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1 Introduction

Studying the topology of real algebraic varieties is an old topic. The ancient Greek mathematicians
already were familiar with real algebraic curves, in particular with conics and quartics. In the
17th and 18th centuries, mathematicians like Descartes and Euler were also studying higher degree
curves.

One of the earliest topological results for curves of arbitrary degree is Harnack’s inequality (1876),

which states that the number of connected components of a degree d curve is at most (d−1)(d−2)
2 +1.

Harnack, who was a student of Felix Klein, proved this for plane curves [4] and Klein [11] later
proved the general version for non-planar curves.

Curves for which the number of connected components is exactly (d−1)(d−2)
2 +1 are called maximal

curves. These maximal curves became an interesting object to study in the following years.

For example, they occurred in Hilbert’s famous list of problems that he published in 1900. Problem
16 of this list is to study how the connected components of maximal curves are arranged, relative
to each other.

The connected components of a curve are also called ovals. Based on whether an oval ‘sits inside’
an even or odd number of other ovals, it is called an even or odd oval. Some important results that
were developed during the 20th century were constraints on the difference between the number of
even ovals P and the number of odd ovals N . The first was the Petrovskii–Oleinik inequality [16]
(1938), which gave the bound

3
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d− 3
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d2 ≤ P −N ≤ 3
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d− 3

2
d2 + 1

for a curve of degree 2d. For maximal curves of degree 2d the extra constraint P −N ≡ d2 modulo
8 holds, which was shown by Rokhlin [17].

Figure 1: The curve 0 = x3y3 − ((x2 + 3y2 − 17)(3x2 + y2 − 10) + 15x2)(x2 + 4(y + 1)2 − 25), with 2 even
ovals and 3 odd ovals.
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Some of these results were also generalised to surfaces, but it wasn’t until the second half of the 20th
century that Harnack’s inequality was generalized to arbitrary dimensions. This generalization was
found by transitioning from the direct study of real algebraic varieties to the study of R-varieties.
These are complex manifolds with an anti-holomorphic involution. The fixed locus of such an
involution is called the real locus of the R-variety. The real algebraic varieties that were studied
before correspond to the real loci of R-varieties.

The generalized version of Harnack’s inequality is called the Thom–Smith inequality and it states∑
n≥0

dimHn(X
σ;F2) ≤

∑
n≥0

dimHn(X;F2),

for an R-variety X, with an anti-holomorphic involution σ.

The Petrovskii–Oleinik inequality was also generalized to higher dimensions, by Kharlamov [10] in
1974. This Petrovskii–Oleinik–Kharlamov inequalityholds for even dimensional R-varieties X that
are Kähler manifolds and states

2− hn,n(X) ≤ χ(X(R)) ≤ hn,n(X),

where hn,n(X) is the dimension of the Dolbeault cohomology of X in degree (n, n) and χ(X(R)) is
the Euler characteristic of the real locus of X.

The Thom–Smith inequality also gave rise to the notion of a maximal variety, which is the higher
dimensional analogue of a maximal curve. Apart from generalizing the known results for curves to
higher dimensions, another interesting problem is the construction of maximal varieties from other
(lower dimensional) maximal varieties. In 2017, Biswas and D’Mello [1] gave such a construction
using the symmetric product. The n-fold symmetric product is the quotient of the n-fold Cartesian
product by the natural action of the symmetric group Sn. Biswas and D’Mello showed that the
nth symmetric product of a maximal genus g curve, is maximal for n ≤ 3 or n ≥ 2g − 1. In 2018,
this was generalized by Franz [3] to all n.

In this thesis we will present proofs of most of the results mentioned above. In Chapter 2 we
start with some preliminary knowledge about the homology and cohomology of topological spaces.
Then we continue in Chapter 3 with Smith theory, which is an important tool that will be used
later on. In Chapter 4 we will introduce the main object of study, namely R-varieties and also
define the concept of a maximal variety and prove Harnack’s inequality in the meantime. Then, in
Chapter 5, we prove the Petrovskii–Oleinik–Kharlamov inequality, which is the generalized version
of Petrovskii–Oleinkik inequality. Finally, in Chapters 6 and 7, we explore the symmetric product
as a way to construct maximal varieties.
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2 (Co)homology

In this thesis we will repeatedly use the singular homology and cohomology of topological spaces.
This chapter will provide some required definitions and theorems about them.

Definition 2.1. Let ∆n = {(x0, . . . , xn) ∈ Rn+1 | x0 + · · · + xn = 1}. A singular n-simplex in a
topological space X is a continuous function ρ : ∆n → X. We denote the set of n-simplices on X
by Sn(X).

Definition 2.2. Let A be an abelian group. The singular chain complex C∗(X;A) of a topological
space X with coefficients in A is defined in index i by

Ci(X;A) := A[Si(X)] =

∑
j∈J

ajsj | J is finite, aj ∈ A, sj ∈ Si(X)

 .

The differentials of the chain complex are induced by inclusions dj : ∆
i−1 → ∆i as follows. Let

dj(x0, . . . , xi−1) = (x0, . . . , xj−1, 0, xj , . . . , xi−1)

for 0 ≤ j ≤ i. These inclusions induce maps d∗j : Ci(X;A) → Ci−1(X;A) defined by s 7→ s ◦ dj , for
s ∈ Si(X). The differentials

∂i : Ci(X;R) → Ci−1(X;R)

are now defined by the alternating sum of these induced maps, i.e.

∂i(x) =

i∑
j=0

(−1)jd∗j (x).

It can be checked that this makes C∗ a chain complex, i.e. ∂i ◦ ∂i+1 = 0.

Definition 2.3. The ith singular homology group with coefficients in A of a topological space X
is the ith homology of its singular chain complex with coefficients in A:

Hi(X;A) = Hi(C∗(X;A)) = Ker ∂i/ Im ∂i+1.

Example 2.4.

i) Let Sn = {(x0, . . . , xn) ∈ Rn+1 |
√
x20 + · · ·+ x2n = 1} denote the n-sphere. For n > 0 we

have, [6, Corollary 2.14]

Hk(S
n;Z) ∼=

{
Z if k = 0 or k = n,

0 otherwise.

ii) The homology groups of n-dimensional real projective space RPn = (Rn+1 − {0})/R∗ and
infinite dimensional real projective space RP∞ are given as follows; see [6, Example 2.42].

Hk(RPn;Z) ∼=


Z if k = 0 or n is odd and k = n,

Z/2Z if 0 < k < n and k is odd,

0 otherwise,

Hk(RP∞;Z) ∼=


Z if k = 0,

Z/2Z if 0 < k and k is odd,

0 otherwise.
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iii) The homology groups of n-dimensional complex projective space CPn = (Cn+1−{0})/C∗ are
given as follows; see [6, page 140].

Hk(CPn;Z) ∼=

{
Z if 0 ≤ k ≤ 2n and k is even,

0 otherwise.

Definition 2.5. Let A be an abelian group. The singular cochain complex C∗(X;A) of a topological
space X with coefficients in abelian group A, is defined in index i by,

Ci(X;A) := Hom(Ci(X;Z), A).

The corresponding differentials δi : Ci(X;A) → Ci+1(X;A) are defined by

δi(x) = x ◦ ∂i+1.

Definition 2.6. The ith singular cohomology with coefficients in A of a topological space X is the
ith cohomology group of its singular cochain complex with coefficients in A:

H i(X;A) = H i(C∗(X;A)) = Ker δi/ Im δi−1.

Definition 2.7. Let R be a ring. The cup product on the singular cochain complex is a bilinear
map

− ∪− : Cp(X;R)× Cq(X;R) → Cp+q(X;R), (f, g) 7→ f ∪ g,

where f ∪ g is defined on (p+ q)-simplices s in X by

(f ∪ g)(s) = f(frontp(s)) · g(backq(s)),

where frontp(s) is the p-simplex (x0, . . . , xp) 7→ s(x0, . . . , xp, 0, . . . , 0) and backq(s) is the q-simplex
(x0, . . . , xq) 7→ s(0, . . . , 0, x0, . . . , xq).

This induces a bilinear map on cohomology

Hp(X;R)×Hq(X;R) → Hp+q(X;R),

which makes H∗(X;R) a graded ring. [6, Lemma 3.6]

If there is a bilinear map A×B →M on R-modules A,B and M , this map can be used instead of
the product on R, to get a cup product Hp(X;A)×Hq(X;B) → Hp+q(X;M).

We need some more results to easily compute cohomology groups, so we will postpone examples of
cohomology to Section 2.2

2.1 Tor and Ext functors

Definition 2.8. Let R be a ring and M be an R-module. A resolution of M is an exact sequence
· · · → C2 → C1 → C0 and an R-linear map C0 →M , such that · · · → C2 → C1 → C0 →M → 0 is
also exact. A resolution is called a projective resolution if all Ci are projective R-modules, which
means that for each i there is an R-module Di, such that Ci ⊕Di is a free R-module.
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Example 2.9. Let R = Z, M = Z/pZ for a prime number p. Then

0 Z Z,∂1 = ·p

is a projective resolution of M .

Definition 2.10. Let R be a ring, and let M,N be R-modules. Let (C∗, ∂C) be a projective
resolution of M . Let (D∗, ∂D) = C∗ ⊗R N , i.e. Di = Ci ⊗R N and ∂D,i : Di → Di−1 is given by

c⊗ n 7→ ∂C,i(c)⊗ n.

Then we define TorRi (M,N) := Hi(D∗), which, up to isomorphism, does not depend on the chosen
resolution.

When R = Z, we can always construct a short exact sequence

0 Kerϕ Z[M ] M 0,
ϕ

where Z[M ] is the free abelian group generated by M and ϕ : Z[M ] → M is the group homomor-
phism that sends

∑
i ai ·mi ∈ Z[M ] to

∑
i ai ·mi ∈ M . Its kernel is a subgroup of a free abelian

group and thus free itself [12, Page 880], so we have a projective resolution with Ci = 0 for i ≥ 2.
Therefore TorZi (M,N) = 0 for all M,N when i ≥ 2, so instead of TorZ1 , we just write Tor.

Example 2.9 (Continued). Let N = Fq for a prime number q. Taking the tensor product with N ,
we obtain the chain complex D∗ = C∗ ⊗ Fq,

0 Z⊗Z Fq Z⊗Z Fq.
∂1 = ·p ⊗ id

which is isomorphic to 0 Fq Fq.
∂1 = ·p

i) If p = q, then multiplication by p is the 0-map, in which case the homology is

TorZi (M,N) = Hi(D∗) =

{
Fq if i = 0 or i = 1,

0 otherwise.

ii) If p ̸= q, then multiplication by p is an isomorphism, so the homology is TorZi (M,N) =
Hi(D∗) = 0 for all i.

Definition 2.11. Let R be a ring, and letM,N be R-modules. Let C∗ be a projective resolution of
M . Let D∗ = Hom(C∗, N), i.e. Di = Hom(Ci, N) and ∂D,i : Di → Di+1 is given by f 7→ f ◦∂C,i+1.
Then ExtiR(M,N) := H i(D∗), which, up to isomorphism, does not depend on the chosen resolution.
Just as with TorZi , we have ExtiZ(M,N) = 0 for all M,N for i ≥ 2, so instead of Ext1Z we write
Ext.

Example 2.9 (Continued). Applying Hom(−,Fq) to the resolution of M = Z/pZ, we obtain the
cochain complex D∗ = Hom(C∗,Fq),

Hom(Z,Fq) Hom(Z,Fq) 0,
δ0 = ·p

which is isomorphic to Fq Fq 0.
δ0 = ·p
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i) If p = q, then multiplication by p is the 0-map, in which case the cohomology is

ExtiZ(M,N) = H i(D∗) =

{
Fq if i = 0 or i = 1,

0 otherwise.

ii) If p ̸= q, then multiplication by p is an isomorphism, so the cohomology is ExtiZ(M,N) =
H i(D∗) = 0 for all i.

2.2 Universal Coefficient Theorem

For both homology and cohomology there are universal coefficient theorems, which are useful for
computing them when the coefficients are not in Z.

Theorem 2.12. Let A be an abelian group and X a topological space. Then there is a split exact
sequence

0 Hn(X;Z)⊗Z A Hn(X;A) Tor(Hn−1(X;Z), A) 0.

In particular there is an isomorphism

Hn(X;A) ∼= Hn(X;Z)⊗Z A⊕ Tor(Hn−1(X;Z), A).

Proof. See Theorem 3A.3 in [6].

Theorem 2.13. Let A be an abelian group and X a topological space. Then there is a split exact
sequence

0 Ext(Hk−1(X;Z), A) Hk(X;A) Hom(Hk(X;Z), A) 0.

In particular there is an isomorphism

Hn(X;A) ∼= Hom(Hn(X;Z), A)⊕ Ext(Hn−1(X;Z), A).

Proof. See Theorem 3.2 in [6].

In order to apply the universal coefficient theorem to some examples, it is useful to have some
results on how to compute the Tor and Ext functors.

Lemma 2.14. Let A be an abelian group. Then the following hold:

i) A ∼= Z⊗Z A ∼= Hom(Z, A),
ii) 0 ∼= Tor(Z, A) ∼= Ext(Z, A).

Proof.
i) The isomorphisms are given by

A→ Z⊗Z A : a 7→ 1⊗ a,

A→ Hom(Z, A) : a 7→ (n 7→ n · a).
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ii) This follows from the projective resolution 0 → Z → Z of Z, which leads to the (co)-
chaincomplex 0 → Z → 0, which has zero (co)homology in index 1.

Example 2.15. The homology groups of Sn and CPn are all Z or 0, so we can use Lemma 2.14
to compute the corresponding Ext-groups. Combined with Theorem 2.13, this gives the following
computations of the cohomology of Sn and CPn.

Hk(Sn;Z) ∼= Hom(Hk(S
n;Z);Z)⊕ Ext(Hk−1(S

n;Z),Z)

∼= Hk(S
n;Z) =

{
Z if k = 0 or k = n,

0 otherwise.

and

Hk(CPn;Z) ∼= Hom(Hk(CPn;Z);Z)⊕ Ext(Hk−1(CPn;Z),Z)

∼= Hk(CPn;Z) ∼=

{
Z if 0 ≤ k ≤ 2n and k is even,

0 otherwise.

Example 2.16. We can use the universal coefficient theorem to compute the cohomology
groups Hk(CPn;F2) and Hk(RPn;F2). For even 0 ≤ k ≤ 2n, we have Hk(CPn;Z) ∼= Z and
Hk−1(CPn;Z) ∼= 0, so

Hk(CPn;F2) ∼= Z⊗Z F2 ⊕ Tor(0,F2) ∼= F2.

For odd 0 < k < 2n, we have Hk(CPn;Z) ∼= 0 and Hk−1(CPn;Z) ∼= Z, so

Hk(CPn;F2) ∼= 0⊗Z F2 ⊕ Tor(Z,F2) ∼= 0.

Therefore, the homology of complex projective space with coefficients in F2 is quite similar to that
with coefficients in Z:

Hk(CPn;F2) ∼=

{
F2 if 0 ≤ k ≤ 2n and k is even,

0 otherwise.

For k = 0 or k = n with n odd, we have Hk(RPn;Z) ∼= Z and Hk−1(RPn;Z) ∼= 0, hence

Hk(RPn;F2) ∼= Z⊗Z F2 ⊕ Tor(0,F2) ∼= F2.

For odd 0 < k < n, we have Hk(RPn;Z) ∼= F2 and Hk−1(RPn;Z) ∼= 0, hence

Hk(RPn;F2) ∼= F2 ⊗Z F2 ⊕ Tor(0,F2) ∼= F2.

For even 0 < k ≤ n, we have Hk(RPn;Z) ∼= 0 and Hk−1(RPn;Z) ∼= F2, hence

Hk(RPn;F2) ∼= 0⊗Z F2 ⊕ Tor(F2,F2) ∼= F2,

where we use the computation Tor(F2,F2) = F2 of Example 2.9.
For k = n+ 1, with n odd, we have Hk(RPn;Z) ∼= 0 and Hk−1(RPn;Z) ∼= Z, hence

Hk(RPn;F2) ∼= 0⊗Z F2 ⊕ Tor(Z,F2) ∼= 0.

For k < 0 or k > n + 1, or k = n + 1 with n even, we have Hk(RPn;Z) ∼= Hk−1(RPn) ∼= 0, hence
Hk(RPn;F2) ∼= 0. We conclude

Hk(RPn;F2) ∼=

{
F2 if 0 ≤ k ≤ n,

0 otherwise.
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Example 2.17. A similar computation yields

Hk(RPn;F2) ∼=

{
F2 if 0 ≤ k ≤ n,

0 otherwise,

and

Hk(RP∞;F2) ∼=

{
F2 if 0 ≤ k,

0 otherwise.

2.3 Euler characteristic

Definition 2.18. Let X be a topological space and K be a field. Then the Euler characteristic
χ(X;K) of X with coefficients in K is defined by

χ(X;K) =
∑
k

(−1)k dimK Hk(X;K).

Note that this is only a well-defined integer if all Hk(X;K) are finite dimensional and finitely many
of them are non-zero. In particular it is well-defined if X is a finite CW-complex.

Example 2.19. Using the homology groups we computed in Example 2.16, we find that

χ(CPn;F2) = n+ 1

and

χ(RPn;F2) =

{
0 if n is odd,

1 if n is even.

The Euler characteristic is a useful algebraic invariant for topological spaces. In this section we
will prove that it is independent of the field of coefficients and it can also be defined in terms of
cohomology.

Lemma 2.20. Let K be a field of characteristic p. Let A ∼= Z/qlZ, for a prime number q. Then
the following hold.

i) If p = q, then K ∼= A⊗Z K ∼= Hom(A,K) ∼= Tor(A,K) ∼= Ext(A,K).
ii) If p ̸= q, then 0 ∼= A⊗Z K ∼= Hom(A,K) ∼= Tor(A,K) ∼= Ext(A,K).

Proof. The short exact sequence

0 Z Z A 0
ϕ a7→ā

provides a projective resolution of A, where ϕ : Z → Z is multiplication by ql. Leaving out A
and applying the − ⊗Z K functor, we get the chain complex 0 → K → K → 0, where the map
K → K is still multiplication by ql. If q = p, then this is the zero map, so Tor(A,K), which is the
homology in index 1 of this complex, is K. If q ̸= p, then it is an isomorphism, so the sequence
is exact and the homology is zero. Leaving out A and applying the Hom(−,K) functor, we get
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the cochain complex 0 → K → K → 0, where the map K → K is again multiplication by ql, so a
similar argument shows the statement for Ext(A,K).

If q ̸= p, then p is invertible in Z/qlZ, so

ā⊗ b = p(p−1ā⊗ b) = (p−1ā⊗ pb) = 0

for all (ā, b) ∈ A×K, hence A⊗ZK = 0. Now suppose q = p. If ā = ā′ in A then pl | a− a′, hence
a− a′ = 0 in K. So ā 7→ a · 1 : A→ K is well-defined. Therefore also the homomorphisms

A⊗Z K → K : ā⊗ b 7→ ab,

K → A⊗Z K : b 7→ 1̄⊗ b

are well-defined. They are each others inverse, because ā⊗ b = a · 1̄⊗Z b = 1̄⊗ ab. This shows that
A⊗Z K ∼= K.

Lastly we compute Hom(A,K). A homomorphism ϕ : A → K is completely determined by ϕ(1̄).
If q ̸= p, then ql ̸= 0 in K, hence 0 = ϕ(0) = ϕ(ql) = ϕ(1) · ql implies that ϕ(1) = 0, hence
Hom(A,K) = 0. If q = p, then any ϕ(ā) = a · ϕ(1̄) is well-defined, since pl = 0 in K. Therefore
Hom(A,K) = K, via ϕ 7→ ϕ(1̄) in this case.

Proposition 2.21. Let X be a finite CW-complex. For any field K we have χ(X;K) = χ(X;Q).

Proof. Let p = charK. Write Hk(X;Z) ∼= Zrk ⊕ Tk, where Tk is the torsion subgroup of Hk(X;Z),
which is of the form

Tk ∼= Z/pl11 Z⊕ · · · ⊕ Z/plnn Z,

for some prime numbers p1, . . . , pn. We can order the pi such that p1 = · · · = psk = p and
psk+1, . . . , pn are all not equal to p, for some sk ≥ 0. We then have Tk ⊗Z K = Ksk and
Tor(Tk−1,K) = Ksk−1 by Lemma 2.20.

By the universal coefficient theorem, we have

Hk(X,K) ∼= Hk(X;Z)⊗Z K ⊕ Tor(Hk−1(X;Z),K).

If p = 0, in particular when K = Q, then sk = 0 for all k, so then Tor(Hk−1(X;Z),K) = 0 and
Hk(X;Z)⊗Z K ∼= Krk , so

χ(X;K) =
∑
k

(−1)k dimK K
rk =

∑
k

(−1)k dimQQrk = χ(X;Q).

If p > 0, then

χ(X;K) =
∑
k

(−1)k dimK(Krk+sk ⊕Ksk−1)

=
∑
k

(−1)k(rk + sk + sk−1)

= χ(X;Q) +
∑
k

(−1)k(sk + sk−1)

= χ(X;Q).
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So we can speak of the Euler characteristic χ(X) of X.

Definition 2.22. The Euler characteristic in cohomology with coefficients in K is defined as

χco(X;K) =
∑
k

(−1)k dimK H
k(X;K).

Just as for the Euler characteristic in homology, this is only a well-defined if there are only finitely
many non-zero terms and they are all finite dimensional.

Proposition 2.23. Let X be a finite CW-complex. For any field K, χco(X;K) = χ(X).

Proof. By the universal coefficient theorem, we have

Hk(X;K) ∼= Ext(Hk−1(X;Z),K)⊕Hom(Hk(X;Z),K).

Let p = charK and let rk and sk be as in the proof of Proposition 2.21. Then, by Lemmata 2.14
and 2.20,

Ext(Hk−1(X;Z),K) ∼= Ksk−1

and
Hom(Hk(X;Z),K) ∼= Krk+sk ,

so we see Hk(X;K) ∼= Krk+sk+sk−1 ∼= Hk(X;K). Therefore the result follows from Proposi-
tion 2.21.
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3 Smith theory

In this chapter X will denote a topological space and σ a continuous involution on X. Furthermore
we denote the fixed locus of σ by Xσ = {x ∈ X | σ(x) = x}. The involution σ induces a chain map
C∗(X;F2) → C∗(X;F2), which we will also denote by σ. Now define

ρ = id+σ : C∗(X;F2) → C∗(X;F2).

Additionally we define
i : ρC∗(X;F2)⊕ C∗(X

σ;F2) → C∗(X;F2),

by (a, b) 7→ a+ b, where we write b for the image of b under the natural inclusion

C∗(X
σ;F2) → C∗(X;F2).

Lemma 3.1. The following sequence of chain complexes is exact.

0 ρC∗(X;F2)⊕ C∗(X
σ;F2) C∗(X;F2) ρC∗(X;F2) 0.i ρ

Proof. We check the exactness degree-wise.

The surjectivity of ρ : Ck(X;F2) → ρCk(X;F2) is obvious.

Suppose i(a, b) = 0, then a = b since we are working over F2, hence

a ∈ ρCk(X;F2) ∩ Ck(Xσ;F2).

Suppose a = ρ(x) = x + σ(x) ∈ Ck(X
σ;F2). We can write x =

∑
i si, where the si are distinct

k-simplices in X. If σ(si) ̸= si, then there must be a j, such that sj = σ(si), because otherwise
x + σ(x) ̸∈ Ck(X

σ;F2). Since ρ(x − si − σ(si)) = ρ(x), we can assume without loss of generality
that a = ρ(x) with x ∈ Ck(X

σ;F2) and thus b = a = 2x = 0. Therefore i is injective.

For the exactness at Ck(X;F2), we first show Im i ⊆ Ker ρ by showing that ρ ◦ i = 0. Let

(ρ(a), b) ∈ ρCk(X;F2)⊕ Ck(X
σ;F2),

then

ρ(i(ρ(a), b)) = ρ(ρ(a) + b) = ρ(ρ(a)) + ρ(b)

= ρ(a+ σ(a)) + b+ σ(b) = 2a+ 2σ(a) + 2b = 0.

Now for the reverse inclusion Ker ρ ⊆ Im i, let s =
∑

i si ∈ Ker ρ. For every i we either have
si = σ(si) or si ̸= σ(si), so we can write

s =
∑
i

(xiai + yiσ(ai)) +
∑
j

bj ,

with xi, yi ∈ F2 and σ(bj) = bj and ai ̸= σ(ai). Note that by definition σ(bj) = bj ⇐⇒
σ(bj(x)) = bj(x) for all x ∈ ∆k, so the bj are simplices bj : ∆

k → Xσ and
∑

j bj ∈ Ck(X
σ;F2).
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Without loss of generality, each ai, σ(ai) and bj occur only once in the sum, i.e. i ̸= j =⇒ ai ̸=
aj , ai ̸= σ(aj) and bi ̸= bj . Furthermore, for all i we can assume that xi and yi are not both 0. Now

0 = ρ(s) =
∑
i

((xi + yi)ai + (xi + yi)σ(ai)) +
∑
j

(bj + σ(bj))

=
∑
i

((xi + yi)ai + (xi + yi)σ(ai)).

Because we assumed each ai occurred only once in the sum, this implies that xi + yi = 0 for all
i. From the assumption that xi and yi are not both zero, we conclude that xi = yi = 1 for all i.
Therefore s = i(ρ(

∑
i ai),

∑
j bj) and Ker ρ ⊆ Im i.

This shows that the sequence is exact.

Corollary 3.2. There is a long exact sequence of homology groups

· · · Hk(X;F2) Hk(ρC∗(X;F2)) Hk−1(ρC∗(X;F2))⊕Hk−1(X
σ;F2)

Hk−1(X;F2) · · · .

ik ρk δk

ik−1 ρk−1

Proof. A short exact sequence of chain complexes induces a long exact sequence of its homology
groups, see Theorem 1.3.1 in [19]. Applying this on the short exact sequence from Lemma 3.1 gives
the long exact sequence above.

Corollary 3.3. For all k, the sequence

0 Hk+1(ρC∗(X;F2))/ Im ρk+1 Hk(ρC∗(X;F2))⊕Hk(X
σ;F2) Hk(X;F2) Im ρk 0

δ̄k ik ρk

is exact. Where ik and ρk are as in Corollary 3.2 and δ̄k is the map induced by δk from Corollary 3.2.

Proof. The exactness in the middle two places follows immediately from Corollary 3.2. Exactness
in the last place is clear, since ρk : Hk(X;F2) → Im ρk is surjective. Exactness in the first place
also follows from Corollary 3.2, because Ker δk = Im ρk+1 implies that δ̄k is injective.

Definition 3.4. Let X be a topological space and K a field, then the kth Betti number with
coefficients in K of X is bk(X;K) = dimK Hk(X;K). The sum of all Betti numbers is denoted by
b∗(X;K) =

∑
k bk(X;K) and is called the total Betti number with coefficients in K.

Theorem 3.5 (Thom–Smith inequality, [15, Theorem 3.3.6]). Let X be an n-dimensional manifold
and let σ : X → X be an involution, then

b∗(X
σ;F2) ≤ b∗(X;F2).

Proof. Let ak = dimF2 (Im ρk) and ck = dimF2(Hk(ρC∗(X;F2))). Then Corollary 3.3 implies

0 = (ck+1 − ak+1)− (ck + bk(X
σ;F2)) + bk(X;F2)− ak,

so
bk(X

σ;F2) = bk(X;F2)− ak+1 − ak + ck+1 − ck.

13



Taking sums, we get

b∗(X
σ;F2) =

∞∑
k=−∞

bk(X
σ;F2) =

∞∑
k=−∞

(bk(X;F2)− ak+1 − ak + ck+1 − ck)

=

2n∑
k=0

(bk(X;F2)− 2ak) .

In particular b∗(X
σ;F2) ≤ b∗(X;F2).

For the rest of this section we let Y = X/σ, equipped with the quotient topology. The subspace Xσ

of X can also be seen as a subspace of Y , since the points in Xσ only get identified with themselves
in Y .

Lemma 3.6. Let K be a field. If charK = 2, then

ρC∗(X;K) ∼= C∗(Y,X
σ;K) = C∗(Y ;K)/C∗(X

σ;K).

Otherwise
C∗(X;K)σ ∼= ρC∗(X;K) ∼= C∗(Y ;K).

Here C∗(X;K)σ denotes the subchaincomplex of C∗(X;K) that is invariant under σ.

Proof. Let c ∈ ρCk(X;K), then c =
∑

i xi(ai+σ(ai)), where xi ∈ K−{0} and the ai are k-simplices
in X.

Define ϕk : ρCk(X;K) → Ck(Y ;K), by ρ(a) 7→ [a], for k-simplices a, where [a] ∈ Ck(Y ;K) is the
k-simplex that is obtained by composing a with the quotient map X → Y . We check that ϕk is
well-defined. We distinguish the cases a = σ(a) and a ̸= σ(a). If a ̸= σ(a), then

ρ(a) = a+ σ(a) = b+ σ(b) = ρ(b)

implies that a = b or a = σ(b). In both cases [a] = [b]. If a = σ(a) then

ρ(a) = 2a = b+ σ(b) = ρ(b).

If charK ̸= 2, then this implies a = b and thus [a] = [b]. If charK = 2, then this implies b+σ(b) = 0,
i.e. b = σ(b).

We see that ϕk is well-defined if charK ̸= 2. There is an inverse of ϕk, namely ψk = [a] 7→ ρ(a),
which is well-defined, because ρ(a) = ρ(σ(a)). Therefore ϕk is an isomorphism. Now we need to
check that (ϕk)k is a chain-map. This means we need to check that ϕk−1 ◦ ∂ = ∂ ◦ ϕk. The map
σ is induced by a continuous map and hence is a chain-map. As a consequence, ρ is also a chain
map. The map induced by the the quotient map X → Y is also a chain map. Therefore,

ϕk−1(∂(ρ(a))) = ϕk−1(ρ(∂(a)) = [∂(a)] = ∂([a]) = ∂(ϕk(ρ(a)).

This shows that (ϕk)k is an isomorphism of chain complexes.

In the other case, when charK = 2, then ϕk isn’t well-defined in general, because if a and b
are different k-simplices in Xσ, then ρ(a) = ρ(b) = 0, but a = σ(a) ̸= b = σ(b), so [a] ̸= [b].

14



However, if we consider ϕk as a map ρCk(X;K) → Ck(Y,X
σ;K), then it is well-defined, since then

[a] = [b] = 0 for all simplices a, b in Xσ. The inverse [a] 7→ ρ(a) is also still well-defined, because
ρ(a) = a+ σ(a) = 2a = 0 for a in Xσ. The argument that (ϕk)k is a chain map is the same as for
charK ̸= 2.

Lastly we remark that that C∗(K;X)σ = ρC∗(X;K) when charK ̸= 2. The inclusion

C∗(K;X)σ ⊆ ρC∗(X;K)

holds, because ρ acts as multiplication by 2 on C∗(K;X)σ, hence x = ρ(12x) ∈ ρC∗(X;K) for every
x ∈ C∗(X;K)σ. The other inclusion, C∗(X;K)σ ⊇ ρC∗(X;K), holds because σ ◦ ρ = ρ.

Corollary 3.7. For a field K with charK ̸= 2 there is an isomorphism Hn(X;K)σ ∼= Hn(Y ;K).

Proof. We can extend the map ϕk : ρCk(X;K)σ → Ck(Y ;K) in the proof above to a map

ϕ̃k : Ck(X;K) → Ck(Y ;K),

by setting ϕ̃k(a) =
1
2 [a]. On homology now (ψk ◦ ϕ̃k)∗ = id and Im(ψk)∗ ⊆ Hk(X;K)σ and

(ϕ̃k ◦ ψk)∗(a) =
1

2
ρk(a),

which is the identity when restricted to Hk(X;K)σ. This shows that we have an isomorphism
Hn(X;K)σ ∼= Hn(Y ;K).

Corollary 3.8. There is an exact sequence

· · · → Hk+1(Y,X
σ;F2) → Hk(Y,X

σ;F2)⊕Hk(X
σ;F2) → Hk(X;F2) → Hk(Y,X

σ;F2) → · · ·

Proof. By Corollary 3.2 we have the exact sequence

Hk+1(ρC(X;F2)) → Hk(ρC(X;F2))⊕Hk(X
σ;F2) → Hk(X;F2) → Hk(ρC(X;F2)).

Lemma 3.6 shows that ρC(X;F2) ∼= C(Y,Xσ;F2), from which the result follows.

Example 3.9. If we letX = S2 and σ(x, y, z) = (x, y,−z), thenXσ = {(x, y, z) ∈ S2 | z = 0} ∼= S1

and Y = X/σ ∼= {(x, y) ∈ R2 | x2 + y2 ≤ 1} ∼= D2.

Theorem 3.5 says that b∗(S
1;F2) ≤ b∗(S

2;F2). And indeed, Example 2.4 combined with the
Universal Coefficient Theorem, shows that

Hk(S
n;F2) ∼=

{
F2 if k = 0 or k = n,

0 otherwise,

so b∗(S
1;F2) = 2 = b∗(S

2;F2).

We can already use the long exact sequence in homology of the pair (D2, S1) to compute the relative
cohomology groups Hk(D

2, S1;F2), but Corollary 3.8 gives an alternative way to compute these
groups, given that Hk(D

2, S1;F2) ∼= 0 for some k ≥ 3.
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If we denote Ak = Hk(D
2, S1;F2), then for k ≥ 4 we get the exact sequence

0 → Ak → Ak−1 ⊕ 0 → 0,

so Ak ∼= Ak−1 for all k ≥ 4. Together with the assumption Ak ∼= 0 for some k ≥ 3, this implies that
Ak ∼= 0 for all k ≥ 3.

We now have the exact sequences

0 A1 A0 ⊕ F2 F2 A0 0
γ β α

and

0 A2 ⊕ 0 F2 A2 A1 ⊕ F2 0.h g f

The map β restricted to 0 ⊕ F2 is the map H0(S
1;F2) → H0(S

2;F2) induced by the inclusion
S1 → S2. This is not the zero map, as the class of a single 0-simplex in S1 is also not zero
in S2. Therefore Kerβ = A0 and Kerα = Imβ = F2 so α = 0. Since α is surjective, we get
0 = A0 = Kerβ = Im γ. Since γ is injective, we get A1 = 0.

The second exact sequence now has the form

0 A2 F2 A2 F2 0.h g f

As h is injective and f is surjective, we get 2 ≤ |A2| ≤ 2, so A2
∼= F2.

Computing relative homology groups is not the most important application of Corollary 3.8. In-
stead we will use it to derive a relation between the Euler characteristics χ(X) and χ(Xσ).
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4 R-varieties

Definition 4.1. An n-dimensional complex manifold is a second-countable, Hausdorff space X
with an atlas, i.e. a collection of homeomorphisms {ϕi : Ui → Vi}, with Ui ⊆ X open and Vi ⊆ Cn
open, such that the Ui cover X and ϕi ◦ ϕ−1

j |ϕj(Ui∩Uj) is holomorphic for all i, j.

Definition 4.2. Let X be a complex manifold, let U ⊆ X be an open subset and let f : U → C
be a function. Then f is called holomorphic if for any x ∈ U there is a chart ϕ : V → W around
x, such that f ◦ ϕ−1|ϕ(V ∩U) is holomorphic.

Definition 4.3 ([15, Definition 2.1.8]). Let X and Y be complex manifolds and let OX denote the
sheaf of holomorphic functions on X, i.e. OX(U) = {f : U → C | f is holomorphic}. Similarly,
let OY be the sheaf of holomorphic functions on Y . Then a map F : X → Y is called anti-
holomorphic if it pulls back holomorphic functions to anti-holomorphic functions. More precisely,
F is anti-holomorphic if it is continuous and for every open V ⊆ Y and f ∈ OY (V ) we have
conj ◦f ◦ F ∈ OX(F

−1(V )), where conj : C → C is complex conjugation.

Proposition 4.4. Let X and Y be n- and m-dimensional complex manifolds, respectively. Let
F : X → Y be a continuous function and let conjk : Ck → Ck denote component-wise complex
conjugation. Then the following are equivalent.

i) F is anti-holomorphic.
ii) For all charts ϕ : U → Ũ of X and ψ : V → Ṽ of Y such that F (U) ⊆ V , there is a

vector-valued, holomorphic function g : conjn(Ũ) → Ṽ such that ψ ◦ F ◦ ϕ−1 = g ◦ conjn.
iii) For every x ∈ X, there is a chart ϕ : U → Ũ around x and a chart ψ : V → Ṽ around F (x),

such that F (U) ⊆ V and ψ◦F ◦ϕ−1 = g◦conjn, for some holomorphic, vector-valued function
g : conjn(Ũ) → Ṽ .

Proof. We first note that a function f : Ca → Cb is holomorphic ⇐⇒ conjb ◦f ◦ conja is holomor-
phic. For the implication to the right we note that f is of the form

f(z) =

(∑
I

aI,iz
I

)
i

,

as f is holomorphic. Here we use multi-index notation, i.e. z = (z1, ..., za), I = (k1, ..., kn) and
zI = zk11 · · · zknn .

Therefore conjb ◦f ◦ conja is of the form

f(z) =

(∑
I

aI,iz
I

)
i

and thus also holomorphic. The implication to the left now follows, since

f = conjm ◦ conjm ◦f ◦ conjn ◦ conjn .

i) ⇒ ii): Let ϕ : U → Ũ and ψ : V → Ṽ be charts such that F (U) ⊆ V . Then ψ ∈ OY (V ). Since
F is anti-holomorphic, conj ◦ψ ◦F is holomorphic. In particular, this means that conj ◦ψ ◦F ◦ ϕ−1

is holomorphic. Let g = ψ ◦F ◦ϕ−1 ◦ conjn, then conj ◦ψ ◦F ◦ϕ−1 = conj ◦g ◦ conjn is holomorphic,
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so g is holomorphic and ψ ◦ F ◦ ϕ−1 = g ◦ conjn.
ii) ⇒ iii): For any charts U and V around x and F (x) respectively, we can restrict U such that
F (U) ⊆ V and then apply ii).
iii) ⇒ i): Let f ∈ OY (V ), let x ∈ F−1(V ) and let ϕ : U → Ũ be a chart around x. By assumption
there exists a chart ψ : V̂ → Ṽ around F (x), such that F (U) ⊆ V̂ and ψ ◦ F ◦ ϕ−1 = g ◦ conjn. By
restricting both U and V̂ we can assume that F (U) ⊆ V̂ ⊆ V . Since f is holomorphic at F (x) ∈ V ,
the composition f ◦ ψ−1 is holomorphic. Therefore

conj ◦f ◦ F ◦ ϕ−1 = conj ◦f ◦ ψ−1 ◦ ψ ◦ F ◦ ϕ−1 = conj ◦f ◦ ψ−1 ◦ g ◦ conjn

is holomorphic. This shows that conj ◦f ◦ F is holomorphic at x. This holds for any x ∈ F−1(V ),
so conj ◦f ◦ F is holomorphic and F is anti-holomorphic.

Definition 4.5 ([15, Definition 2.1.10]). A real structure on a complex manifold X is an anti-
holomorphic involution σ : X → X.

Example 4.6. Complex conjugation conj : C → C is a real structure on C. Proposition 4.4 says
that conj is anti-holomorphic, since conj = id ◦ conj and it is also clearly an involution.

Example 4.7. Complex conjugation also induces a real structure on the projective space CPn,

σ([x0 : ... : xn]) = [x0 : ... : xn].

It is clear that it is an involution. To check that it is anti-holomorphic. we look at the standard
affine charts

ϕi : Ui = {[x0 : ... : xn] | xi ̸= 0} → Cn, [x0 : ... : xn] 7→
(
x0
x1
, ...,

xi−1

xi
,
xi+1

xi
, ...,

xn
xi

)
.

We note that σ(Ui) = Ui and ϕi ◦ σ ◦ ϕ−1
i = (z1, ..., zn) 7→ (z1, ..., zn), i.e. ϕi ◦ σ ◦ ϕ−1

i = id ◦ conjn.
By Proposition 4.4, σ is anti-holomorphic and thus is a real structure on CPn. This real structure
is called the standard real structure on CPn.

Example 4.8. Another real structure on CP1 is

τ([x0 : x1]) = [x1 : −x0].

It is again clear that this is an involution. To check that it is anti-holomorphic, we proceed as
above, but now

τ(U1) = U0,

τ(U0) = U1,

ϕ0 ◦ τ ◦ ϕ−1
1 = z 7→ ϕ0(τ([z : 1])) = ϕ0([1 : −z]) = −z,

ϕ1 ◦ τ ◦ ϕ−1
0 = z 7→ −z.

So τ is a real structure on CP1. We will later see that this real structure is not isomorphic to the
standard real structure. This shows that this real structure is not isomorphic to the standard real
structure, because the standard real structure on CP1 does not have an empty real locus.
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Example 4.9. Let L = Z+iZ and letX be the complex torus C/L. Note that conj(L) = Z−iZ = L,
so conj induces a well-defined involution σ : X → X. Let π : C → X, z 7→ [z] be the quotient map.
Then for any z ∈ C there is an open U ∋ z, such that π : U → π(U) is a homeomorphism and
π−1|π(U) is a chart of X. For such U we have

(π−1 ◦ σ ◦ π)|U = z 7→ z : U → conj(U),

so σ is anti-holomorphic.

Definition 4.10. An R-variety (X,σ) is a complex manifold X equipped with a real structure σ.
If X is a complex curve, i.e. a complex manifold of dimension 1, (X,σ) is called an R-curve. The
real locus of X, which is denoted by X(R) or Xσ, is the fixed locus of σ,

X(R) := {x ∈ X | σ(x) = x}.

Example 4.6 (Continued). The real locus of C with complex conjugation is R.

Example 4.7 (Continued). The real locus of complex projective space CPn with real structure
induced by complex conjugation, is the real projective space RPn.

Example 4.8 (Continued). The real locus of CP1 with the alternative real structure from Ex-
ample 4.8 is empty, because if [x0 : x1] = [x1 : −x0] there must be a λ ̸= 0 with x0 = λx1 and
x1 = −λx0. In particular we have x1 = −λλx1 = − |λ|x1, so we must have |λ| = −1, which is a
contradiction.

Example 4.9 (Continued). On the complex torus X = C/(Z+ iZ), we have

σ([x+ iy]) = [x+ iy] ⇐⇒ [x+ iy] = [x− iy] ⇐⇒ 2iy ∈ Z+ iZ ⇐⇒ y ∈ 1

2
Z.

Hence

X(R) = {[x+
1

2
iy] | x ∈ R, y ∈ Z} = {[x] | x ∈ R} ⊔ {[x+

1

2
i] | x ∈ R} ∼= S1 ⊔ S1.

Proposition 4.11. The real locus of an n-dimensional R-variety (X,σ) is either empty or it is an
n dimensional real manifold.

Proof. If X(R) is not empty, we construct an atlas for X(R) by giving a chart around every point
p ∈ X(R). Without loss of generality σ(U) = U , because we can look at U ∩ σ(U), which is not
empty, since p ∈ X(R). Let ϕ : U → V be a chart of X, centered at p ∈ X(R), i.e. ϕ(p) = 0. We
write

τ = ϕ ◦ σ ◦ ϕ−1 = (τ1, ..., τ2n) : V → V,

where we view V as a subset of R2n via zj = xj+ iyj . Since σ is anti-holomorphic, each τ2j−1+ iτ2j
is a power series in z̄ = (z̄1, ..., z̄n)

T , so every τj is a power series in x⃗ = (x1, y1, ..., xn, yn)
T .

The Jacobian A = J0τ of τ at 0 is determined by the coefficients of the linear terms of the τi, i.e.
we can write

τ(x⃗) = Ax⃗+ higher order terms.

Note that the constant term is 0, because σ(p) = p, hence τ(0) = 0. Since σ is an involution, we
have

x⃗ = τ(τ(x⃗)) = τ(Ax⃗+ higher order terms) = A2x⃗+ higher order terms.
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Filling in x⃗j = (0, ..., 0, x, 0, ..., 0)T , with x at the jth position, we find x = aj,jx + x2fj,j(x) and
0 = ai,jx+ x2fi,j(x) for i ̸= j, for all x ∈ C, where ai,j the element in the ith row and jth column

of A2 and x2fi,j are the higher order terms of τi ◦ τ(x⃗j). We must have fj,j(x) =
1−aj,j
x and

fi,j(x) =
−ai,j
x for i ̸= j, but these are not holomorphic in 0, except when aj,j = 1 and ai,j = 0,

in which case fj,j = fi,j = 0. This is true for all j and all i ̸= j, so A2 = I. In particular A is
diagonalizable with eigenvalues ±1.

Let ck = ak+ ibk be the coefficient of z̄k = xk− iyk in τ2j−1+ iτ2j . We can compute the coefficients
of xk and yk in τ2j−1 and τ2j ,

ckz̄k = (ak + ibk)(xk − iyk) = akxk + bkyk + i(bkxk − akyk).

Therefore A must be of the form

A =

(
ar,k br,k
br,k −ar,k

)
r,k

∈ R2n×2n.

Note that if

(
a b
b −a

)(
x
y

)
=

(
c
d

)
, then

(
a b
b −a

)(
−y
x

)
=

(
d
−c

)
. So if (x1, y1, ..., xn, yn)

T is an

eigenvector of A corresponding to the eigenvalue 1, then (−y1, x1, ...,−yn, xn)T is an eigenvector of
A corresponding to the eigenvalue -1. This gives a bijection between the eigenspaces belonging to
1 and -1, so they both have dimension n. In particular, the rank of A− I is n.

The intersection U ∩X(R) corresponds to the fixed locus of τ , which can also be written as the zero
locus of τ − id, which has Jacobian A− I at 0. This Jacobian has rank n, so by the inverse function
theorem, there is an open subset W ⊆ V around 0 that is homeomorphic to an open subset of Rn.
We use ϕ|ϕ−1(W ) : ϕ

−1(W ) →W as a chart around p.

The charts around different points are compatible, because the original charts are compatible.

For connected, compact, complex manifolds of dimension one, which are also called compact Rie-
mann Surfaces, it is well-known that they can be classified topologically by their genus. That is,
as a topological space any compact Riemann Surface is homeomorphic to a g-holed torus, for some
g, which is called the genus of the space [9, Section 2.4.A]. The following theorem gives constraints
on the real locus of genus g R-curves.

Theorem 4.12 (Harnack’s inequality, [15, Theorem 2.7.2]). Let (X,σ) be a connected, compact
R-curve of genus g, i.e. (X,σ) is an R-variety and X is a connected, compact curve of genus g.
Let s be the number of connected components of X(R). Then s ≤ g + 1.

We can prove Harnack’s inequality using the Smith theory from the previous chapter. We first note
that an R-variety is a special case of a topological space with a continuous involution, so we have
the following corollary from Smith theory.

Corollary 4.13. For an R-variety (X,σ), we have

bk(X(R);F2) ≤ bk(X;F2).

Proof. This is an immediate consequence of Theorem 3.5 and the fact that X(R) = Xσ.
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This corollary is essentially a general version of Harnack’s inequality, as we can see in the following
proof.

Proof of Theorem 4.12. The real locus is a compact manifold of real dimension 1, so it is the disjoint
union of s circles,

X(R) ∼=
s⊔
i=1

S1,

which has homology

Hk(X(R);F2) =

{
(F2)

s if k = 0, 1,

0 otherwise.

We also know that the homology of a genus g curve is given by

Hk(X;F2) =


F2 if k = 0, 2,

(F2)
2g if k = 1,

0 otherwise.

Now we can apply Corollary 4.13 to get

2s = b∗(X(R);F2) ≤ b∗(X;F2) = 2 + 2g,

hence s ≤ g + 1.

We can also prove Harnack’s inequality in a more geometric way when X is a plane curve.

Definition 4.14. An R-curve X is called a plane R-curve if X ⊆ CP2 is a plane projective curve
and its real structure is the one inherited by the standard real structure on CP2. Equivalently, X is
given by the zero-set of a homogeneous real polynomial F ∈ R[X,Y, Z]; see [15, Proposition 2.1.4].

Definition 4.15. The fundamental group of RP2 is Z/2Z, so every closed loop in RP2 is either
contractible or homotopic to the line {[x : y : 0] ∈ RP2} ∼= RP1. In the first case the loop is called
an oval and in the second case it is called a pseudo-line.

Lemma 4.16.

i) The connected components of the real locus of a plane R-curve of even degree are all ovals.
ii) The connected component of the real locus of a plane R-curve of odd degree are all ovals,

except for one, which is a pseudo-line.
iii) Any curve intersects an oval in an even number of points, counted with multiplicity.
iv) Given 1

2(d + 2)(d + 1) − 1 points in RP2, there is a unique degree d smooth projective plane
curve through these points.

v) A degree d curve has genus 1
2d(d− 1).

Proof.

i)-iii) See [15, Lemma 2.7.8]
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iv) A general degree d curve is given by
∑

a+b+c=d aa,b,cX
aY bZc = 0. In total we need to find

k =
(
d+2
2

)
= 1

2(d+2)(d+1) coefficients. Filling in the coordinates of k− 1 points, gives k− 1
linear equations for the coefficients. These equations are linearly independent if the k − 1
points are different, so they give a rank k− 1 system of equations. This gives the coefficients,
up to a constant factor, which determines a unique curve.

v) See [15, Theorem 1.6.17].

Geometric proof of Theorem 4.12. A degree 1 curve has genus 0 and the real locus is a line, which
has 1 ≤ 0+1 connected component. A degree 2 curve also has genus 0. The connected components
of its real locus are all ovals. If there is more than 1 you can choose two points on different ovals.
The line between these points then must intersect the curve in at least 4 points, counted with
multiplicity. This is a contradiction with Bézout’s theorem, which says that a line intersects a
degree 2 curve in 2 points.

For curves of higher degree we can do something similar. Let C be a plane R-curve of degree
d > 2, which has genus g = 1

2(d − 2)(d − 1). Suppose C(R) has more than g + 1 connected
components. Then at least g + 1 of them are ovals. Choose one point on each of these g + 1 ovals
and 1

2d(d − 1) − 1 − (g + 1) on the remaining connected components. We can construct a degree
d − 2 curve through these 1

2d(d − 1) − 1 points. Since this curve must intersect each of the g + 1
ovals in an even number of points, it must intersect them in at least 2, so it intersects C in at least

2g + 2 +
1

2
d(d− 1)− 1− (g + 1)

=
1

2
d(d− 1) + g

=
1

2
(d(d− 1) + (d− 1)(d− 2))

=
1

2
(d− 1)(d+ d− 2)

= (d− 1)2

points. Bézout’s theorem says that it can intersect in at most d(d − 2) < (d − 1)2, which is a
contradiction, so C(R) can have at most g + 1 connected components.

Definition 4.17. An R-curve X of genus g is called a maximal curve or M-curve if Harnack’s
inequality is an equality, i.e. if the number of connected components of X(R) is equal to g + 1.

Example 4.18. CP1 is a genus 0 curve. With the standard real structure, its real locus is RP1,
which is non-empty and connected, so it has 1 = g + 1 connected component. Therefore CP1 is a
maximal curve.

Example 4.19. The complex torus C/(Z + iZ) has genus g = 1. With the real structure from
Example 4.9, we saw that its real locus is the disjoint union of two circles, so it has 2 = g + 1
connected components and is thus a maximal curve.

Example 4.20. We can also equip the complex torus C/(Z + iZ) with the involution [x + yi] 7→
[y + xi]. This locally is z 7→ iz̄, so it indeed is a real structure. Its real locus is

{[x+ yi] | x, y ∈ Rx− y =∈ Z} ∼= {[x+ xi] | x ∈ R} ∼= S1,
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Figure 2: Sketch of a genus 2 surface with a real locus consisting of 3 connected components.

Figure 3: The curve 0 = (x2 − 2)2 + (y2 − 2)2 − 1 with genus (4− 2)(4− 1)/2 = 3.

which only has one connected component, so with this involution the complex torus is not a maximal
curve.

In the proof of Theorem 4.12, we see that being an M -curve is equivalent to the Thom–Smith
inequality being an equality. This motivates the definition of a generalization of M -curves.

Definition 4.21. An R-variety (X,σ) is called a maximal variety or M-variety if the Thom–Smith
inequality (Corollary 4.13) is an equality, i.e. if b∗(X(R);F2) = b∗(X;F2).

Example 4.22. Using the homology groups computed in Example 2.16, we see that

b∗(CPn;F2) = b∗(RPn;F2) = n+ 1,

so n-dimensional complex projective space with the standard real structure is a maximal variety
for any n.
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5 Petrovskii–Oleinik–Kharlamov inequality

In this chapter we will prove the Petrovskii–Oleinik–Kharlamov inequality. The proof relies on the
Lefschetz fixed point theorem and on the Hodge decomposition. We will not prove the latter, but
only give the required definitions to state the theorem.

Theorem 5.1 (Lefschetz fixed point theorem for involutions, [15, Theorem 3.4.23]). Let σ : X → X
be an involution on a topological space X, then σ induces linear maps Tk : Hk(X;Q) → Hk(X;Q)
for all k, which satisfy

χ(Xσ) =
∑
k

(−1)k Tr(Tk).

Proof. The exact sequence of Corollary 3.8 implies that

χ(Y,Xσ) + χ(Xσ)− χ(X) + χ(Y,Xσ) = 0,

where Y = X/σ and

χ(Y,Xσ) =
∑
k≥0

(−1)k dimHk(Y,X
σ;Q)

is the relative Euler characteristic of the pair (Y,Xσ). Therefore,

χ(X) = χ(Xσ) + 2χ(Y,Xσ).

The exact sequence of the pair (Y,Xσ) implies that

χ(Y,Xσ)− χ(Y ) + χ(Xσ) = 0.

Hence χ(X) = χ(Xσ) + 2(χ(Y )− χ(Xσ)) = 2χ(Y )− χ(Xσ), i.e.

χ(Xσ) = 2χ(Y )− χ(X).

The Tk are themselves involutions, i.e. T 2
k = I, so they are diagonalizable. The eigenvalues λ

of Tk are ±1, since for an eigenvector v we have T 2
k (v) = λ2v = v. Without loss of generality

Tk =

(
Ia 0
0 −Ib

)
and Tr(Tk) = a− b. Where a = dimHk(X;Q)Tk and b = dimHk(X;Q)− a. So

Tr(Tk) = 2 dimHk(X;Q)Tk −Hk(X;Q) = 2 dimHk(Y ;Q)−Hk(X;Q),

where the second equality follows from Corollary 3.7. Taking alternating sum we get∑
k

(−1)k Tr(Tk) = 2χ(Y )− χ(X) = χ(Xσ).

Remark 5.2. The previous theorem is a specific version of the more general Lefschetz fixed point
theorem, which states that if f : X → X is a continuous map, then it has a fixed point if∑

k(−1)k Tr(Tk) ̸= 0, where Tk : Hk(X;Q) → Hk(X;Q) is the map induced by f . [14, Theo-
rem 2]

Remark 5.3. Because the Euler characteristic can also be computed using cohomology and does
not depend on the field of coefficients, we can also use the maps that are induced by σ on cohomology
Tk : H

k(X;C) → Hk(X;C).
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5.1 The Hodge decomposition

The second important prerequisite for the proof of the Petrovskii–Oleinik–Kharlamov inequality
is the Hodge decomposition. We first need some more definition before we can state what Hodge
decomposition is.

Definition 5.4. Let X be an n-dimensional complex manifold. Let TX denote the real tangent
bundle of X and T ∗X the real cotangent bundle. If z1 = x1 + iy1, ..., zn = xn + iyn are local
coordinates at p ∈ X, then ∂

∂xi
, ∂
∂yi

is a basis of TpX and dxi, dyi is a basis of T ∗
pX. These also

form a basis of the complexified (co)tangent spaces, but additionally

∂

∂zj
=

1

2
(
∂

∂xj
− i

∂

∂yj
) and

∂

∂z̄j
=

1

2
(
∂

∂xj
+ i

∂

∂yj
),

form a basis of the complexified tangent space TCX = TX ⊗R C and similarly dzj =
1
2(dxj − idyj)

and dz̄j =
1
2(dxj + idyj) form a basis of the complexified cotangent space T ∗

CX = T ∗X ⊗R C.

Definition 5.5. The exterior algebra
∧∗ V of a real or complex vector space V is the quotient of

the graded R- or C-algebra T(V ) =
⊕

k≥0 V
⊗k, by the two-sided ideal generated by elements of

the form x⊗ x.

The kth exterior power
∧k V of a vector space V is the degree k part of T(V ). The equivalence

class of x1 ⊗ ...⊗ xn is denoted by x1 ∧ ... ∧ xn. Since

x⊗ y = x⊗ (x+ y)− x⊗ x

= (x+ y)⊗ (x+ y)− y ⊗ (x+ y)− x⊗ x

= (x+ y)⊗ (x+ y)− y ⊗ x− y ⊗ y − x⊗ x,

we have x ∧ y = −y ∧ x.

Let X be a manifold, then for a vector bundle E → X, its kth exterior power
∧k E is defined by

(
∧k E)p =

∧k Ep for all p ∈ X.

Definition 5.6. A complex differential k-form is a C∞-section of the vector bundle
∧k T ∗

CX, where
T ∗
CX is the complexified cotangent bundle of X. Locally a differential k-form α is of the form

α =
∑
I

αIdxI1 ∧ ... ∧ dxIk ,

where I = (I1, ..., Ik), all Ij are different and the αI are smooth functions. We denote the set of
complex differential k-forms on X by Ak(X).

Another way to describe k-forms is as smooth sections of (T ∗
CX)k, that are alternating k-linear

maps at each point.

Definition 5.7. The exterior derivative d : Ak(X) → Ak+1(X) is defined by

d

(∑
I

αIdxI1 ∧ ... ∧ dxIk

)
=
∑
I

∑
i

∂αI
∂xi

dxi ∧ dxI1 ∧ ... ∧ dxIk .
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Definition 5.8. The exterior derivative d satisfies d◦d = 0, so it makes A∗(X) a cochain complex.
The cohomology of this complex is called the de Rham cohomology with coefficients in C and is
denoted by

Hk
dR(X;C) =

Ker
(
d : Ak(X) → Ak+1(X)

)
Im (d : Ak−1(X) → Ak(X))

.

Theorem 5.9 (de Rham). De Rham cohomology with coefficients in C is isomorphic to singular
cohomology with coefficients in C:

Hk
dR(X;C) ∼= Hk(X;C).

The isomophism is given by [α] 7→ [c 7→
∫
c α].

Proof. See [13, Theorem 18.14].

Definition 5.10. A Riemannian metric on a smooth manifold X is a section g of the vector bundle
T ∗X ⊗ T ∗X, such that gp : TpX ⊗ TpX → R is a scalar product for every p ∈ X.

Definition 5.11. An almost complex structure I on a real manifold X is a morphism of vector
bundles I : TX → TX, such that I2 = − id.

Definition 5.12. A complex manifold with a Riemannian metric is called a Hermitian manifold
if the Riemannian metric is compatible with its almost complex structure, i.e. gx(Ix(v), Ix(w)) =
gx(v, w). In this case we define the fundamental form ω by ωx(v, w) = gx(Ix(v), w). By extension
of scalars, we can view g and ω as sections of T ∗

CX ⊗ T ∗
CX.

Definition 5.13. On a complex manifold we have the canonical almost complex structure ∂
∂xi

7→ ∂
∂yi

and ∂
∂yi

= − ∂
∂xi

. On the cotangent bundle this induces dxi 7→ dyi and dyi 7→ −dxi. On the
complexified cotangent bundle, I acts via I(dzj) = idzj and I(dz̄j) = −idz̄j .

Definition 5.14. Let X be a complex manifold and let (z1, ..., zn) be local (holomorphic) coordi-
nates, then we call a k-form a form of type (p, q), or simply a (p, q)-form, if it is of the form∑

I

αIdzI1 ∧ ... ∧ dzIp ∧ dzIp+1 ∧ ... ∧ dzIp+q .

We denote the set of forms of type (p, q) on X by Ap,q(X). Clearly we have a decomposition
Ak(X) =

⊕
p+q=kAp,q(X).

In this situation the exterior derivative decomposes as d = ∂ + ∂̄, where

∂(fdxi1 ∧ ... ∧ dxik) =
∑
i

∂f

∂zi
dzi ∧ dxI1 ∧ ... ∧ dxIk

and

∂̄(fdxi1 ∧ ... ∧ dxik) =
∑
i

∂f

∂zi
dzi ∧ dxI1 ∧ ... ∧ dxIk .

They satisfy ∂ ◦ ∂ = 0 and ∂̄ ◦ ∂̄ = 0, and when restricted to Ap,q(X) they give C-linear maps
∂ : Ap,q(X) → Ap+1,q(X) and ∂̄ : Ap,q(X) → Ap,q+1(X).
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Definition 5.15. In particular we have a cochain complex Ap,∗. The cohomology of this complex
is called the Dolbeault cohomology, which is denoted by

Hp,q(X) =
Ker

(
∂̄ : Ap,q(X) → Ap,q+1(X)

)
Im
(
∂̄ : Ap,q−1(X) → Ap,q(X)

) .
We would like to relate Dolbeault cohomology to singular cohomology. For a special type of complex
manifold, called a Kähler manifold, we indeed have such a relation.

Proposition 5.16. The fundamental form ω of an Hermitian manifold X is a (1, 1)-form.

Proof. By abuse of notation we also write g, ω and I when we mean the forms gp, ωp and Ip at a
point p ∈ X.

Since g is bilinear and I is linear and

ω(w, v) = g(I(w), v) = g(I2(w), I(v)) = g(−w, I(v)) = −g(I(v), w) = −ω(v, w),

ω is locally an alternating bilinear map, hence ω ∈ A2(X). The canonical almost complex structure
I acts as multiplication by i on A1,0(X), since A1,0(X) is generated by dzj and similarly it acts as
multiplication by −i on A0,1(X). Therefore it acts as multiplication by −1 on A2,0(X) and A0,2

and as the identity on A1,1(X). We have

ω(I(v), I(w)) = g(I2(v), I(w)) = g(I(v), w) = ω(v, w),

So I(ω) = ω and we must have ω ∈ A1,1(X).

Proposition 5.17. The fundamental form ω of an Hermitian manifold X is locally of the form

ω = i
∑
j,k

wj,kdzj ∧ dz̄k,

where the matrix W = (wj,k)j,k is a positive definite Hermitian matrix. Conversely, every (1, 1)-
form α of this form induces a Hermitian metric, for which α is the corresponding fundamental
form.

Proof. Write ω =
∑
j,k

lj,kdzi ∧ dz̄j . In terms of dxj and dyj we get

ω =
∑
j,k

1

4
lj,k(dxj − idyj) ∧ (dxk + idyk).

The total coefficient of dxj ∧dxk and dyj ∧dyk in ω is 1
4(lj,k− lk,j) and of dxj ∧dyk is 1

4 i(lj,k+ lj,k).
These coefficients must be real, so we must have lj,k = iwj,k with w̄j,k = wk,j . This shows that W
is Hermitian.

Let 0 ̸= v =
∑
j

(
aj

∂

∂xj
+ bj

∂

∂yj

)
, with aj , bj ∈ R. Since ∂

∂zj
= 1

2(
∂
∂xj

− i ∂
∂yj

) and ∂
∂z̄j

=

1
2(

∂
∂xj

+ i ∂
∂yj

), we can also write v =
∑
j

(
cj

∂

∂zj
+ c̄j

∂

∂z̄j

)
, with cj = aj + ibj .

27



We know that g(v, v) > 0. We write

g(v, v) = ω(v, I(v)) = ω(
∑
j

(
cj

∂

∂zj
+ c̄j

∂

∂z̄j

)
, i
∑
k

(
ck

∂

∂zj
− c̄k

∂

∂z̄j

)
)

= iω(
∑
j

(
cj

∂

∂zj
+ c̄j

∂

∂z̄j

)
,
∑
k

(
ck

∂

∂zk
− c̄k

∂

∂z̄k

)
)

= −i
∑
j,k

(
cj c̄kω(

∂

∂zj
,
∂

∂z̄k
) + c̄jckω(

∂

∂zk
,
∂

∂z̄j
)

)
=
∑
j,k

(cj c̄kwj,k + ck c̄jwk,j) = 2c̄TWc > 0,

where c = (c1, ..., cn)
T . This must be true for all v, hence for all c, so this shows W is positive

definite.

Similarly, if α is of this form and we define g(v, w) = α(v, I(w)), then g(v, v) = 2c̄TWc > 0 for all
v, hence g is positive definite. It is also clear that g is a symmetric bilinear form that is compatible
with I.

Definition 5.18. A Hermitian manifold is called a Kähler manifold if its fundamental form is
closed. This means that dω = 0.

Example 5.19 (Fubini-Study metric). The complex projective space CPn has a canonical Kähler
metric. It is induced by the fundamental form that is locally defined on Ui = {[z0 : ... : zn] | zi ̸= 0}
by

i

2π
∂∂̄ log

(
n∑
k=0

∣∣∣∣zkzi
∣∣∣∣2
)
.

See [8, Example 3.1.9.i)] for the details showing that its fundamental form is closed.

As a consequence, every smooth projective complex variety is a Kähler manifold, as it inherits a
metric from the Fubini-Study metric on CPn.

Definition 5.20. We define the operator ∆∂̄ = ∂̄∗∂̄+ ∂̄∂̄∗, where ∂̄∗ is the adjoint of ∂̄ with respect
to the Riemannian metric on X. This means that ∂̄∗ is determined by ⟨∂̄α, β⟩ = ⟨α, ∂̄∗β⟩, where
⟨·, ·⟩ is the inner product on

∧∗ T ∗
pX induced by the inner product gp on

∧∗ TpX.
A form is called ∂̄-harmonic if ∆∂̄(α) = 0. This is equivalent to ∂̄∗(α) = ∂̄(α) = 0, because

⟨∆∂̄(α), α⟩ = ⟨∂̄∗∂̄α, α⟩+ ⟨∂̄∂̄∗α, α⟩ = ⟨∂̄α, ∂̄α⟩+ ⟨∂̄∗α, ∂̄∗α⟩ = ∥∂̄α∥2 + ∥∂̄∗α∥ = 0.

Similarly we define ∆d = d∗d+dd∗ and a form is called d-harmonic if ∆d(α) = 0, which is equivalent
to d∗α = dα = 0.

We define
Hk(X) = {α ∈ Ak(X) | α is d-harmonic}

and
Ha,b(X) = {α ∈ Aa,b(X) | α is ∂̄-harmonic}.

Proposition 5.21. Let X be a Kähler manifold, then ∆d = 2∆∂̄, so the notions of d-harmonic
and ∂̄-harmonic coincide.
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Proof. See [8, Proposition 3.1.12.iii)].

Corollary 5.22. If X is a compact Kähler manifold then

Hk(X) =
⊕
a+b=k

Ha,b(X)

and complex conjugation exchanges Ha,b(X) and Hb,a(X)

Proof. The decomposition follows from Ak(X) =
⊕

a+b=kAa,b(X). Complex conjugation acts on

Aa,b(X), via dzi 7→ dz̄i and vice versa, so it exchanges Ap,q(X) and Aq,p(X). Since ∆∂̄ is a linear
operator, we also have ∆∂̄(ᾱ) = ∆∂̄(α), so complex conjugation preserves ∂̄-harmonicity, hence it
exchanges Hp,q(X) and Hq,p(X).

Theorem 5.23. The maps
ϕ = α 7→ [α] : Hk(X) → Hk

dR(X)

and
ψ = α 7→ [α] : Ha,b(X) → Ha,b(X)

are isomorphisms, such that ϕ ◦ ψ−1 sends Ha,b(X) to

{a ∈ Hk
dR(X) | ∃α ∈ Aa,b(X) such that a = [α]}.

Proof. See [8, Corollary 3.2.12].

Corollary 5.24 (Hodge decomposition). Let X be a compact Kähler manifold, then

Hk(X) ∼=
⊕
a+b=k

Ha,b(X)

and complex conjugation exchanges Ha,b(X) and Hb,a(X)

Proof. The decomposition is obtained by combining Theorem 5.9, Corollary 5.22 and Theorem 5.23.

Definition 5.25. Let X be a Hermitian manifold. The Lefschetz operator L :
∧∗ T ∗X →

∧∗ T ∗X
is defined locally by α 7→ α ∧ ω. The dual Lefschetz operator Λ is the adjoint of L with respect to
the Riemannian metric. A differential form α is called a primitive form if Λα = 0.

Proposition 5.26 (Primitive decomposition). There is a decomposition

Ha,b(X) ∼=
N⊕
r=0

ωr ∧ P a−r,b−r,

where N = min(a, b) and P a,b denotes the space of primitive ∂̄-harmonic forms of type (a, b).
Furthermore P a,b = 0 if a+ b > 0 and the map Lr : P a,b → ωr∧P a,b ⊆ Ha+r,b+r is an isomorphism
for a+ b < n and r ≤ n− a− b. For r > n− a− b we have ωr ∧ P a,b = 0.

Proof. See [8, Proposition 1.2.30 and 3.2.2].
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5.2 The Petrovskii–Oleinik–Kharlamov inequality

We now have everything that is required to state and prove the Petrovskii–Oleinik–Kharlamov
inequality.

Theorem 5.27 (Petrovskii–Oleinik–Kharlamov inequality, [21, Theorem 4.2]). Let (X,σ) be a
connected R-variety, for which X is a Kähler manifold of dimension 2n. Then

2− hn,n(X) ≤ χ(Xσ) ≤ hn,n(X).

Proof. Let g be a Kähler metric on X, then h(u, v) = g(u, v) + g(σ(u), σ(v)) is also a Kähler
metric, with the property that h(σ(u), σ(v)) = h(u, v). For the corresponding fundamental form,
this gives h(I(σ(u)), σ(v)) = h(−σ(I(u)), σ(v) = −h(I(u), v), so without loss of generality we can
assume that σ(ω) = −ω. Let Tk : Hk(X) → Hk(X) be the involution induced by σ. The Hodge
decomposition and Proposition 5.26 give

Hk(X) ∼=
⊕
a+b=k

Ha,b(X) ∼=
⊕

a+b+2r=k

ωr ∧ P a,b.

We can write

Tk =

T0,0 ... T0,k
... ...

...
Tk,0 ... Tk,k

 ,

where Ta,b : H
a,k−a → Hb,k−b. Then Tr(Tk) =

∑k
i=0Tr(Ti,i).

Because σ is anti-holomorphic, it is locally of the form g ◦ conjn with g = (gj)
n
j=1 holomorphic.

Therefore it acts on Ha,b(X) via dzk 7→
∑n

j=1
∂ḡj
∂z̄k

dz̄k and dz̄k 7→
∑n

j=1
∂gj
∂zk

dzk. Analogous to
the proof of Proposition 4.11, we see that the Jacobian of g at 0 is the identity. Therefore, the
action of σ on Ha,b is the same as that of complex conjugation and thus, by Corollary 5.24,
Tk(H

a,b(X)) = Hb,a(X). So if i ̸= k − i, then Ti,i : H i,k−i → H i,k−i is the zero map. Hence
Tr(Tk) = 0 if k is odd and Tr(Tk) = Tr(Tl,l) if k = 2l.

Let Sl,r = Tl+r,l+r|ωr∧P l,l . Then

Tr(T2l) = Tr(Tl,l) =
l∑

r=0

TrSl−r,r.

For r + 1 > n− 2l, we have Sl,r+1 = 0, since ωr+1 ∧ P l,l = 0 in this case. Otherwise, let {ai}i be a
basis of ωr ∧P l,l, then {ω∧ai}i is a basis for ωr+1∧P l,l. Let Sl,r(ai) =

∑
j bijai. Since σ(ω) = −ω,

Sl,r+1(ω ∧ ai) = −ω ∧ Sl,r(ai) = −ω ∧
∑
j

bijai =
∑
j

−bij(ω ∧ ai).

It follows that Tr(Sl,r+1) = −Tr(Sl,r) for r + 1 ≤ n− 2l. Therefore

4n∑
l=0

(−1)l Tr(Tl) =

2n∑
l=0

Tr(T2l) =

2n∑
l=0

∑
a+b=l

Tr(Sa,b)

=
2n∑
l=0

2n−l∑
r=0

Tr(Sl,r) =
n∑
l=0

Tr(S2l,0).
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Theorem 5.1 and Remark 5.3 now say that χ(Xσ) =
∑n

l=0Tr(S2l,0). On (0, 0)-forms, σ acts
trivially, so Tr(S0,0) = dimP 0,0 = h0,0(X) = 1, since we assumed X is connected. Hence
χ(Xσ) = 1 +

∑n
l=1Tr(S2l,0) and |χ(Xσ)− 1| ≤

∑n
l=1 |TrS2l,0|. Since S2l,0 is an involution,

it is diagonalizable with eigenvalues ±1, so its trace is between −dimP l,l and dimP l,l. So
|χ(Xσ)− 1| ≤

∑n
l=1 dimP l,l = hn,n(X)− 1, from which the result follows.

Corollary 5.28. There is no real structure on CP2n that has an empty real locus.

Proof. First note that CP2n is a complex projective algebraic variety, so it is a Kähler mani-
fold and we can apply the Hodge decomposition and the Petrovskii-Oleinik-Kharlamov inequality.
The computation of Hk(CPn;Z) in 2.15 combined with the universal coefficient theorem gives
H2n(CP2n;C) ∼= C. The Hodge decomposition gives

H2n(CP2n;C) ∼=
⊕

p+q=2n

Hp,q(CP2n),

so
∑

p+q=2n h
p,q(CP2n) = 1. Since ha,b(CP2n) = hb,a(CP2n) ≥ 0, we must have hn,n(CP2n) = 1.

Theorem 5.27 gives 1 ≤ χ(CP2n(R)) ≤ 1. In particular χ(CP2n(R)) ̸= 0, hence CP2n(R) ̸= ∅.
The inequality in Theorem 5.27 holds for any real structure on CP2n, so we can conclude that
CP2n(R) ̸= ∅ for any real structure.

5.3 Arrangement of ovals of real loci of plane curves

As we have seen before, the real locus of a genus g R-curve is the disjoint union of at most g + 1
circles. In the case of plane curves, these circles are embedded in RP2. Recall from Definition 4.15
and Lemma 4.16 that these circles can either be ovals or pseudo-lines and if the degree of the curve
is even, then they are all ovals. We are interested in the arrangement of ovals of plane curves of
even degree.

Definition 5.29. Let O ⊆ RP2 be an oval. Then RP2 \ O consists of two connected components.
One of which is contractible and homeomorphic to a disk, the other is a Möbius band. We call the
connected component that is a disk the interior of the oval and the Möbius band the exterior.

For the remainder of this section we let C ⊆ RP2 be a smooth, projective, plane curve given by the
homogeneous polynomial F ∈ R[X,Y, Z] of degree 2d. We denote the set of ovals of C by O. This
is a finite set by Harnack’s inequality and because C is smooth all ovals in O are disjoint.

Definition 5.30. An oval O ∈ O is called an even oval if it is contained in the interior of an even
number of ovals in O. Similarly an odd oval is an oval that is contained in the interior of an odd
number of ovals in O.

Proposition 5.31. The intersection of the exteriors of a finite number of disjoint ovals is not
empty.

Proof. Without loss of generality, we can assume that none of the ovals is contained in the interior of
another oval, because that does not affect the intersection of the exteriors. In particular this means
that the closures of the interiors of the ovals are all disjoint and closed. Suppose the intersection of

31



Figure 4: The curve 0 = x3y3 − ((x2 + 3y2 − 17)(3x2 + y2 − 10) + 15x2)(x2 + 4(y + 1)2 − 25).

the exteriors is empty. Then there is an oval O, such that the closures of the interiors of the other
ovals cover the exterior of O. But this means that the exterior of O is the union of finitely many
disjoint closed sets, which is a contradiction, because the exterior is connected.

This means that we can speak of the exterior of O.

Definition 5.32. For any point p ∈ RP2, the sign of F (p) is well-defined, because the degree of
F is even. This can be used to define an inside and an outside of an even degree plane curve,
namely as the set of points where F (p) is positive or negative respectively. We can multiply F
by −1 without affecting C, so without loss of generality, the exterior of O is also considered the
outside of C by this definition.

Lemma 5.33. Let
B+ = {[x : y : z] ∈ RP2 | F (x, y, z) ≥ 0}

be the inside of curve C and let P be the number of even ovals and N be the number of odd ovals.
Then χ(B+) = P −N .

Proof. Let X = RP2 \C. Every oval forms a part of the boundary between a connected component
of X that is inside the curve and a connected component of X that is outside the curve. For
an even oval, the component that is outside the curve is also in the exterior of the oval whereas
for an odd oval the component that is outside the curve is in the interior of the oval. So every
even oval provides a connected component of B+, whereas every odd oval cuts out a disk of B+.
Therefore, B+ is the disjoint union of P disks with a total of N holes, hence its Euler characteristic
is P −N .

Definition 5.34. The Veronese embedding vn,k : Cn → C(
n+k−1
n−1 ) is defined by

(x1, ..., xn) 7→ (xα1
1 · · ·xαn

n )∑
i αi=k.

The induced map CPn−1 → CP(
n+k−1
n−1 )−1 is also denoted by vn,k or just v.
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Figure 5: The curve 0 = x3y3 − 6(x2 + y2 − 1)(x2 + y2 − 2)(x2 + y2 − 3).

Theorem 5.35 (Petrovskii inequality). Let P denote the number of even ovals of C and let N
denote the number of odd ovals of C. Then

3

2
d− 3

2
d2 ≤ P −N ≤ 3

2
d2 − 3

2
d+ 1.

Proof. Let B+ be the inside of the curve as in Lemma 5.33. We want to apply Theorem 5.27 to
find constraints on χ(B+) = P −N . For this we need an R-variety with B+ as real locus. We will
now construct such a space using the Veronese embedding.

Let L =
(
2+d
2

)
. There exists a G ∈ R[X1, ..., XL]2 such that G ◦ v = F , where v = v3,d : CP2 →

CPL−1 is the Veronese embedding. This is because each monomial in F has degree 2d, so it can be
written as the product of two monomials of degree d.

We now define Y = {[z0 : ... : zL] ∈ CPL | [z1 : ... : zL] ∈ v(CP2) and z20 = G(z1, ..., zL)}, which is
well-defined, because z20 −G(z1, ..., zL) is a homogeneous polynomial of degree 2. We equip Y with
the real structure that is inherited by the standard real structure on CPL. We find

Y (R) = {[z0 : ... : zL] ∈ RPL | [z1 : ... : zL] ∈ v(RP2) and z20 = G(z1, ..., zL)}

We can define π : Y → CPn by [z0 : ... : zL] 7→ v−1([z1 : ... : zL]). If π([z0 : ... : zL]) = x, then by
definition of G, we have z20 = G(v(x)) = F (x). Note that for x ∈ RPn we have

z0 ∈ R ⇐⇒ F (x) ≥ 0 ⇐⇒ x ∈ B+.

So Y (R) is a double cover of B+ that is ramified along the curve F = 0. Let C be a connected
component of B+, then C is a disk with a number of holes. Let k be this number. Then χ(C) = 1−k
and π−1(C) must be a k-holed torus, so χ(π−1(C)) = 2−2k. Summing over all components of B+,
we get 2χ(B+) = χ(Y (R)).

33



Y is a smooth projective variety, so it is a Kähler manifold and we can apply Theorem 5.27 on Y ,
which gives 2− h1,1(Y ) ≤ 2(P −N) ≤ h1,1(Y ).

By [10, Section 4], h1,1(Y ) = 3d2 − 3d+ 2. Combined, this gives

3

2
d− 3

2
d2 ≤ P −N ≤ 3

2
d2 − 3

2
d+ 1.

Example 5.36. Let C be a maximal plane curve of degree 6. Then g = 10, so C(R) consists of 11
ovals, i.e. P+N = 11. The inequality now gives P−N ≤ 10, so 2P = P−N+P+N ≤ 10+11 = 21,
hence P ≤ 101

2 . So there can be at most 10 even ovals. In particular, there must be at least one
odd oval, so the ovals cannot all lie outside each other.
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6 Symmetric products of maximal curves

In this chapter and the next, we will see how maximal varieties can be constructed by taking the
symmetric product of a maximal curve.

Definition 6.1. Let X be a topological space. The symmetric group Sn acts naturally on Xn via

π(x1, . . . , xn) = (xπ(1), . . . , xπ(n)).

The nth symmetric product of X is the quotient space

X(n) = Xn/Sn.

In other words, X(n) consists of unordered n-tuples {x1, . . . , xn} of elements in X. An alternative
notation for X(n) is Symn(X).

Example 6.2. The 2nd symmetric product of R is R(2) = {{x, y} | x, y ∈ R}.
Let X = {(x, y) ∈ R2 | x ≤ y}, then ϕ : R(2) → X, given by

ϕ({x, y}) = (min(x, y),max(x, y))

is a homeomorphism. Note that R is a smooth manifold without boundary, whereas X is a smooth
manifold with boundary.

Example 6.3. The nth symmetric product of C is C(n) = {{z1, . . . , zn} | z1, . . . , zn ∈ C}. Let
R = {f ∈ C[X] | deg f = n and f is monic}. We have an isomorphism R ∼= Cn, namely

Xn + an−1X
n−1 + · · ·+ a1X + a0 7→ (a0, a1, . . . , an−1).

Let ϕ : C(n) → Cn be the composition of this isomorphism with the map

{z1, . . . , zn} 7→ (X − z1) · · · · · (X − zn).

Coordinate-wise ϕ is a polynomial in z1, . . . , zn, so ϕ is continuous, open and closed. The funda-
mental theorem of algebra shows that it is a bijection. Therefore ϕ is a bijective, open and closed
map, so it is a homeomorphism.

So we find that C(n) ∼= Cn. In this case the symmetric product of the complex manifold C is again
a complex manifold.

In fact, as a consequence we get that the symmetric product of any complex curve is again a
complex manifold.

Proposition 6.4. The symmetric product X(n) of a complex curve X is a complex manifold.

Proof. For U1, . . . , Un ⊆ X, we define

U1 ∗ · · · ∗ Un = {{x1, . . . , xn} ∈ X(n) | ∃π ∈ Sn : ∀i : xi ∈ Uπ(i)}.

By reordering the Ui or xi, we can often assume that xi ∈ Ui for all i. Note that for disjoint Ui, this
is homeomorphic to the Cartesian product and for all Ui equal it is the nth symmetric product.

35



We construct a chart around every p = {p1, . . . , pn} ∈ X(n). Choose charts ϕi : Ui → Vi of X, such
that pi ∈ Ui and such that Ui ∩ Uj = ∅ and Vi ∩ Vj = ∅ if pi ̸= pj and such that ϕi = ϕj if pi = pj .
Let

ϕ = ϕp = ϕ1 ∗ · · · ∗ ϕn = {x1, . . . , xn} 7→ {ϕπ(1)(x1), . . . , ϕπ(n)(xn)} : U1 ∗ · · · ∗ Un → V1 ∗ · · · ∗ Vn,

where π ∈ Sn, such that xi ∈ Uπ(i). Let ψn : C(n) → Cn be the homeomorphism from Example 6.3.

We claim that these ψn ◦ ϕp form an atlas on X(n). First we show that ϕ is well-defined. If π1
and π2 are both permutations such that xi ∈ Uπ1(i) and xi ∈ Uπ1(i), then Uπ1(i) ∩ Uπ2(i) ̸= ∅, so
ϕπ1(i) = ϕπ2(i). Therefore the value of ϕ({x1, . . . , xn}) does not depend on the chosen permutation.
Furthermore, the value of ϕ({x1, . . . , xn}) does not depend on the order of the xi, so ϕ is well-
defined. To show that ϕ is continuous, it is enough to show that ϕ−1(W1 ∗ · · · ∗Wn) is open, for
Wi ⊆ Vi open, because such opens form a basis for the topology on V1 ∗ · · · ∗ Vn.

ϕ−1(W1 ∗ · · · ∗Wn) = {{x1, . . . , xn} ∈ U1 ∗ · · · ∗ Un | ϕ({x1, . . . , xn}) ∈W1 ∗ · · · ∗Wn}
= {{x1, . . . , xn} ∈ U1 ∗ · · · ∗ Un | {ϕ1(x1), . . . , ϕn(xn)} ∈W1 ∗ · · · ∗Wn}
= {{x1, . . . , xn} ∈ U1 ∗ · · · ∗ Un | ∃π ∈ Sn : ϕπ(i)(xi) ∈Wi for all i}

=
⋃
π∈Sn

{{x1, . . . , xn} ∈ U1 ∗ · · · ∗ Un | ϕπ(i)(xi) ∈Wi for all i}

=
⋃
π∈Sn

(
ϕ−1
π(1)(W1) ∗ · · · ∗ ϕ−1

π(n)(Wn)
)
.

Here without loss of generality we assumed that xi ∈ Ui for all i. Similarly ϕ−1 = {v1, . . . , vn} 7→{
ϕ−1
1 (v1), . . . , ϕ

−1
n (vn)

}
is well-defined and continuous, so ϕ is even a homeomorphism.

Lastly we check that the charts are compatible. Let q = {q1, . . . , qn} and p = {p1, . . . , pn} ∈ X(n)

and let ϕq : Uq = Uq1 ∗ · · · ∗ Uqn → Vq1 ∗ · · · ∗ Vqn and ϕq : Up = Up1 ∗ · · · ∗ Upn → Vp1 ∗ · · · ∗ Vpn
be the charts around q and p as constructed above. Then we need to show that ψn ◦ ϕq ◦ ϕ−1

p ◦
ψ−1
n |ψn(ϕp(Uq∩Up)) is holomorphic.

Let r = {r1, . . . , rn} ∈ Up ∩ Uq, we will show that ψn ◦ ϕq ◦ ϕ−1
p ◦ ψ−1

n is holomorphic at ψn(ϕp(r)).
By reordering, we can assume without loss of generality, that ri ∈ Ui = Upi ∩ Uqi for all i. Since
Upi = Upj or Upi ∩ Upj = ∅ and similarly for Uqi , we have Ui = Uj or Ui ∩ Uj = ∅. Again by
reordering, we can assume that there are 0 = m0 < m1 < · · · < ml = n, such that

U1 = · · · = Um1 , Um1+1 = · · · = Um2 , . . . , Uml−1+1 = · · · = Uml

and i ̸= j =⇒ Umi∩Umj = ∅. When we restrict ϕp and ϕq to U1∗· · ·∗Un, the same reordering yields
ϕpmi−1+1 = · · · = ϕpmi

and i ̸= j =⇒ Vpmi
∩ Vpmj

= ∅. Because of this, there is a homeomorphism

χp = {v1, . . . , vn} 7→ ({v1, . . . , vm1}, . . . , {vml−1+1, . . . , vn}) : Vp1 ∗ · · · ∗ Vpn → V (k1)
pm1

× · · · × V (kl)
pml

.

Furthermore, we have homeomorphisms

V
(k1)
pm1

× · · · × V
(kl)
pml

Wp1 × · · · ×Wpl ⊆ Ck1 × · · · × Ckl
(ψk1

,...,ψkl
)

∼

and

C(n) ⊇ Vp1 ∗ · · · ∗ Vpn Vp ⊆ Cn.ψn

∼
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Let πp be the quotient map V k1
pm1

×· · ·×V kl
pml

→ V
(k1)
pm1

×· · ·×V (kl)
pml

. Then the composition ψn◦χ−1
p ◦πp

is given by

((v1, . . . , vm1), . . . , (vml−1+1, . . . , vn)) 7→ (fn,1(v1, . . . , vn), . . . , fn,n(v1, . . . , vn)).

This is holomorphic and invariant under permutations of x1, . . . , xn. In particular it is invariant
under permutations of xmi−1+1, . . . , xmi , so by Lemma 6.5, there is a holomorphic function

gp :Wp1 × · · · ×Wpl → Vp,

such that gp◦(ψk1 , . . . , ψkl)◦πp = ψn◦χ−1
p ◦πp, hence gp = ψn◦χ−1

p ◦(ψk1 , . . . , ψkl)−1 is holomorphic.

Replacing p with q, we get similar maps and spaces. If we write Ti = ϕqmi
◦ ϕ−1

pmi
, the composition

(ψk1 , . . . , ψkl) ◦ χq ◦ ϕq ◦ ϕ−1
p ◦ χ−1

p ◦ πp is given by

((v1, . . . , vm1), . . . , (vml−1+1, . . . , vn)) 7→ (ψk1(T1(v1), . . . , T1(vm1)), . . . , ψkl(Tl(vml−1+1), . . . , Tl(vn))),

which is holomorphic and invariant under permutations of xmi−1+1, . . . , xmi . By Lemma 6.5, there
is a holomorphic function g :Wp1 × · · · ×Wpl →Wq1 × · · · ×Wql that commutes.

U1 ∗ · · · ∗ Un U1 ∗ · · · ∗ Un

Cn ⊇ Vp Vp1 ∗ · · · ∗ Vpn Vq1 ∗ · · · ∗ Vqn Vq ⊆ Cn

V
(k1)
pm1

× · · · × V
(kl)
pml

V
(k1)
qm1

× · · · × V
(kl)
qml

V k1
pm1

× · · · × V kl
pml

Wp1 × · · · ×Wpml
Wq1 × · · · ×Wqml

V k1
qm1

× · · · × V kl
qml

ϕp∼

id

ϕq∼

χp∼

ψn

χq∼
ψn

(ψk1
,...,ψkl

)∼ (ψk1
,...,ψkl

)

∼

πp

gp

g

gq

πq

In total we find ψn ◦ ϕq ◦ ϕ−1
p ◦ ψ−1

n = gq ◦ g ◦ g−1
p is holomorphic. This shows that the charts are

compatible and thus that X(n) is a complex manifold.

Lemma 6.5. Let f(x1, . . . , xn, y1, . . . , ym) be a holomorphic function that is symmetric in x1, ..., xn,
i.e. f(x1, . . . , xn, y1, . . . , ym) = f(xπ(1), . . . , xπ(n), y1, . . . , ym) for all π ∈ Sn. Then there is a
holomorphic function g(x1, . . . , xn, y1, . . . , ym), such that

f(x1, . . . , xn, y1, . . . , ym) = g(h1(x1, . . . , xn), . . . , hn(x1, . . . , xn), y1, . . . , ym),

where

hk = fn,k = (−1)k
∑

(ai)i∈{0,1}n,
∑n

i=1 ai=k

n∏
i=1

xaii .

Proof. In this proof we will use the notation XI to denote xa11 · · ·xann , where I = (a1, . . . , an) ∈ Zn≥0

and similarly for HI and Y I .
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To show this, we will show that any symmetric polynomial in x1, . . . , xn is a polynomial in
h1, . . . , hn. Let F be a be a symmetric polynomial that is homogeneous of degree d. Then
F =

∑
I ciX

I . Because F is invariant under Sn, we have aI = aπ(I), where π(a1, . . . , an) =
(aπ(1), . . . , aπ(n)), for all π ∈ Sn. This means that we can write

F =
∑
I

bI
∑
π∈Sn

Xπ(I).

We call
∑

π∈Sn
Xπ(I) a symmetric monomial of multi-degree I. When we write I = (a1, . . . , an),

we can assume without loss of generality that a1 ≥ a2 ≥ · · · ≥ an. We order the multi-degrees
lexicographically. Now we define multideg(F ) to be the largest multi-degree for which the monomial
has non-zero coefficient in F , or (−∞, . . . ,−∞) if F = 0. The coefficient of this monomial is called
the leading coefficient of F . If F and G are non-zero symmetric polynomials that are homogeneous
of degree d and that have the same multi-degree and leading coefficient a and b respectively, then
F − a

bG is a symmetric polynomial of smaller multi-degree that is homogeneous of degree d.

Using induction on multidegF , we will now show that any symmetric polynomial F in x1, . . . , xn
that is homogeneous of degree d, is a polynomial in h1, . . . , hn, such that

ha11 · · ·hann has non-zero coefficient =⇒ a1 + 2a2 + · · ·+ nan = d. (∗)

If multidegF = (−∞, . . . ,∞), then F = 0, so it clearly is a polynomial in h1, . . . , hn that satisfies
(∗).
Now let multideg(F ) = (a1, . . . , an). Since F is homogeneous of degree d, we have a1+ · · ·+an = d.
Let H = ha1−a21 ha2−a32 · · ·hann . Note that multidegH = (a1, . . . , an) and that H is homogeneous
of degree (a1 − a2) + 2(a2 − a3) + · · · + nan = a1 + · · · + an = d, so H satisfies (∗). There is a
constant c, such that multideg(F − cH) < (a1, . . . , an). Now by the induction hypothesis, F − cH
is a polynomial in h1, . . . , hn that satisfies (∗), hence so is F .

Now let f(x1, . . . , xn, y1, . . . , ym) be a holomorphic function that is symmetric in x1, . . . , xn, then

f =
∑
J

∑
I

aI,J
∑
π∈Sn

Xπ(I)Y J .

Every
∑

π∈Sn
Xπ(I) is a homogeneous, symmetric polynomial, so it can be written as a polynomial

FI in h1, . . . , hn.

f =
∑
J

∑
I

aI,JFIY
J .

Let bI,K denote the coefficient of HK in FI , then

f =
∑
J

Y J
∑
K

HK
∑
I

aI,JbI,K .

Since the FI satisfy (∗) and there only finitely many I = (a1, . . . , an) with a1+2a2+ · · ·+nan = d,
the sums cJ,K =

∑
K aI,JbI,K are well-defined, hence

g =
∑
J

∑
K

cJ,KH
KY K

is holomorphic and f = g(h1, . . . , hn, y1, . . . , ym).
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Proposition 6.6. A real structure σ on X induces a real structure σ(n) on X(n).

Proof. The real structure σ induces the map σ(n), given by

{x1, . . . , xn} 7→ {σ(x1), . . . , σ(xn)} .

It is clear that this is a well-defined, continuous involution. We still need to check that it is
anti-holomorphic. Let f ∈ OX(n)(U), let τn : Cn → Cn be complex conjugation and let ϕ :
U1 ∗ · · · ∗ Un → U and ψ : σ(U1) ∗ · · · ∗ σ(Un) → V be charts, with U1 ∗ · · · ∗ Un ⊆ U . We need to
show that f ◦ σ(n) ∈ OX(n)(σ(U)). For this it suffices to show that f ◦ σ(n) ◦ ψ−1 is holomorphic,
for all such ϕ and ψ. Note that

f ◦ σ(n) ◦ ψ−1 = f ◦ ϕ−1 ◦ ϕ ◦ σ(n) ◦ ψ−1

= f ◦ ϕ−1 ◦ τn ◦ τn ◦ ϕ ◦ σ(n) ◦ ψ−1

= f ◦ ϕ−1 ◦ τn ◦ (ϕ1 ∗ · · · ∗ ϕn) ◦ σ(n) ◦ ψ−1

= f ◦ ϕ−1 ◦ τn ◦ ((ϕ1 ◦ σ) ∗ · · · ∗ (ϕn ◦ σ)) ◦ ψ−1,

where f ◦ ϕ−1 ◦ τn is holomorphic, because f is, and all ϕi ◦ σ are holomorphic, because σ is
anti-holomorphic. Therefore, f ◦ σ(n) is holomorphic and σ(n) is anti-holomorphic.

Example 6.7 (Symn(CP1)). Let ϕn : C(n) → Cn be the homeomorphism from Example 6.3.
Then ϕ = (fn,1, . . . , fn,n), with fn,i ∈ C[X1, . . . , Xn] as in Lemma 6.5. We use this to define
ψn : (CP1)(n) → CPn, by

{[x1 : y1], . . . , [xn : yn]} 7→ [1 : fn,1(
x1
y1
, . . . ,

xn
yn

) : · · · : fn,n(
x1
y1
, . . . ,

xn
yn

)].

This is not well-defined, but by clearing denominator, i.e. multiplying by y1 · · · yn, we obtain
ψn = [Fn,0 : · · · : Fn,n], with Fn,k ∈ C[X1, Y1, . . . , Xn, Yn]. If we write Ai,0 = Yi and Ai,1 = Xi, then
they are given by

Fn,k = (−1)k
∑

(ai)i∈{0,1}n,
∑n

i=1 ai=k

n∏
i=1

Ai,ai .

Because each Fn,k is continuous, open and closed, so is ψn. Note that

Fn,k(1, 0, X2, . . . , Yn) = (−1)k

 ∑
(ai)i∈{0,1}n,a1=0∑n

i=1 ai=k

(
n∏
i=1

Ai,ai

)
+

∑
(ai)i∈{0,1}n,a1=1∑n

i=1 ai=k

(
n∏
i=1

Ai,ai

)

= (−1)k

0 +
∑

(ai)
n
i=2∈{0,1}n−1∑n
i=2 ai=k−1

(
n∏
i=2

Ai,ai

)
= −Fn−1,k−1(X2, . . . , Yn).
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Let

C1 = {{[x1 : y1], . . . , [xn : yn]} ∈ Symn(CP1) | ∀i : yi ̸= 0} ∼= Symn(C),
C2 = {{[x1 : y1], . . . , [xn : yn]} ∈ Symn(CP1) | ∃i : yi = 0}

= {{[1 : 0], [x2 : y2], . . . , [xn : yn]} ∈ Symn(CP1)} ∼= Symn−1(CP1),

D1 = {[z0 : · · · : zn] ∈ CPn | z0 ̸= 0} ∼= Cn,
D2 = {[0 : z1 : · · · : zn] ∈ CPn} ∼= CPn−1,

then Symn(CP1) = C1 ⊔ C2 and CPn = D1 ⊔D2.

Because Fn,0(x1, . . . , yn) = y1 · · · yn ̸= 0 on C1, the function ψn is given by

{[x1 : y1], . . . , [xn : yn]} 7→ [Fn,0(x1, . . . , yn) : · · · : Fn,n(x1, . . . , yn)]

= [1 : fn,1(
x1
y1
, . . . ,

xn
yn

) : · · · : fn,n(
x1
y1
, . . . ,

xn
yn

)],

on C1. We see that ψn(C1) is contained in D1. Composing with the homeomorphisms C(n) ∼= C1

and D1
∼= Cn, the restriction ψn|C1 is given by

(z1, . . . , zn) 7→ (fn,1(z1, . . . , zn), . . . , fn,n(z1, . . . , zn)) = ϕn(z1, . . . , zn).

Since ϕn is a bijection, ψn|C1 is a bijection onto its image. On C2, the function ψn is given by

{[1 : 0], [x2 : y2], . . . , [xn : yn]} 7→ [0 : Fn,1(1, 0, x2, . . . , yn) : · · · : Fn,n(1, 0, x2, . . . , yn)].

Composing with the homeomorphisms Symn−1(CP1) ∼= C2 and D2
∼= CPn−1 and using the obser-

vation that Fn,k(1, 0, X2, . . . , Yn) = −Fn−1,k−1(X2, . . . , Yn), we see that the function ψn restricts to
ψn−1 : Symn−1(CP1) → CPn−1. By induction, this is a homeomorphism. We conclude that ψn is
continuous, open, closed and bijective and thus a homeomorphism.

Note that every Fn,k satisfies Fn,k(X1, . . . , Y k) = Fn,k(X1, . . . , Yn), so if we equip CP1 and CPn
with the standard real structures σ and σn respectively and Symn(CP1) with the induced involution
σ(n), then

ψn(σ
(n)({[x1 : y1], . . . , [xn : yn]}) = [Fn,0(x1, . . . , yn) : · · · : Fn,1(x1, . . . , yn)]

= [Fn,0(x1, . . . , yn) : · · · : Fn,1(x1, . . . , yn)]
= σn(ψn({[x1 : y1], . . . , [xn : yn]})).

Therefore the induced real structure on Symn(CP1) agrees with the standard real structure on CPn.

Example 6.8.

Sym2(S1) ∼= (([0, 1]/ ∼)× ([0, 1]/ ∼))/S2 where ∼ is the equivalence relation generated by 0 ∼ 1
∼= (([0, 1]× [0, 1])/ ∼)/S2 where ∼ is generated by (x, 0) ∼ (x, 1) and (0, y) ∼ (1, y)
∼= ([0, 1]× [0, 1])/ ∼ where ∼ is generated by (x, 0) ∼ (x, 1) and (x, y) ∼ (y, x)
∼= {(x, y) ∈ [0, 1]× [0, 1] | x ≤ y}/ ∼ where ∼ is generated by (0, y) ∼ (y, 1)
∼= {(x, y) ∈ [0, 1]× [0, 1]}/ ∼ where ∼ is generated by (0, y) ∼ (1, 1− y)

= Möbius strip.
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Figure 6: Visualization of the isomorphism (⋆) in Example 6.8.

The last homeomorphism is given by

(x, y) 7→

{
(1− x− y, y − x) if x+ y ≤ 1,

(2− x− y, 1 + x− y) if x+ y ≥ 1.
(⋆)

Example 6.9. Let X = C/Z + iZ be a complex torus. We have seen that X is a maximal curve
when equipped with the real structure σ([x+ iy]) = [x− iy] and that the real locus consists of two
circles {[x] | x ∈ R} and {[x+ 1

2 i] | x ∈ R}.

X(2) is a 2 dimensional complex manifold with total Betti number b∗(X
(2);F2) = 8, [1, Lemma

2.1]. The real locus of X(2) is given by

X(2)(R) = {{x, y} ∈ X(2) | {x, y} = {σ(x), σ(y)}}
= {{x, y} ∈ X(2) | x = σ(x) and y = σ(y)} ∪ {{x, y} ∈ X(2) | x = σ(y)}
= X(R)(2) ∪ Y
∼= (S1 ⊔ S1)(2) ∪ Y.

Where Y = {{x, y} ∈ X(2) | x = σ(y)} ∼= X/σ ∼= {[x+ iy] | 0 ≤ y ≤ 1
2}. Note that

(S1 ⊔ S1)(2) ∼= Sym2(S1) ⊔ Sym2(S1) ⊔ S1 × S1,

and Y ∩ X(R)(2) = {{x, x} ∈ X(2) | x = σ(x)} corresponds to the circles {[x] | x ∈ R} and
{[x+ 1

2 i | x ∈ R]} in X/σ and the diagonals of Sym2(S1) in (S1 ⊔S1)(2). So X(2)(R) is the disjoint
union of a torus and two Möbius strips that are glued to a cylinder. Since a cylinder is homotopy
equivalent to a circle, the latter is homotopy equivalent to two Möbius strips that are glued along
their edge, which is a Klein bottle. The Klein bottle K has total Betti number b∗(K;F2) = 4, so
in total we find

b∗(X
(2)(R);F2) = 4 + 4 = 8 = b∗(X

(2);F2),

hence X(2) is a maximal curve.
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Figure 7: Two Möbius bands that are glued together form a Klein bottle.

Theorem 6.10 ([1, Proposition 2.3]). Let (X,σ) be a maximal curve, then (X(2), σ(2)) is a maximal
variety.

Proof. Let g be the genus of X. By [1, Lemma 2.1], the total Betti number b∗(X
(2);F2) = 3+3g+

2g2, so we need to show that b∗(X
(2)(R);F2) = 3+3g+2g2. Since X is maximal, X(R) ∼=

⊔g+1
i=1 S

1.
Similar to the previous example we compute the real locus of X(2),

X(2)(R) = {{x, y} ∈ X(2) | {x, y} = {σ(x), σ(y)}}
= {{x, y} ∈ X(2) | x = σ(x) and y = σ(y)} ∪ {{x, y} ∈ X(2) | x = σ(y)}
= X(R)(2) ∪ Y

∼= Sym2

(
g+1⊔
i=1

S1

)
∪ Y.

Where Y = {{x, y} ∈ X(2) | x = σ(y)} ∼= X/σ. The symmetric product of the disjoint union⊔g+1
i=1 S

1 is given by

Sym2

(
g+1⊔
i=1

S1

)
∼=

g+1⊔
i=1

Sym2(S1) ⊔
(g+1

2 )⊔
i=1

S1 × S1,

and Y ∩X(R)(2) = {{x, x} ∈ X(2) | x = σ(x)} corresponds to the g+1 circles X(R) in {[x] | x ∈ R}
and {[x+ 1

2 i | x ∈ R]} in X/σ and the diagonals of Sym2(S1) in Sym2
(⊔g+1

i=1 S
1
)
.

So X(2)(R) is the disjoint union of
(
g+1
2

)
tori, each of which have b∗(S

1 × S1;F2) = 4 and g + 1
Möbius strips that are glued to Y . We will compute the homology of the latter, which we call A,
using cellular homology.

The ith Möbius strips can be realized as a CW-complex, using two 0-cells, vi and wi, three 1-cells,
ai and bi from vi to wi and ci from wi to vi, and one 2-cell fi glued along the path aicibidi.

Finally the surface Y is glued to these Möbius strips with extra 1-cells di from wi to vi+1, where
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vg+1 = v0, and two 2-cells, h1 glued along the path a1d1a2d2 . . . ag+1dg+1 and h2 glued along the
path b1d1b2d2 . . . bg+1dg+1.

This gives the cellular chain complex

0 Z3+g Z4(g+1) Z2(g+1) 0,
β α

where

α(a0, b0, c0, d0, . . . , ag, bg, cg, dg)

= (a0 + b0 − c0 − dg, d0 + c0 − a0 − b0, . . . , ag + bg − cg − dg−1, dg + cg − ag − bg)

and

β(h1, h2, f0, . . . , fg) = (f0 + h1, f0 + h2, 2f0, h1 + h2, . . . , fg + h1, fg + h2, 2fg, h1 + h2).

The kernel of α is given by

{(a0, b0, c0, d0, . . . , ag, bg, cg, dg) ∈ Z4(g+1) | d0 = · · · = dg = a0 + b0 − c0 = · · · = ag + bg − cg}.

We will identify Kerα with Z2(g+1)+1 via

Z2(g+1)+1 ∋ (c, a0, b0, a1, b1, . . . , ag, bg) 7→ (a0, b0, c, a0 + b0 − c,

a1, b1, a0 + b0 − c− a1 − b1, a0 + b0 − c,

. . . ,

ag, bg, a0 + b0 − c− ag − bg, a0 + b0 − c) ∈ Kerα.

Via this identification, β is given by

(h1, h2, f0, . . . , fg) 7→ (2f0, f0 + h1, f0 + h2, . . . , fg + h1, fg + h2).

An element (c, x0, y0, . . . , xg, yg) belongs to the image of β if and only if x0 − y0 = · · · = xg − yg
and c is even, so in Kerα/ Imβ we have

(c, x0, y0, . . . , xg, yg) = (c, 0, y0 − x0, 0, y1 − x1, . . . , 0, yg − xg)

= (c, 0, 0, 0, y1 − x1 − y0 + x0, . . . , 0, yg − xg − y0 + x0).

So we get an isomorphism Zg ⊕ Z/2Z → Kerα/ Imβ = H1(A;Z), given by

(a1, . . . , ag, b̄) 7→ (b, 0, 0, 0, a1, . . . , 0, ag).

Furthermore we have Kerβ = 0, so H2(A;Z) = 0 and H0(A;Z) = Z, because Y is connected. Now
we can use the universal coefficient theorem to compute

H0(A;F2) = F2,

H1(A;F2) = Fg+1
2 ,

H2(A;F2) = F2,

hence b∗(A;F2) = g + 3. In total we find that

b∗(X
(2)(R);F2) = 3 + g + 4

(
g + 1

2

)
= 3 + g + 2g(g + 1) = 3 + 3g + 2g2 = b∗(X

(2);F2).

Therefore (X(2), σ(n)) is a maximal variety.
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7 Higher symmetric products

We’re going to show that Theorem 6.10 holds in a much more general case. We follow the proof by
Franz [3]. This proof uses that an R-variety is maximal if and only if it is equivariantly formal.

7.1 Equivariant cohomology

Definition 7.1. [18, Section 2.8] Let G be a group. Let B be a topological space and let E be a
topological space on which G acts freely. A principal G-bundle is a continuous map p : E → B,
such that p(eg) = p(e) for all e ∈ E, g ∈ G and such that there exists an open cover {Ui}i of E,
such that p−1(Ui) ∼= Ui × G and the diagram below commutes. Such an open cover is called a
trivializing cover.

p−1(Ui) Ui ×G

Ui

p

∼

pr1

In other words, a principal G-bundle is a fibre bundle with fibre G that is invariant under the G
action on E.

Definition 7.2. Given a principal G-bundle p : E → B, a topological space X and a continuous
map f : X → B, there exists a principal G-bundle f∗p : E ×B X → X, where E ×B X = {(e, x) ∈
E ×X | p(e) = f(x)}, with G-action g(e, x) = (eg, x) and f∗p(e, x) = x. This bundle is called the
pullback of p along f .

Proposition 7.3. The pullback of a principal G-bundle p : E → B along f : X → B is again a
principal G-bundle.

Proof. Since G acts freely on E it also acts freely on E ×B X. It is also clear that f∗p(g(e, x)) =
f∗p(e, x) for all g. Let U ⊆ B, such that there is an isomorphism ϕ : p−1(U) → U × G and
pr1 ◦ ϕ = p, then

(f∗p)−1(f−1(U)) = {(e, x) ∈ E × f−1(U) | p(e) = f(x)} ⊆ p−1(U)× f−1(U).

Now ψ : (f∗p)−1(f−1(U)) → f−1(U)×G, (e, x) 7→ (x, pr2(ϕ(e)) is a homeomorphism, with inverse
(x, g) 7→ (ϕ−1(f(x), g), x). It satisfies pr1 ◦ ψ = f∗p, so if {Ui}i is a trivializing cover of E → B,
then this makes {f−1(Ui)}i a trivializing cover of E ×B X → X, so the pullback of p along f is a
principal G-bundle.

Definition 7.4. A principal G-bundle p : E → B is called a universal G-bundle if for every
principal G-bundle p′ : E′ → B′, where B′ is a CW-complex, is obtained, up to isomorphism, by
taking the pullback of p along some function B′ → B.

Theorem 7.5. Let G be a topological group that is homotopy equivalent to a CW-complex. Then
a univeral G-bundle p : EG → BG exists and EG is contractible. Conversely, if p : E → B is a
principal G-bundle and E is contractible, then p is a universal G-bundle.

Proof. See [2, Theorem 2.5]
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Example 7.6. The quotient map S∞ → RP∞ is a principal Z/2Z-bundle, where the action of the
generator of Z/2Z on S∞ is given by the antipodal map x 7→ −x. Since S∞ is contractible, it is a
universal Z/2Z-bundle.

Definition 7.7. Let K be a field and let G be a group and EG→ BG the corresponding universal
G-bundle. Let X be a G-space, i.e. a topological space with a continuous G-action. Then the
equivariant cohomology of X is defined as

H∗
G(X;K) = H∗(XG;K),

where XG = (EG×X)/G. Here G acts on EG×X via g(e, x) = (eg, g−1x).

Definition 7.8. A G-space X is called equivariantly formal over K if for any e ∈ EG the inclusion

je : X → XG, x 7→ [e, x]

induces a surjective map j∗ : H∗
G(X;K) → H∗(X;K). Note that j∗ does not depend on e, as all je

are homotopic, because EG is contractible.

We are interested in the case that X is an R-variety. The real structure on an R-variety equips it
with a Z/2Z-action, so we can indeed use equivariant cohomology on them.

7.2 Cohomology with local coefficients

To connect the maximality of R-varieties to equivariant formality, we need the Leray-Serre spectral
sequence. This uses cohomology with local coefficients, so before we look at spectral sequences, we
first state the definition and some properties of cohomology with local coefficients.

Definition 7.9. Let G be a group. We define the group ring Z[G]. As an abelian group, it is the
free abelian group generated by the elements of G. The multiplication on Z[G] on the generators
is induced by the group structure on G. Explicitly, this means that multiplication is given by

(
∑
i

aigi)(
∑
i

bigi) =
∑
i

∑
j

aibj(gigj).

We call Z[G]-modules, G-modules and use the notation HomG(M,N) for G-modules M and N to
denote the Z[G]-linear maps from M to N .

Definition 7.10. Let G be a group, let EG → BG be a universal G-bundle and let M be a
G-module. The cohomology with local coefficients H i(BG;M) is defined as the cohomology in
the cochain complex Ci(EG;M) = HomG(Ci(EG;Z),M), where Ci(EG;Z) is the singular chain
complex of EG, which is a chain complex of G-modules for which the G-action is induced by that
on EG. [6, Section 3.H].

Proposition 7.11. Let G be a group and let L be a G-module, then

H0(BG;L) ∼= LG.
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Proof. By definition H0(BG;L) = Ker δ0, where

δ0 : HomG(C0(EG;Z), L) → HomG(C1(EG;Z), L), α 7→ (s 7→ α(∂1(s)).

Note that elements α ∈ HomG(Ck(EG), L) are completely determined by α(s), for k-simplices
s ∈ Sk(EG). Also note that 0-simplices are points in EG and that 1-simplices are paths.

Let α ∈ Ker δ0 and let a, b ∈ EG. Since EG is contractible, it is path-connected, so there is a path
s ∈ S1(EG) from a to b. Hence 0 = δ0(α(s)) = α(∂1(s)) = α(a− b) = α(a)−α(b). This shows that
α is constant on S0(EG). Let l ∈ L be the constant value of α. Then for any g ∈ G and x ∈ EG
we must have gl = gα(x) = α(gx) = l, so l ∈ LG. Conversely any α that is constant on S0(EG)
satisfies δ0α = 0. Therefore Ker δ0 ∼= LG.

Lemma 7.12. Let G be a group and let L be a G-module on which G acts trivially, then the
cohomology with local coefficients Hk(BG;L) is isomorphic to the ordinary singular cohomology
H i(BG;L)

Proof. Let α ∈ HomZ(Ci(EG), L), then α ∈ HomG(Ci(EG), L) if and only if for all g ∈ G and
s ∈ Si(EG): α(gs) = gα(s). If g acts trivially on L, this means that α(gs) = α(s) for all
s. Maps that satisfy this are exactly the maps that factor through Si(BG), so we can identify
HomG(Ci(EG), L) with HomZ(Ci(BG), L), which proves the lemma.

Definition 7.13. Let G be a group and M be a G-module. The group cohomology Ha(G;M) is
defined as Ha(G;M) = ExtaZ[G](Z;M).

Proposition 7.14. Let G be a cyclic group of order p and let g be a generator of G. Let M be a
G-module and let ϕ, ψ : M → M be given by ϕ(m) = m−mg and ψ(m) = m+mg + ...+mgp−1,
then

Hn(G;M) =


Kerϕ if n = 0,

Kerϕ/ Imψ if n > 0 is odd,

Kerψ/ Imϕ if n > 0 is even.

Proof. Let A,B : Z[G] → Z[G] be given by A(x) = x−xg and B(x) = x+xg+ ...+xgp−1. Consider
the following sequence

. . . Z[G] Z[G] Z[G] Z[G] Z 0
α3 α2 α1 α0

Where α0(
∑

i aig
i) =

∑
i ai and α2n+1 = A for n ≥ 0 and α2n = B for n > 0. We view Z as a

G-module, where the G-action is the trivial action. It is clear that all αn are Z[G]-linear.

Since
A(a0 + ...+ ap−1g

p−1) = (a0 − ap−1) + (a1 − a0)g + ...+ (ap−1 − ap−2)g
p−1

and
B(a0 + ...+ ap−1g

p−1) = (a0 + ...+ ap−1) + ...+ (a0 + ...+ ap−1)g
p−1,

we easily see that ImA ⊆ KerB, that ImB = KerA and that KerB = Kerα0.
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Let x ∈ KerB, then we can write x = a0 + a1g + ... + ap−1g
p−1, with ap−1 = −(a0 + ... + ap−2).

Now

A(a0 + ...+ (a0 + ...+ ap−2)g
p−2) = a0 + ...+ ap−2g

p−2 − (a0 + ...+ ap−2)g
p−1 = x,

so KerB = ImA = Kerα0.

This shows that the sequence is a free resolution of the G-module Z. Applying the HomG(−,M)-
functor, we obtain the sequence

. . . M M M M M
β3 β2 β1 β0

,

where β2n = ϕ for and β2n+1 = ψ for n > 0. Taking cohomology finishes the proof.

Proposition 7.15. For the classifying space BG of a group G, the cohomology with local coefficients
Ha(BG;M) is given by the group cohomology Ha(G;M).

Proof. The universal cover EG of BG is contractible, so the G-module chain complex

. . . C2(EG;Z) C1(EG;Z) C0(EG;Z) 0
∂2 ∂1

is exact in all Ci, except for C0. Because EG is path-connected, the differential ∂1 has image

Im ∂1 =

{∑
i

ai(xi + yi) | ai ∈ Z and xi, yi ∈ EG

}
=

{∑
i

aixi | xi ∈ EG,
∑
i

ai = 0

}
.

Define α : C0 → Z, by α(
∑

i aisi) =
∑

i ai, then Kerα = Im ∂1, so C∗(EG;Z) is a free resolution of
Z, hence

Hn(BG;M) = Hn(HomG(C∗(EG;Z),M) = ExtnZ[G](Z;M) = Hn(G;M).

Example 7.16. Let G = Z/2Z and M = Z with the trivial G-action. Then the maps ϕ and ψ in
Proposition 7.14 are given by ϕ(m) = 0 and ψ(m) = 2m, so

Hn(G;M) =


Z if n = 0,

Z/2Z if n > 0 is odd,

0 otherwise.

Example 7.17. Let G = Z/2Z and M = F2 with the trivial G-action. Then the maps ϕ and ψ in
Proposition 7.14 are given by ϕ(m) = ψ(m) = 0, so Hn(G;M) =M for all n ≥ 0.

7.3 Spectral sequences

Let K be a field. Throughout this section, we will write H∗(X) instead of H∗(X;K).

Definition 7.18. A spectral sequence is a collection of abelian groups Ep,qr and maps dp,qr : Ep,qr →
Ep+r,q−r+1
r , such that dp+r,q−r+1

r ◦ dp,qr = 0, i.e. they form cochain complexes. Furthermore they
satisfy Ep,qr+1 = Ker(dp,qr )/ Im(dp+r,q−r+1

r ), i.e. Ep,qr+1 is the cohomology of the chain complex at Ep,qr .
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Definition 7.19. If the only non-trivial groups occur when p, q ≥ 0, then for r > p the incoming
differential in Ep,qr is

dp−r,q+r−1
r : Ep−r,q+r−1

r → Ep,qr ,

which is trivial, since Ep−r,q+r−1
r = 0 in this case. For r > q+1 the outgoing differential from Ep,qr

is
dp,qr : Ep,qr → Ep+r,q−r+1

r ,

which is trivial, since Ep+r,q−r+1
r = 0 in this case. So for r ≥ max(p, q+1), both the incoming and

outgoing differentials in Ep,qr are trivial and thus Ep,qr+1 = Ep,qr . As a consequence, for all p, q there
exist an abelian group Ep,q∞ , such that there is an R such that Ep,qr = Ep,q∞ for all r > R. We say
that the spectral sequence degenerates at page r if Er = E∞.

Definition 7.20. [6]A fibration is a continuous map p : X → B that satisfies the homotopy lifting
property for every topological space Y . This means that for every homotopy H : Y × [0, 1] → B
and f : X × {0} such that p ◦ f = H|Y×{0} there exists a homotopy H̃ : Y × [0, 1] → X, such that

H = p ◦ H̃ and H̃|Y×{0} = f .

Y × {0} X

Y × [0, 1] B

f

p

H

H̃

Proposition 7.21. Let p : X → B be a fibration. Write Fb = p−1(b) for the fiber over b. For any
b0, b1 ∈ B a path between b0 and b1 induces a homotopy equivalence between Fb0 and Fb1, such that
composing paths corresponds to composing homotopy equivalences.

If B is path-connected, all fibers are homotopy equivalent. We write F → X → B for such a
fibration, where F = Fb is any fiber.

A loop with basepoint b ∈ B induces a map F → F , which in turn induces a map on cohomology
H∗(F ) → H∗(F ), that only depends on the homotopy class of the loop. This makes H∗(F ) a
π1(B)-module.

Proof. See [6, Proposition 4.61].

Proposition 7.22. The projection XG → BG, [e, x] 7→ [e] is a fibration with fiber X. The action
on H∗(X) induced by π1(BG) = G is the same as the one induced by the G-action on X.

Proof. See [18, Page 182].

Theorem 7.23. Let F → X → B be a fibration with B path-connected and let G = π1(B) be the
fundamental group of B. There exists a spectral sequence {Ep,qr }r≥2, called the Leray-Serre spectral
sequence, for which Ep,q2 = Hp(B;Hq(F )), where Hq(F ) is a G-module as described in 7.21. There
are filtrations

0 ⊆ An,n ⊆ ... ⊆ An,0 = Hn(X),

such that Ep,n−p∞ ∼= An,p/An,p+1.

Proof. See [5, Theorem 5.15]
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For the remainder of this section, let F → X → B be a fibration, let G = π1(B) and let Ep,qr be
the corresponding Leray-Serre spectral sequence.

Corollary 7.24. Hn(X) ∼=
⊕

p+q=nE
p,q
∞ and there is a surjection Hq(X) → E0,q

∞ .

Proof. By Theorem 7.23, Ep,n−p∞ ∼= An,p/An,p+1, so there are short exact sequences

0 → An,p+1 → An,p → Ep,n−p∞ → 0.

For n = q and p = 0, this gives the surjection Hq(X) = Aq,0 → E0,q
∞ . Since we are working over a

field, these short exact sequences are split exact and thus An,p ∼= Ep,n−p∞ ⊕ An,p+1. By induction
we get An,p ∼=

⊕n
q=p+1E

q,n−q and in particular H(X) ∼= An,0 =
⊕

p+q=nE
p,q
∞ .

Corollary 7.25. There is a natural injection E0,q
∞ → Hq(X).

Proof. The incoming maps in E0,q
r are all 0, so E0,q

r is a subgroup of E0,q
r−1. Therefore E0,q

∞ is a

subgroup of E0,q
2 and using Proposition 7.11 we obtain a sequence of injections

E0,q
∞ → E0,q

2
∼= Hq(X)G → Hq(X).

Theorem 7.26. There exist bilinear maps Ep,qr × Es,tr → Ep+s,q+tr , that we write as a product
(x, y) 7→ xy, with the following properties:

i) For r = 2, these bilinear maps are given by (−1)qs times the cup product

Hp(B;Hq(F ))×Hs(B;Ht(F )) → Hp+s(B;Hq+t(F )).

ii) They satisfy d(xy) = d(x)y + (−1)p+qxd(y), for x ∈ Ep,qr .
iii) For r > 2, the product on Er is induced by that on Er−1, via [x][y] = [xy].

Proof. See [5, Section 5.1]

7.4 Equivariant cohomology of R-varieties

In this section we will study the equivariant cohomology of a topological space X with a continuous
G-action by looking at the Leray–Serre spectral sequence corresponding to the fibrationX → XG →
BG and apply this to the case where X is an R-variety.

Proposition 7.27. The map j∗ : Hq(XG;K) → Hq(X;K) factors as j∗ = i ◦ s, where s :
Hq(XG;K) → E0,q

∞ is the surjection from Corollary 7.24 and i : E0,q
∞ → Hq(X;K) is the injection

from Corollary 7.25.

Proof. See [20, Theorem 7.6∗].

Theorem 7.28 (Künneth formula). Let K be a field.
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i) Let C∗ and D∗ be chain complexes of K-vector spaces, then H∗(C∗ ⊗K D∗) ∼= H∗(C∗) ⊗K

H∗(D∗), where the isomorphism is given by

[c⊗ d] 7→ [c]⊗ [d].

ii) Let X and Y be topological spaces, then H∗(X × Y ;K) ∼= H∗(X;K)⊗K H∗(Y ;K).

Here we take tensor product of chain complexes and graded modules. The analogous statements for
cohomology and cohain complexes also holds.

Proof.

i) See [7, Theorem 5.7.12].
ii) See [6, Theorem 3.16].

Proposition 7.29. [18, Proposition III.1.18] Let G be a group, let X be a path-connected, finite
CW-complex with a continous G-action and let K be a field. Then X is equivariantly formal
over K if and only if G acts trivially on H∗(X;K) and the Leray-Serre spectral sequence E∗ of
X → XG → BG degenerates at page 2.

Proof. Consider the composition j∗ = i ◦ s from Proposition 7.27. Then j∗ is surjective if and only
if i is surjective. Since i factors as

E0,q
∞ → E0,q

2
∼= Hq(X;K)G → Hq(X;K),

this happens exactly when E0,q
∞ = E0,q

2 and G acts trivially on Hq(X;K). What is left to show is

that E0,q
∞ = E0,q

2 for all q implies that Ep,q∞ = Ep,q2 for all p and q.

Let R be a ring and let N be an R-module and let M be a free R-module of finite rank, with
basis m1, ...,mn. Then HomR(N,R) ⊗R M ∼= HomR(N,M), where the isomorphism is given by
f ⊗m 7→ (a 7→ f(a) ·m) and the inverse is given by sending f to

∑
i(fi⊗mi), where fi is given by

sending a to the coefficient of mi in f(a).

If N∗ is a chain complex, than this isomorphism commutes with the induced differentials on the
cochain complexes HomR(N∗,M) and HomR(N∗, R) ⊗ M . We can view any R-module M as a
cochain complex M∗ with M0 = M and Mk = 0 for all k ̸= 0 and with trivial differentials. So we
get an isomorphism of cochain complexes.

Because X is path-connected, H0(X;K) ∼= K is a field, so any H0(X;K)-module is free. The
cup product on H∗(X;K) makes Hq(X;K) a H0(X;K)-module. Since BG is path-connected,
elements of H0(BG;M) are constant on 0-simplices of BG for any K-vector space M . This gives
an isomorphism H0(BG;M) → M,f 7→ f(x), where x is an arbitrary 0-simplex in BG. Be-
cause Hq(X;K) is finite dimensional, the previous isomorphisms and Künneth’s theorem give the
sequence of isomorphisms

Hp(BG;H0(X;K))⊗H0(BG;Hq(X;K)) → Hp(BG;H0(X;K))⊗Hq(X)

→ Hp(Hom(C∗(BG;Z), H0(X;K))⊗Hq(X;K))

→ Hp(BG;Hq(X;K)),
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given by

[f ]⊗ [g] 7→ [f ]⊗ g(x) 7→ [f ⊗ g(x)]

7→

[∑
i

aixi 7→
∑
i

aif(xi)g(x)

]

=

[∑
i

aixi 7→
∑
i

aif(xi)g(xi)

]
,

which coincides with the cup product.

Because G acts trivially on H∗(X), we obtain an isomorphism

Ep,02 ⊗ E0,q
2

∼= Hp(BG;H0(X;K))⊗H0(BG;Hq(X;K))

∼= Hp(BG;H0(X;K))⊗H0(BG;Hq(X;K))
∼= Hp(BG;Hq(X;K))
∼= Hp(BG;Hq(X;K)) = Ep,q2

that is given, up to sign, by the product on E2. In particular the product on E2 is surjective, so
we can write any element of Ep,q2 as finite sum of products xiyi, with xi ∈ Ep,02 and yi ∈ E0,q

2 . The
differentials on Er satisfy

d(xiyi) = d(xi)yi ± xid(yi).

The assumption that E0,q
∞ = E0,q

2 is equivalent to d(y) = 0 for all y ∈ E0,q
r and all r ≥ 2, so

d(yi) = 0. Furthermore, d(xi) = 0 because d(xi) ∈ Ep+2,−1
2 = 0. Therefore d(xiyi) = 0 for all xi

and yi. Hence d(z) = 0 for all z ∈ Ep,q2 , so E3 = E2. This also means that the product on E3 is the
same as the product on E2 and in particular also surjective, so we can repeat the same argument.
This gives E2 = E∞.

Lemma 7.30. Let G be a cyclic group of order p, with p prime, and let X be a topological space
for which there exists an n such that Hk(X;Fp) = 0 for all k > n. Then the inclusion XG → X
induces an isomorphism Hk

G(X;Fp) → Hk
G(X

G;Fp) for k > n.

Proof. See [18, Proposition III.4.9].

Theorem 7.31. [18, Proposition III.4.16] Let (X,σ) be an n-dimensional R-variety and let G be
the cyclic group of order 2, generated by σ, which acts naturally on X. Then X is maximal if and
only if X is equivariantly formal over F2.

Proof. By Proposition 7.29 it is enough to show that X is maximal if and only if G acts trivially
on H∗(X;F2) and the Leray–Serre spectral sequence E∗ of X → XG → BG degenerates at page 2.
In the rest of this proof, we leave out the coefficients and write H∗(X) instead of H∗(X;F2).

By Corollary 7.24 and the fact that Ep,q∞ is a subquotient of Ep,q2 , we have

dimHk
G(X) =

∑
p+q=k

dimEp,q∞ ≤
∑
p+q=k

dimEp,q2 =
∑
p+q=k

dimHp(BG;Hq(X))

with equality if and only if the spectral sequence degenerates at page 2.
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Applying Proposition 7.14 on G, combined with Proposition 7.15 gives

Hp(BG;Hq(X)) =

{
Ker ρ if p = 0

Ker ρ/ Im ρ if p > 0

with ρ = id+σ : Hq(X) → Hq(X).

Note that Ker ρ = Hq(X)G and that

dim(Ker ρ/ Im ρ) ≤ dim(Ker ρ) = dim(Hq(X))G.

With equality if and only if ρ = 0, which is exactly the case when G acts trivially on Hq(X).
Therefore we have dimEp,q2 = dimHp(BG;Hq(X)) ≤ dimHq(X) with equality if and only if G
acts trivially on Hq(X). In total we get for k > 2n

dimHk
G(X) =

∑
p+q=k

dimEp,q∞ ≤
∑
p+q=k

dimEp,q2 ≤
k∑
b=0

dimHb(X) = b∗(X;F2),

with equality if and only if X is equivariantly formal.

Since G acts trivially on XG, the space XG
G = EG×GX

G is just the Cartesian product BG×XG.
Therefore we can use the Künneth formula and get

Hk
G(X

G) =
⊕
p+q=k

Hp(BG)⊗Hq(XG) =

k⊕
q=0

Hq(XG),

the latter equality follows from Hp(BG) = Hp(RP∞) = F2 for all p ≥ 0.

As X is n dimensional, Hk(X) = 0 for k > 2n, so we can use Lemma 7.30 and get

b∗(X
G;F2) =

k∑
q=0

dimHq(XG) = dimHk
G(X

G) = dimHk
G(X) ≤ b∗(X;F2)

for k > 2n, with equality if and only if X is equivariantly formal over F2. Note that we have also
reproven the Thom-Smith inequality.

7.5 Γ-products

Definition 7.32. Let X be a topological space and Γ ⊆ Sn a subgroup, then the Γ-product XΓ of
X is the quotient of Xn, by the natural Γ action on Xn. For Γ = Sn, this is the n-fold symmetric
product of X.

Theorem 7.33. [3, Theorem 1.1] Let K be a field, let G be a group and let X be a topological
space with continuous G-action that is equivariantly formal over K. Then XΓ is also equivariantly
formal over K.
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Proof. By assumptio,n the map je : X → XG, x 7→ [e, x] induces a surjection in cohomology.
Lemma 2.4 in [3] implies that jΓe : XΓ → (XG)

Γ, [x1, ..., xn] 7→ [[e, x1], ..., [e, xn]] also induces a
surjection in cohomology. The map jΓe factors as je = ϕ ◦ ψe, with

ψe : X
Γ → (XΓ)G, [x1, ..., xn] 7→ [e, [x1, ..., xn]]

and
ϕ : (XΓ)G → (XG)

Γ, [e, [x1, ..., xn]] 7→ [[e, x1], ..., [e, xn]].

This induces a factorization of the map in cohomology and shows that ψe induces a surjection in
cohomology, which proves that XΓ is equivariantly formal over K.

XΓ (XG)
Γ H∗(XΓ;K) H∗((XG)

Γ;K)

(XΓ)G H∗
G(X

Γ;K)

ψe

jΓe

ϕ∗

(jΓe )
∗

ϕ ψ∗
e

Corollary 7.34. Let X be a maximal curve, then X(n) is a maximal variety.

Proof. By Propositions 6.4 and 6.6 X(n) is an R-variety. Since X is maximal, it is equivariantly
formal over F2, by Theorem 7.31. By Theorem 7.33 X(n) is also equivariantly formal over F2 and
finally by Theorem 7.31 X(n) is maximal.
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