes and Euler were also studying higher degree
curves.

One of the earliest topological results for curves of arbitrary degree is Harnack’s inequality (1876),
which states that the number of connected components of a degree d curve is at most W +1.
Harnack, who was a student of Felix Klein, proved this for plane curves [4] and Klein [I1] later
proved the general version for non-planar curves.

Curves for which the number of connected components is exactly W + 1 are called maximal
curves. These maximal curves became an interesting object to study in the following years.

For example, they occurred in Hilbert’s famous list of problems that he published in 1900. Problem
16 of this list is to study how the connected components of maximal curves are arranged, relative
to each other.

The connected components of a curve are also called ovals. Based on whether an oval ‘sits inside’
an even or odd number of other ovals, it is called an even or odd oval. Some important results that
were developed during the 20th century were constraints on the difference between the number of
even ovals P and the number of odd ovals N. The first was the Petrovskii-Oleinik inequality [16]
(1938), which gave the bound

Sd-Sd*<P-N<-d-=d+1

for a curve of degree 2d. For maximal curves of degree 2d the extra constraint P — N = d? modulo
8 holds, which was shown by Rokhlin [17].

Figure 1: The curve 0 = 23y® — ((22 + 3y? — 17)(32% + 3% — 10) + 152%)(2? + 4(y + 1)?> — 25), with 2 even
ovals and 3 odd ovals.



Some of these results were also generalised to surfaces, but it wasn’t until the second half of the 20th
century that Harnack’s inequality was generalized to arbitrary dimensions. This generalization was
found by transitioning from the direct study of real algebraic varieties to the study of R-varieties.
These are complex manifolds with an anti-holomorphic involution. The fixed locus of such an
involution is called the real locus of the R-variety. The real algebraic varieties that were studied
before correspond to the real loci of R-varieties.

The generalized version of Harnack’s inequality is called the Thom—Smith inequality and it states

> dim Hy (X5 Fa) <) dim Hy(X;Fy),
n>0 n>0

for an R-variety X, with an anti-holomorphic involution o.

The Petrovskii-Oleinik inequality was also generalized to higher dimensions, by Kharlamov [10] in
1974. This Petrovskii-Oleinik—Kharlamov inequalityholds for even dimensional R-varieties X that
are Kdhler manifolds and states

2 = h"M(X) < x(X(R)) < A™™(X),

where h™"(X) is the dimension of the Dolbeault cohomology of X in degree (n,n) and x(X(R)) is
the Euler characteristic of the real locus of X.

The Thom—Smith inequality also gave rise to the notion of a mazimal variety, which is the higher
dimensional analogue of a maximal curve. Apart from generalizing the known results for curves to
higher dimensions, another interesting problem is the construction of maximal varieties from other
(lower dimensional) maximal varieties. In 2017, Biswas and D’Mello [I] gave such a construction
using the symmetric product. The n-fold symmetric product is the quotient of the n-fold Cartesian
product by the natural action of the symmetric group S,,. Biswas and D’Mello showed that the
nth symmetric product of a maximal genus g curve, is maximal for n < 3 or n > 2g — 1. In 2018,
this was generalized by Franz [3] to all n.

In this thesis we will present proofs of most of the results mentioned above. In Chapter 2 we
start with some preliminary knowledge about the homology and cohomology of topological spaces.
Then we continue in Chapter 3 with Smith theory, which is an important tool that will be used
later on. In Chapter 4 we will introduce the main object of study, namely R-varieties and also
define the concept of a maximal variety and prove Harnack’s inequality in the meantime. Then, in
Chapter 5, we prove the Petrovskii—-Oleinik—Kharlamov inequality, which is the generalized version
of Petrovskii-Oleinkik inequality. Finally, in Chapters 6 and 7, we explore the symmetric product
as a way to construct maximal varieties.



2 (Co)homology

In this thesis we will repeatedly use the singular homology and cohomology of topological spaces.
This chapter will provide some required definitions and theorems about them.

Definition 2.1. Let A" = {(zq,...,z,) € R" | 29 + -+ + 2, = 1}. A singular n-simplez in a
topological space X is a continuous function p : A" — X. We denote the set of n-simplices on X
by Sy (X).

Definition 2.2. Let A be an abelian group. The singular chain complex C(X; A) of a topological
space X with coefficients in A is defined in index i by

Ci(X;A) = A[S;(X)] = Zajsj | J is finite, aj € A,s; € S;(X)
jeJ

The differentials of the chain complex are induced by inclusions d; : A1 — A as follows. Let
dj(]](), . ,J)Z',l) = (.%’0, e ,.%j,l, 0, J}j, e ,33‘2;1)

for 0 < j <. These inclusions induce maps d; : Ci(X;A) = Ci—1(X; A) defined by s — sodj, for
s € S;(X). The differentials
al' : Cz(X, R) — Ci_l(X; R)
are now defined by the alternating sum of these induced maps, i.e.
i

Oi(x) = (~1)d;(x).

j=0
It can be checked that this makes C a chain complex, i.e. 0; 0 9;4+1 = 0.

Definition 2.3. The ith singular homology group with coefficients in A of a topological space X
is the ¢th homology of its singular chain complex with coefficients in A:

Example 2.4.

i) Let S™ = {(z0,...,2n) € R*™ | /224 -+ 22 = 1} denote the n-sphere. For n > 0 we
have, [6, Corollary 2.14]

Z ifk=0ork=n,

0 otherwise.

Hk<Sn,Z) = {

ii) The homology groups of n-dimensional real projective space RP® = (R"*! — {0})/R* and
infinite dimensional real projective space RP> are given as follows; see [6, Example 2.42].

7 if k=0or nisodd and k =n,
H,(RP",Z) = {Z/2Z if 0 < k <n and k is odd,

0 otherwise,
7 if k=0,

Hp(RP*;Z) = ¢ Z/2Z if 0 < k and k is odd,
0 otherwise.



iii) The homology groups of n-dimensional complex projective space CP" = (C"*! —{0})/C* are
given as follows; see [0, page 140].

7Z if 0 <k <2n and k is even,

0 otherwise.

Hy(CP*"; Z) = {
Definition 2.5. Let A be an abelian group. The singular cochain complez C*(X; A) of a topological
space X with coefficients in abelian group A, is defined in index ¢ by,
C'(X; A) := Hom(C;(X; Z), A).
The corresponding differentials 6 : C*(X; A) — C*1(X; A) are defined by
6 (z) = 20041

Definition 2.6. The ith singular cohomology with coefficients in A of a topological space X is the
ith cohomology group of its singular cochain complex with coefficients in A:

HY(X;A) = H(C*(X; A)) = Ker§'/Tm 5L,

Definition 2.7. Let R be a ring. The cup product on the singular cochain complex is a bilinear
map

—U—:CP(X;R) x CUX; R) — CPT(X; R), (f,9) = fUy,
where f U g is defined on (p + ¢)-simplices s in X by

(f Ug)(s) = f(fronty(s)) - g(backy(s)),

where fronty,(s) is the p-simplex (zo, ..., zp) — s(xo,...,2p,0,...,0) and back,(s) is the g-simplex
(o, ..., xq) — 5(0,...,0,20,...,2).

This induces a bilinear map on cohomology
H?(X;R) x HY(X; R) — HPT9(X; R),
which makes H*(X; R) a graded ring. [0, Lemma 3.6]
If there is a bilinear map A x B — M on R-modules A, B and M, this map can be used instead of

the product on R, to get a cup product HP(X; A) x HY(X; B) — HPT4(X; M).

We need some more results to easily compute cohomology groups, so we will postpone examples of
cohomology to

2.1 Tor and Ext functors

Definition 2.8. Let R be a ring and M be an R-module. A resolution of M is an exact sequence
- = (Cy = (1 — Cy and an R-linear map Cy — M, such that --- - Co - C7 - Cy — M — 0 is
also exact. A resolution is called a projective resolution if all C; are projective R-modules, which
means that for each i there is an R-module D;, such that C; & D; is a free R-module.



Example 2.9. Let R = Z, M = Z/pZ for a prime number p. Then

o1

0 7z 2=2 7,
is a projective resolution of M.

Definition 2.10. Let R be a ring, and let M, N be R-modules. Let (C,dc) be a projective
resolution of M. Let (Dy,0p) = Cy ®r N, i.e. D; = C; ®r N and 0p; : D; — D;_ is given by

c®n — Jc,i(c) ®n.

Then we define Tor®(M, N) := H;(D,), which, up to isomorphism, does not depend on the chosen
resolution.

When R = Z, we can always construct a short exact sequence

¢

0 —— Ker¢p —— Z[M] M > 0,

where Z[M] is the free abelian group generated by M and ¢ : Z[M] — M is the group homomor-
phism that sends ), a; - m; € Z[M] to >, a; - m; € M. Its kernel is a subgroup of a free abelian
group and thus free itself [12, Page 880], so we have a projective resolution with C; = 0 for ¢ > 2.
Therefore TorZ(M, N) = 0 for all M, N when i > 2, so instead of TorZ, we just write Tor.

Example 2.9 (Continued). Let N =T, for a prime number ¢. Taking the tensor product with NV,
we obtain the chain complex D, = C, ® F,,

0— ZayF, 2724 78,F,.

which is isomorphic to 0 F, LN F,.

i) If p = ¢, then multiplication by p is the 0-map, in which case the homology is

F, ifi=0o0ri=1
TotZ(M,N) = H;(D,)=4{ ¢ "'~ %"= %
0  otherwise.
ii) If p # ¢, then multiplication by p is an isomorphism, so the homology is ToriZ (M,N) =
H;(D,) =0 for all i.

Definition 2.11. Let R be a ring, and let M, N be R-modules. Let C, be a projective resolution of
M. Let D* = Hom(C,, N), i.e. D' = Hom(C;, N) and 9P : D' — D*! is given by f folciti.
Then Ext’y (M, N) := H'(D*), which, up to isomorphism, does not depend on the chosen resolution.
Just as with Tor?, we have Ext},(M,N) = 0 for all M, N for i > 2, so instead of Ext, we write
Ext.

Example 2.9 (Continued). Applying Hom(—,F,) to the resolution of M = Z/pZ, we obtain the
cochain complex D* = Hom(C,,F,),

0 _— .
Hom(Z,F,) ~——% Hom(Z,F,) — 0,

0 =p

~
e

which is isomorphic to I, F,



i) If p = ¢, then multiplication by p is the O-map, in which case the cohomology is

F, ifi=0o0ri=1,

Exty(M,N) = H{(D,) =
2 ) (D-) {0 otherwise.

i) If p # ¢, then multiplication by p is an isomorphism, so the cohomology is Ext%(M ,N) =
H'(D) =0 for all i.

2.2 Universal Coefficient Theorem

For both homology and cohomology there are universal coefficient theorems, which are useful for
computing them when the coefficients are not in Z.

Theorem 2.12. Let A be an abelian group and X a topological space. Then there is a split exact
sequence

0 — H,(X;2)®7 A —— Hp(X;A) —— Tor(H,—1(X;2),A) —— 0.
In particular there is an isomorphism

Ho(X; A) = H,(X;Z) ®z A @ Tor(H,_1(X;Z), A).

Proof. See Theorem 3A.3 in [6]. O

Theorem 2.13. Let A be an abelian group and X a topological space. Then there is a split exact
sequence

0 —— Ext(Hy_1(X;Z),A) —— H¥(X;A) —— Hom(Hy(X;Z),A) — 0.
In particular there is an isomorphism

H"(X;A) = Hom(H,(X;Z),A) ® Ext(H,—1(X;Z), A).
Proof. See Theorem 3.2 in [6]. O

In order to apply the universal coefficient theorem to some examples, it is useful to have some
results on how to compute the Tor and Ext functors.

Lemma 2.14. Let A be an abelian group. Then the following hold:

i) A2 Z ®z A= Hom(Z, A),
it) 0 = Tor(Z, A) = Ext(Z, A).

Proof.
i) The isomorphisms are given by

A—=>7ZR7A: a—1R®a,
A — Hom(Z,A): ar— (n+—n-a).



ii) This follows from the projective resolution 0 — Z — Z of Z, which leads to the (co)-
chaincomplex 0 — Z — 0, which has zero (co)homology in index 1.

O]

Example 2.15. The homology groups of S™ and CP" are all Z or 0, so we can use
to compute the corresponding Ext-groups. Combined with this gives the following
computations of the cohomology of S™ and CP".

H*(S™; 7Z) = Hom(H},(S™; Z); Z) ® Ext(Hy_1(S™; 7),7)

Z ifk=0ork=
= Hy(shz) =4 T
0 otherwise.
and
H’“((C]P’”;Z) =~ Hom(H(CP"; Z); Z) ® Ext(Hy—1(CP™";Z),Z)
~ H,(CP" Z) = Z if 0 <k <2n and k is even,
0 otherwise.
Example 2.16. We can use the universal coefficient theorem to compute the cohomology

groups Hy(CP™;Fy) and Hy(RP";F3). For even 0 < k < 2n, we have Hp(CP™;Z) = 7Z and
Hy_1(CP™Z) =0, so
Hy(CP";TFy) =2 Z @z Fy @ Tor(0,Fy) = Fo.

For odd 0 < k < 2n, we have Hi(CP™;Z) = 0 and Hy_,1(CP*;Z) = Z, so
Hk-(CPn,]FQ) 20y F @ TOF(Z,FQ) = 0.

Therefore, the homology of complex projective space with coefficients in Fs is quite similar to that
with coefficients in Z:

Fy if 0 <k <2n and k is even,

H,(CP™" Fy) =
( 2) {0 otherwise.

For k =0 or k = n with n odd, we have Hy(RP™";Z) = 7Z and Hj_1(RP";7Z) = 0, hence
Hy(RP";Fy) = 7Z @7 Fy @ Tor(0,Fy) = Fo.

For odd 0 < k < n, we have H(RP";Z) = Fy and Hy_1(RP";Z) = 0, hence
H(RP";Fp) =2 Fy ®z Fy @ Tor(0,F2) = Fo.

For even 0 < k < n, we have Hi(RP";Z) = 0 and Hy_1(RP";Z) = [y, hence
Hy(RP";[Fy) = 0 ®z Fo @ Tor(Fg, Fy) = Fo,

where we use the computation Tor(Fq, Fy) = Fo of [Example 2.9
For k =n+ 1, with n odd, we have Hi(RP™;Z) =2 0 and Hy_1(RP";Z) = Z, hence

Hi(RP™";Fy) = 0 ®z Fy @ Tor(Z,Fe) = 0.

For k <0or k>n-+1,or k =n+1 with n even, we have Hi(RP";Z) = Hy_1(RP"™) = 0, hence
Hi(RP™;Fy) = 0. We conclude

Fo if0<Ek<n,

Hi (RP": [Fy) =
2 2) {0 otherwise.

8



Example 2.17. A similar computation yields

Fy if0<k<n,

0  otherwise,

H"(RP"; Fy) = {

and
Fy, if 0 <k,

H"(RP>; Fy) = )
0  otherwise.

2.3 FEuler characteristic

Definition 2.18. Let X be a topological space and K be a field. Then the Euler characteristic
X(X; K) of X with coefficients in K is defined by

X(X;K) =) (—1)F dimg Hy(X; K).
k

Note that this is only a well-defined integer if all Hy(X; K) are finite dimensional and finitely many
of them are non-zero. In particular it is well-defined if X is a finite CW-complez.

Example 2.19. Using the homology groups we computed in we find that
X(CP";Fa) =n+1

and
0 if n is odd,

1 if n is even.

X(RP";Fp) = {

The Euler characteristic is a useful algebraic invariant for topological spaces. In this section we
will prove that it is independent of the field of coefficients and it can also be defined in terms of
cohomology.

Lemma 2.20. Let K be a field of characteristic p. Let A = 7./¢'Z, for a prime number q. Then
the following hold.

i) If p=gq, then K =2 A®z K = Hom(A, K) = Tor(A, K) = Ext(A, K).
it) If p # q, then 0 2 A ®7 K =2 Hom(A, K) = Tor(A, K) = Ext(A, K).
Proof. The short exact sequence

0 7 % 7 ava, g s 0

provides a projective resolution of A, where ¢ : Z — 7 is multiplication by ¢'. Leaving out A
and applying the — ®7z K functor, we get the chain complex 0 - K — K — 0, where the map
K — K is still multiplication by ¢'. If ¢ = p, then this is the zero map, so Tor(A, K), which is the
homology in index 1 of this complex, is K. If ¢ # p, then it is an isomorphism, so the sequence
is exact and the homology is zero. Leaving out A and applying the Hom(—, K) functor, we get



the cochain complex 0 — K — K — 0, where the map K — K is again multiplication by ¢, so a
similar argument shows the statement for Ext(A, K).

If ¢ # p, then p is invertible in Z/¢'Z, so
a®b=pp la®b)=(p la®pb) =0
for all (@,b) € A x K, hence A®z K = 0. Now suppose ¢ = p. If @ = a/ in A then p' | a —a’, hence
a—a =0in K. Soarra-1:A — K is well-defined. Therefore also the homomorphisms
ARy K - K: a®br ab,
K—>A®;K: b—1®b

are well-defined. They are each others inverse, because a @b = a-1®zb = 1 ® ab. This shows that
A ®r K =2 K.

Lastly we compute Hom(A, K). A homomorphism ¢ : A — K is completely determined by ¢(1).
If ¢ # p, then ¢ # 0 in K, hence 0 = ¢(0) = ¢(q') = ¢(1) - ¢ implies that ¢(1) = 0, hence
Hom(A, K) = 0. If ¢ = p, then any ¢(a) = a - ¢(1) is well-defined, since p' = 0 in K. Therefore
Hom(A, K) = K, via ¢ — ¢(1) in this case. O

Proposition 2.21. Let X be a finite CW-complex. For any field K we have x(X; K) = x(X;Q).

Proof. Let p = char K. Write Hp(X;Z) = Z™ @ T}, where T}, is the torsion subgroup of H(X;Z),
which is of the form
Ty 2 Z/p/L& - S LD} 2,

n

for some prime numbers pi,...,p,. We can order the p; such that py = --- = ps, = p and
Dsp+1s---,Pn are all not equal to p, for some s, > 0. We then have T} ®7 K = K°® and

Tor(Ty—1, K) = K°-1 by [Lemma 2.20
By the universal coefficient theorem, we have
Hy(X,K) =2 H(X;Z) @7 K @ Tor(Hy—1(X;Z), K).

If p = 0, in particular when K = Q, then s; = 0 for all k, so then Tor(Hy_1(X;Z),K) = 0 and
Hk(X;Z) ®z K = K™ so

X(X3K) =) (1P dimg K™ =) (-1)Fdimg Q™ = x(X;Q).
k k

If p > 0, then

X(X;K) = Z(—l)k dim g (K™% @ K®-1)
k

= Z(_l)k(rk + Sk + Sk—1)
k
= X(X;Q) + Y (=1)* (s + s5-1)
k
= x(X;Q). O

10



So we can speak of the Euler characteristic x(X) of X.

Definition 2.22. The Euler characteristic in cohomology with coefficients in K is defined as

Xeo( X3 K) =) (—1)" dimgx HY(X; K).
k

Just as for the Euler characteristic in homology, this is only a well-defined if there are only finitely
many non-zero terms and they are all finite dimensional.

Proposition 2.23. Let X be a finite CW-complex. For any field K, xqo(X; K) = x(X).

Proof. By the universal coefficient theorem, we have
H*(X;K) = Ext(Hy_1(X;Z), K) ® Hom(Hy(X;Z), K).

Let p = char K and let r; and s; be as in the proof of [Proposition 2.21] Then, by

and 2220}

Ext(Hy_1(X;Z), K) & K*

and
Hom(Hy(X;Z), K) = K" t5k

so we see HF(X;K) = Kretsetse Hi(X; K). Therefore the result follows from
ftion 2.211 O

11



3 Smith theory

In this chapter X will denote a topological space and ¢ a continuous involution on X. Furthermore
we denote the fixed locus of o by X7 = {x € X | o(x) = x}. The involution ¢ induces a chain map
C(X;Fy) — Cu(X;Fq), which we will also denote by o. Now define

p=1id+o: C*(X,Fg) — O (X;F9).

Additionally we define
i:pCu(X;F) @ Cu(X7;Fa) — Cu(X;Fy),

by (a,b) — a + b, where we write b for the image of b under the natural inclusion

C*(XU;IFQ) — C*(X;IFQ).

Lemma 3.1. The following sequence of chain complexes is exact.

0 —— pCy(X;Fa) ® Cu(X7;Fy) — C(X;Fy) —2— pCyu(X;Fy) — 0.

Proof. We check the exactness degree-wise.

The surjectivity of p : Ci(X;F2) — pCi(X;Fs3) is obvious.

Suppose i(a,b) = 0, then a = b since we are working over Fo, hence
a € pCr(X;Fo) N Cr(X7;F2).

Suppose a = p(z) = x + o(x) € Cp(X7;F2). We can write x = ), s;, where the s; are distinct
k-simplices in X. If o(s;) # s;, then there must be a j, such that s; = o(s;), because otherwise
x4+ o(x) & Crp(X7;Fy). Since p(x — s; — o(s;)) = p(x), we can assume without loss of generality
that a = p(x) with x € Cx(X7;F2) and thus b = a = 2z = 0. Therefore 7 is injective.

For the exactness at Cy(X;F2), we first show Imi C Ker p by showing that poi = 0. Let
(p(a),b) € pCi(X;F2) ® Cp(X7;Fa),
then

pli(p(a), b))

(p(a) +b) = p(p(a)) + p(b)

p
pla+o(a))+b+o(b) =2a+20(a) + 20 = 0.

Now for the reverse inclusion Kerp C Imi, let s = ) .s; € Kerp. For every ¢ we either have
s; = o(s;) or s; # o(s;), so we can write

5= Z(l‘zai +yio(a;)) + ij,
( J
with x;,y; € Fp and o(bj) = b; and a; # o(a;). Note that by definition o(b;) = b, =
o(bj(x)) = bj(z) for all z € A*, so the b; are simplices b; : A¥ — X7 and > bj € Cx(X7:Fs).

12



Without loss of generality, each a;, o(a;) and b; occur only once in the sum, i.e. i # j = a; #
aj,a; # U(aj) and b; # b;. Furthermore, for all 7 we can assume that x; and y; are not both 0. Now

0=p(s) = Z((ﬂci +yi)a; + (zi + yi)o(a;)) + Z(bj + (b))
= Z((ﬂfi +yi)ai + (z; +yi)o(a;)).

Because we assumed each a; occurred only once in the sum, this implies that z; + y; = 0 for all
i. From the assumption that z; and y; are not both zero, we conclude that z; = y; = 1 for all 4.
Therefore s = i(p(3_; ai), >_; b;) and Ker p C Imi.

This shows that the sequence is exact. O

Corollary 3.2. There is a long exact sequence of homology groups

i 5
- Hy(X3Fa) 25 Hi(pCu(X3F2)) =5 Hy_1(pCi(X;3F2)) @ Hy—1(X7;F2)

B (X Fa) S

Proof. A short exact sequence of chain complexes induces a long exact sequence of its homology
groups, see Theorem 1.3.1 in [19]. Applying this on the short exact sequence from gives
the long exact sequence above. O

Corollary 3.3. For all k, the sequence
i )
0— HkH(pC*(X;IFQ))/ImpkH $ Hk(pc*(X,Fg)) @Hk(XU;FQ) i Hk-(X,]FQ) % Impk — 0

is exact. Where iy, and py, are as in|Corollary 3.3 and 8y, is the map induced by 6}, from|Corollary 3.2

Proof. The exactness in the middle two places follows immediately from Exactness
in the last place is clear, since py : Hi(X;F2) — Im py is surjective. Exactness in the first place

also follows from [Corollary 3.2 because Ker §; = Im pj,1 implies that & is injective. O

Definition 3.4. Let X be a topological space and K a field, then the kth Betti number with
coefficients in K of X is by (X; K) = dimg Hy(X; K). The sum of all Betti numbers is denoted by
bo(X; K) =), bip(X; K) and is called the total Betti number with coefficients in K.

Theorem 3.5 (Thom—Smith inequality, [I5, Theorem 3.3.6]). Let X be an n-dimensional manifold
and let o : X — X be an involution, then

b (X7 Fo) < by(X; o).

Proof. Let ap = dimy, (Im pg) and ¢ = dimp, (Hg(pCy(X;F2))). Then |Corollary 3.3 implies
0= (cp1 — ap+1) — (e + bp(X7;Fo)) + bp(X;Fa) — ag,

SO
bi(X7;F2) = b (X5 F2) — ags1 — ag + g1 — Ck
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Taking sums, we get

o0
(X Fy) = Z bp(X73F2) = > (be(X;F2) — aps1 — ak + Cop1 — k)
k=—o00 k=—o00
2n
= Z (bk(X,]FQ) — Qak) .
k=0
In particular b,(X7;Fg) < b, (X;Fy). O

For the rest of this section we let Y = X /o, equipped with the quotient topology. The subspace X7
of X can also be seen as a subspace of Y, since the points in X? only get identified with themselves
inY.

Lemma 3.6. Let K be a field. If char K = 2, then
pCL(X; K) = C4(Y, X% K) = C4(Y; K) /C.(X7; K).

Otherwise

Cu(X5 K)7 = pCu(X;5 K) = Cu(Y; K).
Here C(X; K)? denotes the subchaincomplex of Ci(X; K) that is invariant under o.
Proof. Let c € pCy(X; K), then ¢ = Y, zi(a;j+0(a;)), where z; € K—{0} and the a; are k-simplices
in X.

Define ¢y, : pCr(X; K) — Ci(Y; K), by p(a) — [a], for k-simplices a, where [a] € Ck(Y; K) is the
k-simplex that is obtained by composing a with the quotient map X — Y. We check that ¢y is
well-defined. We distinguish the cases a = o(a) and a # o(a). If a # o(a), then

pla) =a+a(a) =b+o(b) = pb)
implies that a = b or @ = o(b). In both cases [a] = [b]. If a = o(a) then
pla) =2a =b+ o(b) = p(b).

If char K # 2, then this implies a = b and thus [a] = [b]. If char K = 2, then this implies b+0(b) = 0,
ie. b=0o(b).

We see that ¢y is well-defined if char K # 2. There is an inverse of ¢, namely ¢, = [a] — p(a),
which is well-defined, because p(a) = p(o(a)). Therefore ¢ is an isomorphism. Now we need to
check that (¢p)r is a chain-map. This means we need to check that ¢;_1 09 = 9 o ¢p. The map
o is induced by a continuous map and hence is a chain-map. As a consequence, p is also a chain
map. The map induced by the the quotient map X — Y is also a chain map. Therefore,

Pe-1(0(p(a))) = ¢p-1(p(8(a)) = [0(a)] = I([a]) = O(r(p(a))-
This shows that (¢)x is an isomorphism of chain complexes.

In the other case, when char K = 2, then ¢, isn’t well-defined in general, because if ¢ and b
are different k-simplices in X7, then p(a) = p(b) = 0, but a = o(a) # b = o(b), so [a] # [b].

14



However, if we consider ¢y as a map pCx(X; K) — Ci(Y, X?; K), then it is well-defined, since then
[a] = [b] = 0 for all simplices a,b in X?. The inverse [a] — p(a) is also still well-defined, because

pla) =a+o(a) =2a =0 for @ in X?. The argument that (¢y); is a chain map is the same as for
char K # 2.

Lastly we remark that that Cy(K; X)? = pCy«(X; K) when char K # 2. The inclusion
Cu(K; X)7 C pCi(X; K)

holds, because p acts as multiplication by 2 on C,(K; X)?, hence z = p(%x) € pCy(X; K) for every
x € Ci(X; K)?. The other inclusion, Cy(X; K)? D pCy(X; K), holds because o o p = p. O

Corollary 3.7. For a field K with char K # 2 there is an isomorphism H,(X; K)? = H,(Y; K).

Proof. We can extend the map ¢y : pC(X; K)? — Ci(Y; K) in the proof above to a map
on : Cu(X: K) = Ci(Y; K),

by setting ¢ (a) = 1[a]. On homology now (1, o or)s = id and Im(vy,), C Hy(X; K)? and

(B0 ¥+ (a) = 5u(0),

which is the identity when restricted to Hy(X; K)?. This shows that we have an isomorphism
H,(X;K)? 2 H,(Y; K). O

Corollary 3.8. There is an exact sequence

oo = Hp 1 (Y, X7 Fo) — Hp(Y, X9 Fy) @ Hp(X7;Fy) — Hp(X;Fy) — Hi(Y, X7;Fg) — - -

Proof. By we have the exact sequence
HkJrl (pC(X, Fg)) — Hk(pC(X, Fz)) D Hk(XU; FQ) — Hk<X, ]FQ) — Hk(pC<X, FQ))
shows that pC(X;Fe) = C(Y, X?;Fy), from which the result follows. O

Example 3.9. If we let X = S? and o(x,y, 2) = (2,9, —2), then X = {(z,y,2) € $? | z =0} = §!
and Y = X/o = {(z,y) € R* | 2* + y* <1} = D%,

Theorem 3.5 says that b.(S';F2) < b.(S%F3). And indeed, [Example 2.4| combined with the

Universal Coefficient Theorem, shows that

I

Fy ifk=0o0rk=
Hy(S™: ) {2 i or n,

0  otherwise,
50 by (S1;Fo) = 2 = b,(S?;Fy).

We can already use the long exact sequence in homology of the pair (D?, S) to compute the relative
cohomology groups Hy(D?, S';Fy), but [Corollary 3.8| gives an alternative way to compute these
groups, given that Hy(D? S';Fy) = 0 for some k > 3.
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If we denote Ay, = Hy(D?, S1;Fy), then for k > 4 we get the exact sequence
0= A = Ap_100—0,

so A =2 Ap_q for all £ > 4. Together with the assumption A = 0 for some k& > 3, this implies that
A =20 for all k> 3.

We now have the exact sequences

0 Ay 2 Ao @ Fy > Ty = Ap 0

and

f

0 —— A30 h IFy g>A2 s A1 @ Fyg —— 0.

The map 3 restricted to 0 @ Fy is the map Ho(S';Fa) — Hy(S?;F3) induced by the inclusion
S — S2. This is not the zero map, as the class of a single O-simplex in S' is also not zero
in S2. Therefore Ker3 = Ay and Kera = Im 8 = Fy so a = 0. Since « is surjective, we get
0= Ap = Ker 8 =Im~. Since 7 is injective, we get A; = 0.

The second exact sequence now has the form

0 >A2 h>F2 g>A2 f>IF2 0.

As h is injective and f is surjective, we get 2 < |Ay| < 2, s0 Ay = Fy.

Computing relative homology groups is not the most important application of In-
stead we will use it to derive a relation between the Euler characteristics x(X) and x(X).
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4 R-varieties

Definition 4.1. An n-dimensional complex manifold is a second-countable, Hausdorff space X
with an atlas, i.e. a collection of homeomorphisms {¢; : U; — V;}, with U; C X open and V; C C"
open, such that the U; cover X and ¢; o gzbj_1| ¢;(U;nU;) 1s holomorphic for all 4, j.

Definition 4.2. Let X be a complex manifold, let U C X be an open subset and let f : U — C
be a function. Then f is called holomorphic if for any x € U there is a chart ¢ : V — W around
x, such that f o ¢~ sy is holomorphic.

Definition 4.3 ([I5, Definition 2.1.8]). Let X and Y be complex manifolds and let Ox denote the
sheaf of holomorphic functions on X, i.e. Ox(U) = {f : U — C | f is holomorphic}. Similarly,
let Oy be the sheaf of holomorphic functions on Y. Then a map F : X — Y is called anti-
holomorphic if it pulls back holomorphic functions to anti-holomorphic functions. More precisely,
F is anti-holomorphic if it is continuous and for every open V- C Y and f € Oy (V) we have
conjof o F € Ox(F~1(V)), where conj: C — C is complex conjugation.

Proposition 4.4. Let X and Y be n- and m-dimensional complex manifolds, respectively. Let
F: X =Y be a continuous function and let conj* : C¥ — CF denote component-wise complex
conjugation. Then the following are equivalent.
i) F is anti-holomorphic.
i) For all charts ¢ : U — U of X and ¢ : V — V of Y such that F(U) C V, there is a
vector-valued, holomorphic function g : Conj”(ﬁ) — V such that ¥ o F o ¢! = g o conj”.
i11) For every x € X, there is a chart ¢ : U — U around x and a chart ¢ : V =V around F(z),
such that F(U) CV andpoFo¢~! = goconj”, for some holomorphic, vector-valued function
g :conj*(U) = V.

Proof. We first note that a function f : C* — C? is holomorphic <= conj’of o conj® is holomor-
phic. For the implication to the right we note that f is of the form

f(z) = (Z al,z‘zl> )
1

7

as f is holomorphic. Here we use multi-index notation, i.e. z = (z1,...,24),I = (k1,..., k) and

I_ _k k
2=yt

Therefore conj® of o conj® is of the form

I i

and thus also holomorphic. The implication to the left now follows, since

f =conj™ oconj™ of o conj™ o conj” .

i) = ii): Let ¢ : U — U and ¢ : V — V be charts such that F(U) C V. Then o) € Oy (V). Since
F is anti-holomorphic, conj ot o F' is holomorphic. In particular, this means that conjow o Fo ¢!
is holomorphic. Let g = 1) o F o¢~! oconj”, then conjotpo F o ¢! = conjogoconj” is holomorphic,
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so g is holomorphic and ¥ o F o ¢~ = g o conj”.

1) = 411): For any charts U and V around z and F(z) respectively, we can restrict U such that
F(U) CV and then apply ).

iii) = i): Let f € Oy(V), let x € F~Y(V) and let ¢ : U — U be a chart around z. By assumption
there exists a chart ¢ : V — V around F(z), such that F(U) CV and ¢ o F o ¢! = goconj”. By
restricting both U and V we can assume that F(U) C V C V. Since f is holomorphic at F(z) € V,
the composition f o1~! is holomorphic. Therefore

conjofoFqu*l:conjofoq/zflowoFoqb*l:conjofowflogoconjn

is holomorphic. This shows that conjof o F' is holomorphic at . This holds for any x € F~1(V),
so conjof o F' is holomorphic and F' is anti-holomorphic. ]

Definition 4.5 ([15, Definition 2.1.10]). A real structure on a complex manifold X is an anti-
holomorphic involution o : X — X.

Example 4.6. Complex conjugation conj : C — C is a real structure on C. [Proposition 4.4] says
that conj is anti-holomorphic, since conj = id o conj and it is also clearly an involution.

Example 4.7. Complex conjugation also induces a real structure on the projective space CP™,
o([zg:..ixn)) = [To: ..ot Tpl.

It is clear that it is an involution. To check that it is anti-holomorphic. we look at the standard
affine charts

i) Ti—1 Li+1 i
GiUi={[zo:...:xn) |2 #0} = C" [xp: ... i 2p] — (,..., = ,...,n) :
T €y T Xy
We note that o(U;) = U; and ¢; 000 ¢ ' = (21, ..., 20) +> (Z1, ., Zn), 1€ 500 0 ¢ = idoconj”.
By [Proposition 4.4} ¢ is anti-holomorphic and thus is a real structure on CP”. This real structure
is called the standard real structure on CP".

Example 4.8. Another real structure on CP! is

7([zo : 21]) = [71 : =o)-

It is again clear that this is an involution. To check that it is anti-holomorphic, we proceed as
above, but now
7(Ur) = Uy,
T(Uy) = Uy,
gooT o =2 do(r([z:1])) = do([1: —2)) = 2,
proTogyt =2 —Z.
So 7 is a real structure on CP'. We will later see that this real structure is not isomorphic to the

standard real structure. This shows that this real structure is not isomorphic to the standard real
structure, because the standard real structure on CP' does not have an empty real locus.
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Example 4.9. Let L = Z+iZ and let X be the complex torus C/L. Note that conj(L) = Z—iZ = L,
so conj induces a well-defined involution ¢ : X — X. Let 7 : C — X, z + [z] be the quotient map.
Then for any z € C there is an open U > z, such that 7 : U — w(U) is a homeomorphism and
7T_1|7r(U) is a chart of X. For such U we have

-1

(mmtoocom)|y=2~2%:U — conj(U),

so ¢ is anti-holomorphic.

Definition 4.10. An R-variety (X, o) is a complex manifold X equipped with a real structure o.
If X is a complex curve, i.e. a complex manifold of dimension 1, (X, o) is called an R-curve. The
real locus of X, which is denoted by X (R) or X7, is the fixed locus of o,

XR):={zeX|o(zx) =1z}
Example 4.6 (Continued). The real locus of C with complex conjugation is R.

Example 4.7 (Continued). The real locus of complex projective space CP™ with real structure
induced by complex conjugation, is the real projective space RP™.

Example 4.8 (Continued). The real locus of CP! with the alternative real structure from

ample 4.8|is empty, because if [z : z1] = [#1 : —Tg| there must be a A # 0 with g = A\z; and
x1 = —ATg. In particular we have 1 = —A\x; = — || z1, so we must have |A\| = —1, which is a
contradiction.

Example 4.9 (Continued). On the complex torus X = C/(Z + iZ), we have

olle+iy]) =[x +iy] < [z+iy|=[x—iy] < 2iye€Z+iZ < y €< %Z.
Hence

X(R) :{[a:+%iy] |z eRycZ} = {[z]| xER}I_I{[x—l—éi] lzeR} S LS

Proposition 4.11. The real locus of an n-dimensional R-variety (X, o) is either empty or it is an
n dimensional real manifold.

Proof. If X(R) is not empty, we construct an atlas for X (R) by giving a chart around every point
p € X(R). Without loss of generality o(U) = U, because we can look at U N o(U), which is not
empty, since p € X(R). Let ¢ : U — V be a chart of X, centered at p € X(R), i.e. ¢(p) =0. We
write

T=¢doood = (T1y ey Ton) 1 V=V,

where we view V as a subset of R?" via zj = xj +1y;. Since o is anti-holomorphic, each 7o;_1 +i7y;
is a power series in Z = (21, ..., Z,) 7, S0 every 7; is a power series in & = (Z1,Y1, ., Tny Yn) " -

The Jacobian A = Jy7 of 7 at 0 is determined by the coefficients of the linear terms of the 7;, i.e.
we can write
7(Z) = AZ + higher order terms.

Note that the constant term is 0, because o(p) = p, hence 7(0) = 0. Since o is an involution, we
have
# = 7(7(%)) = 7(AZ + higher order terms) = A%Z + higher order terms.
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Filling in #; = (0, ...,0,2,0,...,0)T, with  at the jth position, we find z = a;jz + 2%f; ;(x) and
0=a;;r+ :U2f,-7j (x) for i # j, for all x € C, where a; ; the element in the ¢th row and jth column
of A% and 2?f;; are the higher order terms of 7; o 7(%;). We must have f;;(z) = 17% and
fij(x) = % for ¢ # j, but these are not holomorphic in 0, except when a;; = 1 and a;; = 0,
in which case fj; = fi; = 0. This is true for all j and all i # j, so A*> = I. In particular A is
diagonalizable with eigenvalues +1.

Let ¢, = ay +1iby, be the coefficient of zj, = x1, —1yy, in m9j_1 +i72;. We can compute the coefficients
of x3, and yj, in 7951 and 7yj,

ez = (ar + b)) (xr — iyr) = apxy + brpyr + i(bpxr, — arys).

Therefore A must be of the form

A= <ar,k br,k > c R2n><2n
r.k

br,k —Ark
. f(a b r\ [c a b -y\ _(d . T .
Note that if (b —a> (y) = (d)’ then (b —a) (az ) = (—c)' So if (x1,y1, ..., TnyyYn)® is an
eigenvector of A corresponding to the eigenvalue 1, then (—yi, 21, ..., —yn, T5)’ is an eigenvector of

A corresponding to the eigenvalue -1. This gives a bijection between the eigenspaces belonging to
1 and -1, so they both have dimension n. In particular, the rank of A — I is n.

The intersection U N X (R) corresponds to the fixed locus of 7, which can also be written as the zero
locus of 7 —id, which has Jacobian A —1I at 0. This Jacobian has rank n, so by the inverse function
theorem, there is an open subset W C V around 0 that is homeomorphic to an open subset of R™.
We use ¢[y-1() ¢~ (W) — W as a chart around p.

The charts around different points are compatible, because the original charts are compatible. [

For connected, compact, complex manifolds of dimension one, which are also called compact Rie-
mann Surfaces, it is well-known that they can be classified topologically by their genus. That is,
as a topological space any compact Riemann Surface is homeomorphic to a g-holed torus, for some
g, which is called the genus of the space [0, Section 2.4.A]. The following theorem gives constraints
on the real locus of genus g R-curves.

Theorem 4.12 (Harnack’s inequality, [I5, Theorem 2.7.2]). Let (X, o) be a connected, compact
R-curve of genus g, i.e. (X,0) is an R-variety and X is a connected, compact curve of genus g.
Let s be the number of connected components of X(R). Then s < g+ 1.

We can prove Harnack’s inequality using the Smith theory from the previous chapter. We first note
that an R-variety is a special case of a topological space with a continuous involution, so we have
the following corollary from Smith theory.

Corollary 4.13. For an R-variety (X, o), we have

b (X (R); F2) < bg(X;Fa).

Proof. This is an immediate consequence of [Theorem 3.5| and the fact that X (R) = X°. O
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This corollary is essentially a general version of Harnack’s inequality, as we can see in the following
proof.

Proof of [Theorem /.13, The real locus is a compact manifold of real dimension 1, so it is the disjoint

union of s circles,

which has homology
Fo)® if k=0,1,
Hy (X (R);Fy) = { 2 |
0 otherwise.

We also know that the homology of a genus g curve is given by

Fy if k=0,2,
Hi(X;Fo) = (F)¥ if k=1,

0 otherwise.

Now we can apply to get
25 = b (X (R); F2) < bi(X;F2) = 2 + 2g,

hence s < g+ 1. O

We can also prove Harnack’s inequality in a more geometric way when X is a plane curve.

Definition 4.14. An R-curve X is called a plane R-curve if X C CP? is a plane projective curve
and its real structure is the one inherited by the standard real structure on CP?. Equivalently, X is
given by the zero-set of a homogeneous real polynomial F' € R[X, Y, Z]; see [15, Proposition 2.1.4].

Definition 4.15. The fundamental group of RP? is Z/27Z, so every closed loop in RP? is either
contractible or homotopic to the line {[z : 3 : 0] € RP?} = RP!. In the first case the loop is called
an oval and in the second case it is called a pseudo-line.

Lemma 4.16.

i) The connected components of the real locus of a plane R-curve of even degree are all ovals.
i1) The connected component of the real locus of a plane R-curve of odd degree are all ovals,
except for one, which is a pseudo-line.
i11) Any curve intersects an oval in an even number of points, counted with multiplicity.
iv) Given %(d +2)(d + 1) — 1 points in RP2, there is a unique degree d smooth projective plane
curve through these points.
v) A degree d curve has genus 3d(d —1).

Proof.

i)-iii) See [I5, Lemma 2.7.8]
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iv) A general degree d curve is given by > ., ., AapeXYPZ¢ = 0. In total we need to find
k= (d;rQ) = 1(d+2)(d+1) coefficients. Filling in the coordinates of k — 1 points, gives k — 1
linear equations for the coefficients. These equations are linearly independent if the k£ — 1
points are different, so they give a rank k — 1 system of equations. This gives the coefficients,

up to a constant factor, which determines a unique curve.
v) See [15, Theorem 1.6.17].

O]

Geometric proof of [Theorem .13 A degree 1 curve has genus 0 and the real locus is a line, which
has 1 < 041 connected component. A degree 2 curve also has genus 0. The connected components
of its real locus are all ovals. If there is more than 1 you can choose two points on different ovals.
The line between these points then must intersect the curve in at least 4 points, counted with
multiplicity. This is a contradiction with Bézout’s theorem, which says that a line intersects a
degree 2 curve in 2 points.

For curves of higher degree we can do something similar. Let C be a plane R-curve of degree
d > 2, which has genus g = (d — 2)(d — 1). Suppose C(R) has more than g + 1 connected
components. Then at least g + 1 of them are ovals. Choose one point on each of these g + 1 ovals
and %d(d —1) —1—(g+ 1) on the remaining connected components. We can construct a degree
d — 2 curve through these %d(d — 1) — 1 points. Since this curve must intersect each of the g + 1
ovals in an even number of points, it must intersect them in at least 2, so it intersects C' in at least

1
29—1—2+§d(d—1)—1—(g+1)

_ %d(d— 1) +g

_ %(d(d— 1) + (d— 1)(d — 2))
_ %(d— 1)(d+d—2)
=(d—1)?

points. Bézout’s theorem says that it can intersect in at most d(d — 2) < (d — 1), which is a
contradiction, so C(R) can have at most g + 1 connected components. O

Definition 4.17. An R-curve X of genus g is called a mazimal curve or M-curve if Harnack’s
inequality is an equality, i.e. if the number of connected components of X (R) is equal to g + 1.

Example 4.18. CP! is a genus 0 curve. With the standard real structure, its real locus is RP!,
which is non-empty and connected, so it has 1 = g + 1 connected component. Therefore CP! is a
maximal curve.

Example 4.19. The complex torus C/(Z + iZ) has genus g = 1. With the real structure from
we saw that its real locus is the disjoint union of two circles, so it has 2 = g + 1

connected components and is thus a maximal curve.

Example 4.20. We can also equip the complex torus C/(Z + iZ) with the involution [z + yi] —
[y + zi]. This locally is z — iz, so it indeed is a real structure. Its real locus is

{z+vil |z,y eRe —y =€ Z} 2 {[x +zi] |z e R} = ',
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Figure 2: Sketch of a genus 2 surface with a real locus consisting of 3 connected components.

-2 -1 0 1 2

-2

Figure 3: The curve 0 = (2% — 2)? + (y? — 2)? — 1 with genus (4 —2)(4 —1)/2 = 3.

which only has one connected component, so with this involution the complex torus is not a maximal
curve.

In the proof of we see that being an M-curve is equivalent to the Thom—Smith

inequality being an equality. This motivates the definition of a generalization of M-curves.

Definition 4.21. An R-variety (X, o) is called a mazimal variety or M-variety if the Thom—Smith

inequality (Corollary 4.13)) is an equality, i.e. if by (X (R);Fo) = b, (X;F2).
Example 4.22. Using the homology groups computed in we see that
by (CP"; Fo) = b, (RP"; Fa) = n + 1,

so n-dimensional complex projective space with the standard real structure is a maximal variety
for any n.
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5 Petrovskii—Oleinik—Kharlamov inequality

In this chapter we will prove the Petrovskii—Oleinik—Kharlamov inequality. The proof relies on the
Lefschetz fixed point theorem and on the Hodge decomposition. We will not prove the latter, but
only give the required definitions to state the theorem.

Theorem 5.1 (Lefschetz fixed point theorem for involutions, [15, Theorem 3.4.23]). Leto : X — X
be an involution on a topological space X, then o induces linear maps Ty, : Hi(X;Q) — Hi(X;Q)
for all k, which satisfy

X(X7) =Y (1) Te(Ty).
k
Proof. The exact sequence of implies that
X(Y, X7) 4+ x(X7) = x(X) + x (Y, X7) = 0,

where Y = X/o and

X(Y, X7) = (—1)" dim Hy (Y, X7; Q)
k>0

is the relative Euler characteristic of the pair (Y, X?). Therefore,
X(X) = x(X7) 4 2x(Y, X7).
The exact sequence of the pair (Y, X?) implies that
X(Y; X7) = x(Y) + x(X7) = 0.
Hence x(X) = x(X7) +2(x(Y) — x(X7)) = 2x(Y) — x(X7), i.e.
X(X7) = 2x(Y) = x(X).

The T} are themselves involutions, i.e. T,f = I, so they are diagonalizable. The eigenvalues A
of T, are +1, since for an eigenvector v we have T, ,3(21) = A0 = v. Without loss of generality

T = <IS OI) and Tr(Ty) = a — b. Where a = dim Hy(X; Q)" and b = dim Hy(X;Q) — a. So
—4p

Te(Ty) = 2dim Hy (X; Q)% — Hy(X;Q) = 2dim Hy(Y; Q) — Hy(X; Q),
where the second equality follows from Taking alternating sum we get

Y DR T(TE) = 2x(Y) — x(X) = x(X7).
k

O

Remark 5.2. The previous theorem is a specific version of the more general Lefschetz fixed point
theorem, which states that if f : X — X is a continuous map, then it has a fized point if
Zk(—l)kTr(Tk) # 0, where Ty, : H(X;Q) — Hp(X;Q) is the map induced by f. [14, Theo-
rem 2/

Remark 5.3. Because the Euler characteristic can also be computed using cohomology and does
not depend on the field of coefficients, we can also use the maps that are induced by o on cohomology
T, : H*(X;C) - H*(X;C).
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5.1 The Hodge decomposition

The second important prerequisite for the proof of the Petrovskii-Oleinik—Kharlamov inequality
is the Hodge decomposition. We first need some more definition before we can state what Hodge
decomposition is.

Definition 5.4. Let X be an n-dimensional complex manifold. Let T'X denote the real tangent
bundle of X and T*X the real cotangent bundle. If z; = z1 + iy, ..., 2, = T, + iy, are local
coordinates at p € X, then %, a%i is a basis of T)X and dw;,dy; is a basis of T,;X. These also
form a basis of the complexified (co)tangent spaces, but additionally

0

aZj

0 .0 0 1,0 .0

1
=35, oy, 5~ 25, Ty,

form a basis of the complezified tangent space Tc X = TX ®r C and similarly dz; = %(dxj — idy;)
and dz; = %(d:cj + idy;) form a basis of the complexified cotangent space T X =T*X @g C.

Definition 5.5. The exterior algebra \*V of a real or complex vector space V' is the quotient of
the graded R- or C-algebra T(V) = ;> V@ by the two-sided ideal generated by elements of
the form z ® x.

The kth exterior power /\k V of a vector space V' is the degree k part of T(V'). The equivalence
class of 1 ® ... ® x,, is denoted by x1 A ... A x,,. Since

rQy=zQ (r+y)—zQ
=z+yR@+y) —yR@x+y —rzQx
=@+y @ty —yr-yy -z,

we have z Ay = —y A x.

Let X be a manifold, then for a vector bundle £ — X, its kth exterior power /\k FE is defined by
(N*E), = \'E, for all p € X.

Definition 5.6. A complex differential k-form is a C'*°-section of the vector bundle /\k T¢ X, where
T¢X is the complexified cotangent bundle of X. Locally a differential k-form « is of the form

o= Zogdx]l A...Ndxp,,
I

where I = (I1,...,I}), all I; are different and the a; are smooth functions. We denote the set of
complex differential k-forms on X by A*(X).

Another way to describe k-forms is as smooth sections of (73X ), that are alternating k-linear
maps at each point.

Definition 5.7. The exterior derivative d : A*(X) — A¥F1(X) is defined by

d (Zald;ph AL A dxlk> - Zz%dmi Ndxp A ... Ndxg,.
I i v

I
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Definition 5.8. The exterior derivative d satisfies dod = 0, so it makes A*(X) a cochain complex.
The cohomology of this complex is called the de Rham cohomology with coefficients in C and is
denoted by

Ker (d : A¥(X) — AM1(X))

Hi%(X;C) = Im (d : AF1(X) = AR(X))

Theorem 5.9 (de Rham). De Rham cohomology with coefficients in C is isomorphic to singular
cohomology with coefficients in C:

HE:(X;C) = H*(X;C).

The isomophism is given by [o] — [c— [ a].

Proof. See [13, Theorem 18.14]. O

Definition 5.10. A Riemannian metric on a smooth manifold X is a section g of the vector bundle
T*X @ T*X, such that g, : T,X ® T, X — R is a scalar product for every p € X.

Definition 5.11. An almost complex structure I on a real manifold X is a morphism of vector
bundles I : TX — TX, such that I? = —id.

Definition 5.12. A complex manifold with a Riemannian metric is called a Hermitian manifold
if the Riemannian metric is compatible with its almost complex structure, i.e. g(I;(v), Iz(w)) =
gz (v, w). In this case we define the fundamental form w by w,(v,w) = g.(I.(v),w). By extension
of scalars, we can view g and w as sections of T3 X ® T3.X.

Definition 5.13. On a complex manifold we have the canonical almost complex structure 8%1- — 6%2-
and 22~ = —-2 . On the cotangent bundle this induces dz; — dy; and dy; — —dxz;. On the

9y Ox;
complexified cotangent bundle, I acts via I(dz;) = idz; and I(dz;) = —idZ;.

Definition 5.14. Let X be a complex manifold and let (z1, ..., z,) be local (holomorphic) coordi-
nates, then we call a k-form a form of type (p,q), or simply a (p, g)-form, if it is of the form

p+q’

Zajdzh VARAN dZ[p A d?[erl A...NdzZ;
1

We denote the set of forms of type (p,q) on X by AP4(X). Clearly we have a decomposition
AMX) = @y g gor API(X).

In this situation the exterior derivative decomposes as d = 0 + 0, where

O(fdxziy N ... Ndzy,) = Z %dzi Ndzp A ... ANdxg,

and
O(fdwiy A .. Ndzy) = %dz Adzg, A ... Ndz,.

They satisfy 0 0 9 = 0 and 0 o 0 = 0, and when restricted to AP4(X) they give C-linear maps
9 : API(X) — APTLI(X) and 0 : AP9(X) — APITH(X).
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Definition 5.15. In particular we have a cochain complex AP*. The cohomology of this complex
is called the Dolbeault cohomology, which is denoted by

_ Ker (9: A(X) — APIHL(X))

C Im (0 APTL(X) — APA(X))

HPI(X)

We would like to relate Dolbeault cohomology to singular cohomology. For a special type of complex
manifold, called a Kdhler manifold, we indeed have such a relation.

Proposition 5.16. The fundamental form w of an Hermitian manifold X is a (1,1)-form.

Proof. By abuse of notation we also write g, w and I when we mean the forms g,, w, and I, at a
point p € X.

Since g is bilinear and I is linear and

w(w,v) = g(I(w),v) = g(I*(w), 1(v)) = g(~w,1(v)) = —g(I(v),w) = ~w(v,w),

w is locally an alternating bilinear map, hence w € A?(X). The canonical almost complex structure
I acts as multiplication by i on AYY(X), since A0(X) is generated by dz; and similarly it acts as
multiplication by —i on A%!(X). Therefore it acts as multiplication by —1 on A?*%(X) and A%?
and as the identity on AY1(X). We have

w(I(v),I(w)) = g(I*(v), I(w)) = g(I(v),w) = w(v,w),
So I(w) = w and we must have w € AV (X). O

Proposition 5.17. The fundamental form w of an Hermitian manifold X is locally of the form

w= ’LZ w; kdz; N dZp,
j?k

where the matric W = (wj 1)k is a positive definite Hermitian matriz. Conversely, every (1,1)-
form «a of this form induces a Hermitian metric, for which o is the corresponding fundamental
form.

Proof. Write w = Z ljkdz; N dz;. In terms of dx; and dy; we get
J.k

1 . ,
w = Z le’k(dl‘j - Zdyj) A (dxk + Zdyk)
gk

The total coefficient of dx; A dxy, and dy; Adyy, in w is %(ljyk —li,j) and of dzj A dyy, is ii(l]-,k + 1)
These coefficients must be real, so we must have [, = iw,  with @} = wy, ;. This shows that W
is Hermitian.

9 9 : : 0 1.0 o) 0
Let 0 #£ v = Z (ajaz:j+bj83/j>’ with a;,b; € R. Since 3z = 5(@ — za—yj) and 95 =
J

(52 +i:2-), we can also writevzz c'i—l—é-i with ¢; = a; + ib;
Ox; dy; : Jazj Jagj ’ J J J-

J

N[
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We know that g(v,v) > 0. We write

= Z (CjC?ﬁULk + Ckéjwk,j) =2e"We > 0,
7.k
)T

where ¢ = (c1,...,¢,)" . This must be true for all v, hence for all ¢, so this shows W is positive

definite.

Similarly, if « is of this form and we define g(v, w) = a(v, I(w)), then g(v,v) = 2¢' We > 0 for all
v, hence g is positive definite. It is also clear that g is a symmetric bilinear form that is compatible
with I. =

Definition 5.18. A Hermitian manifold is called a Kdhler manifold if its fundamental form is
closed. This means that dw = 0.

Example 5.19 (Fubini-Study metric). The complex projective space CP™ has a canonical Kéhler

metric. It is induced by the fundamental form that is locally defined on U; = {[zg : ... : 2] | z; # 0}
by

1 .= " |z 2

%(‘%)log (kzo P ) .

See [8, Example 3.1.9.1)] for the details showing that its fundamental form is closed.

As a consequence, every smooth projective complex variety is a Kéhler manifold, as it inherits a
metric from the Fubini-Study metric on CP".

Definition 5.20. We define the operator Ag = 9*0+ 00*, where 0* is the adjoint of d with respect
to the Riemannian metric on X. This means that 0* is determined by (Ja, 3) = («, 0*3), where
(-,-) is the inner product on A\* 7Ty X induced by the inner product g, on A" T X.

A form is called 0-harmonic if Ag(o) = 0. This is equivalent to 0*(a) = d(a) = 0, because

(Aj(a),a) = (0*0a, ) + (00*a, @) = (Ocr, D) + (0% ax, 0*ar) = H5a||2 + ||0*al| = 0.

Similarly we define Ay = d*d+dd* and a form is called d-harmonic if Ay(«) = 0, which is equivalent
to d*a = da = 0.

We define
H¥(X) = {a € A¥(X) | a is d-harmonic}

and
HY(X) = {a € A**(X) | a is O-harmonic}.

Proposition 5.21. Let X be a Kdhler manifold, then Aq = 2Ag, so the notions of d-harmonic
and 0-harmonic coincide.
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Proof. See [8, Proposition 3.1.12.iii)]. O

Corollary 5.22. If X is a compact Kdahler manifold then

HA(X) = D H(X)

a+b=k

and complex conjugation exchanges H**(X) and H>*(X)

Proof. The decomposition follows from A*(X) = @, ,,_, A**(X). Complex conjugation acts on
A?(X), via dz; — dz; and vice versa, so it exchanges AP94(X) and A%P(X). Since Ay is a linear

operator, we also have Ag(&) = Az(a), so complex conjugation preserves 0-harmonicity, hence it
exchanges HP?(X) and H?P(X). O

Theorem 5.23. The maps
¢ =aw o] HNX) - Hip(X)

and
Y =aw o] H(X) - H**(X)

are isomorphisms, such that ¢ o™ sends H**(X) to

{a € HY(X) | 3o € A%*(X) such that a = [a]}.

Proof. See [8, Corollary 3.2.12]. O

Corollary 5.24 (Hodge decomposition). Let X be a compact Kdhler manifold, then

H'(X)=  H*(X)
a+b=k

and complex conjugation exchanges H**(X) and H"*(X)

Proof. The decomposition is obtained by combining|[Theorem 5.9| [Corollary 5.22|and [Theorem 5.23|
O

Definition 5.25. Let X be a Hermitian manifold. The Lefschetz operator L : N*T*X — N*T*X
is defined locally by a — a A w. The dual Lefschetz operator A is the adjoint of L with respect to
the Riemannian metric. A differential form « is called a primitive form if Ao = 0.

Proposition 5.26 (Primitive decomposition). There is a decomposition
N
Ha’b(X) ~ @wr A ‘Ptzfr,bfr7
r=0

where N = min(a,b) and P%" denotes the space of primitive O-harmonic forms of type (a,b).
Furthermore P** =0 if a4+b > 0 and the map L" : P** — w" A P%* C H*04T 45 an isomorphism
fora+b<nandr<n—a—>5b. Forr>n—a—>b we have w" A P%b = 0.

Proof. See [8, Proposition 1.2.30 and 3.2.2]. O
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5.2 The Petrovskii—Oleinik—Kharlamov inequality

We now have everything that is required to state and prove the Petrovskii—Oleinik—Kharlamov
inequality.
Theorem 5.27 (Petrovskii-Oleinik—Kharlamov inequality, [21, Theorem 4.2]). Let (X,0) be a

connected R-variety, for which X is a Kdhler manifold of dimension 2n. Then

2 — Am(X) < y(X7) < ™7 (X).

Proof. Let g be a Kéahler metric on X, then h(u,v) = g(u,v) + g(o(u),o(v)) is also a Kéahler
metric, with the property that h(o(u),o(v)) = h(u,v). For the corresponding fundamental form,
this gives h(I(o(u)),o(v)) = h(—o(I(u)),o(v) = —h(I(u),v), so without loss of generality we can
assume that o(w) = —w. Let Ty : H*(X) — H*(X) be the involution induced by o. The Hodge
decomposition and [Proposition 5.26| give

"X)= @ HYX) 2 @ w AP

a+b=k a+b+2r=k
We can write
T0,0 TO,k
Te=1| + . 1>
Tk’g Tk,k

where T, : H¥k=2 — %= Then Tr(T}) = Zf:o Tr(T; ).

Because o is anti-holomorphic, it is locally of the form g o conj™ with g = (gj)’]?:1 holomorphic.

Therefore it acts on H**(X) via dz > i1 82 9% 4z, and dz, — > i1 gZJ dz,. Analogous to
the proof of [Proposition 4.11, we see that the Jacoblan of g at 0 is the 1dent1ty. Therefore, the
action of o on H®’ is the same as that of complex conjugation and thus, by
Tp(H** (X)) = H*(X). Soif i # k — i, then T;; : H"*~ — H®~1 is the zero map. Hence
Tr(Ty) = 0 if k is odd and Tr(Ty) = Tr(1y,) if k = 2L.

Let Sl,?“ = ,‘Tl+r,l+r|wT/\PlJ~ Then

Te(Ty) = Te(T},) = ZTrSz -

For r+1 > n —2l, we have S 41 = 0, since W't A PY =0 in this case. Otherwise, let {a;}; be a
basis of w” A P4, then {wAa;}; is a basis for w™ A PHL Let S, rlai) = Zj bija;. Since o(w) = —w,

Sirr1(wAa;) =—-wAS,(a;) =—-wA Z bija; = Z —bij(w A a;).

It follows that Tr(S;,41) = — Tr(S;,) for 7+ 1 < n — 2. Therefore

4n 2n 2n
D EDITH(T) =) Tr(To) =Y Y Tr(Sap)
1=0 1=0 1=0 a+b=I
2n 2n—I n
= Z Z Tr(S),) = ZTF(Sm,o)-
=0 r=0 =0
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[Theorem 5.1 and [Remark 5.3| now say that x(X7) = > ;" Tr(Sa0). On (0,0)-forms, o acts
trivially, so Tr(Spo) = dim P%® = hO9(X) = 1, since we assumed X is connected. Hence
X(X7) = 1+ Y2, Tr(Sep0) and |x(X7) —1] < >7u,|TrSypl. Since Sy is an involution,
it is diagonalizable with eigenvalues 41, so its trace is between — dim P“' and dim P“. So
Ix(X?) — 1] < Y1, dim P4 = h™"(X) — 1, from which the result follows. O

Corollary 5.28. There is no real structure on CP?" that has an empty real locus.

Proof. First note that CP?" is a complex projective algebraic variety, so it is a Kihler mani-
fold and we can apply the Hodge decomposition and the Petrovskii-Oleinik-Kharlamov inequality.
The computation of H*(CP"Z) in combined with the universal coefficient theorem gives
H?"(CP?";C) = C. The Hodge decomposition gives

H*™MCP*™;C) = P HPI(CP™),
p+qg=2n

S0 Y. oo, WPU(CP?™) = 1. Since h**(CP*") = h>*(CP?") > 0, we must have h™"(CP?") = 1.
Theorem 5.27] gives 1 < x(CP?**(R)) < 1. In particular x(CP?*(R)) # 0, hence CP?*(R) # 0.
The inequality in [Theorem 5.27 holds for any real structure on CP?", so we can conclude that
CP?"(R) # 0 for any real structure. O

5.3 Arrangement of ovals of real loci of plane curves

As we have seen before, the real locus of a genus g R-curve is the disjoint union of at most g + 1
circles. In the case of plane curves, these circles are embedded in RP2. Recall from
and that these circles can either be ovals or pseudo-lines and if the degree of the curve
is even, then they are all ovals. We are interested in the arrangement of ovals of plane curves of
even degree.

Definition 5.29. Let O C RP? be an oval. Then RP? \ O consists of two connected components.
One of which is contractible and homeomorphic to a disk, the other is a Mobius band. We call the
connected component that is a disk the interior of the oval and the Mdbius band the exterior.

For the remainder of this section we let C C RP? be a smooth, projective, plane curve given by the
homogeneous polynomial F' € R[X,Y, Z] of degree 2d. We denote the set of ovals of C' by O. This
is a finite set by Harnack’s inequality and because C' is smooth all ovals in O are disjoint.

Definition 5.30. An oval O € O is called an even oval if it is contained in the interior of an even
number of ovals in . Similarly an odd oval is an oval that is contained in the interior of an odd
number of ovals in O.

Proposition 5.31. The intersection of the exteriors of a finite number of disjoint ovals is not

empty.

Proof. Without loss of generality, we can assume that none of the ovals is contained in the interior of
another oval, because that does not affect the intersection of the exteriors. In particular this means
that the closures of the interiors of the ovals are all disjoint and closed. Suppose the intersection of
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Figure 4: The curve 0 = 23y3 — ((z? + 3y? — 17)(322 + y? — 10) + 1522) (22 + 4(y + 1)? — 25).

the exteriors is empty. Then there is an oval O, such that the closures of the interiors of the other
ovals cover the exterior of O. But this means that the exterior of O is the union of finitely many
disjoint closed sets, which is a contradiction, because the exterior is connected. ]

This means that we can speak of the exterior of O.

Definition 5.32. For any point p € RP?, the sign of F(p) is well-defined, because the degree of
F is even. This can be used to define an inside and an outside of an even degree plane curve,
namely as the set of points where F(p) is positive or negative respectively. We can multiply F
by —1 without affecting C, so without loss of generality, the exterior of O is also considered the
outside of C' by this definition.

Lemma 5.33. Let
B, ={[z:y:2] €RP?| F(z,y,2) >0}

be the inside of curve C and let P be the number of even ovals and N be the number of odd ovals.
Then x(By+) = P — N.

Proof. Let X = RP?\ C. Every oval forms a part of the boundary between a connected component
of X that is inside the curve and a connected component of X that is outside the curve. For
an even oval, the component that is outside the curve is also in the exterior of the oval whereas
for an odd oval the component that is outside the curve is in the interior of the oval. So every
even oval provides a connected component of By, whereas every odd oval cuts out a disk of B;.
Therefore, B+ is the disjoint union of P disks with a total of IV holes, hence its Euler characteristic
is P— N. O

n+k—1
Definition 5.34. The Veronese embedding vy, j : C" — (C( 1) is defined by
(xla ceey I’n) = (‘r?l o 'xzn)ziai:k"

n+k—1
The induced map CP*~! — (C]P’( i)l is also denoted by vy, j or just v.

32



-2 1 0 2

Figure 5: The curve 0 = 23y — 6(2? + y? — 1)(2? + y* — 2)(2* + y* - 3).

Theorem 5.35 (Petrovskii inequality). Let P denote the number of even ovals of C and let N
denote the number of odd ovals of C. Then

3 3

3
2d—2
2 2

2

3

d2<P-N< d2—§d+1.

Proof. Let By be the inside of the curve as in We want to apply to

find constraints on x(By) = P — N. For this we need an R-variety with B as real locus. We will
now construct such a space using the Veronese embedding.

Let L = (2J2rd). There exists a G € R[X1,..., X1]|2 such that Gov = F, where v = v34 : CP? —
CPL~1 is the Veronese embedding. This is because each monomial in F' has degree 2d, so it can be
written as the product of two monomials of degree d.

We now define Y = {[z0 : ... : 2] € CPL | [21 : ... : 2] € v(CP?) and 2% = G(z1, ..., 21)}, which is
well-defined, because 23 — G(21, ..., z1,) is a homogeneous polynomial of degree 2. We equip Y with
the real structure that is inherited by the standard real structure on CPY. We find

Y(R) = {[20:...: z1] € RPL| [21 : ... : 21] € v(RP?) and 22 = G(z1,...,21)}

We can define 7 : Y — CP" by [z : ... : zr] = v ([z1 ¢ ... s 2z1]). T 7([20 ¢ ... : 21]) = @, then by
definition of G, we have 22 = G(v(z)) = F(z). Note that for z € RP" we have

200 €ER <= F(z) >0 < z € B;.

So Y (R) is a double cover of B that is ramified along the curve F' = 0. Let C' be a connected
component of B, then C' is a disk with a number of holes. Let k be this number. Then x(C) = 1-k
and 7~1(C) must be a k-holed torus, so x(7~1(C)) = 2 — 2k. Summing over all components of B,
we get 2x(B+) = x(Y(R)).
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Y is a smooth projective variety, so it is a K&hler manifold and we can apply onY,
which gives 2 — hb1(Y) < 2(P — N) < hbY(Y).

By [10, Section 4], A (Y) = 3d? — 3d + 2. Combined, this gives

3. 3, 3, 3
Sd—S@<P-N<Sd?-Sd+1.
Sd— 5 < <SS+

O]

Example 5.36. Let C' be a maximal plane curve of degree 6. Then g = 10, so C(R) consists of 11
ovals, i.e. P4+ N = 11. The inequality now gives P—N < 10,s0 2P = P-N+P+N < 10+11 = 21,
hence P < 10%. So there can be at most 10 even ovals. In particular, there must be at least one
odd oval, so the ovals cannot all lie outside each other.
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6 Symmetric products of maximal curves

In this chapter and the next, we will see how maximal varieties can be constructed by taking the
symmetric product of a maximal curve.

Definition 6.1. Let X be a topological space. The symmetric group S, acts naturally on X" via
(21, Tn) = (Tr(1)s - > Tr(n))-
The nth symmetric product of X is the quotient space
XM = x"/s,.

In other words, X (™) consists of unordered n-tuples {z1,...,2,} of elements in X. An alternative
notation for X is Sym"™(X).

Example 6.2. The 2nd symmetric product of R is R®) = {{z,y} | =,y € R}.
Let X = {(z,y) € R? | z <y}, then ¢ : R®) — X given by

¢({z,y}) = (min(z, y), max(z,y))

is a homeomorphism. Note that R is a smooth manifold without boundary, whereas X is a smooth
manifold with boundary.

Example 6.3. The nth symmetric product of C is C™ = {{z1,...,2,} | z1,...,2, € C}. Let
R={f e€C[X]|degf=mnand f is monic}. We have an isomorphism R = C", namely

X"+ apn 1 X" P a1 X +ag— (ap,a1,...,an—1).
Let ¢ : C™) — C™ be the composition of this isomorphism with the map
{z1,- = (X —21) - (X = 2zn).

Coordinate-wise ¢ is a polynomial in z1,..., 2z, so ¢ is continuous, open and closed. The funda-
mental theorem of algebra shows that it is a bijection. Therefore ¢ is a bijective, open and closed
map, so it is a homeomorphism.

So we find that C(™) 2 C™. In this case the symmetric product of the complex manifold C is again
a complex manifold.

In fact, as a consequence we get that the symmetric product of any complex curve is again a
complex manifold.

Proposition 6.4. The symmetric product X™ of a complex curve X is a complex manifold.

Proof. For Uy,...,U, C X, we define
Ul*---*Un:{{xl,...,xn}GX(") |37T€Sn:Vz‘:xi€U7r(,~)}.

By reordering the U; or x;, we can often assume that x; € U; for all i. Note that for disjoint U;, this
is homeomorphic to the Cartesian product and for all U; equal it is the nth symmetric product.
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We construct a chart around every p = {p1,...,pn} € X(®. Choose charts ¢; : U; — V; of X, such
that p; € U; and such that U; N U; = 0 and V; NV = 0 if p; # p; and such that ¢; = ¢; if p; = p;.
Let

(Z):¢p:¢1>k-"*d)n:{$1,...,xn}’—>{(Z)W(l)(.%'l),...,(ﬁﬂ.(n)(:tn)}:Ul*---*Un%Vl*--'*Vn,

where 7 € Sy, such that x; € Ur;y. Let ¢y, C(™ — C" be the homeomorphism from
We claim that these 1, o ¢, form an atlas on X (") First we show that ¢ is well-defined. If m;
and 72 are both permutations such that z; € Uy (;) and x; € Uy, (), then Ur ) N Uryi) # 0, so
Gy (i) = Pmy(i)- Therefore the value of ¢({z1,...,2,}) does not depend on the chosen permutation.
Furthermore, the value of ¢({x1,...,2,}) does not depend on the order of the x;, so ¢ is well-
defined. To show that ¢ is continuous, it is enough to show that ¢—*(W; * --- x W,,) is open, for
W; C V; open, because such opens form a basis for the topology on Vi % --- % V,.

¢71(W1*"'*Wn):{{xl,---,ﬂﬁn}GUl*"'*Un|¢({x1,...,xn})6W1*---*Wn}
={{z1,...,xnt €Urx---xUp | {O1(x1),. .., on(xn)} € Wr - x W)}
={{z1,..,zn} €Ur -5 Uy | 3T € Syt iy () € Wi for all i}

= U {{wl,...,xn} ceUpx---xU, ’ (Z)W(Z)(.%'Z) e W; for all Z}

ﬂ'ESn
= U (61500, (7))
7T€Sn
Here without loss of generality we assumed that z; € U; for all 4. Similarly ¢! = {vy,...,v,} —
{gbfl(vl), .., ¢n (vn)} is well-defined and continuous, so ¢ is even a homeomorphism.

Lastly we check that the charts are compatible. Let ¢ = {q1,...,¢qn} and p = {p1,...,pa} € X
and let ¢g : Uy =Ug *---x Uy, = Vg k- xVy and ¢g : Up = Up, -+ xUp, = Vp x--- %V},
be the charts around ¢ and p as constructed above. Then we need to show that i, o ¢4 o qﬁ;l o
¢;1|¢n(¢p(quUp)) is holomorphic.

Let r = {ry,...,r,} € U,NU,, we will show that 1, o ¢4 0 gb;l o1, 1 is holomorphic at 1, (¢, (r)).
By reordering, we can assume without loss of generality, that r; € U; = U,, N Uy, for all . Since
Up; = Up; or Up, NUp, = (0 and similarly for Uy, we have U; = U; or U; N U; = (. Again by
reordering, we can assume that there are 0 = mg < m; < --- < my = n, such that

Ulz"':UmlaUmlJrl:"':Umzy-“)Uml,H»l:"':Uml

and i #j = Up,NUpn; = (). When we restrict ¢, and ¢4 to Uy *- - -xU,, the same reordering yields
P, y41 =7+ = Op,,, and @ #J = Vp,, N mej = (). Because of this, there is a homeomorphism

Xp:{vl,...,vn}*—)({Ul,...,Uml},...,{Uml71+1,...,’£}n})Z‘/pl*'--*‘/;?n*)‘/p(:zll) ><--~><Vp(fbll).

Furthermore, we have homeomorphisms

) (’[pklv"'vwkl)

V(kl)x---xV},(fffl Wy, % -+ x Wy, CCF x ... x Chi

and

T DV, 505V, —25 V, C O
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Let 7, be the quotient map V;ffil X o X Vp’fj” — V;(ffl) XX Vp(:ll). Then the composition ¢nOX;107Tp
is given by

(V1o s Umy )y ooy (Vmy_ 415 -5 0n)) = (faa (V1o 0n)s ooy fan(Vi, .o, vn)).

This is holomorphic and invariant under permutations of x1,...,2,. In particular it is invariant
under permutations of y,, 41, .., Tm,, S0 by there is a holomorphic function

Gp : Wpy X oo X Wy, — Vp,
such that g,o(¢r,, ..., ¢y )omy = wnoxljloﬂp, hence g, = wnoxzjlo(d)k,l, .y ¥k,) "1 is holomorphic.

Replacing p with ¢, we get similar maps and spaces. If we write T; = ¢,,,. © qS;i., the composition

(Vrys - k) © Xg © g0 byt 0 X, 0Ty is given by
(V1 vmy), ""(Uml—l""l’ coes0n)) = (g (T1(01), -, Ta (vmy ), ---7¢kl(Tl(”mz_1+1)7 s Ti(vn))),s

which is holomorphic and invariant under permutations of @y, ,+1,...,ZTm,;. By there
is a holomorphic function g : Wy, x --- x W), = Wy, x --- x W, that commutes.

id
Z ¢p Z ¢(I
Cnov, Uy *-\-(-*V V, >1<~\-(->|<V ¥ Ly ccr
= 'p p1 Pn q1 dn q =
r. 1
2| Xp 2| Xq
N9 (k) (k) (k1) (k) 90 .~
S %ml X'“X‘/}Jml V:Iml X”'X‘/:]ml e
o \\\\ | Wy ses¥ry) (Wrey s-¥ky)) 2 /// ™

g
Vi s x Vil Wiy X - x Wy, == s Wy X o X W,

k1 . ki
Pmy ‘/;1m1 X x V

am,

In total we find ¢y, 0 ¢ 0 ¢, 1 0 b1 = gg0go gyt is holomorphic. This shows that the charts are
compatible and thus that X (™ is a complex manifold.

L]
Lemma 6.5. Let f(x1,...,Zn,Y1,.-.,Ym) be a holomorphic function that is symmetric in 1, ..., Tp,
ie. (T, T Y- Ym) = f(@r@)s - Tam)s Y1 -+ Ym) for all m € S, Then there is a
holomorphic function g(x1,...,Tn, Y1,y .- Ym), such that
f(mly"")x?%yl?' . 7ym) = g(hl(mla' "7xn)7"'7hn(x17"'7xn)7y17" . 7ym)7
where
n
he = fap = (—1)F Z HJU?
(a:)i€{0,1}™,3°7 4 a;=k =1
Proof. In this proof we will use the notation X’ to denote z{" - -- 2%, where I = (ay,...,a,) € Z%,

and similarly for H! and Y.
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To show this, we will show that any symmetric polynomial in zi,...,x, is a polynomial in

hi,..., hy. Let F' be a be a symmetric polynomial that is homogeneous of degree d. Then
F =5 ¢; X', Because F is invariant under S,, we have a; = Ar(1), Where w(ay,...,ay) =
(ar(1)s-- - aw(n)), for all 7 € S,,. This means that we can write
F=> b > X0
I TES,
We call > o XD a symmetric monomial of multi-degree I. When we write I = (ay,...,a),
we can assume without loss of generality that a; > ao > -+ > a,. We order the multi-degrees
lexicographically. Now we define multideg(F") to be the largest multi-degree for which the monomial
has non-zero coefficient in F', or (—o0,...,—00) if F' = 0. The coefficient of this monomial is called

the leading coefficient of F'. If F' and G are non-zero symmetric polynomials that are homogeneous
of degree d and that have the same multi-degree and leading coefficient a and b respectively, then
F — 3G is a symmetric polynomial of smaller multi-degree that is homogeneous of degree d.

Using induction on multideg F', we will now show that any symmetric polynomial F' in x1,...,z,
that is homogeneous of degree d, is a polynomial in hq, ..., h,, such that
h{' -+ hgm has non-zero coefficient = aj + 2a2 + -+ - + na, = d. (%)

If multideg F' = (—00,...,00), then F' = 0, so it clearly is a polynomial in hy, ..., h, that satisfies
Now let multideg(F) = (ay, ..., a,). Since F' is homogeneous of degree d, we have a; +---+a, = d.
Let H = h{'"“?h3?"* ... h% . Note that multideg H = (a4, ...,a,) and that H is homogeneous
of degree (a; — az) + 2(ag —a3) + -+ +na, = a1 + -+ + a, = d, so H satisfies (x). There is a
constant ¢, such that multideg(F — cH) < (a1, ...,a,). Now by the induction hypothesis, F' — cH

is a polynomial in hi, ..., h, that satisfies (x), hence so is F'.
Now let f(z1,...,%n,Y1,-..,Ym) be a holomorphic function that is symmetric in z1,...,z,, then
oYY Y Xy
J I TeSh

Every > s, X () is a homogeneous, symmetric polynomial, so it can be written as a polynomial

Frin hy, ..., hy.
f=2_> arsFy’.
J I
Let by i denote the coefficient of H K in Fy, then

F=Y_Y'> HYY ar bk
J K I

Since the F7 satisfy (%) and there only finitely many I = (a1, ...,a,) with a1 +2as+- -+ na, = d,
the sums cjx =Y ar,jbr ik are well-defined, hence

g=2_> coxH"YE
J K
is holomorphic and f = g(h1,...,hn, Y1, - Ym)- B
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Proposition 6.6. A real structure o on X induces a real structure o™ on X,

Proof. The real structure o induces the map o™, given by

{z1,...,xn} = {o(z1),...,0(xn)}.

It is clear that this is a well-defined, continuous involution. We still need to check that it is
anti-holomorphic. Let f € Oxwm (U), let 7™ : C* — C" be complex conjugation and let ¢ :
Uy *---xU, = Uand v :0(Up)*---x0(U,) = V be charts, with Uy x---x U, C U. We need to
show that f oo™ € Oy (o(U)). For this it suffices to show that f o o™ o4~ is holomorphic,
for all such ¢ and 1. Note that

Foo™oypl=Foplogoo™or!
=fop oo ogoo™ oy}
zfogﬁ’lov-”o(a*---*@)oa(”)ozp’1
=foo oo ((proo)*- % (dpo00)) ot 1,

where fo ¢t o 1" is holomorphic, because f is, and all ¢; o o are holomorphic, because o is
anti-holomorphic. Therefore, f o o™ is holomorphic and o™ is anti-holomorphic. ]

Example 6.7 (Sym"(CP!)). Let ¢, : C™ — C™ be the homeomorphism from [Example 6.3

Then ¢ = (fu1,--.,fon), With fr; € C[Xq,...,X,] as in We use this to define
¥y : (CPH™ — CP™, by

X1 Tn
77.-.77

{[xl:y1],--',[:cn:yn]}r—>[1:fn71(y1 Ln

yn) : fn,n(yla " )l
This is not well-defined, but by clearing denominator, i.e. multiplying by 1 ---y,, we obtain
Yp = [Fno -0 Fypl, with Fi € C[Xq,Y1,..., X, Yy]. If we write 4,0 =Y; and A; 1 = X, then

they are given by
n
Fop = (-1)F > []Aia
(a:)i€{0,137,370 1 aj=ki=1

Because each F), j, is continuous, open and closed, so is 1),,. Note that

For(1,0,Xa,...,Y,) = (=1)F > (ﬁ Ai,ai) + > (ﬁA)
(as)

(a;);€{0,1}",a1=0 \i=1 :€{0,1}" a;=1 \i=1
Z?:1 ai=k Z?:l a;=k

= (_l)k 0—|— Z (HAi:ai)
(ai)p_p€{0,1}7~1 \i=2

n L
i—gai=k—1

= - n—l,k—l(X27 s 7Yn)
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Let

Cr={{[z1:w],.. ., [0 : yu]} € Sym™(CPY) | Vi : y; # 0} = Sym™(C),
Co={{[z1: 9], [Tn : Yn]} € Sym™(CPY) | Ji : y; = 0}

= {{[1:0],[z2: o], [Tn : yu]} € Sym"(CP!)} = Sym"~*(CP!),
Dy ={[z0: - :2,] €CP" | 29 #0} = C",
Dy={[0:2:--: 2, € CP"} = CP" !,

then Sym”((CIP’l) = C1 UCy and CP" = Dy U Ds.
Because Fy, 0(x1,...,Yn) =y1---yn # 0 on C1, the function v, is given by

{[xl : yl]v ey [:Un : yn]} — [Fn,O(xla e ayn) Do Fn,n(xla s 7yn)]

r1 Ty 1 Iy
=11: ) e — e, ),
[ fn,l(yl yn) fn,n(yl Un )]
on Cy. We see that 1, (C}) is contained in D;. Composing with the homeomorphisms cm ~ ¢y
and D; = C", the restriction ¢,|¢c, is given by

(21, zn) = (faa(z1, o 02n)s ooy fan(21, o 0s20)) = dnl21, .-+, 2n)-

Since ¢, is a bijection, 1, |c, is a bijection onto its image. On Cs, the function v, is given by

{{1:0],[z2:92)s-- s [xn iy} = [0: Fra(1,0,20, ..., yn) t -t Frn(1,0,29,. .., yn)]-

Composing with the homeomorphisms Sym”~!(CP!) 2 C5 and Dy = CP*! and using the obser-
vation that Fj, (1,0, Xo,...,Yy) = —F,_1 ,—1(X2,...,Y,), we see that the function ), restricts to
Yn_1 : Sym™" 1(CP') — CP"~!. By induction, this is a homeomorphism. We conclude that v, is
continuous, open, closed and bijective and thus a homeomorphism.

Note that every F, ) satisfies Fj, x(X1,...,Y%) = Fo1(X1,...,Yn), so if we equip CP! and CP"
with the standard real structures o and o” respectively and Sym™(CP!) with the induced involution
o™ then
U@ {[z1 syl [0 yn) D) = Fao (@1 Tn) o Fnt (@1, T))]
= [Fn’o(.%'l, e 7yn) Dol le(xl, e ,yn)]
=" (Wn({lz1 ], [on s yn]}))-

Therefore the induced real structure on Sym™(CP!) agrees with the standard real structure on CP".

Example 6.8.

Sym?(S1) 22 (([0,1]/ ~) x ([0,1]/ ~))/Sa where ~ is the equivalence relation generated by 0 ~ 1
= (([0,1] x [0,1])/ ~)/S2 where ~ is generated by (x,0) ~ (z,1) and (0,y) ~ (1,y)
2 ([0,1] x [0,1])/ ~ where ~ is generated by (z,0) ~ (z,1) and (z,y) ~ (y,x)

x [0,1] | # < y}/ ~ where ~ is generated by (0,y) ~ (y, 1)
x [0,1]}/ ~ where ~ is generated by (0,y) ~ (1,1 —y)

12
[t Wit
—~~

z,y) €[0,1
= Moébius strip.
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Figure 6: Visualization of the isomorphism (x) in [Example 6.8

The last homeomorphism is given by

1—x— — if <1
T U e (*
2—xz—y,l+ax—y) ifzxt+y>1

Example 6.9. Let X = C/Z + iZ be a complex torus. We have seen that X is a maximal curve
when equipped with the real structure o([z + iy|) = [z — iy| and that the real locus consists of two
circles {[z] | € R} and {[z + 3i] | z € R}.

X@) is a 2 dimensional complex manifold with total Betti number b, (X ®);F,) = 8, [1, Lemma
2.1]. The real locus of X @ is given by

XOR) = {{z,y} € X | {z,y} = {o(2),0(y)}}
={{z,y} e XD |z =0(2) and y = o(y)} U{{z, 9} € X® |z =0 (y)}
= XR)P Uy
~ (S'ush®uy.

Where Y = {{z,y} € X®@ |2 =0(y)} 2 X/o = {[z +iy] | 0 < y < 1}. Note that
(8 U SH® =~ Sym?(S1) U Sym?(SH) U St x ST,

and Y N X(R)? = {{z,2} € X® | 2 = o(x)} corresponds to the circles {[z] | z € R} and
{[z+3%i| 2 € R]} in X/o and the diagonals of Sym?(S') in (S*L1S1)@. So X (R) is the disjoint
union of a torus and two Mobius strips that are glued to a cylinder. Since a cylinder is homotopy
equivalent to a circle, the latter is homotopy equivalent to two Mobius strips that are glued along
their edge, which is a Klein bottle. The Klein bottle K has total Betti number b.(K;Fg) = 4, so

in total we find
b (XD (R);Fo) =444 =8 =b,(XP:Fy),

hence X2 is a maximal curve.
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Figure 7: Two Mobius bands that are glued together form a Klein bottle.

Theorem 6.10 ([I], Proposition 2.3). Let (X, o) be a mazimal curve, then (X®), o)) is a mazimal
variety.

Proof. Let g be the genus of X. By [I, Lemma 2.1], the total Betti number b,(X);Fy) = 3+ 3¢ +
22, so we need to show that b,(X® (R); Fy) = 3+ 3¢+ 2¢%. Since X is maximal, X (R) = |_|f;r11 St
Similar to the previous example we compute the real locus of X3,
XOR) = {{z,y} € XP | {z,y} = {o(),0(y)}}
= {o,y} € X® |2 =0(2) and y = o(y)} U{{z,y} € X | 2 = o(y)}
= XR)Puy
g+1
>~ Sym? <|_| 51> uY.
i=1

Where Y = {{z,y} € X® | 2 = o(y)} = X/o. The symmetric product of the disjoint union
Uf;rll Sl is given by

i=1

g+1 g+1 (°3%)
Sym? <|_| 51> > | | sym®(shu | | ' xS,
i=1 i=1
and YNX(R)? = {{z,2} € X® | 2 = o(2)} corresponds to the g+1 circles X (R) in {[z] | z € R}

and {[z + 3i | € R]} in X/o and the diagonals of Sym?(S') in Sym? ( f;rll Sl).

So X®)(R) is the disjoint union of (g;rl) tori, each of which have b,(S* x S;Fs) = 4 and g + 1
Mobius strips that are glued to Y. We will compute the homology of the latter, which we call A,
using cellular homology.

The ith M6bius strips can be realized as a CW-complex, using two 0-cells, v; and w;, three 1-cells,
a; and b; from v; to w; and ¢; from w; to v;, and one 2-cell f; glued along the path a;c;b;d;.

Finally the surface Y is glued to these Mébius strips with extra 1-cells d; from w; to v;41, where
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Vg+1 = Vg, and two 2-cells, by glued along the path aidiasds...ag41dg41 and ho glued along the
path b1d1b2d2 e bg+1dg+1.

This gives the cellular chain complex

00— z3ts P, galgr)) e gaery 0,
where
a(ag, by, co,do, ..., ag,bg,cq,dg)
= (ao—i-b()—Co—dg,d()—l-C()—(1()—bo,...,ag+bg—Cg—dg_l,dg+cg—ag—bg)
and

B(h17h27f07"'7f9) = (fo +h17f0 + h272f07h1 +h27- "7fg +h17fg + h272fg7h1 + h2)

The kernel of « is given by
{(ag, by, co, do, - .., aqg,bg,cq,dg) € 229 | dy = - = dg=ap+by—co=---=ag+by—cy}.
We will identify Ker o with Z2(0+t1)+1 yia
729D+ 5 (¢,a0,bo,a1,b1,...,aq,bg) — (ao, bo,c, a0+ by — ¢,
a1,b1,a0 +bg —c— a1 —by,ap + bg — c,
ag,bg, a0 + by —c—ag —by,ap + by — c) € Kera.
Via this identification, 3 is given by

(hl’h27f07'--7fg) = (2f07f0+h1)f0+h2a"'afg+hlafg+h2)'

An element (¢, zo,yo, - .., %4, Yg) belongs to the image of 5 if and only if g —yo = -+ = 24 — Y4
and c¢ is even, so in Ker o/ Im 8 we have
(Cvmoay()a"'a"l"gayg) = (C7Oa?/0 —15070791 _xla-“aoayg _mg)
= (C7O7Oa0ay1 — X1 _y0+x07”-aoayg —$g—yo+$0)~
So we get an isomorphism Z9 & Z/27 — Ker o/ Im 5 = H,(A;Z), given by

(a1,...,a4,b) — (b,0,0,0,a1,...,0,a4).

Furthermore we have Ker 5 = 0, so Hy(A;Z) = 0 and Hy(A;Z) = Z, because Y is connected. Now
we can use the universal coefficient theorem to compute

Hy(A;Fy) =Ty,
Hi(A;Fo) =5
Hy(A;Fy) =Ty,

hence b, (A;F2) = g+ 3. In total we find that

g+1

b (XP)(R); Fy) = 3+g+4< > — 34 g+29(g+1) =3+ 3¢ +2¢° = by(XD; Fy).

Therefore (X3, (") is a maximal variety. O
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7 Higher symmetric products

We’re going to show that [Theorem 6.10| holds in a much more general case. We follow the proof by
Franz [3]. This proof uses that an R-variety is maximal if and only if it is equivariantly formal.

7.1 Equivariant cohomology

Definition 7.1. [I8, Section 2.8] Let G be a group. Let B be a topological space and let E be a
topological space on which G acts freely. A principal G-bundle is a continuous map p : £ — B,
such that p(eg) = p(e) for all e € E,g € G and such that there exists an open cover {U;}; of E,
such that p~}(U;) = U; x G and the diagram below commutes. Such an open cover is called a
trivializing cover.

p U) —=— Ui x G

\/

In other words, a principal G-bundle is a fibre bundle with fibre G that is invariant under the G
action on F.

Definition 7.2. Given a principal G-bundle p : E — B, a topological space X and a continuous
map f: X — B, there exists a principal G-bundle f*p: E xp X — X, where E xp X = {(e,x) €
E x X | p(e) = f(z)}, with G-action g(e,z) = (eg,z) and f*p(e,x) = x. This bundle is called the
pullback of p along f.

Proposition 7.3. The pullback of a principal G-bundle p : E — B along f : X — B is again a
principal G-bundle.

Proof. Since G acts freely on E it also acts freely on E xp X. It is also clear that f*p(g(e,x)) =
f*pe,x) for all g. Let U C B, such that there is an isomorphism ¢ : p~}(U) — U x G and

pri o ¢ = p, then
(f'p) ' (fHU)) = {(e;2) € Ex f7HU) [ ple) = f(x)} Sp~H(U) x fHU).

Now o : (f*p) L (f~H(U)) = f71(U) x G, (e,x) = (z,pra(¢(e)) is a homeomorphism, with inverse
(2,9) = (67 (f(x),g), ). It satisfies pri o b = f*p, so if {U;}; is a trivializing cover of E — B,
then this makes {f~1(U;)}; a trivializing cover of E xg X — X, so the pullback of p along f is a
principal G-bundle. O

Definition 7.4. A principal G-bundle p : E — B is called a universal G-bundle if for every
principal G-bundle p’ : E' — B’, where B’ is a CW-complex, is obtained, up to isomorphism, by
taking the pullback of p along some function B’ — B.

Theorem 7.5. Let G be a topological group that is homotopy equivalent to a CW-complex. Then
a univeral G-bundle p : EG — BG exists and EG is contractible. Conversely, if p: E — B is a
principal G-bundle and E is contractible, then p is a universal G-bundle.

Proof. See [2, Theorem 2.5] O
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Example 7.6. The quotient map S — RP* is a principal Z/2Z-bundle, where the action of the
generator of Z/27Z on S* is given by the antipodal map x +— —z. Since S is contractible, it is a
universal Z/2Z-bundle.

Definition 7.7. Let K be a field and let G be a group and EG — BG the corresponding universal
G-bundle. Let X be a G-space, i.e. a topological space with a continuous G-action. Then the
equivariant cohomology of X is defined as

He(X; K) = H' (Xg; K),
where Xg = (EG x X)/G. Here G acts on EG x X via g(e,x) = (eg, g 'z).

Definition 7.8. A G-space X is called equivariantly formal over K if for any e € EG the inclusion
Je: X = Xg,x — [e, x]

induces a surjective map j* : HA(X; K) — H*(X; K). Note that 7% does not depend on e, as all j.
are homotopic, because EG is contractible.

We are interested in the case that X is an R-variety. The real structure on an R-variety equips it
with a Z/27Z-action, so we can indeed use equivariant cohomology on them.

7.2 Cohomology with local coefficients

To connect the maximality of R-varieties to equivariant formality, we need the Leray-Serre spectral
sequence. This uses cohomology with local coefficients, so before we look at spectral sequences, we
first state the definition and some properties of cohomology with local coefficients.

Definition 7.9. Let G be a group. We define the group ring Z|G]. As an abelian group, it is the
free abelian group generated by the elements of G. The multiplication on Z[G] on the generators
is induced by the group structure on G. Explicitly, this means that multiplication is given by

O aig) O bigi) =Y aibj(gig;)-

i
We call Z|G]-modules, G-modules and use the notation Homg (M, N) for G-modules M and N to

denote the Z[G|]-linear maps from M to N.

Definition 7.10. Let G be a group, let EG — BG be a universal G-bundle and let M be a
G-module. The cohomology with local coefficients H'(BG; M) is defined as the cohomology in
the cochain complex C*(EG; M) = Homg(C;(EG;Z), M), where C;(EG;Z) is the singular chain
complex of FG, which is a chain complex of G-modules for which the G-action is induced by that
on EG. [6, Section 3.HJ.

Proposition 7.11. Let G be a group and let L be a G-module, then

H°(BG;L) = L".
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Proof. By definition H°(BG; L) = Ker §°, where
69 : Homg (Co(EG; Z), L) — Homg(C1(EG;Z), L), o+ (s +— a(01(s)).

Note that elements o € Homg(Cx(EG), L) are completely determined by «(s), for k-simplices
s € Sk(EG). Also note that 0-simplices are points in FG and that 1-simplices are paths.

Let o € Ker§° and let a,b € EG. Since EG is contractible, it is path-connected, so there is a path
s € S1(EG) from a to b. Hence 0 = §°(a(s)) = a(d1(s)) = a(a—b) = a(a) — a(b). This shows that
a is constant on So(EG). Let | € L be the constant value of . Then for any g € G and x € EG
we must have gl = ga(z) = a(gr) =1, so I € LY. Conversely any a that is constant on So(EG)
satisfies 6%« = 0. Therefore Ker 60 2 L. O

Lemma 7.12. Let G be a group and let L be a G-module on which G acts trivially, then the
cohomology with local coefficients H*(BG; L) is isomorphic to the ordinary singular cohomology
H(BG; L)

Proof. Let a € Homy(C;(EG), L), then a € Homg(C;(EG), L) if and only if for all ¢ € G and
s € Si(EG): a(gs) = ga(s). If g acts trivially on L, this means that a(gs) = «(s) for all
s. Maps that satisfy this are exactly the maps that factor through S;(BG), so we can identify
Homg(C;(EG), L) with Homz(C;(BG), L), which proves the lemma. O

Definition 7.13. Let G be a group and M be a G-module. The group cohomology H®(G; M) is
defined as H(G; M) = Extf;;(Z; M).

Proposition 7.14. Let G be a cyclic group of order p and let g be a generator of G. Let M be a
G-module and let ¢,v : M — M be given by ¢(m) = m —mg and Y(m) = m +mg + ... + mgP™1,
then
Ker ¢ ifn=0,
H"(G;M)=({Ker¢/Imv ifn >0 is odd,
Kery/Im¢ ifn >0 is even.

Proof. Let A, B : Z|G] — Z[G] be given by A(x) = v —zg and B(z) = v +xg+...+xgP~*. Consider
the following sequence

. —— Z|G] = 7|G] sy Z[G] 5 Z[G] 2 Z —— 0

Where ag(D; a;g') = > ;a; and agpy1 = A for n > 0 and o, = B for n > 0. We view Z as a
G-module, where the G-action is the trivial action. It is clear that all oy, are Z[G]-linear.

Since
Alag + .. + ap_16°1) = (ap — ap—1) + (a1 — ap)g + ... + (ap—1 — ap—2)g" "

and
Blag + ... + ap-1g""1) = (ag + ... + ap—1) + ... + (ag + ... + ap_1)g" ",

we easily see that Im A C Ker B, that Im B = Ker A and that Ker B = Ker «y.
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Let z € Ker B, then we can write x = a9 + a19 + ... + ap_1gp_1, with ap—1 = —(ao + ... + ap—2).
Now

Alag + .. + (ag + .. + ap_2)g* %) = ag + ... + ap_2g"" 2 — (ag + ... + ap_2)g* ! =,
so Ker B =Im A = Ker ag.

This shows that the sequence is a free resolution of the G-module Z. Applying the Homg(—, M)-
functor, we obtain the sequence

Bo

s M

B2

4 M M

where (o, = ¢ for and Ba,4+1 = ¥ for n > 0. Taking cohomology finishes the proof. O
Proposition 7.15. For the classifying space BG of a group G, the cohomology with local coefficients
H*(BG; M) is given by the group cohomology H*(G; M).

Proof. The universal cover EG of BG is contractible, so the G-module chain complex
s Oy (BGLZ) 2 01(EG:Z) — 2 Co(BGLZ) —— 0
is exact in all C;, except for Cy. Because EG is path-connected, the differential 0; has image

Imo; = {Zai(:ci +v;) | ai € Z and z;,y; € EG} = {Zaixi | z; € EG,Zai = 0}.

(2

Define a : Cy — Z, by (>, a;s;) = Y, ai, then Kera =Im 0y, so C,(EG;Z) is a free resolution of
Z, hence

H"(BG; M) = H"(Home(C4(EG; Z), M) = Ext}q(Z; M) = H"(G; M).
O

Example 7.16. Let G = Z/2Z and M = Z with the trivial G-action. Then the maps ¢ and 1 in
[Proposition 7.14f are given by ¢(m) = 0 and ¢(m) = 2m, so

7 if n=0,
H"(G;M)=<{7Z/2Z ifn>0isodd,
0 otherwise.

Example 7.17. Let G = Z/27Z and M = Fy with the trivial G-action. Then the maps ¢ and 1 in
[Proposition 7.14| are given by ¢(m) = ¢(m) =0, so H"(G; M) = M for all n > 0.

7.3 Spectral sequences

Let K be a field. Throughout this section, we will write H*(X) instead of H*(X; K).

Definition 7.18. A spectral sequence is a collection of abelian groups EF'? and maps d>? : EP'? —
EPTT L gych that d2T7"H o @ = 0, ie. they form cochain complexes. Furthermore they

satisfy BV, = Ker(d?)/ Im(d2T™97" ) e E% is the cohomology of the chain complex at EPY.
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Definition 7.19. If the only non-trivial groups occur when p,q > 0, then for r > p the incoming
differential in E?7 is
dffr,qurfl . Effr,q+rfl N Ef’q,

which is trivial, since EP""%"" "1 = 0 in this case. For r > ¢+ 1 the outgoing differential from EF

is
q . ) 4 1
dbd ;. EP9 — pprrartl
which is trivial, since EPT™97""1 = 0 in this case. So for r > max(p, ¢+ 1), both the incoming and
outgoing differentials in £ are trivial and thus E¥, = EP?. As a consequence, for all p, ¢ there
exist an abelian group E%?, such that there is an R such that EP? = E&? for all r > R. We say
that the spectral sequence degenerates at page v if . = E..

Definition 7.20. [6]A fibration is a continuous map p : X — B that satisfies the homotopy lifting
property for every topological space Y. This means that for every homotopy H : Y x 0,1 — B
and f: X x {0} such that po f = Hly oy there exists a homotopy H : Y x [0,1] — X, such that

H:poﬁandﬁ|y><{0}:f.
Y x {0} % X

"

Y x[0,1 -5 B

Proposition 7.21. Let p: X — B be a fibration. Write F,, = p~1(b) for the fiber over b. For any
bo, b1 € B a path between by and by induces a homotopy equivalence between Fy,, and Fy,, such that
composing paths corresponds to composing homotopy equivalences.

If B is path-connected, all fibers are homotopy equivalent. We write F — X — B for such a
fibration, where F' = Fy, is any fiber.

A loop with basepoint b € B induces a map F — F, which in turn induces a map on cohomology
H*(F) — H*(F), that only depends on the homotopy class of the loop. This makes H*(F) a
m1(B)-module.

Proof. See [0, Proposition 4.61]. O
Proposition 7.22. The projection X — BG, e, x| — le| is a fibration with fiber X. The action
on H*(X) induced by m(BG) = G is the same as the one induced by the G-action on X.

Proof. See [18| Page 182]. O

Theorem 7.23. Let F — X — B be a fibration with B path-connected and let G = m1(B) be the
fundamental group of B. There exists a spectral sequence { EX"},>o, called the Leray-Serre spectral
sequence, for which EY? = HP(B; H1(F)), where H1(F') is a G-module as described in . There
are filtrations

0C An,n c..C An,O = Hn(X)v

such that EX"™P = A, ,/Ap pi1-

Proof. See [0, Theorem 5.15] O
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For the remainder of this section, let I — X — B be a fibration, let G = m1(B) and let EX'? be
the corresponding Leray-Serre spectral sequence.

Corollary 7.24. H"(X) =D, ,—n E2Y and there is a surjection H1(X) — E%Z.

Proof. By [Theorem 7.23| E5"7 = A, /A, ,+1, so there are short exact sequences

0— Appir1 = Anp — EBP = 0.

For n = ¢ and p = 0, this gives the surjection H(X) = A, 9 — E3%4. Since we are working over a
field, these short exact sequences are split exact and thus A, , = E%"? & A, 1. By induction

we get A, , =@ ., EY""9 and in particular H(X) = A, o = P EPRA. =

q=p+1 ptq=n

Corollary 7.25. There is a natural injection Esl — H(X).

Proof. The incoming maps in Ey? are all 0, so Ep? is a subgroup of E>9,. Therefore Ex? is a

subgroup of Eg’q and using |Proposition 7.11| we obtain a sequence of injections

E% 5 B9~ gY(X)% 5 HI(X).

O]

Theorem 7.26. There exist bilinear maps EX'? x E;?’t — E?+s’q+t

(z,y) — xy, with the following properties:

, that we write as a product

i) For r = 2, these bilinear maps are given by (—1)9° times the cup product

HP(B; HY(F)) x H*(B; H'(F)) — HP™*(B; HT''(F)).

ii) They satisfy d(zy) = d(z)y + (—1)PT9zd(y), for x € EXY.
i11) For r > 2, the product on E, is induced by that on E,_1, via [x][y] = [zy].

Proof. See [0, Section 5.1] O

7.4 Equivariant cohomology of R-varieties

In this section we will study the equivariant cohomology of a topological space X with a continuous
G-action by looking at the Leray—Serre spectral sequence corresponding to the fibration X — Xg —
BG and apply this to the case where X is an R-variety.

Proposition 7.27. The map j* : H1(Xqg; K) — HY(X;K) factors as j* = i os, where s :
H1(Xg K) — E%% is the surjection from|Corollary 7.24) and i : EX? — H1(X; K) is the injection

from [Corollary 7.75,

Proof. See [20), Theorem 7.6*]. O

Theorem 7.28 (Kiinneth formula). Let K be a field.
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i) Let Cy and D, be chain complexes of K-vector spaces, then H,(Cy Q@ D) = H.(C\) Q@
H,.(D,), where the isomorphism is given by
[c®d] — [c] ®[d].
i1) Let X and'Y be topological spaces, then H*(X x Y; K) =2 H*(X; K) @k H*(Y; K).

Here we take tensor product of chain complexes and graded modules. The analogous statements for
cohomology and cohain complezes also holds.

Proof.

i) See [7, Theorem 5.7.12].
ii) See [6, Theorem 3.16].

O]

Proposition 7.29. [18, Proposition II1.1.18] Let G be a group, let X be a path-connected, finite
CW-complex with a continous G-action and let K be a field. Then X is equivariantly formal
over K if and only if G acts trivially on H*(X; K) and the Leray-Serre spectral sequence E, of
X — X¢o — BG degenerates at page 2.

Proof. Consider the composition j* = i o s from [Proposition 7.27, Then j* is surjective if and only
if ¢ is surjective. Since ¢ factors as

E% — EYY = HI(X; K)Y - HI(X; K),

this happens exactly when E% = Eg " and G acts trivially on H%(X; K). What is left to show is
that EQ? = Eg’q for all ¢ implies that E5! = EY? for all p and q.

Let R be a ring and let NV be an R-module and let M be a free R-module of finite rank, with
basis mi,...,my. Then Hompg(N,R) ® g M = Hompg(N, M), where the isomorphism is given by
f®m = (a— f(a)-m) and the inverse is given by sending f to ) .(f; ® m;), where f; is given by
sending a to the coefficient of m; in f(a).

If N, is a chain complex, than this isomorphism commutes with the induced differentials on the
cochain complexes Homp(N,, M) and Hompg(N,, R) ® M. We can view any R-module M as a
cochain complex M* with M® = M and M* = 0 for all k # 0 and with trivial differentials. So we
get an isomorphism of cochain complexes.

Because X is path-connected, H*(X; K) = K is a field, so any H°(X; K)-module is free. The
cup product on H*(X; K) makes HY(X;K) a H°(X; K)-module. Since BG is path-connected,
elements of HY(BG; M) are constant on O-simplices of BG for any K-vector space M. This gives
an isomorphism HY(BG; M) — M, f ~ f(z), where z is an arbitrary O-simplex in BG. Be-
cause H?(X; K) is finite dimensional, the previous isomorphisms and Kiinneth’s theorem give the
sequence of isomorphisms

HP(BG; H'(X;K)) ® H*(BG; HY(X; K)) — H?(BG; H(X; K)) ® H!(X)
— HP(Hom(C,(BG;Z), H*(X; K)) ® H!(X; K))
— HP(BG; HY(X; K)),
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given by

[fle )~ (1@ 9(@) = [f @ g(x)]
= [Z a; T; — Zazf(xl)g(xl>] )

which coincides with the cup product.

Because G acts trivially on H*(X), we obtain an isomorphism

EPY @ EY ~ HP(BG; H'(X; K)) ® H*(BG; HY(X; K))
~ H?(BG; H'(X; K)) ® H(BG; H!(X; K))
~ HP(BG; H(X; K))
=~ HP(BG; HY(X; K)) = E}

that is given, up to sign, by the product on Es. In particular the product on FEj5 is surjective, so
we can write any element of EY'? as finite sum of products x;y;, with x; € E¥ O and y; € Eg’q. The
differentials on F, satisfy

d(ziyi) = d(zi)ys + zid(y).
The assumption that B = Eg’q is equivalent to d(y) = 0 for all y € EX? and all r > 2, so
d(y;) = 0. Furthermore, d(z;) = 0 because d(x;) € E§+2’71 = 0. Therefore d(z;y;) = 0 for all z;
and y;. Hence d(z) = 0 for all z € E5'?) so E3 = F5. This also means that the product on Fj3 is the

same as the product on E» and in particular also surjective, so we can repeat the same argument.
This gives Fy = F. ]

Lemma 7.30. Let G be a cyclic group of order p, with p prime, and let X be a topological space
for which there exists an n such that Hk(X;Fp) =0 for all k > n. Then the inclusion X¢ — X
induces an isomorphism HE(X;F,) — HE(XY,Fy) for k> n.

Proof. See [18| Proposition I11.4.9]. O

Theorem 7.31. [18, Proposition II11.4.16] Let (X,0) be an n-dimensional R-variety and let G be
the cyclic group of order 2, generated by o, which acts naturally on X. Then X is maximal if and
only if X 1is equivariantly formal over Fa.

Proof. By [Proposition 7.29|it is enough to show that X is maximal if and only if G acts trivially
on H*(X;Fy) and the Leray—Serre spectral sequence F, of X — X¢ — BG degenerates at page 2.
In the rest of this proof, we leave out the coefficients and write H*(X) instead of H*(X;Fy).

By [Corollary 7.24] and the fact that ELY is a subquotient of EY, we have

dimHE(X) = Y dimERI < > dimEP?= Y dim H?(BG; HI(X))
p+q=k p+q=k p+q=k

with equality if and only if the spectral sequence degenerates at page 2.
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Applying [Proposition 7.14] on G, combined with [Proposition 7.15| gives

Kerp ifp=0
Kerp/Imp ifp>0

HP(BG; HY (X)) :{

with p =id+o : HY(X) - HY(X).
Note that Ker p = H9(X)% and that
dim(Ker p/ Im p) < dim(Ker p) = dim(H?(X))“.

With equality if and only if p = 0, which is exactly the case when G acts trivially on H9(X).
Therefore we have dim E5? = dim HP(BG; H1(X)) < dim HY(X) with equality if and only if G
acts trivially on H9(X). In total we get for k > 2n

k
dim HE(X) = Y dimERI < > dim EP? <) dim HY(X) = b.(X; Fy),
p+q=Fk p+q=Fk b=0

with equality if and only if X is equivariantly formal.
Since G acts trivially on X, the space Xg = EG x¢ X© is just the Cartesian product BG x X©.

Therefore we can use the Kiinneth formula and get

k
HE(XC) = @ HP(BG)® HY(XC) = P HI(XE),
pt+a=k q=0

the latter equality follows from HP(BG) = HP(RP*>) = Fy for all p > 0.

As X is n dimensional, H*(X) = 0 for k > 2n, so we can use [Lemma 7.30| and get

k
b(X % Fy) =) dim HY(X) = dim H;(XY) = dim H¢ (X) < ba(X;F)
q=0
for k > 2n, with equality if and only if X is equivariantly formal over Fs. Note that we have also
reproven the Thom-Smith inequality. O

7.5 I'-products

Definition 7.32. Let X be a topological space and I C S, a subgroup, then the I'-product X' of
X is the quotient of X™, by the natural I' action on X™. For I' = .5, this is the n-fold symmetric
product of X.

Theorem 7.33. [3, Theorem 1.1] Let K be a field, let G be a group and let X be a topological
space with continuous G-action that is equivariantly formal over K. Then X' is also equivariantly
formal over K.
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Proof. By assumptio,n the map j. : X — Xg,z — [e,z] induces a surjection in cohomology.
Lemma 2.4 in [3] implies that jI : XU — (Xo)U, [z1, ..., 2] + [[e, 1], ..., [e, 2,]] also induces a
surjection in cohomology. The map ;! factors as j, = ¢ o ¢, with

Ve : XU = (XDYg, [21, oy 0] = [, [21, ooy 2]

and
¢ (XDg = (X)), e, [x1, .oy zn)] = [[e; 1], -0) [€, 2]

This induces a factorization of the map in cohomology and shows that 1. induces a surjection in
cohomology, which proves that X1 is equivariantly formal over K.

By Ty
XU e (xo)' B (XD K) U< H*(Xe)'; K)
(XN H: (XY K)

Corollary 7.34. Let X be a mazimal curve, then X is a mazimal variety.

Proof. By IPropositions 6.4 and X™) ig an R-variety. Since X is maximal, it is equivariantly
formal over Fa, by [Theorem 7.31l By [Theorem 7.33[ X (™ is also equivariantly formal over Fy and

finally by [Theorem 7.31] X(™ is maximal. O
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